Der Deckenbau in den Ostalpen.*) Von Viktor Uhlig.

Mit einem schematischen Durchschnitt (Tafel XVIII).

Die wunderbaren Verschlingungen des Schichtengefüges unserer Hochgebirge auf ein einfaches Bild zurückzuführen, war das Ziel vieljähriger Bestrebungen der Geologen. Aber die Größe dieser Aufgabe und ihre unsäglichen Schwierigkeiten brachten es mit sich, daß wir uns zunächst und namentlich in den Ostalpen mit einer Zusammenfassung begnügen mußten, die mehr ein topographisches Bild der Hauptverteilung der Formationen als ein tektonisches Bild ihres inneren Baues vor Augen führte.

Da griff vor etwa 30 Jahren Eduard Sueß aus der verwirrenden Fülle der Erscheinungen diejenigen heraus, die ihm für Bau und Entstehung der Kettengebirge maßgebend erschienen: er verwies auf die nach Norden konvexe Bogenform der Alpen und Karpathen, auf den einseitigen Bau dieser Ketten, auf die Einheitlichkeit ihres Außenrandes und den

^{*)} Der vorliegende Vortrag wurde in kurzer Form am 23. September 1909 auf der 81. Versammlung Deutscher Naturforscher und Aerzte in Salzburg abgehalten und am 6. November 1909 in der Geol, Gesellschaft in Wien wiederholt. Seit Abhaltung dieses Vortrages ist im Schlußbande des "Antlitz der Erde" von E. Sueß eine eingehende Zusammenfassung des Alpenbaues erschienen, der sich naturgemäß das ganze Interesse der alpinen Geologen zuwenden wird. Wenn ich mich nach einigem Schwanken doch entschlossen habe, meinen Vortrag an dieser Stelle zu veröffentlichen, so geschah es in der Erwägung, daß die Ostalpen bisher nur in den allgemeinsten Zügen in den Rahmen der Deckenlehre einbezogen wurden und es daher wohl nur nützlich sein kann, wenn dieses Gebirge von verschiedener Seite, wenn auch von denselben Grundanschauungen ausgehend, besprochen wird. Auf die neuen Auffassungen und neuen Ideen des "Antlitz" einzugehen, wird bei einer späteren Gelegenheit möglich sein. Die Besprechung der Westalpen ist nicht mit Zitaten belegt, da dieses Gebirge in den letzten Jahren wiederholt Gegenstand zusammenfassender Darstellung gewesen und hier nur in der Einleitung kurz gestreift ist. Es mag hier namentlich auf die Zusammenfassungen von H. Schardt, K. Schmidt, A. Heim, L. Bertrand bingewiesen werden, die im wesentlichen auf den bekannten größeren Arbeiten von M. Lugeon, H. Schardt, P. Termier u. a. fußen. Auch von der ostalpinen Literatur wurde nur wenig zitiert, um die Arbeit nicht des Charakters eines Vortrages zu entkleiden.

Kontrast zwischen diesem Außenrande und der Mannigfaltigkeit des Vorlandes der Ketten, auf den Gegensatz der Ausbildung und Folge der Formationen in den Kettengebirgen und ihrem Vorlande, auf die Unmöglichkeit, im Vorlande die Uferbildungen der ehemaligen alpin-karpathischen Meere aufzufinden, er zeigte endlich die allgemeine Ueberschiebung des Nordrandes der Alpen und Karpathen über das herzynischsudetische Vorland auf.

Alle diese Erscheinungen gaben ihm die Ueberzeugung ein, es müßten unsere Ketten durch einen von Süden nach Norden einseitig wirkenden Schub entstanden sein.

Dieser Auffassung standen zunächst noch manche scheinbar gut begründete Anschauungen im Wege. So war die vielbesprochene Glarner Doppelfalte nur durch einen doppelseitigen, von Norden nach Süden entgegengesetzt wirkenden Schub erklärbar, auch die täuschende Symmetrie der Ostalpen mit ihren Kalkzonen im Norden und Süden der kristallinen Zentralzone schien ebenfalls einen doppelseitigen Schub zu fordern.

Aber allmählich mehrten sich Entdeckungen, die die Annahme des einseitigen Schubes aus Süden nach Norden mittelbar oder unmittelbar stärkten, wie die großen, flachen, nordwärts gerichteten Ueberschiebungen in Schottland und Belgien, die weit ausholenden Ueberdeckungen der Provence. Hatte der scharfsichtige M. Bertrand in der Provence zuerst jene liegenden Falten erkannt, die den Namen der Nappes de charriage, Ueberfaltungsdecken oder Schubdecken, erhalten haben, so tauchte auch bald, sowohl bei M. Bertrand, wie bei E. Sueß die Vermutung auf, daß vielleicht auch die Glarner Doppelfalte nur eine einzige große, von Süden nach Norden gerichtete Ueberfaltungs- und Ueberschiebungsdecke sei.

A. Heim¹) selbst hat auf der vorjährigen Naturforscherversammlung zu Köln gezeigt, wie einfach und harmonisch diese Auffassung den wundervollen, über alle Vorstellung großartigen tektonischen Erscheinungen der Glarner Alpen gerecht zu werden vermag. Alle hundertfach überprüften Einzelheiten weisen so zwingend auf die Einheitlichkeit dieser großen

^{&#}x27;) Ueber den Deckenbau der Alpen. Verhandl. d. Gesellsch. deutscher Naturf. u. Aerzte 1908, S. 9.

Ueberschiebung hin, daß vor der Eindringlichkeit dieser Sprache jeder Zweifel verstummen mußte. Und so wurde festgestellt, daß am Rande des autochthonen Finsteraarhornmassives aus tief versenkten Mulden, den "Wurzeln", mesozoische und alttertiäre Gesteine von sogenannter helvetischer Entwicklung hervortreten, sich erheben und bis zu 40 km weit über die jüngeren Schichten der autochthonen Unterlage in einheitlichem Zuge nach Norden hinausfließen, hier unter allmählicher Absenkung sich spalten, um schließlich an der tertiären Vorlage der Molasse in den viel bewunderten Falten des Säntis nochmals aufzubranden. Und wie die Glarner Alpen, so wurde auch das ganze schweizerische Kalkhochgebirge bis nach Savoven hinein am Westabhange der Aiguilles rouges und des Montblanc als ein wurzelloses. auf geologisch jüngeren Schichten gleichsam schwimmendes Deckenland erkannt.

Auf diesem helvetischen Deckenlande liegt aber noch ein zweites mesozoisches Schichtensystem auf, das später von E. Sueß den Namen des lepontinischen erhalten hat. In der östlichen und mittleren Schweiz liegt es hoch und ist deshalb bis auf einzelne isolierte Reste, die sogenannten Klippen, der Denudation verfallen, im Westen aber liegt es tief, und bildet hier in den Freiburger Alpen oder Préalpes romandes, ferner im savoyschen Chablais ein zusammenhängendes großes Gebirge mit eigenartiger Faltenarchitektur. Niemand konnte an der Wurzellosigkeit der kleinen Klippen der Mittelschweiz oder des Embrunais der französischen Alpen zweißeln; zu klar liegen die kleinen Massen als Krönung steiler Berggipfel auf dem Flyschrücken der helvetischen Decken oben auf. Dennoch ist es begreiflich, daß Hans Schardt zunächst noch keine Gefolgschaft fand, als er 1893 als erster ein Profil veröffentlichte, in dem folgerichtig auch die ganzen Préalpes als eine wurzellose Masse dargestellt waren. Zu groß, zu uferlos, schienen die Ansprüche dieses Tektonikers zu sein und sie fanden daher zunächst fast allgemein Ablehnung. Mußte man sich doch vorstellen, daß diese lepontinischen Schubmassen ihre Wurzeln noch weiter im Süden haben, als die helvetischen, und einen noch längeren, vielleicht selbst 80 bis 100 km langen Weg über die helvetischen Decken hinweg zurückgelegt haben mußten.

Aber die eingehendste und strengste Diskussion und erneutes eindringliches Studium ergaben nicht nur keinen stichhaltigen Grund gegen diese Vorstellungsreihe, sondern bestärkten sie schrittweise, und so wurde die Schardtsche Auffassung zum Grundpfeiler des sich nun rasch entwickelnden Deckenbaues der Alpen.

Die Wurzelregion der lepontinischen Decken schien der Deckenlehre Schwierigkeiten zu bereiten. Und doch hat gerade hier die Deckenlehre eine ihrer Feuerproben siegreich bestanden. Die gewaltige Durchörterung des Simplon hat nicht der alten, sondern der neuen Auffassung des Gebirges Recht gegeben. Nicht nur das Simplongebiet, sondern auch die gesamte Innenregion der Westalpen, der die Geologen vordem fast ratlos gegenüberstanden, löste sich in eine Folge von sechs bis sieben teils kurzen Tauchdecken (Antigorio-, Lebendun-, Monte Leone-Decken), teils langen und mächtigen flachen Decken (Gr. St. Bernhard-, Mt. Rosa-, Dent Blanche-Decke) auf, deren Wurzeln jeweils südlich oder südöstlich liegen und deren Zusammenhang mit den Wurzeln zum Teil erhalten, zum Teil durch Denudation unterbrochen ist.

Weitere Schwierigkeiten knüpften sich an die verwickelte Zone des Cols und an die Frage, ob das Brianconnais oder die noch etwas weiter nach innen gelegene Zone des Piémont oder aber beide Gebiete die Wurzeln der lepontinischen Decken enthalten. Heute haben diese Fragen ihre ursprüngliche Schärfe verloren, und jedenfalls blieb die Deckennatur der lepontinischen Gesteine davon unberührt.

Die lepontinischen Decken zwangen zur Einführung einer Hypothese. Die Sedimente dieser Decken am Nordrande (Klippendecke, Brekziendecke, rhätische Decke)²) zeigen die gewöhnliche Beschaffenheit und sind fossilreich, die mitgerissenen Erstarrungsgesteine, besonders Serpentin und mannigfache andere basische Massen, haben ihre normale Struktur. In den Innenregionen des Brianconnais und des Piemont sind jedoch die basischen Gesteine größtenteils schieferig und die Se-

²) Klippendecke, Decke der Préalpes médiancs Lugeon, mit gipsführender und dolomitischer Trias, Rhät, sandigem Lias, Zoophycos-Dogger, weißem Tithonkalk, bunter Oberkreide (couches rouges), Mytilus-Dogger, Brekziendecke, in Lias und Jura brekziös entwickelt. Rhätische Decke (Steinmann) mit Ophiten, Serpentin und Radiolariten.

dimente sind metamorph, zum nicht geringen Teil durch eintönige Glanzschiefer, die sogenannten Bündner Schiefer vertreten, und Fossileinschlüsse gehören zu den größten Seltenheiten. Dennoch müssen zwischen beiderlei Bildungen enge Beziehungen bestehen. Man erklärt das durch die Annahme, daß die vordersten Teile der lepontinischen Decken, die am Außenrande der Westalpen erhalten sind, aus den Wurzeln verhältnismäßig rasch ausgestoßen und vorgeschoben wurden, so daß sie den verändernden Einflüssen der hohen tektonischen Pressung und großen Wärme entzogen wurden, während die weiter nach innen gelegenen Teile derselben Decken diesen Einflüssen allmählich unterlagen und Umkristallisierung und Schieferung erfuhren. Wenn hier auch das hypothetische Element nicht vermieden werden konnte, so betrifft es doch weder die Tatsache des Deckenbaues der metamorph-lepontinischen Gesteine im inneren Teile der Westalpen, noch auch die Deckenüberschiebung der normal lepontinischen Gesteine am Außenrande, sondern es überbrückt nur den fehlenden oder noch nicht völlig aufgeklärten Zusammenhang dieser Teile, die durch Denudation größtenteils von einander getrennt sind.

Die Unterscheidung der lepontinischen Decken von den darunter liegenden helvetischen wurde durch die Verschiedenartigkeit der Gesteinsausbildung und Fossilführung wesentlich erleichtert: der Kontrast ist so groß, daß man die lepontinischen Gesteine der vereinzelt auftretenden Klippen im Gegensatze zu den allgemein verbreiteten helvetischen, in der Schweiz früher auch als "exotische" Gesteine bezeichnet hat. Man erkannte aber bald ihre Verwandtschaft mit den ost- und südalpinen Formationen und so verwiesen nicht nur die Lagerungs-, sondern auch die Faziesverhältnisse auf die ursprünglich südliche Entstehung und Herkunft. Durch den Prozeß der Deckenbildung wurden südliche Ablagerungen nach Norden verfrachtet und 'so entstand ein Nebeneinander von ursprünglich weit von einander gebildeten Ablagerungen, das vordem ganz unverständlich war. Denkt man sich aber, wie das namentlich die beiden Heim so anschaulich dargelegt haben, die Ablagerungen im Geiste auf Grund der tektonischen Hinweise wieder an ihre Ursprungsstelle zurückversetzt, und ihre ursprüngliche topographische

Folge wieder hergestellt, so wird das Verhältnis dieser Ablagerungen zu einander mit einem Schlage völlig klar und verständlich.

So wurde denn der Rahmen des Alpenbaues, den E. Sueß von den Ostalpen ausgehend vorgezeichnet hatte, in den Westalpen mit lebendigem Inhalt erfüllt, dank der eifervollen Arbeit zahlreicher Forscher, aus deren Reihe die Namen M. Bertrand, H. Schardt, M. Lugeon und P. Termier hervorleuchten. Gewiß ist es diesen Forschern nicht leicht gefallen, die gewaltigen flachen Krustenbewegungen der Deckenlehre zu fordern, und ebenso wenig haben sich die Anhänger der neuen Lehre leichten Herzens entschlossen, an diese Bewegungen zu glauben. Aber schließlich mußte sich doch trotz allen Sträubens und aller Bedenken der Zwang unabweisbarer und unwiderlegter Naturbeobachtung stärker erweisen, als unsere Vorstellungsgewohnheiten. Es bedarf übrigens nur der Gewöhnung an einen größeren Maßstab, um diese Erscheinungen zu begreifen. Und ist dieser größere Maßstab nicht vollauf berechtigt, wenn man bedenkt, wie klein doch selbst die größten bis jetzt nachgewiesenen Krustenverschiebungen gegenüber der Größe der Erde erscheinen?

Die Einheit des Nordschubes und der Sedimentation im gesamten Alpengebirge kamen nun im Sinne von E. Sueß in allen Einzelheiten zutage. Noch viel großartiger, als E. Sueß vordem auszusprechen gewagt hatte, erwies sich die Rolle der flachen, gleichsinnig nach Norden drängenden Ueberfaltungen. Und doch steht nun das Bild des Alpenbaues mit seinen von Süden nach Norden überschobenen Decken harmonischer, einheitlicher, und wegen seiner Gesetzmäßigkeit auch einfacher vor uns, als vordem. Unverstandene Details, für die es früher keine Anknüpfung gab, fügen sich nun zwanglos in das Ganze ein und erhalten mit einem Schlage Wert und Bedeutung. Die Stratigraphie erhält neue Impulse und stützt die Tektonik. Neue Verbindungen öffnen sich, deren weitere Entwicklungsmöglichkeiten noch gar nicht abzusehen sind. So ist es denn begreiflich, wenn die Deckenlehre, um mit den Worten Heims zu sprechen, "einen mitreißenden Siegeszug durch die Vertreter der alpin-geologischen Wissenschaft gehalten hat, wie er ähnlich in der Geschichte der Wissenschaft kaum je vorgekommen ist".

Die große Umprägung unserer Vorstellungen über den Bau der Westalpen konnte natürlich an der Grenze der Ostalpen nicht haltmachen. Bildete doch auch gerade diese Grenze eines der dunkelsten Probleme der Alpengeologie. Ohne die geringste Aenderung ihrer Beschaffenheit überschreiten die helvetischen Decken von Westen her in Graubünden den Rhein; aber noch angesichts des jungen Stromes erheben sich jenseits die bleichen Wände der nordöstlichen Kalkalpen und mit ihnen ein Gebirge, dessen Gesteine, dessen gesamte physiographischen Verhältnisse von den Kalkalpen des Westens so verschieden sind, als wären es nicht nachbarliche Teile eines einheitlichen Gebirges, sondern gänzlich unabhängige Ketten. Ich will nur auf eines hinweisen. Oestlich des Rheines erscheint die Triasformation als eine wohl mehr als 2000m mächtige Folge von Kalken, Dolomiten und Schiefern, mit fast beispiellosem Reichtum an fossilen Faunen, westlich des Stromes dagegen besteht dieselbe Formation aus einigen oft nur wenige Meter mächtigen Bänken von fast versteinerungsfreiem, gelblichen Dolomit und bunten Schiefern.

Unmöglich können diese Formationen nebeneinander entstanden sein und ineinander übergehen, und doch liegen sie in friedlicher Nachbarschaft nebeneinander. Zwar hat A. Rothpletz diese Grenze als eine Ueberschiebungslinie erkannt und G. Steinmann und seine Schüler haben hier an dieser rhätischen Ueberschiebung bei genauerem Studium zwischen den helvetischen und den echt ostalpinen Gesteinen noch eine schmale Zwischenzone von überaus zerrissenen, unzusammenhängenden Schollen erkannt, unter denen besonders Granite und gewisse basische Gesteine die Aufmerksamkeit auf sich gelenkt haben, aber das Verhältnis dieser Bildungen zu einander wurde zunächst nicht klarer.

Erst die Deckenlehre hat das alte Rätsel ge löst: Indem die helvetischen Decken den Rhein überschreiten, senken sie sich nach Osten, sie ziehen in der Tiefe, unserem Auge unzugänglich unter den ostalpinen Gesteinen fort und kommen nur am Nordrande der ostalpinen Kalkzone in dem schmalen Saume der sogenannten Sandsteinzone zutage. Jene zerrissenen, isolierten Schollen, die an der rhätischen Ueberschiebung in bunter Mannigfaltigkeit zwischen den helvetischen und den echt ostalpinen Gesteinen lagern, haben sich als Teile der lepontinischen Decken erwiesen. In der Tiefe des Gargellentales liegen tithonische Kalke unter dem ostalpinen Gneis und liefern so einen greifbaren Beweis dafür, daß die Iepontinischen Gesteine in der Tat die ostalpine Decke unterlagern. Es ist, als wären diese Schollen bei der Bewegung der ostalpinen Kalkzone nach Norden mitgerissen und so weit nach Norden verschleppt worden, daß einzelne von ihnen bis an den Nordrand der Kalkzone im Allgäu (Oberstdorf, Hindelang) gelangt sind. Ebenso senken sich auch die metamorph lepontinischen Gesteine im südlichen Graubünden unter die mesozoischen Kalke und die archäisch-kristallinen Gesteine der zentralen Ostalpen. Daß auch die metamorphlepontinischen Gesteine unter den zentralen Ostalpen fortziehen, beweist ihr Wiederauftauchen im Unterengadin und in den Hohen Tauern, wo sie unter den hochaufgewölbten und daher abgewaschenen ostalpinen Gesteinen in sogenannten Fenstern zutage treten.

Somit liegen die Ostalpen nicht neben, sondern über den Westalpen, und wenn wir in den Ostalpen so wenig Gesteine von westalpinen, in den Westalpen nur Spuren von echt ostalpinen Gesteinen (Triasdolomit der Giswyler Stöcke, Iberger Klippe) vorfinden, so hat das seinen Grund darin, daß in den niedrigen Ostalpen die westalpinen Decken größtenteils von den ostalpinen überspannt und daher unter ihnen verborgen liegen, während in den höher liegenden Westalpen die ostalpinen Gesteine durch Denudation entfernt sind. Die quer zum allgemeinen Streichen verlaufende Grenzlinie zwischen Ost- und Westalpen erweist sich als Denudationslinie, und nur insofern vom geologischen Baue abhängig, als sie die Region der raschen und tiefen Senkung des helvetischlepontinischen Sockelgebirges unter das ostalpine Deckensystem markiert. Die Alpen aber stellen sich in ihrer Gesamtheit als ein Verband von drei Deckensystemen dar: zu unterst und am Nordrande erscheint das helvetische, darüber folgt das lepontinische, und zu oberst liegt das ostalpine, Jedes von diesen Deckensystemen besteht wiederum aus einer Reihe von Teildecken und jedes zeichnet sich durch besondere stratigraphische Merkmale aus. Die Herkunfts- oder Wurzelregion der lepontinischen Decken liegt südlicher als die der helvetischen, und noch weiter südlich liegt

die Wurzelregion der ostalpinen Decken. Die helvetischen Decken wälzen sich über das autochthone helvetische Land, die lepontinischen über die helvetischen, die ostalpinen über die lepontinischen Decken. So ist das ganze große Alpensystem von einem einheitlichen Bewegungszuge beherrscht.

Den Beweisen, welche von Westen her für diesen Bauplan geliefert wurden, wohnt so viel Nachdruck und zwingende Kraft inne, daß sie uns nicht nur für die Rheingrenze, sondern auch für die Ostalpen als bindend erscheinen. Indessen muß die Deckennatur doch auch in den Ostalpen in besonderen Verhältnissen zutage treten, und diesen wollen wir jetzt unsere Aufmerksamkeit zuwenden.

Oestlich der Rheinlinie fesselt unsern Blick ein Gebirgszug, der in den Westalpen eine nur geringe Rolle spielt und größtenteils sogar gänzlich fehlt: die südlichen Kalkalpen. Reichtum an basischen Eruptivgesteinen in der mittleren Trias, eine eigenartige Entwicklung des Oberkarbon und Perm und manche anderen Merkmale verleihen der südalpinen Schichtenfolge eine Sonderstellung. Die Tektonik ist beherrscht von schiefen Falten und Ueberschiebungen, die an Schubweite zum Teil mit den ostalpinen wetteifern, aber im schroffen Gegensatze zur nordalpinen Schubrichtung durchaus nach Süden und Südwesten gerichtet sind. Die Südalpen enthalten ferner gewaltige Intrusionsmassen von eugranitischer Struktur, tonalitischer Zusammensetzung und tertiärem Alter. Eine Strecke weit laufen sie dem Hauptstamme der Alpen parallel, in den Julischen Alpen und im Karstgebiete aber schwenken sie von den Alpen nach Südosten, während der Nordstamm der Alpen die nordöstliche karpathische Richtung einschlägt. Zwischen beide Stämme aber schiebt sich in den karnischen Alpen und Karawanken ein schmales, steil gefaltetes Band silurisch-devonischen Gebirges wie ein Fremdkörper ein. Seine Schichtenfolge und namentlich sein ungewöhnlicher Fossilreichtum sind im Hauptstamme der Alpen bisher unbekannt.

Erst wenn man dieses seltsame Gebirge am Gailflusse überschritten hat, betritt man echt alpinen Boden. Hier erhebt sich zwischen Gail und Drau ein Kalkgebirge, dessen völlige Uebereinstimmung hinsichtlich Fazies und Schichtenfolge mit den nördlichen Kalkalpen und dessen Kontrast zu

den unmittelbar benachbarten oder selbst anstoßenden Südalpen schon seit Jahrzehnten das Staunen der Geologen hervorgerufen hat.³) Somit ist hier am Gailflusse die scharfe Grenze des Hauptstammes der Alpen gegeben, die nördlich von hier einheitlich wie aus einem Gusse erscheinen. Auf diesem Tatbestande beruht der Vorschlag von E. Sueß, die Südalpen mit den Dinariden zu vereinigen und von den eigentlichen Alpen zu trennen.

Selbstverständlich wird sich die Geologie mit dem merkwürdigen Gegensatze der Schubrichtung in Alpen und Dinariden und mit der Stellung der karnischen Alpen auseinanderzusetzen haben, aber die Tektonik der Alpen werden wir besser überblicken, wenn wir vorerst von den Südalpen absehen.

Nachdem wir so das Gebiet der Ostalpen im Süden begrenzt haben, wenden wir uns ihrem Nordrande zu. Wir treffen hier am Fuße des Gebirges ein schmales Band von kretazischen und alttertiären, vorwiegend sandigen Ablagerungen an, das man wegen dieser Zusammensetzung als Sandstein- oder Flyschzone bezeichnet hat.

Man hat diese orographisch nur wenig hervortretende Zone früher vielfach für eine autochthone jüngere Anlagerung an die geologisch ältere Kalkzone gehalten. Aber die Berührungsfläche zwischen Kalk- und Flyschzone entspricht keinem regelmäßigen Ablagerungs-, sondern einem abnormalen Dislokationskontakte. Auch fallen die Sandsteine der Flyschzone stets nach Süden, u. zw. meistens sehr steil, aber doch deutlich unter die ostalpine Kalkzone ein. Die frühere Auffassung konnte daher in ihrer Einfachheit richtig sein. Heute haben wir in diese Verhältnisse einen besseren Einblick gewonnen. Im Westen sieht man die ostalpine Sandsteinzone über den Rhein hinweg mit den helvetischen Decken des Säntis zusammenhängen. Daher ist also die Sandsteinzone keine autochthone, sondern eine überschobene Ablagerung. Da aber der Säntis nur der Aufbrandungszone der großen Glarner Decke entspricht, so haben wir in der ostalpinen Sandsteinzone im wesentlichen wohl auch nur die äußersten nördlichsten Ausläufer der helvetischen

³⁾ Emmrich, Jahrb. d. Geol. Reichsanstalt 1855, VI, S. 449, 450; E. Sueß, Entstehung der Alpen, S. 34; Antlitz der Erde 1901, Bd. III, I. Hälfte, S. 426.

Decken vor uns, die sich eben noch unter den Kalkalpen hervordrängten. Scheitelteile und Wurzeln dieser Decken liegen unter der ostalpinen Decke verborgen, unter die sie sich in Graubünden, wie wir schon bemerkt haben, herabsenken. Daher enthält auch die Sandsteinzone nur die geologisch jüngeren kretazischen und alttertiären Glieder der helvetischen Schichtenfolge, die geologisch älteren blieben mit Ausnahme des Tithons der Canisfluhe wie in der Schweiz in den südlicheren, hier aber verborgenen Teilen der Decken zurück.

Im Bregenzer Walde, dem westlichsten Teile der ostalpinen Flyschzone setzen die bezeichnenden helvetischen Gesteine, besonders neokomer Kieselkalk und Schrattenkalk, Gaultgrünsand, Seewenkalk, eisenreicher Nummulitenkalk und mit Granitfragmenten und Geschieben beladener Flysch, in vier Hauptfalten gelegt, ein ansehnliches Gebirge zusammen. Der geologische Bauplan dürfte sich hier noch an die Verhältnisse der helvetischen Decken der Schweiz anlehnen. Nach Osten hin erfährt aber die Tektonik der Flyschzone gewisse Abänderungen. Wohl werden da und dort auch Faltungen angegeben, aber im wesentlichen erscheint doch die Flyschzone aus einer Folge von parallelen, isoklinalen, südlich geneigten Schuppen zu bestehen, die in ziemlicher Einförmigkeit übereinander geschoben sind. Vielleicht entspricht jede dieser Schuppen einer stark verlängerten, zerrissenen, schräg aufsteigenden Teildecke. Die älteren Bildungen blieben im Untergrunde zurück, nur einzelne Fetzen wurden als Klippen bis an den Außenrand vorgezogen. Wir haben bis jetzt keine Anhaltspunkte dafür, daß sich in dem verborgenen Teile der helvetischen Region der Ostalpen ähnliche Aufragungen des autochthonen Untergrundes vorfinden, wie sie die Massive der Zone des Montblanc in den Westalpen vorstellen. Die tiefsten Decken waren vermutlich durch die gewaltige Last des ostalpinen Deckensystems stärker niedergehalten und zusammengedrückt.

Die echt helvetischen Gesteinstypen schrumpfen östlich vom Bregenzer Walde zu immer schmäleren Streifen ein. Man kann sie aber am Außenrande der Sandsteinzone mehr oder minder vollständig bis nach Mattsee an der Grenze von Salzburg und Oberösterreich verfolgen. Zu unterst liegt der bekannte eisenreiche Nummulitenkalk, darüber das Senon. Wohl zeigen sich schon gewisse Aenderungen der Fazies, so spielen hier die in der Schweiz unbekannten Nierentaler Schichten mit Belemnitellen eine große Rolle, aber im ganzen und großen ist doch ihre helvetische Natur unverkennbar. Im Hangenden der echt helvetischen Zone stellt sich in Bayern wie in Salzburg ein breites Band von hellgrauen und grünlichen Fukoidenmergeln und großbankigen Sandsteinen mit großen dünnschaligen Inozeramen ein, das sich in großer Mächtigkeit und beständiger Ausbildung bis an den Ostrand der Alpen verfolgen läßt und auch in die Karpathen übergeht. Begleitet von gewissen Eozänbildungen stellt die Zone der Inozeramenschichten vielleicht eine besondere höhere Schuppe oder Teildecke vor.

Wiederum im Hangenden dieser Schuppe schiebt sich noch weiter im Osten, u. zw. östlich vom Traisental, neuerdings eine breite Flyschregion ein, die zwischen Stollberg und Wien da und dort Fetzen von Tithon und Neokom-Aptychenkalk mitführt. Sie bedingt die große Verbreiterung der Sandsteinzone im Wiener Walde, bildet mit der Kalkzone an der Traisen einen Winkel und scheint gleichsam schräg unter dieser hervorzukommen. Vielleicht wird sich auch diese Region als eine besondere, höhere Teildecke erweisen.

Es scheint also, wie wenn dieser östliche Teil der ostalpinen Sandsteinzone eine reichere Gliederung aufzeigte, als
der westliche. Neue Teildecken scheinen sich einzuschieben,
deren Verwandtschaft mit den beskildischen Decken der
Karpathen unverkennbar ist. Wir werden in diesem östlichsten Teile der Ostalpen, dessen Streichen schon in die nordöstliche karpathische Richtung einlenkt, mit Recht von beskidisch-helvetischen Decken sprechen können. Noch steckt die
Analyse des Wiener Waldes in den ersten Anfängen, es geht
aber wohl schon aus diesen Andeutungen hervor, wie viel
Interessantes dieser vordem so wenig geschätzte, ja gemiedene
Teil der Alpen enthält, das unter dem befruchtenden Einflusse
der neuen Synthese der Alpen zutage treten wird.

Im Allgäu kommen, wie schon angedeutet wurde, zwischen dem helvetischen Sockelgebirge und der ostalpinen Decke vereinzelte Fetzen von lepontinischen Gesteinen hervor, von denen man annimmt, daß sie von der ostalpinen Decke an ihrer Basis nach Norden mitgeschleppt wurden. Ostwärts verlieren sich zunächst die Spuren dieser Erscheinung. Aber

etwa von Gmunden angefangen bis an das Ostende der Alpen ist neuerdings eine Zwischenzone zwischen der ostalpinen und der helvetisch-beskidischen Decke nachweisbar. Auch sie enthält zahlreiche größere und kleinere Schollen von mesozoischen Gesteinen (tektonische Klippen), liegt einerseits über der helvetisch-beskidischen Sandsteinzone und senkt sich anderseits unter die ostalpine Decke ein und nimmt sonach eine ähnliche Stellung ein, wie die lepontinischen Decken des Westens. Es handelt sich aber hier nicht um spärliche Fetzen, wie im Allgäu, sondern um eine fast ununterbrochene, stellenweise mehrere Kilometer breite selbständige Zone, deren Klippen von eigenartigen Flyschbildungen umhüllt sind. Sandsteine mit vielen großen Blöcken, auch kristalliner Natur, begleiten diese Zonet, deren Verbreitung vor Jahresfrist F. Trauth⁴) näher dargestellt hat. Die Verteilung der Klippen ist eine ziemlich ungleiche und vielleicht etwas weniger regelmäßige als in großen Partien der karpathischen Klippenzone. Streckenweise tauchen Klippen in mehreren Reihen in großer Zahl und Mannigfaltigkeit auf, wie z. B. in der Gegend von Waidhofen a. Y. und Ybbsitz, an anderen Punkten treten zwar mehrere, aber einformige Klippenzüge auf, wie die pieninischen Hornsteinkalkzüge bei Scheibbs, wieder andere Partien sind klippenarm oder selbst klippenfrei. Größe und Ausdehnung der Schollen schwanken in denselben Grenzen wie in den Karpathen.

Gewisse Gesteine dieser Klippenzone erinnern hinsichtlich ihrer Fazies an die lepontinischen Bildungen des Westens, so der Zoophycos-Dogger von St. Veit in Wien, die Acanthicusschichten und das Tithon von Waidhofen an der Ybbs, teilweise auch die Grestener Schichten.⁵) Vereinzelt auftretende Fetzen von Serpentin und anderen basischen Gesteinen bilden ein Seitenstück zu den basischen Felsarten der rhätischen Teildecke. Andere Gesteine, wie namentlich die hellgrauen Hornsteinkalke und dunkelbraunen, grünlichen

⁴⁾ F. Trauth, Zur Tektonik der subalpinen Grestener Schichten. Mitteil. d. Geol. Gesellsch. Wien 1908, I, S. 112.

⁵⁾ F. Trauth, Lias der exotischen Klippen am Vierwaldstätter See. Mitteil. d. Geol. Gesellsch. Wien 1908, I, S. 429, 431; J. Oppenheimer, Dogger und Malm der exotischen Klippen am Vierwaldstätter See. Mitteil. d. Geol. Gesellsch. Wien 1908, I, S. 494.

und roten Radiolarite des Oberjura und Neokom und die Posidonienschiefer sind ersichtlich identisch mit der pieninischen Klippenfazies der Karpathen. Für andere Gesteine, wie zum Beispiel die grobkörnigen rötlichen Granitschollen des Pechgrabens fehlt es vorläufig noch an Anknüpfungspunkten. Aber die meisten dieser Gesteine, vielleicht alle, sind teils gänzlich, teils in einzelnen Merkmalen verschieden von den geologisch gleichaltrigen Bildungen der ostalpinen Decke.

Die Tektonik der Klippenzone der Ostalpen zeigt im wesentlichen denselben Grundzug, wie die Sandsteinzone: sie besteht aus isoklinalen, vorwiegend nach Süden einfallenden Schichtenpaketen und Schuppen, an denen mesozoische Klippengesteine und vollständig oder annähernd gleichgerichtete, bisweilen in Kleinfalten gelegte Flyschbildungen beteiligt sind, nur ist hier der jurassische Anteil weit stärker vertreten als in der Sandsteinzone.

Die Klippen berühren trotz des Parallelismus der Schichten die umhüllenden Flyschbildungen zumeist mit anormalen Kontaktflächen und erscheinen als isolierte, zerrissene Schollen. Die kleinen Fetzen von basischen Gesteinen (Serpentin, Minette), die so eindringlich auf lepontinische Herkunft verweisen, zeigen am Rande keinen Primärkontakt mit seinen charakteristischen Veränderungen auf, sondern bilden ebenfalls abgerissene und verfrachtete, von Flysch umfaßte Stücke, Die lepontinischen Decken erreichen zwar den Außenrand der Alpen noch als breite, zusammenhängende Zone und bewahren noch den Zusammenhang ihrer Hauptglieder, aber das Gefüge ist nicht mehr vollständig und die Gesteinsmassen sind verzogen und zerrissen. Der Parallelismus der Schichten und die Zerreißung des Zusammenhanges scheinen für eine Bewegung unter hohem Druck zu sprechen. Diese Bewegung erfolgte vermutlich unter der mächtigen Last der ostalpinen Decke und führte zu einer völligen Laminierung, einzelner Teildecken in isolierte Schollen, die mit ihrem Flysch anscheinend längs der Schubbahn der ostalpinen Decke zum Teil vielleicht als echte Grundschollen vorgezogen wurden.

Die Zusammensetzung der ostalpinen Klippenzone, ihre Tektonik, ihr selbständiges Auftreten erinnern so lebhaft an die pieninische Klippenzone der Karpathen, daß man sie

geradezu als pieninisch bezeichnen könnte. Es besteht hier dasselbe Verhältnis, wie wir es schon beim östlichen Teile der Sandsteinzone bemerken konnten. Die östlichsten ostalpinen Klippen, die von St. Veit, entfernen sich schon beträchtlich vom Nordrande der Kalkzone und auch hierin zeigt sich eine zunehmende Annäherung an karpathische Verhältnisse. Sowie das pieninische Deckensystem der Karpathen in mindestens zwei Teildecken zerfällt, so wird man auch in der pieninisch-lepontinischen Decke der Ostalpen gewiß noch zwei oder selbst mehrere Serien nachweisen. Aehnlich wie die Sandsteinzone, bildet auch die pieninisch-lepontinische Klippenzone der Ostalpen ein weites, man könnte sagen, jungfräuliches Forschungsfeld. Die Klippen selbst sind nur zum kleineren Teile bekannt, die Flyschbildungen dieser Zone mit ihren eigenartigen Geröll- und Blockbildungen fast gänzlich verkannt. Die Erkennung der geologischen Besonderheit dieser Zone und ihre zutreffende geologisch-stratigraphische Analyse hätte auch ganz unabhängig von der Deckenlehre vor sich gehen können, ähnlich, wie es ja auch in den Karpathen der Fall war. Die Deckenlehre verleiht aber auch dieser Zone neues und tieferes Interesse und wird die Ausfüllung dieser Lücke sicherlich beschleunigen.

Während das helvetische System in den Ostalpen ausschließlich am Nordrande der ostalpinen Decke hervorblickt, kommt das lepontinische nicht nur am Nordrande, sondern in seiner metamorphen Ausbildung auch an drei Stellen der sogenannten Zentralzone der Alpen zum Vorschein. Diese Stellen entsprechen Regionen, in denen sich die lepontinischen Decken besonders stark aufwölben. Die auf diesen Wölbungen gelegene Partie der ostalpinen Decken wurde abgetragen, so daß die tieferen Decken in "Fenstern" sichtbar wurden. Wir bezeichnen diese Stellen als das Unter-Engadiner- und das große Tauern-Fenster. Die dritte Region bildet das Semmeringgebiet.

Im Unter-Engadiner Fenster⁶) kommen die Bündner Schiefer, die in Graubünden unter den kristallinen Schiefern und den Kalken der ostalpinen Decke verschwinden, wieder zum Vorschein. Sie nehmen von Ardetz bis Prutz eine un-

⁶⁾ E. Sueß, Inntal bei Nauders. Sitzungsber. d. k. k. Akademie 1905, Bd. CXIV, S. 699.

gefähr elliptisch begrenzte Region zu beiden Seiten des Inn ein, um sich ostwärts neuerdings unter die ostalpine Decke u. zw. unter die archäische Oetztaler Masse zu versenken. Die steil auftauchenden lepontinischen Bildungen des Unter-Engadiner Fensters sind nur wenig metamorph und lassen da und dort Spuren von Versteinerungen erkennen. Manche Partien sind ungezwungen als Flysch anzusprechen. Im Hangenden mehren sich abgerissene Schubfetzen und isolierte Schollen von Liaskalk, von Gips und Triasdolomit, von Serpentin, Grünsteinen, Quarziten und Verrukano und bilden mit mechanischen Brekzien verschiedener Art einen lautsprechenden Hinweis auf die gewaltigen Bewegungen, die hier die lepontinische Serie zerrissen und selbst völlig aufgearbeitet haben. Auf einzelnen Spitzen, wie besonders am Muttlerspitz, sind kleine Deckschollen der ostalpinen Decke der Denudation entgangen und erleichtern so die Feststellung, daß ehedem das ganze Fenster von der ostalpinen Decke überzogen war. Noch harrt dieses merkwürdige Gebiet näherer Erforschung, aber die Haupttatsache, daß wir es hier mit einem Hervortauchen der tieferen Decken zu tun haben, kann wohl nicht mehr zweifelhaft sein.

An der Linie Sprechenstein — Sterzing — Steinach am Brenner tauchen die lepontinischen Gesteine neuerdings hervor und setzen nun in Form eines ostwestlich gestreckten, nach Norden leicht konvexen und bis zum Katschbergpaß im Osten reichenden Rechteckes das ganze Tauern-Fenster zusammen. P. Termier⁷) hat zum ersten Male den kühnen Versuch unternommen, diese Region, welche mit die gewaltigsten Stöcke unserer Zentralalpen, die Zillertaler, Tuxer-, Venediger- und Granatspitz-Gruppe, Großglockner, Sonnblick- und Hochalmmassiv umfaßt, als lepontinisch es Fenster hinzustellen, und darauf die großen Hauptzüge der ostalpinen Tektonik aufzubauen. Man kann wohl heute sagen, daß dieser Versuch im wesentlichen als gelungen zu betrachten ist.

Die Kernteile des großen Fensters nehmen Orthogneise, Granite und Tonalite ein, darüber liegen ringsum verschiedene mehr oder minder stark metamorphe Schiefer. Wegen dieses geologischen Verhaltens hat man diese als Schieferhülle, jene

⁷⁾ Bulletin de la Société géol. de France 1903, 4. sér., t. III, p. 711.

als Zentralgneis und Zentralgranit bezeichnet. Wir müssen es uns leider versagen, hier auf eine nähere Gliederung der so merkwürdigen, fossilfreien Schieferhülle einzugehen, sondern beschränken uns auf die Bemerkung, daß gewichtige Wahrscheinlichkeitsgründe für das mesozoische Alter des jüngeren Teiles der Schieferhülle und die Gleichstellung mit der Trias und den Bündner Schiefern der Westalpen sprechen. Dieser jüngere Teil der Schieferhülle setzt mit Quarziten und verrukanoartigen Gesteinen, Dolomit- und Kalkmarmoren (Angertalmarmor, Hochstegenkalk) ein, darüber liegen Kalkphyllite und Kalkglimmerschiefer in Wechsellagerung mit Grünschiefern. Der ältere Teil der Schieferhülle besteht vorwiegend aus Glimmerschiefer.

Die Lagerung ist eine scheinbar kuppelförmige, da die Schichten im nördlichen Teile des Fensters nach Norden, im südlichen nach Süden einfallen. Verschiedene Umstände, besonders die Verhältnisse in der nördlichen Partie des Hochalmmassivs zeigen.8) daß nur die südliche Zone der Gneise Untergrunde wurzelt. die nördliche der Schieferhülle umzogene und Norden überschlagene längere oder kürzere Tauchdecken bildet. Verfolgt man nun die Struktur der Ostalpen von den zentralen Gneiskuppeln einerseits nach Norden, anderseits nach Süden, so sieht man beiderseits eine Reihe von ungefähr parallelen Gesteinsbändern des ostalpinen Systems auftreten, die an der Nordseite nach Norden, an der Südseite nach Süden einfallen. Da aber der Untergrund dieser Bänder im Norden, die lepontinische Schieferhülle, nicht autochthon, sondern bereits nach Norden überschlagen ist, so ist es klar, daß auch alle folgenden ostalpinen Gesteinszonen bis an den Nordrand der Kalkzone ebenfalls überschoben sein und große Decken bilden müssen. Wir können diesen Schluß um so sicherer aussprechen, als ja die Wurzellosigkeit der ostalpinen Decken auch an ihrem Nordrande durch das Hervortreten der lepontinisch-pieninischen und der helvetisch beskidischen Decken beglaubigt ist. Die nach Süden geneigten Gesteinsbänder an der Südseite der scheinbaren Zentralgneiskuppeln aber

⁸⁾ Die n\u00e4here Beschreibung dieser Region ist in n\u00e4chster Zeit zu erwarten.

scheinen als Wurzeln jener nach Norden übergeschobenen Decken. (Vgl. Taf. XVIII.)

Decken und Wurzeln des ostalpinen Systems stehen um das große lepontinische Fenster herum mit einander in Verbindung. Je weiter im Norden eine Teildecke gelegen ist, um so weiter im Süden befindet sich die zugehörige Wurzel. Die aus den Wurzeln schräg nach Norden aufsteigenden Decken erreichen ungefähr in der Mitte der sogenannten Zentralalpen ihren Scheitel, um sich sodann nach Norden zu senken. Diese allmähliche Absenkung nach Norden ist noch in der Kalkzone erkennbar, erst im nördlichen Teile dieser Zone beginnt sich die Decke zu einer Art Aufbrandungszone aufzubiegen und konform der Klippen- und Sandsteinzone nach Süden einzufallen. Am Nordrande müßten die Stirnwölbungen des ostalpinen Deckensystems gelegen sein; sie werden aber wohl vielfach zusammengedrückt und zerrissen gewesen sein und sind wohl größtenteils der Denudation verfallen.

Das ostalpine Deckensystem zeigt demnach gewissermaßen eine Zwiebelschalenstruktur. Die einfache Gesetzmäßigkeit dieser Tektonik erfährt aber mancherlei Abänderungen und Verdunkelungen. Die Ausbreitung der Decken geht nicht überall gleichmäßig vor sich, einzelne Teile bleiben zurück oder sind eingeengt und gehemmt, andere breiten sich weithin aus. Gewisse Zonen sind streckenweise zerrissen, in Schubfetzen und Schollen zerlegt, ausgewalzt, in Brekzien umgewandelt oder selbst gänzlich unterdrückt; an anderen Stellen können sie zu übergroßer Mächtigkeit angestaut sein. Sodann zeigen die Decken untergeordnete Undulierungen, gewisse nach Süden blickende Rückfaltungen und andere west- oder ostwärts gerichtete untergeordnete Stauungen und Umbiegungen. Die Wurzeln können örtlich steil gestellt oder selbst invers nach Norden geneigt sein und ähnliches gilt von den Absenkungsteilen der Decken. Jene lepontinische Zentralgneiswurzel, die wir als Sonnblickmassiv bezeichnen, zeigt in ihrem Hauptteile südliches, in ihrem verschmälerten südöstlichen Ausläufer dagegen nördliches Einfallen. Im westlichen Teile der Ostalpen senkt sich die ostalpine Decke nicht flach, sondern sehr steil nach Norden ein und schließlich stellen sich hier selbst inverse Ueberkippungen der Decke nach Süden ein. Der westliche Teil der Ostalpen ist im ganzen

stärker gehoben als der östliche und daher auch viel stärker abgetragen. Durch das intensive Vordringen der Dinariden nach Norden im südöstlichen Tirol erscheint hier ferner der Hauptstamm der Alpen stark eingeschnürt oder überdeckt, während er sich im Osten breit und ungehindert ausdehnt.

Eine große Rolle spielen ferner die älteren Faltungsund Denudationsvorgänge. Schon vor Ablagerung der Oberkreide und des Alttertiärs vollzogen sich intensive Faltungen und das neu entstandene Gebirge war einer so tiefgehenden Denudation ausgesetzt, daß die Gosauschichten der Oberkreide auf verschiedenen Gliedern der mesozoischen Schichtenfolge abgelagert werden konnten. Im Kainachbecken bei Graz wurde sogar das ganze Mesozoikum entfernt; die Gosauschichten liegen auf paläozoischen Kalken und enthalten Geschiebe des darunter liegenden alten Glimmerschiefers, so daß sich hier die Frage erheben kann, ob man es nicht mit altem autochthonen Gebirge zu tun habe.9) Wenn es auch schwierig ist, den wahren Wert dieser älteren vorzenomanen Faltungen richtig zu bemessen, und namentlich ihren Anteil von dem der späteren Hauptbewegung zu sondern, so haben sie doch zweifellos ähnlich wie in den Karpathen 10) eine große Bedeutung. Die Deckenwanderung war wohl schon im Zuge, als Oberkreide und Flysch abgelagert wurden.

Endlich sind in diesem Zusammenhange wohl auch noch jüngere Brüche in Betracht zu ziehen, die den Zusammenhang der Decken lokal zerschneiden.

Durch alle diese überaus variablen Verhältnisse wird die Gesetzmäßigkeit des Aufbaues natürlich stark beeinträchtigt und die Erkennung dieser Gesetzmäßigkeit ungemein erschwert. Es ist daher wohl begreiflich, wenn die Analyse des ostalpinen Deckensystems und seine Zerlegung in Teildecken noch nicht weit gediehen ist. Wir überblicken heute nur wenig sichergestellte Zusammenhänge, andere erscheinen nur in unsicheren Umrissen und können nur tastend und mit Vorbehalten angedeutet werden.

⁹⁾ Vgl. F. Schmidt, Gosaubild. d. Kainach. Jahrb. d. Geol. Reichsanstalt 1908, S. 233. Es ist bisher nicht möglich gewesen, eine natürliche Begrenzung für ein altes autochthones Gebirgsstück hier nachzuweisen.

¹⁰) Sitzungsberichte der kais. Akademie, Bd. CXVI, S. 967.

Ueber die tief-lepontinischen Schieferhülle erscheint zunächst das Tauerndeckensystem, dem die großen Decken des Brennergebietes und der Radstädter Tauern, ferner die Zone der sogenannten Klammkalke,¹¹) die Diploporendolomite von Krimml angehören. Im äußersten Osten der Alpen vertreten die mesozoischen Bildungen des Semmering, Porphyrgranite und Glimmerschiefer, sowie die Gesteine des Wechselmassivs dieses Deckensystems.

Das Mesozoikum der Tauerndecken wurde von einer Seite schon als tiefste Teildecke des ostalpinen Deckensystems gedeutet. Aber sowohl die Ausbildung der Formationen, wie auch die geologische Stellung unterhalb der archäischen Kerngesteine der eigentlichen ostalpinen Decke sprechen für die enge Angliederung an das lepontinische System. Die Gesteine der Tauerndecken sind metamorph, wenn auch in etwas geringerem Grade, wie die eigentliche Schieferhülle, die schiefrigen Bildungen sind gefältelt, sämtliche Gesteine stark gestreckt und von einer sehr gleichmäßigen, ungefähr nordsüdlichen Klüftung durchsetzt. Besonders in den tieferen Zonen sind die Gesteine gewalzt, und häufig in Schollen zerlegt. Gewaltige Mächtigkeitsschwankungen vollziehen sich nicht selten auf geringe Distanzen. Die Detailarchitektur zeigt im Radstädter Anteile große liegende Falten, bisweilen von einer fast unlösbaren Komplikation. Alle diese Erscheinungen vereinigen sich zu einem tektonischen Typus, der der eigentlichen ostalpinen Decke völlig fremd ist und auf eine unter mächtigem Druck erzwungene Bewegung hinweist.

Die mesozoischen Bildungen der Tauern- und Brennerdecken transgredieren nicht über die darunter liegende
"Schieferhülle", wie man früher angenommen hat, sondern ihr
Kontakt ist ein abnormaler Dislokationskontakt. Mächtige
Reibungsbrekzien bezeichnen an vielen Stellen ihren Weg. Sie
bestehen aus weißen Quarziten, grünlichen Serizitschiefern.
Gyroporellendolomiten, dunklen pyritreichen Glanzschiefern
der Trias, Krinoidenkalken und Glimmermarmoren des Jura
und enthalten in ihrer tiefsten Teildecke noch geringe Andeutungen von Grünschiefern, die in den höheren Teildecken

¹¹) Darunter sind die plattigen, gestreckten Kalke und Kalkschiefer zwischen der Liechtenstein- und der Kitzlochklamm am Ausgange der Tauerntäler in das Salzachtal verstanden.

fehlen. Nach Norden hin fließen die Tauerndecken namentlich in der Gegend des Brenner und der Radstädter Tauern unter sekundären Wellungen weithin ab. 12) Eine kaum unterbrochene Folge von Schollen der Tauernfazies verbindet diese Decken im Norden des Tauernfensters mit der Wurzelzone im Süden.¹³) Isoklinale. zerrissene und zusammengepreßte schmale Schollen von reduzierter Mächtigkeit der verschiedensten Tauerngesteine in wenig regelmäßiger Anordnung verraten den eigenartigen tektonischen Charakter der Wurzelregion, deren Verlauf ungefähr der Linie Sprechenstein - Windisch - Matrei — Kals - Mokarspitz — Makernispitz entspricht. 14) Merkwürdigerweise enthält diese Wurzelregion bei Windisch-Matrei und Döllach zahlreiche Gips- und Serpentinschollen, die in der Deckenregion im Norden des Fensters kaum bekannt sind.

Das dritte lepontinische Gebiet der Zentralalpen, das Semmeringgebiet, wollen wir hier nur kurz betrachten. Die tief-lepontinische Serie der "Schieferhülle" ist hier bisher nicht bekannt, wohl aber die Tauerndecken, denen man nach Fazies und Lagerungsverhältnissen die Quarzite und gipsführenden Schiefer, die Gyroporellendolomite und die dunklen rhätischen Kalke der Trias und die Pentakrinuskalke des Jura gleichstellen muß. Sowie sich die Tauerndecken am Nordrande des großen Fensters unter die ostalpine Grauwackenzone senken, so schießen auch die Semmeringgesteine in Verbindung mit gewissen alten kristallinen Felsarten nach Norden unter den tieferen, karbonen Anteil der ostalpinen Grauwackenzone ein. Man kann diese Bildungen vom Semmering bis etwa in die Gegend von Kapfenberg im Mürztal verfolgen, ihre Abgrenzung nach Südwesten und Südosten steht noch bevor.

Auf der Wurzelzone des Tauerns ystems lagern im Süden alte granatenführende Glimmerschiefer und Gneise in Verbindung mit kristallinen Kalken, Amphiboliten und Pegmatiten. Aehnlich breiten sich auch im Norden über den

¹²) V. Uhlig, Zweiter Bericht u. geotekt. Unters. in den Radstädter Tauern. Sitzungsberichte 1908, Bd. CXVII, S. 1387 etc.

¹⁸) Vgl. F. Becke, Sitzungsberichte d. kais. Akademie d. Wissensch. Wien 1908, Bd. CXVII, S. 398.

¹⁴) In der Gegend von Windisch-Matrei ist die Wurzelregion der Tauerndecke von F. Löwl unter dem Namen der Windisch-Matreier Glanzschieferzone beschrieben worden.

Tauerndecken alte kristalline Gesteine weithin aus, wie die Gneise des Schladminger Deckenmassivs, die Gneise und granatenführenden Glimmerschiefer des Oetztaler Deckenmassivs und die Pinzgauer Phyllite. Diese alten kristallinen Gesteine sind es, welche die Basis und den Kern des ostalpinen Deckensystems bilden und welche beim Deckenvorschube im inneren, südlicheren Teile des Alpenstammes zurückgeblieben sind und als kristalline Zentralzone bezeichnet wurden, während die mesozoischen Gesteine, die sogenannte Kalkzone, weiter nach außen vordrangen. (Vergleiche Taf. XVIII.)

Daß die alten kristallinen Deckengesteine im Norden mit den gleichnamigen Wurzelgesteinen im Süden zusammenhängen, ist durch den Uebergang der Wurzel in die Decke zu beiden Seiten der großen lepontinischen Aufwölbung verbürgt. Während sich aber dieser Uebergang an der Ostseite östlich vom Katschbergpasse in breiter Zone vollzieht, scheint im Westen die lepontinische Region in den Marmorbändern des Ridnaunertales westlich von Sterzing eine schmale, aber ziemlich weit ausgedehnte Fortsetzung nach Westen aufzuweisen, so daß erst im westlichen Tirol eine völlige Verschmelzung der alten kristallinen Felsarten der Decke und Wurzel eintritt. Sicherlich gehört der Marmorzug, der die Trias von Schneeberg mit der Telfer Weißen und unter Vermittlung der Gschleierwand mit dem Tribulaun verbindet, zur Brennerdecke. Ob aber auch das südlich davon zwischen Ratschinges und Laas verlaufende Marmorband ebenfalls mit der lepontinischen Brennerdecke zu vereinigen und gleichsam als Gegenstück des Schneeberger Marmorzuges zu betrachten ist, erscheint noch nicht entschieden. 15)

Im Norden der großen lepontinischen Aufwölbung ist der Zusammenhang der einzelnen Deckenteile mehrfach unterbrochen, wie wenn beim Vorschube einzelne Massen ungleich weit vorgedrungen, wohl auch zerrissen wären. Auf den undulierten alten kristallinen Deckengesteinen westlich der lepontinischen Aufwölbung, liegt zwischen dem Ortler und dem Unterengadin ostalpines Mesozoikum ausgebreitet, dessen verwickelte, der Aufhellung nahe Tektonik noch den Gegenstand näherer Untersuchungen bildet. Mannigfaltigere

¹⁵⁾ Vgl. W. Hammer, Jahrb. d. Geol. Reichsanstalt 1904, S. 549.

Gesteine trägt die alte kristalline Unterlage des ostalpinen System im Osten des großen Fensters. Man findet hier paläo- und mesozoische Ablagerungen in mehreren isolierten, zum Teil weit ausgedehnten Partien aufgelagert, wie das Paläozoikum von Murau und Graz, das Karbon der Stangalpe und des Eisenhut bei Turrach, die Gosaumulde der Kainach, das Mesozoikum und Alttertiär von Eberstein und St. Paul in Kärnten. Leider ist die Erforschung dieses Teiles der Alpen noch nicht weit genug gediehen, um ein gutbegründetes Urteil über die Beziehungen dieser Gebirgsteile zu einander zu gestatten.

Dagegen läßt eine andere als Grauwackenzone zusammengefaßte Formationsfolge schon jetzt eine sehr merkwürdige gesetzmäßige Teilung erkennen. Die tiefere Partie dieser Zone besteht aus Phylliten, Quarziten und einer mächtigen Entwicklung von Gesteinen der Kohlenformation und zwar sowohl von teilweise in Magnesit umgewandelten Kalken mariner, wie auch von Konglomeraten, Sandsteinen, pflanzenführenden Schiefern und Graphitlagern terrestrischer Entstehung. 16) Dazu kommen isolierte Serpentinstöcke und nach oben Porphyroide (Perm?), vereinzelt auch Werfener Schiefer der Untertrias.¹⁷) Diese tiefere Serie ist nun stets in deutlicher Weise von silurischen und devonischen Kalken, Dolomiten und Schiefern überschoben, die sowohl durch ihre Erzführung, wie auch vereinzelte Fossilfunde Berühmtheit erlangt haben. Diese Teilung der Grauwackenzone läßt sich vom Semmering am Ostende der Alpen parallel dem Mürz- und dem Liesingund Paltental bis in das Ennstal verfolgen und es liegen Anhaltspunkte dafür vor, daß diese Art der Anordnung auch weiter im Westen zwischen Dienten und Kitzbühel besteht, wo in neuerer Zeit Ohnesorge 18) silurisch-devonische Ver-

¹⁶) F. Heritsch hat in verdienstlicher Weise auf den Deckenbau der Grauwackenzone die Aufmerksamkeit gelenkt. Zu der von ihm in der Gegend von Trieben angenommenen Ueberschiebung der unterkarbonen Kalke über die oberkarbonen Schiefer (Sitzungsberichte der kais. Akademie Wien 1907, Bd. CXVI, II. Abt., S. 1727) ist aber zu bemerken, daß die geologischen Verhältnisse in der fraglichen Region für die von Heritsch vorgeschlagene Gliederung der Kalke keine befriedigenden Anhaltspunkte bieten.

¹⁷) E. Ascher, Werfener Schiefer in der Grauwackenzone der Ostalpen. Mitteil. d. Geol. Gesellsch. Wien 1908, Bd. I, S. 402.

¹⁸) Verhandl. d. Geol. Reichsanstalt, 1905, S. 373.

steinerungen nachgewiesen hat. Während nun die höhere silurisch-devonische Schubmasse mit der Kalkzone der Ostalpen, speziell der hochalpinen Riffkalkfazies durch ein Grundkonglomerat eng verbunden zu sein scheint und diese trägt, ruht die tiefere Karbonserie im Osten auf den Granit- und Gneiskernen des Bösenstein und der Gleinalpe, die ihrerseits wieder die Decke der alten Glimmerschiefer und kristalline Kalke von unbestimmtem Alter zur Grundlage haben.

Wir sind heute noch nicht imstande, irgendeine der paläozoischen und mesozoischen Regionen im südlichen Teile des ostalpinen Deckensystems mit den Teildecken der "Grauwackenzone" im Norden mit einiger Sicherheit zu assimilieren. Ausgedehnte und zeitraubende Untersuchungen werden erforderlich sein, um über diese schwierigen Fragen Licht zu verbreiten.

In der mesozoischen Kalkzone betreten wir jenen Teil des ostalpinen Deckensystems, in dem die besonderen tektonischen Verhältnisse dieser obersten Decke der Alpen besonders sinnfällig zum Ausdruck gelangen. Die tektonischen Brekzien werden hier seltener und ihre Mächtigkeit nimmt ab. Namentlich die Brekzien mit gerundeten und gestreckten Elementen scheinen zu fehlen. Die Gesteine zeigen die sogenannte normale Beschaffenheit, ohne Spuren von Metamorphose, Auswalzungen, Verdünnungen der Schichtenfolge, tektonische Lücken der Schichtenfolge, Streckung und Fältelung treten nicht hervor, oder sind nur in Andeutungen wahrnehmbar. Kurz, alle die merkwürdigen Begleiterscheinungen des lepontinischen Systems fehlen hier, dagegen erkennt man mehr unbehinderte Faltung unter teilweiser Bruchbildung, wie das der freieren Beweglichkeit der obersten, von keiner höheren niedergehaltenen Decke wohl entspricht. Im Sonnenwendjochstocke, östlich vom Achensee, äußert sich diese freiere Beweglichkeit in der bekannten, von F. Wähner 19) mit so minutiöser Genauigkeit beschriebenen Schuppenbildung, die sich auf die rhätisch-jurassische Serie beschränkt und den triadischen Gebirgssockel unberührt läßt.

Weder von der alten kristallinen, noch auch von der paläozoischen Unterlage gelangen Spuren an den Außenrand der Kalkzone und ihr Innenrand harmoniert nicht streng mit

¹⁹⁾ Sonnwendgebirge, Wien und Leipzig 1903.

den südlich vorlagernden Bändern der Grauwackenzone. In der Gegend des Stoderzinken löst sich vom Südrande der Kalkzone der lange, schmale Triaszug des Mandlingpasses wie ein abgesplitterter und in der Bewegung zurückgebliebener Span ab.²⁰) In allen diesen Erscheinungen darf man vielleicht Anzeichen dafür erblicken, daß die Kalkzone in Betätigung einer freieren Beweglichkeit ihre natürliche Unterlage bis zu einem gewissen Grade überfahren hat und, von der Wurzel getrennt, auf eigener Schubbahn nach Norden vorgedrungen ist.

Im Vordringen schob sich die Kalkzone in ihrem nördlichen Teile in liegende Falten oder Teildecken, deren Bestand am sichersten und klarsten in den bayrischen und tirolischen Alpen nachgewiesen ist. A. Rothpletz sondert hier mindestens zwei Schubmassen, deren Existenz durch spätere Arbeiten bekräftigt ist. Die schon im Jahre 1903 von Ampferer²¹) beschriebene, mindestens 10 km breite Ueberdeckung des Stanser Joch-Gewölbes im Karwendelgebirge durch die Scholle der Lamsenscharte und des Tristkogels, die schönen Ueberdeckungen des Ladizkopfes und des Lalidertales und viele andere Beobachtungen lassen, wie auch immer man im einzelnen die Elemente anordnen und die Vorgänge rekonstruieren mag, keinen Zweifel an dem Bestand dieser Teilungen.

Der mittlere Abschnitt der Kalkzone fesselt unsere Aufmerksamkeit durch die besonders auffallende fazielle Differenzierung der Triasformation: Der allgemein verbreiteten, mächtigen, lückenlosen und ziemlich fossilarmen "Normalserie" steht unvermittelt gegenüber die wenig mächtige, nur lokal auftretende, lückenhafte und fossilreiche Serie der Hallstätter Kalke, der Zlambachschichten und der salinaren Trias mit ihren Fetzen von grünen Eruptivgesteinen. Der Kontrast dieser Entwickelungen ist um so eindrucksvoller, als er an manchen Orten durch die eigentümlichen Lagerungsverhältnisse der salinaren Trias, ihr schollenförmiges Auftreten und ihre lokale Aufpressung in die "Normalserie" gesteigert wird.

²⁰) V. Uhlig, Zweiter Bericht über geotekt. Unters. in den Radstädter Tauern. Sitzungsber. Akad. 1908, Bd. CXVII, S. 1416.

²¹) Jahrbuch d. Geol. Reichsanstalt 1903, S. 169; A. Rothpletz, Geologische Alpenforschungen, München 1905, Bd. II, S. 202.

Diese Heteropie, in den Ostalpen wohl die auffallendste, wurde in Verbindung mit den klaren Ueberdeckungen des Roßfelds, des Berchtesgadener und des Lammergebietes und anderen Lagerungsverhältnissen, zur Aufstellung von Teildecken benützt.²²) Die Existenz von Teilungen der großen Decke der Kalkzone kann auch hier keinem Zweifel unter-Die Haugsche Deckenfolge wird einer Reihe von Verhältnissen gerecht; unbefriedigend bleibt aber vielleicht der Umstand, daß durch diese Aufstellung der Zusammenhang der doch nahe verwandten Faziesgebiete der Normalserie zerrissen erscheint, sofern die Dachsteindecke' zu oberst, die bayrische' zu unterst angeordnet und die fremdartige Hallstätter und salinare Serie dazwischen geschaltet wurde. Anderseits ist auch durch diese Unterscheidung die Mannigfaltigkeit der untergeordneten Entwicklungsdifferenzen im Bereiche der normalen Serie noch nicht erschöpft. Vieles bleibt hier noch künftiger Forschung vorbehalten. Das gleiche gilt auch für den östlichen Abschnitt der Kalkzone, der zwischen Waidhofen an der Ybbs, Groß-Raming und Weißenbach mit einem nach konvexen. einer sekundären Stirnwölbung Nordwesten gleichenden Bogen einsetzt. Die Fazies zeigt hier gewisse Veränderungen, das Streichen lenkt von der Groß-Raminger Wölbung ab allmählich in die karpathische Richtung ein.

Der Südrand der Kalkzone ist ein Abwitterungsrand. Seine mauerartig zu Ende gehenden Kalkwände weisen auf eine ehemalige Fortsetzung über alle die lepontinischen Decken hinweg zur Wurzelregion im Süden, die wir in dem oft besprochenen Gailtaler Kalkgebirge zu suchen haben. Sowohl die nordalpine Fazies dieses merkwürdigen Gebirges, das sich in schmalem, aber geschlossenem Zuge von Sillian in Tirol zur Villacher Alpe und von hier über den Hochobir und die Petzen bis an den Südrand des Bachergebirges verfolgen läßt, wie auch dessen, vorwiegend isoklinale, steile Lagerung, dessen enger Anschluß an die altkristalline Wurzelregion lassen über die Berechtigung dieser Auffassung keinen Zweifel zu. An seinem Westende verschmälert sich der Wurzelzug, er geht schließlich in einer Reihe von kleinen, zwischen die alten Gesteine steil eingezwängten Schollen von diploporenführendem

E. Haug, Bull. Soc. géol. France; II. sér. 1906, Bd. VI, S. 357,
 E. Haug et M. Lugeon, Compt. rendus, Bd. CXXXIX, S. 892.

Triasdolomit, Rhät und Lias über, die namentlich bei Wimbach, Brunneck, Kalchstein, endlich in Mauls im Eisacktal und am Penserjoch hauptsächlich durch F. Teller nachgewiesen sind.

Auf dem langen Wege durch die Ostalpen, den wir mit der eben besprochenen Wurzelzone beschließen wollen, haben wir manche Erscheinungen wahrgenommen, die sich befriedigend in den Rahmen der Deckenlehre einfügten. Von anderen können wir erwarten, daß sich eine solche Einfügung später zwanglos ergeben werde. Wir haben aber auch gesehen, daß die Deckentektonik wie in den Westalpen so nicht minder auch in den Ostalpen eine wahre Flut von neuen Vorstellungen, neuen Zusammenhängen und tieferen Einblicken eröffnet.

Wir wußten von manchen Erscheinungen, wie von der nordalpinen Fazies und der abweichenden Tektonik der Gailtaler Alpen seit langer Zeit, daß sie eine besondere Bedeutung haben müßten, aber erst die Deckentektonik hat ihren wahren Inhalt bloßgelegt. Scheinbare Gegensätze der Tektonik, wie die südliche Neigung der Sandstein- und Klippenzone und die nördliche des Kalkhochgebirges sind als Aeußerungen eines und desselben tektonischen Vorganges erkannt. Anscheinend unwesentliche Randteile der Alpen, wie die Sandsteinzone und die früher fast völlig übersehene Klippenzone haben sich als wesensgleiche und sehr interessante Glieder des Gesamtbaues erwiesen. In den Klippen erblicken wir nunmehr nicht nur stratigraphisch wichtige Zwischenglieder, sondern auch untrügliche Anzeichen tektonischer Gliederungen. Die früher als Besonderheit empfundene, aber unverstandene Schieferhülle der hohen Tauern ist nun durch die Anknüpfung an die Westalpen aufgehellt und bildet einen Angelpunkt der Tektonik.

Die Stratigraphie konnte vordem fast nur so viel Interesse bieten, als durch die fossilen Floren und Faunen bestritten wurde. Heute ist sie von neuen geologischen Gesichtspunkten belebt. Da und dort in der Kalkzone zum Vorschein kommende Lappen von Oberkreide nötigten vordem zur Annahme von Fjorden der Oberkreidezeit, Schollen von Hallstätter Kalken in der Nachbarschaft von Dachsteinkalk zeitigten gar die Annahme von besonderen Kanälen, in denen sich die Hallstätter Kalke abgesetzt haben sollten. Dieses Nebeneinandervorkommen der Formationen ist jetzt als eine tektonische Erscheinung erkannt und die erwähnten unbefriel-

digenden Hilfsvorstellungen sind entbehrlich geworden. Wir können nunmehr den Uebergang der Oberkreide der helvetischen und der lepontinischen Region mit ihren nordischen Faunenanklängen in die Gosauformation der ostalpinen Decken und die Wandlungen ihrer Faunen in zutreffender Weise überblicken und gelangen zu besseren Vorstellungen über die Herkunft und Bedeutung der mannigfaltigen Blöcke der Oberkreide und wohl auch des Alttertiärs.

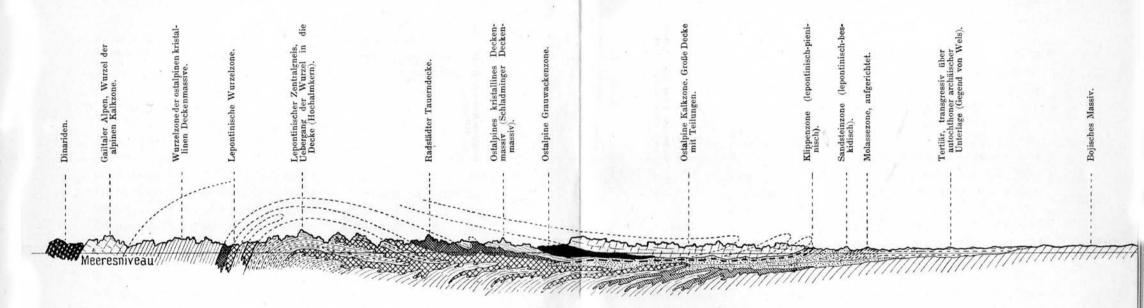
Zur Erklärung des nicht zu übersehenden faunistischen und lithologischen Kontrastes des alpin-karpathischen und des außeralpinen Mesozoikums griff M. Neumayr vor Jahren zur Aufstellung einer Meeresströmung, die beide Gebiete getrennt haben sollte. Diese Hypothese mußte aber an Stellen versagen, wo sich beiderlei Gesteine bis auf wenige Kilometer nähern und daher für eine Meeresströmung keinen Raum lassen, sie konnte auch die Verhältnisse der Westalpen nicht erklären, wo das außeralpine Mesozoikum in das alpin-helvetische allmählich übergeht. Heute wissen wir, daß auch hier eine reine tektonische Erscheinung vorliegt: in den Westalpen gewährt die Denudation der höheren alpinen Decken vollen Einblick in den Uebergang des außeralpinen in das alpine Mesozoikum, in den Ostalpen liegt diese Uebergangsregion unter den ostalpinen Decken begraben, die fast bis an den Rand des Gebirges vorgeschoben sind und so den Kontrast zwischen alpin und außeralpin besonders schroff erscheinen lassen. Ebenso wie die Neumayrsche Hypothese ist auch das Vindelizische Festland Gümbels überflüssig geworden.

Allerdings ist es richtig, daß die geologischen Erscheinungen der Ostalpen nicht so eindrucksvoll und laut für die Deckenauffassung sprechen, wie in den Westalpen. Ist doch in den Ostalpen vorwiegend nur ein Deckensystem ausgearbeitet, dessen Sockelgebirge sich nicht unmittelbar der Betrachtung aufdrängt. In solchen Fällen wird es immer schwer bleiben, ein übergeschobenes Deckengebirge von einem autochthonen zu unterscheiden. Vergebens sucht man in den Ostalpen ein Gebiet, in dem die obersten tertiären Schichten eines Sockelgebirges durch ein mesozoisches Deckgebirge in so unbezweifelbarer Weise überlagert sind, wie etwa die helvetischen Decken von den lepontinischen in der Ostschweiz, in Savoyen

oder im Embrunais. Kein Teil der Ostalpen erschließt gigantische Ueberschiebungen in so überwältigender Klarheit, wie die Glarner Alpen, die Diablerets oder der Mt. Joly. Auch jene erstaunlichen, von oben herabkommenden, und von unten her sich teilenden Steinkaskaden, wie wir sie am Urner See oder im Diablerets-Wildhorn-Gebiete bewundern, wird man hier ebensowenig finden, wie die meilenweiten Ueberdeckungen der Dent Blanche und anderer Deckenmassive. Es ist daher auch wohl zu verstehen, warum die Deckenlehre in den Westalpen ausgebildet wurde, obgleich der erste Anstoß dazu von den Ostalpen ausgegangen ist.

Jetzt aber, da die neue Einsicht gewonnen ist, wird auch die plumpere und in jedem Belange verschlossenere Masse der Ostalpen der Forschung neue Errungenschaften nicht versagen. Wohl stehen wir heute noch zahlreichen Rätseln gegenüber, aber wir haben die beglückende Gewißheit, daß sich der Schlüssel zu ihrer Lösung in unserer Hand befindet und daß ihre Lösung nur noch eine Frage der Zeit ist. Schon treten früher verkannte Gesetzmäßigkeiten und neue Verbindungen klar hervor, das bisherige Wirrsal der tektonischen Elemente beginnt sich zu lichten und sich zu neuen Leitlinien gesetzmäßig anzuordnen. Es wäre natürlich verfehlt, die endlich erstandene Synthese der Alpen als letztes und definitives Bild dieses Gebirges zu betrachten; das hieße das Wesen der Wissenschaft gänzlich verkennen. Aber gegenwärtig hat diese Zusammenfassung unseren Einblick wie nie zuvor gesteigert und eine heuristische Kraft bewährt, die unsere Forschung noch für lange hinaus befruchten wird.

Man wird später gewiß noch weit vollständigere und an die Wirklichkeit mehr angenäherte Bilder des Alpenbaues erlangen, als es das heutige ist. Sowie französische Forscher vor wenigen Jahren bemerkten, daß von dem stolzen Westalpenbilde Ch. Lorys kein Stein mehr auf dem anderen geblieben sei, so wird es unzweifelhaft auch dem jetzigen Bilde ergehen. Aber eine Errungenschaft wird sicherlich erhalten bleiben: die Erkenntnis, daß weit ausholende flache Ueberschiebungen eine große Rolle im Aufbau unserer Erdkruste spielen.


Wie auch immer man sich diese großen seitlichen Bewegungen physikalisch zurechtlegen wird, so wird man sie doch immer zu den intensivsten Aeußerungen der endogenen Kräfte unserer Erde zählen müssen, die man kennt. Sie konnten sich kaum vollziehen, ohne wiederum auf die gesamten physikalischen Verhältnisse unseres Planeten zurückzuwirken. Indem die Geologie diesen Fragen immer näher treten und ihre Forschungen auf die ganze Erdkruste ausdehnen wird, mag es ihr wohl gelingen, Beziehungen zu erschließen, deren Bedeutung heute noch nicht abzusehen ist. So wird die Wissenschaft ihrer vornehmsten und letzten Aufgahe, an dem Beispiele unserer Erde die Entwicklung eines Gestirns mit fester Kruste aufzuzeigen, allmählich näher zu kommen suchen.

Auf diesem langen, langen Wege wird die Deckenlehre nur eine Episode, aber gewiß keine unrühmliche bilden.

Schematischer Durchschnitt des mittleren Teiles der Ostalpen.

Maßstab der Höhen und Längen 1:750.000.

Der Querschnitt ist etwa durch das Hochalmmassiv und von da schräg zum Dachstein gelegt zu denken.

Dinaridische Serie, Paläozoikum der Karnischen Alpen und Mesozoikum der Südalpen.

Ostalpines Permo - Mesozoikum(Wurzelzone d. Gailtaler Alpen u. Deckenregion der nördlichen Kalkalpen).

Kristalline Schiefer und alte granitische Gesteine (Wurzelregion im Süden und Deckenmassive im Norden).

Zentralgranit u. kristalline Schiefer d.großen lepontinischen Tauernfensters (Wurzeln und Decken).

Lepontinische "Schieferhülle" (Quarzite, Marmore, Kalkglimmerschiefer und Kalkphyllit, Grünschiefer der mesozoischen Aera).

Mesozoikum des Tauerndeckensystems (Gyroporellendolomite, Pyritschiefer Krinoidenmarmor u.a.).

"Grauwackenzone", Paläozoikum der ostalpinen Decke; an der Basis Karbon undPorphyr, darüber Silur und Devon.

Lepontinischer und helvetischer Flysch. Die dunklen Striche der obersten, lepontinischen Flyschpartie deuten lepontinischpieninische Klippen (Grundu.Schubschollen)

Helvetisches Mesozoikum.

Molassezone, teils aufgericht (Alpenrand), tei horizontal und transgressiv. Oberoligozän und Miozän.