MULTI-ISOTOPES APPROACH (δ^{44/40}CA, δ^{88/86}SR AND ⁸⁷SR/⁸⁶SR) OF RHIZOLITHS FORMATION MECHANISMS IN TERRESTRIAL SEDIMENTS OF NUSSLOCH (GERMANY)

Brazier, J.-M.^{1,2}, Schmitt, A.-D.², Gangloff, S.², Pelt, E.², Göcke, M.I.³ & Wiesenberg, G.L.B.⁴

¹Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, A-8010 Graz, Austria ²Université de Strasbourg, CNRS, ENGEES, LHyGeS UMR 7517, 1 rue Blessig, F-67000 Strasbourg, France ³Institute of Crop Science and Resource Conservation (INRES) – Soil Science and Soil ecology, University of Bonn, Nussallee 13, D-53115 Bonn, Germany.

⁴Department of Geography, University of Zurich, Winterthurerstrasse 190, CHE-8057 Zürich, Switzerland e-mail: j.brazier@tugraz.at

Carbonates in loess-paleosol sequences are considered as a good paleo-environmental proxy for climate change during the Quaternary period. In this study, we present a new dataset of $\delta^{44/40}$ Ca, $\delta^{88/86}$ Sr and 87 Sr/ 86 Sr to understand the formation of rhizoliths (roots encrusted with CaCO₃) within these kinds of sequences from Nussloch region (Germany). Our results indicate that the leached fractions of rhizoliths (sampled at 3.2 m, 6.6 m, and 8.4 m depths and leached with HCl) have lower $\delta^{44/40}$ Ca and $\delta^{88/86}$ Sr, and higher 87 Sr/ 86 Sr isotopic values than the leached fractions of rhizosphere and loess of the same stratigraphic levels. Rhizoliths CaCO₃ reflect a mixture between loessic CaCO₃ from the stratigraphic level in which rhizoliths are found and CaCO₃ precipitated within the root itself, whose isotopic signatures are representative of a Holocene near-surface soil level (0.65 m depth).

A new scheme of the rhizolith formation mechanisms has been proposed involving: (1) deepest roots encrustation until the only roots available to uptake water and nutrients were located in the near-surface level, (2) a massive removal of Sr and Ca from the soil at 0.65 m depth, which represents the last available reservoir, (3) a translocation of Sr and Ca through the phloem in the lignin parts of the encrusted roots not yet decomposed, and (4) a CaCO₃ precipitation within the cells of the roots, whose isotopic signatures will be identical to the last level from which nutrients were collected.