
Abstract

Structural geological investigations near the base of the Brenner Mesozoic (BM) of the northeastern Oetztal-Stubai-Complex (OSC) 

showed evidence for polyphase Variscan folding of the OSC in comparison to Alpine structures of its Permomesozoic cover (BM). 

Local remapping in the Kalkkoegel area (northern BM) revealed an unknown first isoclinal folding event (D ) with S- and NE-orien-1

tated folds that formed a penetrative schistosity subparallel to the bedding (S ). Large-scale open folding with ESE- and WNW-0/1

trending fold hinges overprinted this S -foliation with the development of a S -foliation and resulted in regional-scale intermediate 0/1 2

Type 2/Type 3 fold interference patterns. Reverse modelling of these “elongated mushroom-shaped” geometries led to a newly 

established simple pseudo-stratigraphy, with meta-igneous rocks intruding into paragneisses overlain by mica schists. After Permo-

mesozoic strata (BM) were deposited discordantly on top of the OSC, both were overprinted by ductile and brittle deformation du-

ring the Cretaceous (D  & D ) and Cenozoic (D  & D ) Alpine orogenies. Brittle deformation is still ongoing, as displayed by seismic 3 4 5 6

activity related to the northward movement of the Southalpine indenter.

Strukturgeologische Untersuchungen im Nordosten des Ötztal-Stubai-Komplexes (OSC) an der Basis des Brennermesozoikums 

(BM) lieferten neue Einblicke in die duktile polyphase variszische Deformationsgeschichte im OSC durch Vergleich mit alpidischen 

Strukturen in den überlagernden permomesozoischen Decksedimenten (BM). Durch lokale Kartierungen im Bereich der Kalkkӧgel 

(nӧrdliches BM) konnte eine bisher unbekannte erste isoklinale Verfaltung (D ) mit S- und NE-orientierten Falten festgestellt wer-1

den, die zur Bildung einer penetrativen Schieferung subparallel zur sedimentären Schichtung (S ) führte. Eine zweite großmass-0/1

stäbliche offene ESE-orientierte Verfaltung überprägte diese S -Schieferung mit der Bildung einer S -Schieferung und führte zur 0/1 2

Bildung von intermediären Typ 2/Typ 3 Faltenüberprägungen. Reverse modelling ermӧglichte die Interpretation dieser „gestreckten 

pilzfӧrmigen“ Muster und die Einführung einer Pseudo-Stratigraphie mit metamorphen Plutoniten/Vulkaniten an der Basis, die in Pa-

ragneisse intrudiert sind und von Glimmerschiefern überlagert werden. Nach der diskordanten Sedimentation permomesozoischer 

Einheiten (BM) auf dem OSC, wurden beide Einheiten während beiden alpidischen Orogenesen in der Kreide (D  & D ) und im 3 4

Känozoikum (D  & D ) duktil und sprӧd deformiert. Die anhaltende sprӧde Deformation durch die nordwärts-gerichtete Bewegung 5 6

des Südalpinen Indenters ist anhand seismischer Aktivitäten immer noch feststellbar.

___________________---___________________________

_____________________________________
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1. Introduction

The Oetzal Stubai Complex (OSC) of Tyrol, Austria, has been 

intensively investigated with a petrographic, petrological and 

geochronological focus (e.g. Miller, 1970; Hoernes and Hoffer, 

1973; Veltman, 1986; Söllner and Hansen, 1987; Miller and 

Thöni, 1995; Klötzli-Chowanetz et al., 1997; Thöni, 1999, 

Tropper and Recheis, 2003). While petrological highlights 

such as migmatites, eclogites and mica schists attracted 

numerous scientists, the rather monotonous but widespread 

paragneisses of the OSC were hardly ever studied. Since the 

classic works on the OSC by Tollmann (1963, 1977), Schmid-

egg (1964), Purtscheller (1971, 1978), Thöni (1980, 1981) 

and Hoinkes et al. (1982) general structural investigations ad-

dressing the entire OSC are lacking. Structural and tectonic 

aspects of the OSC have mostly been carried out within relati-

vely local geological contexts (e.g. Schmidegg, 1964; Förster, 

1967; Förster and Schmitz-Wiechowski, 1970; van Gool et al., 

1987; Fügenschuh et al., 2000; Sölva et al., 2005). In this in-

vestigation, we attempt to decipher the polyphase structural

evolution of the northeastern part of the OSC, with a special 

focus on pre-Alpine folding events, and we compare our fin-

dings to those of Alpine deformation events recorded in its 

Permomesozoic cover, the Brenner Mesozoic (BM).

This study is based on regional mapping at the scale of 

1:10,000 in the Kalkkoegel area in the northeasternmost por-

tion of the OSC and BM. The post-Variscan age of the cover 

units enabled us to distinguish pre-Alpine structures in the 

OSC from Alpine structures in the BM. With the integration of 

a simplified version of the geological map sheet “Oetzthal” of 

Hammer (1929), local structural observations were interpreted 

in the context of a regional-scale fold interference pattern.

The OSC is a basement complex located in the central Alps 

(Fig. 1) and is tectonically attributed to the Oetztal-Bundschuh-

Complex, with the OSC west and the Bundschuh-Complex 

east of the Tauern window (Schmid et al., 2004). Although this

________

__
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attribution is still controversial (Neubauer et al., 2007), we as-

sume that within the context of Alpine nappe stacking both 

complexes have similar positions. Following the palinspastic 

restoration of Frisch et al. (1998), both these complexes were 

connected prior to the eastern lateral escape of the Eastern 

Alps towards the retreating subduction zone in the Carpathi-

ans (Royden et al., 1982) in response to the northward move-

ment of the Southalpine indenter and the Miocene exhuma-

tion of the Tauern window.

In the northernmost part of the BM, (i.e. the Kalkkoegel area) 

the stratigraphy encompasses a sequence of transgressive 

sediments deposited onto a paleo-weathering horizon of the 

uppermost OSC (Krois et al., 1990). The deposition was initi-

ated by Permo-Triassic clastics of the Alpine Verrucano, fol-

lowed by dolomites and marls of the Virgloria Formation, Reif-

ling Formation and Partnach Formation that interfinger with 

dolomites of the Wetterstein Formation. These successions 

are sealed by the Raibl shales, and the Norian Hauptdolomite 

completes the sequence with dolostone units (Rockenschaub 

et al., 2003; Brandner et al., 2003; Brandner and Reiter, 2004). 

The hanging wall units of the W-dipping Brenner fault zone are 

tilted towards the east and thus preserved the parautochtho-

nous BM (Köhler, 1978; Krois, 1989) from erosion in the vici-

nity of the fault zone in the eastern part of the OSC.

The OSC consists of metamorphic rocks with various proto-

liths: orthogneisses of plutonic origin, amphibolites of volcanic 

and plutonic origin, and metapelites and metapsammites of 

sedimentary origin. Paragneisses are considered to be the 

oldest rocks in the OSC with a mean crustal residence age 

of ca. 1.5 Ga (Schweigl, 1995) to 1.6 Ga (Thӧni, 1999). Meta-

igneous rocks, which intruded the meta-sediments, have pro-

tolith ages ranging from 520-530 Ma for mafic intrusions

____________________________

_______

(Schweigl, 1995) and 485 ± 3 Ma 

for intrusions with granitic composi-

tions (Bernhard et al., 1996). Paleo-

geographically, the OSC formed part 

of the Apulian margin and is tectoni-

cally attributed to the Upper Austro-

alpine nappe complex (e.g. Schus-

ter and Frank, 1999; Schmid et al., 

2004), which formed through WNW-

directed thrusting during the Creta-

ceous (Eoalpine) orogeny (Frank et 

al., 1987; Froitzheim et al., 1994).

The OSC is entirely fault bounded, 

with the different faults having diffe-

rent kinematics and ages (Fig. 1). 

They consist of the Inntal fault to 

the north (Ortner et al., 2006), the 

Brenner fault zone to the east (Fü-

genschuh, 1995), the Schneeberg 

fault zone and Vinschgau shear zone 

to the south (Flӧss, 2009; Speckba-

cher, 2009; Sӧlva et al., 2005), the 

Schlinig fault to the west (Schmid

_

and Haas, 1989) and the Engadine line to the northwest (Schmid 

and Froitzheim, 1993).

The OSC is well known for its polymetamorphic evolution 

(i.a. Hoinkes et al., 1982; Thöni, 1999) with the youngest me-

tamorphic event (i.e. Eoalpine orogeny) being of Cretaceous 

age (Frank et al., 1987), which reaches lower greenschist 

facies in the NW corner of the OSC and increases towards 

the SE to upper amphibolite grade conditions, with eclogite 

facies conditions documented in the underlying Texel complex 

(Thöni, 1980, 1981; Hoinkes et al., 1991; Konzett and Hoin-

kes, 1996). This regional variation in metamorphism is reflec-

ted in an increase from 445 °C in the north to 530 °C in the 

south within the BM (Hoernes and Friedrichsen, 1978; Tes-

sadri, 1981; Dietrich, 1983). Eoalpine metamorphism within 

the Kalkkoegel area reached temperatures of about 450 °C 

(Hoernes and Friedrichsen, 1978) whereas temperatures du-

ring the pre-Alpine metamorphic event were substantially hig-

her (ca. 600 °C: Hoernes and Friedrichsen, 1978).

Purtscheller (1978) documented a Variscan metamorphic 

zonation in the OSC based on the distribution of aluminosili-

cates (Fig.1). However, this zonation is questioned by Hoin-

kes and Thӧni (1993) and Tropper and Recheis (2003), who 

propose that although the zonation is consistent with the me-

tamorphic gradient between the Variscan and Alpine orogenies, 

the aluminosilicates do not necessarily represent a single me-

tamorphic event. Schuster et al. (2004) estimated the age of 

the Variscan thermal peak at 340 Ma and Variscan cooling 

ages at ca. 310 Ma (Miller and Thӧni, 1995; Neubauer et al., 

1999; Thӧni, 1999) with maximum Variscan temperatures of 

670 °C in the northern area of the OSC (Hoinkes et al., 1982).

_______________________________

_________

3. Polymetamorphism

Figure 1: Tectonic overview of the Oetztal-Stubai-Complex showing the distribution of Cretace-

ous metamorphism (redrawn after Fügenschuh et al., 2000), small dashed rectangle: study area, large 

dashed rectangle: extent of geological map of Hammer (1929). BFZ = Brenner fault zone, BM = Bren-

ner Mesozoic, EF = Engadine window, EL = Engadine line, IL = Inntal line, IQP = Innsbruck Quartz-

phyllite, NKA = Northern Calcareous Alps, SD = Steinach nappe, SL = Schlinig line, SFZ = Schnee-

berg fault zone, VSZ = Vinschgau shear zone. Variscan aluminosilicate zonation after Purtscheller 

(1969): And = Andalusite zone, Ky = Kyanite zone, Sill = Sillimanite zone._____________________
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Figure 2: Structural data of the investigation area: (left) comparison of D  and D  foliations, stretching lineations and fold hinges; (right) A: NNW- and W-1 2

orientated D  thrusts, B: brittle faults related to the Stubaital fault, C: brittle faults related to the Halsl fault, D: brittle faults in the hanging wall of the Brenner fault.5

For the eclogites in the central Oetztal, PT conditions of 27 

kbar and 730 °C, together with an age of 370-340 Ma, were 

determined by geothermobarometry and Sm-Nd mineral iso-

chrons (Miller and Thöni, 1995). The oldest metamorphic 

event within the OSC is represented by Ordovician/Silurian 

migmatites of the Winnebach area, for which Klötzli-Chowa-

netz et al. (1997) and Thöny et al. (2008) determined ages 

ranging between 490 ± 9 Ma (U/Pb zircon age) and 441 ± 18 

Ma (U-Th-Pb electron microprobe monazite age).

The metamorphic evolution of the OSC is well-documented, 

whereas structural investigations are rather scarce (e.g. van 

Gool et al., 1987; Sölva et al., 2005). Although a clear attribu-

tion of structural elements to the different tectonometamor-

phic events has not been proposed yet, it is our understan-

ding that differences in metamorphic grades were essential to 

classify observed structures as Alpine or Variscan deforma-

tional events.

The OSC is dominated by large-scale E-W-striking open 

folds. However, the exact location of their major axial traces 

were not clearly mapped at this stage, partly because of nu-

merous non-cylindrical parasitic folds and a discontinuous 

appearance of lithologies due to boudinage. Despite these 

difficulties structural observations and regional map patterns 

can be interpreted in the following proposed deformation 

sequence.

D  is defined by a penetrative schistosity (S ) formed by bio-1 1

tite and muscovite in amphibolite facies conditions and by the 

occurrence of garnet, staurolite and kyanite. D  is related to 1

large amplitude (up to 100m scale) isoclinal folding and the 

main foliation can be addressed as a composite S  planar0/1

__________

_______________________________________

4. Deformation stages

4.1 Deformation stage D1

feature because S  is subparallel to the observed bedding. 

Main observations related to D  are (1) isoclinal and often 1

intrafolial folds, (2) slightly S- or NE-plunging fold hinges (F ), 1

(3) mainly NE- and S-trending mineral stretching lineations 

(L ) (sub-) parallel to the fold hinges and (4) slightly ESE- and 1

WNW-dipping S -axial planes (Fig. 2, left).0/1

Due to the parallelism of F  and L , D  folds could be inter-1 1 1

preted either as sheath folds (Alsop and Carreras, 2007) or 

as isoclinal folds originally formed parallel to the stretching 

direction during intense shearing (Grujić and Mancktelow, 

1995). The latter interpretation is favoured because the NE-

SW trending stretching lineations point to shearing along this 

direction, but no unequivocal shear sense could be determined 

with respect to the D  stretching lineation. Further investiga-1

tions are necessary to verify the geodynamic meaning of D .1

This deformation phase forms the dominant structures with-

in the OSC and refolds the S  foliation (Fig. 3a, b). It is cha-0/1

racterized by (1) sub-horizontal ESE- and WNW-plunging non-

cylindrical parasitic folds (F ) of different orders associated 2

with open folds with kilometer-scale amplitudes, (2) sub-hori-

zontal ESE- and WNW-orientated mineral stretching linea-

tions L  and (3) steeply N- and S-dipping S  foliations with a 2 2

similar mineral assemblage as S  (Fig. 2, left).1

This superimposed folding leads to a strong parallelism of 

F  and F  that results in subparallel S - and S -foliations. 1 2 0/1 2

These foliations can only be clearly identified in D  hinge 2

zones where F  and F  remain more or less in their original 1 2

orientation. D  and D  are responsible for the penetrative foli-1 2

ation generally observed throughout the whole OSC. Due to 

their great overlap in terms of metamorphic grade and geo-

metry of structural elements, D  and D  are proposed to re-1 2

present ongoing deformation during one protracted Variscan

1

_______________

_

____________

4.2 Deformation stage D2
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tectonometamorphic event. D  and D  are clearly pre-Alpine 2

since their axial traces and foliations are not observed within 

the BM and are discordant to the stratigraphic base of the BM 

(Krois et al., 1990).

This deformation stage is manifested by rarely observed W 

to NW-directed thrust faults and is interpreted to be related to 

Cretaceous thrusting (i.e., Trupchun phase, Froitzheim et al., 

1994). D -structures are only hardly observable due to later 3

overprinting and, according to Purtscheller (1978) and Fügen-

schuh et al. (2000), are restricted to the top of the OSC.

Subhorizontal to slightly SE-dipping foliations are developed 

along shear zones with top-to-the-SE directed shearing. Rela-

ted folds have meter-scale amplitudes and show similar orien-

tations as kilometer-scale D  folds in the OSC. However, due 2

to differences in scale and qualitative determination of forming 

temperatures from thin section inspections (e.g. green biotite 

in BM: greenschist facies; brown biotite in OSC: amphibolite 

facies) these structures are instead attributed to a late Creta-

1

__________________________________

____

4.3 Deformation stage D

4.4 Deformation stage D4

3

ceous extension event (Ducan-Ela phase, Froitzheim et al.,

1994), which affected the uppermost part of the OSC close to 

the BM contact, whereas most of the deformation was taken 

up by the Mesozoic cover sequences. Moreover, planar SE-

orientated normal faults led to the SE-dipping foliation subpa-

rallel to the bedding in the BM (Rockenschaub et al., 2003) 

and equivalent SE-orientated crenulation lineations or fault 

propagation folds in the OSC (Fig. 3c). The contact between 

the OSC and its cover (BM) is termed parautochthonous 

(Köhler, 1978; Krois, 1989) because only minor amounts of 

shearing occurred at this boundary.

Small-scale NNW- to SSE-vergent brittle thrusts were ob-

servable throughout the field area (Fig. 2A) but due to their 

limited extent do not show up on map scale. Mica-rich units 

of the OSC show a weak crenulation (Fig. 3d) with ENE-tren-

ding fold hinges, in accordance with observations made by 

Langheinrich (1965). Both their orientations (folds and thrusts) 

and kinematics (thrusts) are consistent with Cenozoic thrus-

ting of Austroalpine units upon Penninic units (Rockenschaub 

et al., 2003), i.e. the Blaisun phase of Froitzheim et al. (1994).  

_____________________

4.5 Deformation stage D5

Figure 3: Outcrop scale structures: (a) D  hinge zone with refolded S , (b) south-vergent D  parasitic fold refolding isoclinal D  fold, (c) thrusting 2 0/1 2 1

of originally (D ) boudinaged amphibolite in a D  fault propagation fold, (d) D  crenulation in mica schist.1 2 5 _____________________________________
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Independent evidence for this interpretation is pending.

Both from overprinting criteria and geometrical considera-

tions, the youngest phase of deformation is related to defor-

mation of the OSC and BM in the hangingwall of the Brenner 

fault zone (Fügenschuh et al., 1997). This fully brittle stage is 

evidenced by NE- (e.g. Stubaital fault, Fig. 2B) and NW-tren-

ding (e.g. Halsl fault, Fig. 2C) strike-slip faults together with 

N-S-trending normal faults (e.g. Seejoechl fault, Fig. 2D). 

Brittle deformation started essentially during the Neogene and 

has remained active until recent times (Reiter et al., 2005). 

The relative timing of activity along these faults, as proposed 

by Rockenschaub et al. (2003), cannot be verified because of

a lack of exposure of cross-cutting relationships.

The OSC is a polyphase folded complex, a fact already 

known and described by several authors (e.g., Schmidegg, 

1956; Tollmann, 1963; 1977; Purtscheller, 1971; 1978; van 

Gool et al., 1987). A qualitative description of D  folds (in our 2

notation) dates already back to Hammer (1929), but was not 

elaborated in a more genetic context. Only van Gool et al. 

(1987) investigated structures in the SW of the OSC, which 

show some similarities to the observed structures in the NE. 

The main problem with correlating the findings of van Gool et 

al. (1987) from the southernmost OSC with the structures in 

the north is the substantially stronger Cretaceous overprint in 

the south, where Eoalpine metamorphism reached amphibo-

lite facies conditions. On the contrary, structures of the sou-

thernmost OSC are more likely related to Cretaceous tecto-

nics than by Variscan deformation (Pomella et al., 2010).

Firstly, the observed two-phase folding is displayed by the 

two different sets of fold hinges and stretching lineations and 

the mutual fold interference in outcrops. Outcrop-scale fold 

interference patterns are largely of Type 3 (Ramsay, 1967), 

whereas the incorporation of the geological map of Hammer 

(1929) provides a more regional perspective showing a mixed

_____

__________

____

4.6 Deformation stage D

5. Model

6

Type 2/Type 3 fold interference pattern. The difference bet-

ween Type 2 and Type 3 fold interferences is the orientation 

of initial folding and can be seen in Fig. 4. Type 2 superimpo-

sed folding leads to folding of both initial fold hinges and axial 

planes in contrast to Type 3 folding, which results in subpa-

rallel fold hinges without folding of the pre-existing fold hin-

ges. Pure Type 2 fold interferences show mushroom-shaped 

outcrop patterns (Fig. 5, 90° between fold hinges and axial 

planes) and with decreasing angle between the two fold hin-

ges the mushroom pattern becomes elongated (Fig. 5, 45° 

and 20°). The evidences described above indicate that the 

angle is likely 20-30° between D  and D  fold hinges, where-1 2

as the initial orientation of D  and D  axial planes is estimated 1 2

as perpendicular, but according to Odonne and Vialon (1987)

Figure 4: Type 2 and Type 3 fold geometries (Ramsay and Huber, 

1987): (A) initial folding, (B) superposed folding, (C) resulting fold geo-

metry and Type 2b fold geometry (Simón, 2004): (F1) initial fold axis of 

isoclinal folds, (F2) overprinting fold axis of open folds.____________

Figure 5: Fold interference pattern after Ramsay and Huber (1987): (90) typical Type 2 interference pattern with perpendicular fold hinges and 

axial planes, (45) intermediate Type 2/Type 3 interference pattern with an angle of 45°, (20) intermediate Type 2/Type 3 interference pattern with an 

angle of 20° illustrating differently stretched mushroom-shaped pattern.______________________________________________________________
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Figure 6: Digitized geological map sheet “Oetzthal” of Hammer (1929) (1:175,000). For legend see Fig. 8._______________________________
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Figure 7: Simplified geological map “Oetzthal” of Hammer (1929) (1:175,000). For simplification of lithologies see Fig. 8.____________________
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Pre-Alpine fold interference patterns in the northeastern Oetztal-Stubai-Complex (Tyrol, Austria)

Figure 8:  top: Cross sections A and B, axial traces indicated in Fig. 7; bottom: Legend to Fig. 6 to Fig. 8, (right squares indicating original litho-

logical classification of Hammer, 1929 and left squares summarized in parentheses indicating reduced lithologies of Fig. 7 and Fig. 8, top)._________



1)2)*) 1)Mathias EGGLSEDER , Bernhard FÜGENSCHUH

directions of fold axes in areas of superposed folding cannot 

be used to determine compression directions.

Ghosh (1974) and Skjernaa (1975) distinguished, on the ba-

sis of physical experiments, that overprinting folds are cylin-

drical if the first folding event is tight or isoclinal, but low-cylin-

drical when first folds are rather open. Ghosh et al. (1992) 

also determined that fourth mode superposed buckling (Type 

2b; Simón, 2004; Fig. 4) in contrast to third mode (Type 2a; 

Simón, 2004) consists of isoclinal D  folds with folded hinges 1

and axial planes because of refolding by D . Although the 2

cylindricity of D  folds, local thickness variations and viscosity 1

contrasts of lithologies were neglected, these theoretical as-

sumptions are consistent with the pattern observed in the in-

vestigated part of the OSC.

Ghosh (1974) and Grujić (1993) investigated Type 1/Type 2 

fold interferences and determined that “strong shear strains 

develop along the hinge zones of those early folds that are 

located at the limbs of the later folds. This will rotate any line-

ation, which was not parallel to the first fold hinge line into 

parallelism with it.” Transferred to Type 2/Type 3 fold interfe-

rences this parallelization of the D  hinges and D  hinges re-1 2

sults in the observed outcrop-scale Type 3 fold interference 

patterns in D  limb zones and intermediate Type 2/Type 3 fold 2

interference pattern could only be observed in D  hinge zones.2

Type 2 interference patterns become much more evident 

after redrawing and simplifying Hammer’s map (Fig. 6) and 

combining of the originally depicted lithologies to essentially 

three lithological groups (Fig. 7): (1) Paragneisses, (2) mica-

schists and (3) magmatics (felsic and mafic). Although this 

simplification might ignore local lithological details and varia-

tions, we insist on the regional coherence. The combination 

of felsic and mafic magmatic rocks was mainly done due to 

their rather discontinuous pattern, a feature resulting from 

their relatively higher competency during deformation and, 

consequently, their appearance as boudins. Moreover it has 

to be stated that the distinction of D  antiforms from synforms 1

could not be carried out unequivocally. We based our inter-

pretation on a pseudo-stratigraphy only for working purposes, 

which is made up of (from bottom to top) (1) magmatic rocks, 

(2) paragneisses and (3) micaschists. Based on this stratigra-

phy micaschists are found in the cores of synforms while am-

phibolites and orthogneisses form the cores of antiforms (Fig. 

8, top). The effect of lateral thickness variations can be ob-

served due to the initial isoclinal D1 folding and can be assu-

med for the entire northeastern part of the OSC (Fig. 8, top).

The geodynamic setting of the investigated area is difficult 

to determine due to the lack of detailed investigations on the 

relation between metamorphism, deformation and related 

geochronological data. For the eclogites and migmatites of 

the central OSC, excellent petrological and geochronological 

data are available, but no correlation with different stages of 

deformation has been worked out at this point.

While meta-igneous rocks are associated with paragneisses

_____________

___________________________

_

____________

6. Discussion

and could then be syn- or postdepositional to them, qualita-

tively micaschists are almost exclusively free of magmatic 

rocks and could represent a late to post-magmatic formation.

The OSC was substantially affected by the tectonometamor-

phic overprint related to the Variscan orogeny (Maggetti and 

Flisch, 1993; von Raumer and Neubauer, 1993), which led to 

a still preserved metamorphic zonation, especially in its nort-

hern part (cf. Fig. 1), as well as a dominant E-W striking com-

posite penetrative foliation. The D  structures are either rela-1

ted to this Variscan cycle, or could date back to an even ear-

lier Ordovician-Silurian tectonism, coeval to migmatites of the 

central OSC (Schweigl, 1995; Thöni, 1999). Here, we assume 

a Variscan age for both our folding stages, since structures 

related to D  fit well with the known Variscan metamorphic 1

temperatures of 469 - 630 °C and 4.2 – 7.3 kbar for the nor-

thern part of the OSC (Tropper and Recheis, 2003). Further-

more, the orthogneisses in the OSC, which are dated as Cam-

brian to Silurian, are affected by D  and D  (Thӧni, 1999). The 1 2

first phase (D ) formed isoclinal folds with sub-horizontal fold 1

axial planes. The second phase (D ) developed kilometer-2

scale relatively open folds with subvertical, recently inclined 

fold axial planes. The resulting mixed Type 2/Type 3 interfe-

rence patterns can stem from two independent and geodyna-

mically distinct events, or can alternatively be formed during a 

single event, as shown by Forbes et al. (2004). The mixed 

Type 2/Type 3 interference pattern changes to a pure Type 3 

pattern towards the west, whereas the eastern continuation 

of the OSC is unknown due to the tectonic boundary of the 

Brenner fault. Nevertheless future work should focus on the 

comparison of the OSC to the Bundschuh complex east of the 

Tauern window, a unit which is not unequivocally correlated 

with the OSC (Schmid et al., 2004; Neubauer et al., 2007).

Detailed structural mapping allows the determination of a 

relative chronology of deformation phases and the recognition 

of fold interferences in the OSC. Yet on a more regional scale, 

these small scale observations might not hold true because of 

lithological controls on folding (rock type, thickness variations, 

etc.), mainly non-cylindrical folds and variable amplitudes de-

pending on their location in the polyphase deformed geometry. 

Our combination of local mapping and incorporation in a re-

gional geological map, revealed a mixed Type 2/Type 3 in-

terference pattern for the pre-Alpine two-stage folding. The 

unequivocal pre-Mesozoic character of the first two phases of 

deformation becomes clear when comparing their structural 

elements to those of the unconformably overlying Permome-

sozoic cover in this area. Four known younger deformation 

phases (ductile and brittle) affected both the basement (OSC) 

and its cover (BM) and range from Cretaceous to sub-recent.

Reducing the number of originally mapped lithologies by 

summarizing them to reasonable entities clarifies the structu-

ral framework of the OSC and reveals the main outcrop pat-

tern of the region. Although we are aware of possible over-

simplifications, we are confident that the main lithological ele-

__

7. Conclusion



ments, structural evolution and, eventually, the structural geo-

metry can be inferred by this approach.
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