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Abstract 

The problem of determining reliably the "mean" orientations contained in a series 
of clusters of axes is discussed. The correct parametric procedure, based on the 
determination of the eigenvectors of an orientation matrix, is recalled. The extension 
to more than one distribution is presented, and a new version for the determination 
of the preferred (one or more) directions of data on a circle is given. It is shown that 
parametric statistics is a powerful tool for determining such "means" from relatively 
few data (of the order of 10-30 data for 1 to 3 maxima). 

Examples that demonstrate the power of these procedures are given. 

Zusammenfassung 

Die Effizienz der parametrischen Richtungsstatistik in den Erdwissenschaften. 
Es wird das Problem der Bestimmung von representativen mittleren Achsen aus 

einer Serie von räumlichen Achsen erläutert. Dabei wird angenommen, daß die 
Achsen unter Umständen nicht deutlich erkennbare Häufungen (Clusters) aufwei
sen. Ausgehend von der exakten parametrischen Lösung für einen Häufungspunkt 
wird die Erweiterung zu mehreren sich überlagernden Häufungen dargestellt. Eine 
neue Methode zur Behandlung von Richtungen (Häufungen am Kreis) wird vorge
stellt. Insbesondere wird gezeigt, daß mit parametrischen Methoden schon aus einer 
kleinen Zahl von Werten (nämlich ca. 10 bzw. ca. 30 Meßwerte für 1 bzw. 3 Achsen) 
die mittleren Orientierungen oder Richtungen mit angehörigem Vertrauensbereich 
gefunden werden. Die Vorteile dieser Methode werden an Hand von Beispielen aus 
der Natur erläutert. Die Rechenprogramme können, soweit sie von den Autoren 
selbst erstellt wurden, von diesen bezogen werden. 

1. Introduction 

In the Earth sciences, one is often faced with the problem of determining reliably 
the "mean" orientation embodied by one or several clusters of axes. These axes may 
refer to fault plane solutions of earthquakes, to joint planes, to grain orientations, to 
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the normals of bedding planes etc. Usually, the problem is solved graphically by 
plotting poles or such like on an equal-area projection of a unit sphere and drawing 
isolines by hand. The question, then, arises as to how many data are necessary for 
getting "reliable" results: Some structural geologists claim that thousands of mea
surements of the pertinent data have to be taken at each outcrop, others think that a 
few tens or hundreds may be sufficient. 

It is the aim of the present paper to show that the above questions can be answered 
by the application of parametric statistics and the corresponding statistical tests 
(DUDLEY, PERKINS and GINE 1975, WATSON, 1970): One assumes that the data have a 
distribution which is described by a preassumed function with a number of un
known parameters. This assumption is not really satisfied, but in practice it can be 
fulfilled very closely in many cases. If this assumption holds, one can obtain 
statistically meaningful centers of distributions with a very small number of data. 
The justification for the a priori assumption of the distribution function can be 
inferred from the various central limit theorems which indicate that data which are 
the mean of many independent distributions (coming from different unknown 
causes) have a normal distribution in linear space. On a sphere such a central limit 
theorem does not exist but there is some experimental evidence (KOHLBECK & 
SCHEIDEGGER, 1977, WATSON, 1970) that the DIMROTH-WATSON distribution or the 
more general Bingham-Distribution (MARDIA, 1972) plays the same role on a sphere 
as does the normal distribution on a line. If we assume that there are several 
independent physical causes which result in a scatter of the data (e. g. joint directions 
in an outcrop) and if we assume that the deviations are randomly distributed, we can 
state that the total distribution will be a linear superposition of single distributions. 
This total distribution can be matched to the experimental data by varying the 
parameters. From these parameters an estimate for the unknown centers can be 
made. This method has been applied by KOHLBECK SC SCHEIDEGGER (1977) for axial 
data on a sphere and has proved to be very successful. For linear data, similar 
considerations can be made. In this case we have the advantage that the following 
limit theorem exists (see eg. MARDIA, 1972): If X;, i = 1 . . . . n are independent and 
identically distributed random variables in the range — Jt = X; = Jt with expectation 
values E(x;) = 0, then the distribution of 

Sn = (E x;/\/n) mod 2JC 

tends towards the wrapped normal distribution with the parameter o. This limit 
theorem confirms our assumption that many circular data have distributions which 
can be approximated by the wrapped normal distribution, or by a sum of wrapped 
normal distributions with different means and parameters. In the case when there is 
only one cluster or concentration of points, the mean value can be obtained very 
quickly with a least squares procedure [SCHEIDEGGER (1963, 1965) for spherical data; 
FISHER (1953) for circular data]. If there are more than one concentration, the 
problem is somewhat complicated [KOHLBECK & SCHEIDEGGER (1977) for spherical 
data] and will be described in the following sections. 

These various methods will now be reviewed; examples will be given to demons
trate their power in every case. 
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2. Solution of the basic parametric problem 

The basic problem is: For a random cluster of directions, which is the best 
"mean"? 

Two approaches have been successfully used in the geosciences: 

(1) The spherical mean, which is defined by the vector 10 = (10, m0, n0) 

N N N 

10 = £ li/R m0 = X m;/R n0 = £ n;/R 
i = l i = l i = l 

R = [(£ l;)2 + (E m;)
2 + (S n;)2]1/2 

with 1;, m; and n; the direction cosines of the N orientation data. This mean has been 
used e. g. by FISHER (1953) in paleomagnetism studies and is best suited for directed 
data or vectors. 

(2) The axis of the extremal moment of inertia, which is best suitable for axial data. 
This "quadratic" mean has first been introduced by SCHEIDEGGER (1963, 1965, FARA 

& SCHEIDEGGER, 1963) in connection with various problems in geophysics. 
It has been found that many geological and geophysical data which are clustered 

around one point on a sphere, can be well described by a FiSHER-distribution, 
whereas axial data which are districuted on a hemisphere very often can be described 
by a DIMROTH (1963) - WATSON (1966) function. These distributions have the 
following densities. 
FISHER distribution: 

g (8, <p) da = A • exp (k • (1; • !„)) da 
A = k/(4jt • sinh k) 

DIMROTH-WATSON distribution: 

f (9, cp) da = A • exp (k2 • (1; • I)2) da 
A = 1/4JI J exp (k2t2) dt) 

o 
3 . 3 

with 1; (6, qp) the direction of the simple point and 10 (0o, cp0) the mean direction k 
the concentration factor and da = sin9d9dcp the area element. It can be shown that 
the maximum likelihood estimator of 1Q yields the spherical mean in the case of a 
FISHER distribution and yields the axis of inertia in the case of a DIMROTH-WATSON-

distribution. The FiSHER-distribution and the DIMROTH-WATsoN-distribution are 
closely related to each other: We introduce the angle a between the pole of the 
distribution 10 and the random variable 1 by 

3 3 

cos a = 10 • 1 
and obtain: 

g (0, cp) da = Ag • exp (kg cos a) da 

f (9, cp) da = Af exp (k2 • cos2 a) da 

with the identity: cos2a = 1/2(1+cos2a) the last expression can be written: 

w-lt^ f (9, qp) da = A exp (k2_- cos 2 a) da 
A = Af exp (k2/2) and kf = kf/V2 
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Thus, the DIMROTH-WATSON distribution has the same shape as the FiSHER-distribu-
tion if the angles between pole of distribution and random variable are doubled. The 
parameter k is indicative of the sharpness of the distribution. For low angles cos a 
can be approximated by l-(l/2) a2 and both g(8, (p) and f(9, qp) tend to a normal 
distribution. 

3. Extension to multiple distributions in space 

3.1 Theory 

The problem of finding the parameters characterizing the best fitting axis for a 
cluster of axes can be solved, in three dimensions, by finding the eigenvalues and 
eigenvectors of a symmetric 3 x 3 matrix, i. e., in essence, by solving a third-order 
equation. 

In many instances, the data do not belong to a single cluster, but to several 
clusters. Therefore, an automatic procedure must be devised in which the density-
distributions for the axes is the superposition of several basic DIMROTH-WATSON 

distributions, each of which is characterized by the direction of its central axis (two 
parameters), by its value of k and by its amplitude A. Thus, each distribution is 
characterized by 4 parameters; however, since the integral over all the distributions 
must be 1, we note that N distributions are jointly characterized by 4N-1 parame
ters. 

The theory for the definition of the "best fitting" 4 N- l parameters is the same as 
with one distribution: The parameters must be defined in such a fashion that the 
likelihood of finding the actually found data becomes a maximum. This is achieved 
by directly maximizing the likelihood function first by a Monte Carlo search and 
then finding the actual maximum by various approximation procedures. The present 
writers have developed a corresponding algorithm (KOHLBECK and SCHEIDEGGER, 

1977) starting from particular computer programs available in soft-ware libraries 
(e. g. JAMES and Roos, 1971). 

The effort for the maximization of the likelihood function (and thus of the "best 
fitting parameters") is substantial, but it can be fully automatized. Confidence limits, 
dispersions and the weights of the component-distributions can also be determined. 
All this information, of course, is tied up with the assumption that the natural data 
are indeed generated by DIMROTH-WATSON distributions. This is a reasonable but to 
some extent arbitrary assumption. 

A further remark refers to the number of measurements that are necessary to 
determine the "mean" axes of the distributions. In the geological literature one finds 
estimates from hundreds to thousands of individual orientations that are deemed 
necessary for the fixation of the mean direction. However, it is a well known fact 
that around 3 measurements suffice for the determination of each parameter; the 
acutal confidence limits come out of the statistical calculation. Thus, for a single axis 
(3 parameters), 9 measurements would be required, for two axes (7 parameters), 21 
measurements, for 3 axes (11 parameters), 33 measurements. Taking more measure
ments will not improve the confidence limits significantly: Either the data are 
indicative of (one, two or more) DIMROTH-WATSON distributions, or they are not. In 
the former case relatively few measurements will fix the parameters, in the latter, no 
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Fig- 1 : Joint poles (right) and density lines (left) in equal area projection from one location 
with increasing number of data. Heavy line shows calculated error ranges of angle 6 
and cp of the centers of concentrations. (RuetzstoUen, Tyrol, Austria) 
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axes can be established with confidence regardless of the number of measurements 
taken. 

3.2 Examples for the recognition of concentrations from samples of orientation data 

The following examples show joint orientation measurements with poles of joints 
and density lines drawn on the lower hemisphere in equal area projection. The aim of 
these examples is to show that few data are sufficient to locate really existent 
concentrations with parametric statistics. Fig. 1 shows from bottom to top the poles 
and their densities with an increasing number of measurements embodying from 15 
to 132 data. The heavy lines in the right pictures are the ranges of uncertainities for 
the angles $ and cp of the center obtained by the calculation with superposition of 2 
DIMROTH-WATSON functions. It can be clearly seen that even in the case of 15 data 
points the centers are found very definitely. Increasing the number of data reduces 
the uncertainities, somewhat but the locations of the centers are not substantially 
changed. Fig. 2 shows a practical example where the distribution of joint poles is 
nearly random. No significant center could be found by calculations using up to 224 
data points. 

4. Circular distributions 

4.1 Theory 

We have seen that, on a sphere, the DIMROTH-WATSON distribution can be used for 
the approximation of actual densities in many cases. This is not the outcome of a 
limit theorem, but rather of a "correspondence principle" which shows that the 
DIMROTH-WATSON distribution approaches a Gaussian distribution if the sphere 
becomes very large, i. e. if it approaches a plane. 

For circular data, one has the advantage that a limit theorem does actually exist 
(MARDIA, 1972). The latter states that, if X;, i = 1 . . . n are independent and 
identically distributed random variables in the range - J T < X; < JT with expectation 
values E (x;) = 0, then the distribution of 

Sn = (S X;/Vn) mod 2JT 

tends towards the wrapped normal distribution with parameter a2 = E(X2). 
This theorem is not directly applicable to the problem of the orientation of axes, 

because the latter only have a range 

Jt _ v _ Jt 

~ 2 " ' ~ 2 ' 

but it can evidently be made applicable by a simple doubling of all the values of the 
variables, i. e. of the angles cp (that is: take X; = 2cp;). The method of doubling the 
angles has been used long ago by KRUMBEIN (1939) in connection with the study of 
the orientation statistics of sedimentological axes. Now the theory given above can 
be extended to distributions with several maxima in the density function, by simple 
superposition of wrapped normal distributions with different means and parameters. 



224 DATA 

56 DATA 

28 DATA 

Fig. 2: Joint poles (right) and density lines (left) in equal area projection from one location 
with increasing number of data. (Salzburg near Hallstatt, Upper Austria) 
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Thus we assume that the probability density function of the data under consideration 
can be approximated by: 

g(x)dx = J] p;f;(x) dy 1 < r < 4 

fi(x) = 1 = Z e xP 
0 ; V 2 J T

 k =-°° 

(-1/2) 
(x - a ; + 2jtk)2 

of 

p; > 0 and YJ Pi = 1 

where the p; are the weights of the wrapped normal distributions f; with centers at a;. 
The function g is fitted to N experimental data by minimization of the negative 
likelihood function 

L (x/9) = - £ In g (xi/9) 
i = l 

with respect to the n parameters 

9 = ai, a2 . . ar; ou . . or; qu . . qr_i 

with 
r - l 

Pi = (1-qi-i) E[ qj 
1=1 

Pr = 1-qr-l 
qo = 0 

With the same arguments as those used by KOHLBECK and SCHEIDEGGER (1977) one 
obtains estimates for the errors of the parameters 9 found: if 9 is the likelihood 
estimator found and 90 some other estimated value of 9 and if we define 

s = 2 [L (x, 0) - L (x, 90)] 

then we have for the probability estimate: 

Pr (s > Sa) - %l (a) 

where x„ (a) denotes the chi-square distribution with a degrees of freedom and 
significance-level a. 

For the construction of the algorithm we used again a function-extremization 
program available in the software library (e. g. JAMES and Roos, 1971). In each case, 
the validity of the solution must be checked as follows. 
1st The values p; must be considered. If the weight p r of a function fr is high and 

considerably greater than its error, this fr will represent a real existing event. If p r 
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is low or lower than its error, the maximum will most probably be spurios and 
only represent a disturbing or accidental event. 

2nd The value of parameter ö must be considered. If a is greater than about 30°, the 
function fr represents most probably a diffuse background which is not caused 
by a special event. If o is very sharp (less than 2° or 3°) only 1 or 2 data points 
are associated with fr and fr therefore is not representative. This happens if g 
contains more functions fr than are necessary. The negative likelihood is 
somewhat lower in this case than in the case where the weight is set to zero. 

3rd Applying points 1 and 2 one can eliminate the suspect maxima of the function g, 
and in some cases g will reduce to a case with a lower number r of functions f. If 
one considers all functions g with different r, the solution g with lowest negative 
likelihood function L will normally be the best. 

4th The means of the functions f must be considered. If the errors are too high, the 
numbers of data are not high enough to fix the centers. In this case only the use 
of more data can ensure the solutions. 

The outlined method can be used to locate the density functions for stochastically 
distributed circular data. The parameters can be found without plotting histograms 
of the data, but a visual check is very helpful in some cases. With respect to the usual, 
more intuitive interpretation of the data by the inspection of histograms, the method 
has the following advantages: Narrow distributions can be separated which hardly 
could be separated visually. The maxima can be located very accurately and 
approximate errors for their location can be stated. It has been found from a great 
number of evaluations of field data that far fewer experimental data are necessary for 
finding the centers with the same accuracy than are necessary with conventional 
methods. 

4.2 Demonstration of the resolving power for circular data 

In the following examples it is shown how far it is possible to recognize two 
adjacent clusters as separate ones. In the "cases" I to III below the input data are 
chosen to follow the truncated normal distribution. The density of this function goes 
to zero outside a limit value and therefore differs remarkably form the approximated 
wrapped normal in this range. "Case" IV represents really measured data. 
Case I Superposition of 2 truncated normal distributions. The distribution 

functions go to zero at a distance of more than 16° from the mean and 
follow a normal distribution N (a, 1) in the range of 16° around the 
mean at a. The centers are located at 0° and 40° respectively as seen in 
fig. 3. The non-zero values of each distribution are well separated from 
each other. 

Case II Same case as I, but the truncation is at 40° from the mean. The 
distribution functions are overlapping as seen in fig. 4. 

Case III Same case as II, but the means are at distances 0° and 20°. The 
distributions are strongly overlapping and the greatest value of the 
common distribution occurs at 10°. (Fig. 5) 

Case IV The distribution of valleys of Switzerland is drawn in the rose diagram of 
fig. 6. 

17» 
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Test funct ion 

Approximation 

2 Maxima 
1,3,4 Maxima 

100 

Fig. 3: Test function truncated normal and approximation by g(x) with number of maxima 
r = 1, 2, 3, 4. Function with r = 2,3 are identical and give best approximation. 

Calculations are carried out by fitting the function g defined in (1) with superposi
tion of 1, 2, 3 and 4 wrapped normals to each of the cases I, II, III. Figures 3 to 6 
show the distribution functions y (x) of the input data and their approximations by g 
(x). Table 1 shows the calculated parameters p;, a; and a; of g with their estimated 
errors at the significance level of 0.3 and the value of the negative maximum-
likelihood L. 
Case I: The single distribution functions are well separated from each other. The 

correct solutions are found with r = 2 and r = 3, but the best value of L 
is found with r = 4. r = 4 shows the two correct maxima at 0° and 
40° with great weight and two extra maxima with spurious weights at 
51° and 29°. These weights with p; = 0.07 and 0.08 are not remark
ably greater than the errors. The maxima have o = 3° and are on the 
limit of being acceptable. Comparison with the solution of r = 2 shows 
that the errors are greater with r = 4. However because L = 896 is 
lower than L = 1019 obtained with r = 2 no absolute decision could be 
made whether or not 4 maxima are correct, if the distribution function is 
not a priori known. 

Case II: The distribution functions are overlapping. The solutions with r = 1 
show again a diffuse background with the highest value of L. All other 



The Power of Parametric Orientation Statistics in the Earth Sciences 261 

1,5 

0,5 

T e s t f u n c t i o n 

A p p r o x i m a t i o n 

2 M a x i m a 

1,3,4 M a x i m a 

- 4 0 - 20 0 20 40 60 80 100 

Fig. 4: Test function consists of a superposition of two overlapping normal distributions 
with well separated maxima. The approximation with g(x) and r = 2, 3, 4 gives 
nearly identical distributions. 

solutions have about the same value of L and one can assume that the 
solution with the lowest r, that is with r = 2, is the best one. This is 
confirmed as follows. The solution with r = 2 shows two maxima with 
great weights and low errors. The solution with r = 3 has one maximum 
at a = 180° which is identical to that at a = 0 if r = 2. The weight of f 
corresponding to this maximum is 0.5 as is the case with r = 2, but the 
error is 0.45 which is at the limit of being acceptable. The errors of the 
two other maxima in weight are greater than the weights. Therefore this 
solution cannot be accepted. Similar considerations hold for r = 4. 

Case III : The single distribution functions are strongly overlapping. The total 
density shows the greatest value between the means of the single 
functions f. If one tries g with r = 2 all parameters are found with their 
correct values (see table 1). If one takes r = 3 one obtains one function f 
with vanishing p . The remaining two functions f are similar to the 
expected ones, but not quite correct. The means differ by 4° and the 
weights have the ratio 1 : 2 instead of 1 : 1. The likelihood-function L 
(L = 36) is appreciately higher than that with r = 2 (L = 27). 
The approximation with r = 1 and r = 4 gives 1 maximum located at 
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1,5 

0,5 

Test funct ion 
Approximat ion 
2 Maxima 
1,3,4 Maxima 

40 20 20 40 60 80 100 

Fig. 5: Test function consists of a superposition of two strongly overlapping normal 
distributions with centers at 0 deg. and 20 deg. Both maxima are resolved by g(x) 
with r = 2. Within the usual limits of error this function can also be approximated 
with r = 1, 3, 4 but fit is somewhat poorer in this case. 

10° which is the middle of the two really existing maxima. The 
likelihood-function gives L = 123 and indicates that the solution is by 
far the worst one. Therefore a consideration of the output-parameters 
shows clearly that the right solution is that with 2 maxima, which is 
completely in conformity with the input distribution. 

Case IV: Example with field data (Fig. 6) 
All solutions with r = 1 show two maxima at about 150° and 60° with 
highest weights. The ratio of weights to errors is by far the best for 
r = 2. L is about the same for all solutions. Therefore, there is no doubt 
that the solution with r = 2 is the best and the centers of the single 
distributions are at a = 145° and a = 56°. 

5. Conclusions 

It has been seen that the application of parametric methods can be advantageously 
used to locate density maxima: The parameters can be found without plotting 
histograms of the data, but a visual check is very helpful in some cases. Close 



Table 1: Parameter values obtained by fitting the function g(x) = /_, Pi fi (x) to the funtions of case I to case IV. Given are the values and their 
errors at significance level 0.3 separated by /. i = 1 

case 

I 

II 

III 

IV 

P
ar

a
m

et
er

 

a 
o 
P 

a 
0 
P 

a 
a 
P 

a 
a 
P 

unit 

Degrees 
Degrees 

Degrees 
Degrees 

Degrees 
Degrees 

Degrees 
Degrees 

r = l 

fi 

20.0/.5 
21.5/.3 
1.00/0.00 

20.0/.5 
22.3A3 
1.00/0.00 

10.0/.3 
14.1/.2 
1.00/0.00 

-

r = 2 

fi 

.0/.4 
8.0/.2 
.50/. 02 

40.0/.6 
9.9A4 
.50/.02 

20.0/2.9 
9.8/.9 
.50/.14 

145.0/8.1 
35.5/12.9 

.60/.19 

h 
40.0/.4 

8.0/.2 
.50/.02 

.0/.6 
9.9A4 
.50/.02 

180.0/2.9 
9.8/.9 
.50/.14 

56.3/5.6 
20.2/7.0 

.40/.19 

r = 3 

fi 

40.0/.5 
8.0/.3 
.50/.02 

42.8/8.2 
9.2/1.7 
.29/.34 

23.6/2.2 
8.7/1.0 
.31 /.09 

55.5/7.2 
23.2/8.4 

.49/.15 

ii 

.0/.5 
8.0/.3 
.50/.02 

179.9/.7 
9.9A4 
.50/.46 

4.0/1.5 
11.5/.5 
.69/.09 

151.2/8.3 
24.0/9.6 

.43/.15 

h 

-

35.9/3.9 
9.7/3.4 
.21/.60 

— 

108.7/4.8 
6.1/2.8 
.08/.06 

r = 4 

fi 

40.1/2.9 
5.8/.9 
.35/.09 

40.8/3.5 
9.6/1.1 
.45A42 

10.0/.5 
14.1/.3 
1.00/0.6 

36.7/3.3 
4.9/2.1 
.10/.13 

h 
51.2/2.7 
2.9/1.3 
.07/.06 

7.6/9.5 
6.7/5.6 

0.06/.14 

— 

154.0/29.5 
35.7/15.7 

.57/.51 

h 
29.1/2.8 

3.0/1.3 
.08/.07 

178.3/3.6 
9.3/1.2 
.42A37 

— 

65.6/3.4 
10.1/2.7 
.26A26 

U 
.1/.5 

8.0/.3 
.50/.02 

27.4/49.4 
11.8/18.0 

.06/.81 

— 

112.0/23.6 
17.1/16.2 
.08/.78 
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l ö u Approximation 
Test funct ion 2Maxima 

Fig. 6: Typical field example and approximation by g(x) with r = 2 drawn in a rose 
diagram: Weighted valley directions of Switzerland. 

distributions can be separated which hardly could be separated visually. The maxima 
can be located very accurately and approximate errors for their location can be 
stated. It has been found from a great number of evaluations of field data that far 
fewer experimental data are necessary for finding the centers with the same accuracy 
than are necessary with conventional methods. 
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