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Three groups of pegmatites distinct in their geological position, age, internal structure, mineral assemblages and chemi-
cal composition of minerals (tourmaline, amphibole, garnet, and biotite) were distinguished in the Vlastějovice region, 
Moldanubian Zone: a) tourmaline-bearing pegmatites (Qz + Kfs + Pl + Bt + Ms + Tur) enclosed in the pre-Variscan 
orthogneiss, b) contaminated amphibole-bearing pegmatites (Pl + Qz + Amp + Kfs + fluorite + allanite) hosted by the 
Fe-skarn, and c) tourmaline-bearing pegmatites cutting paragneisses (Qz + Kfs + Pl + Bt + Ms + Ab + Tur + Grt) and the 
Fe-skarn (Qz + Kfs + Pl + Bt + Tur ± Ab, Amp, Grt, elbaite). The pegmatites enclosed in the orthogneiss show simple 
internal structure and mineral assemblages, together with low degree of tectonometamorphic overprint. The amphibole-
-bearing pegmatites, likely anatectic and related to the Variscan MP–HT regional metamorphism, are spatially restricted 
to the Fe-skarn body and highly variable in shape, size, effects of in situ contamination by Ca, Fe ± F and REE from the 
host Fe-skarn, and degree of hydrothermal overprint. 
The tourmaline-bearing pegmatites related to the Variscan magmatic event cut different rocks (paragneisses, Fe-skarn 
bodies) and belong to the Moldanubian rare-element pegmatite province. They show distinct degree of textural differen-
tiation, geochemical fractionation and external contamination by Ca and/or Fe (Ca,Fe-rich Al-poor tourmalines) higher 
in the less evolved pegmatite bodies in the Fe-skarn. The tourmaline-bearing pegmatites were evidently generated from 
the granite–pegmatite body in the footwall contact of the Fe-skarn. Degrees of the textural differentiation and geoche-
mical fractionation of the individual tourmaline-bearing pegmatites are comparable to those of the respective parts of 
the parental Footwall granite–pegmatite body. This observation seems consistent with the model of sequential derivation 
of pegmatite melts from evolving parental granite. Primitive to highly evolved and usually B-rich pegmatites originated 
during the Variscan orogeny from the MP (~0.6–0.7 GPa) to the LP conditions (~0.2 GPa), and manifest that formation 
of various granitic pegmatites was an integral part of the tectonomagmatic evolution of the region.
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1.	Introduction

Granitic pegmatites are widespread magmatic rocks in 
the Moldanubian Zone of the Bohemian Massif, Czech 
Republic, although volumetrically negligible. Several 
classes, groups, types and subtypes of granitic pegma-
tites were recognized based on their geological position, 
internal structure, mineral assemblages and origin by 
Čech et al. (1981), Čech (1985), Novák et al. (1992, 
2012), Novák (2005), and Novák and Cempírek (2010). 
However, the authors used the different classification 
schemes of granitic pegmatites relevant at the time (e.g., 
Vlasov 1952; Ginzburg et al. 1979; Černý 1991a; Černý 
and Ercit 2005). 

The Vlastějovice region (Fig. 1a) is characterized by 
abundant granitic pegmatite bodies with different shape, 
size, host-rocks, mineralogy and origin. They are well 
accessible in large quarries on the Holý vrch and Mag-
dalena Fe-skarn deposits, as well as on outcrops in the 

Sázava valley. The Vlastějovice pegmatites thus represent 
a very good object for a case study of typical granitic 
pegmatites of the Moldanubian pegmatite province in a 
relatively small area.

Pegmatites in the Vlastějovice region were divided 
into several groups and subgroups based on their mineral 
assemblages, internal structure and degree of contamina-
tion. However, the detailed field and laboratory study by 
the current authors in 2001–2012 have suggested that 
only three principal groups of granitic pegmatites exist in 
this region (Kadlec 2007a, 2009): (i) tourmaline-bearing 
pegmatites enclosed in the orthogneiss, (ii) contaminated 
amphibole-bearing pegmatites from the Fe-skarn, and 
(iii) tourmaline-bearing pegmatites cutting Fe-skarn and 
surrounding paragneisses. 

The amphibole-bearing pegmatites cutting the 
Vlastějovice Fe-skarn and their minerals were studied by 
numerous authors (e.g., Koutek 1950; Vavřín 1960, 1962; 
Povondra et al. 1985; Žáček et al. 2003; Ackerman 2005; 



Milan Novák, Tomáš Kadlec, Petr Gadas

22

Žáček 2007; Ackerman et al. 2007; Novák and Cempírek 
2010 and references therein). On the other hand, common 
simple tourmaline-bearing types cutting the paragneisses 
and the Fe-skarn as well as those enclosed in the orthog-
neiss body were examined only exceptionally (Vavřín 
1960; Staněk and Schnorrer 1983; Ackerman et al. 2007; 
Kadlec 2007a, 2009).

In this paper we present data for all the main types 
of Vlastějovice pegmatites, including descriptions of 
their geological position, internal structure, mineral as-
semblages as well as chemical composition of selected 
minerals, namely tourmaline, biotite, amphibole, and 
garnet. Degrees of geochemical fractionation and external 
contamination of the individual pegmatite groups as well 
as their geological position in the tectono-metamorphic 
evolution of the Moldanubian Zone (see Novák 2005, 
2007; Novák and Cempírek 2010; Gadas et al. 2012) are 
also discussed. 

2.	Geological background 

2.1.	Tectono-metamorphic and magmatic 
evolution of the Moldanubian Zone

The Moldanubian Zone, the highly metamorphosed 
core of the Bohemian Massif, represents a crustal (and 
upper mantle) tectonic collage assembled during the 
Variscan orogeny and modified by several events of 
superimposed deformations and high- to low-grade 
metamorphic recrystallizations. Several tectonic/litho-
logical units were defined (e.g., Fuchs and Matura 1976; 
Matte et al. 1990; Fiala et al. 1995; Schulmann et al. 
2008). (i) Mid-crustal, amphibolite-facies Drosendorf 
Unit is traditionally divided into the Monotonous and 
Varied groups. In addition to the dominant high-grade 
paragneisses, the Varied Group contains numerous 
intercalations/small bodies of amphibolites, marbles, 
calc-silicate rocks, orthogneisses, quartzites and gra-
phitic gneisses. The Monotonous Group is composed of 
migmatized sillimanite–biotite–cordierite paragneisses 
with subordinate quartzites and amphibolites. (ii) The 
bottom of the lower crustal/upper mantle Gföhl Unit is 
formed by MORB-like metabasites, overlain by mainly 
anatectic orthogneisses (Cooke and O’Brien 2001; 
Hasalová et al. 2008) and by HP granulites, enclosing 
minor bodies of pyrope- and spinel-bearing perido-
tites, garnet pyroxenites and eclogites (e.g., Fiala et al. 
1987; O‘Brien and Rötzler 2003). (iii) Allochthonous 
segments of ancient crust in the Moldanubian Zone 
are represented by the Dobra gneiss (1.3 Ga, Friedl et 
al. 2004) in Lower Austria and the Světlík orthogneiss 
(2.1 Ga, Wendt et al. 1993) in southern Bohemia. The 
Kutná Hora and the Svratka units situated along the NE 
to E border of the Moldanubian Zone (Fig. 1a) were 

correlated by Vrána et al. (2009) and Pertoldová et al. 
(2010) with the palaeo-Variscan Orlice–Sněžník Unit in 
the Polish Sudetes. The latter constituted an older frame 
against which the Moldanubian complex was exhumed. 

Two major Variscan tectono-metamorphic events af-
fected the Moldanubian Zone (Finger et al. 2007). a) The 
Moravo–Moldanubian MP–HT event at ~340–330 Ma 
includes a polyphase metamorphic evolution. (i) A HP–
HT event in upper amphibolite to granulite facies at 
Tmax. ~850–900 °C and Pmax. = 1.2–1.8 GPa was recorded 
in granulites and eclogites from the Gföhl Unit (e.g. 
Carswell and O’Brien 1991; Janoušek and Holub 2007). 
It was more or less overprinted during a rapid decom-
pression by (ii) a MP–HT event at T < ~700 °C and P 
~0.4–0.6 GPa (e.g., Pertoldová et al. 2009). This stage 
was very likely connected to partial melting of the rocks. 
(iii) Contact (periplutonic) LP–HT metamorphism around 
granitoid plutons (see below) affected their envelope. 
b) The Bavarian LP–HT event occurred between 326 and 
315 Ma and was very likely restricted to the Bavarian 
Moldanubicum (Finger et al. 2007). 

The tectonometamorphic history of the Moldanubian 
Zone was characterized by extensive Variscan igneous 
activity at individual stages of the geodynamic evolu-
tion, i.e. between Late Devonian to Permian (see Holub 
et al. 1995; Finger et al. 1997; Timmerman 2008 for 
overview). The chemistry of Variscan magmas has 
changed during evolution: (i) subduction-related normal 
and high-K calc-alkaline suites (~370–345 Ma) (Holub et 
al. 1997a; Janoušek et al. 2000; Žák et al. 2011) through 
(ii) (ultra-) potassic, magnesium-rich quartz syenitic to 
melagranitic plutons – durbachites (Holub 1997) fol-
lowing shortly after exhumation of the high-grade Gföhl 
Unit to mid-crustal levels (at ~340–335 Ma – Holub et 
al. 1997b; Kröner et al. 2000; Janoušek and Holub 2007; 
Kusiak et al. 2010; Kotková et al. 2010), and (iii) mod-
erately–strongly peraluminous anatectic granites formed 
as a consequence of the LP–HT metamorphic event at 
331–326 Ma (the Eisgarn and Weinsberg suites) intrud-
ing the Moldanubian Zone, and (iv) late small plutons 
of fine-grained I-type granitoids associated with minor 
diorites at 319–300 Ma (e.g. Liew et al. 1989; Vellmer 
and Wedepohl 1994; Holub et al. 1995; Gerdes et al. 
2000, 2003). 

2.2.	Review of granitic pegmatites  
from the Moldanubian Zone

2.2.1.	Classification

Numerous granitic pegmatites are widespread throughout 
the Moldanubian Zone. The following groups were dis-
tinguished (modified from Novák 2005 and Novák and 
Cempírek 2010). 
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(i) Rare pre-Variscan (metamorphosed) pegmatites 
are represented by small, simply zoned, coarse-grained 
pegmatite-like nests (biotite + muscovite + oxy-schorl-
oxy-dravite) in Ordovician orthogneisses (Vrána and 
Kröner 1995; Povondra and Vrána 1996; Breiter et al. 
2005a). They are developed at some localities (e.g., 
Přibyslavice, Uhelná Příbram, Bechyně, Křížová hora, 

Vlastějovice); however, these pegmatites were only 
exceptionally studied (Novák 1981; Staněk and Schnor-
rer 1983; Povondra et al. 1987; Povondra 1989; Kadlec 
2007a) and the age was not confirmed by radiometric 
dating. Furthermore, in the Přibyslavice orthogneiss 
some pegmatites are evidently post-tectonic and post-
metamorphic (Povondra et al. 1987, 1998; Novák and 
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Cempírek 2010; Bačík et al. 2013), and Variscan age of 
at least part of these pegmatites is very likely. Except for 
the Přibyslavice and Hamry nad Sázavou pegmatites they 
have not been examined in detail.

(ii) Anatectic pegmatites (abyssal class sensu Černý 
and Ercit 2005; anatectic pegmatites sensu London 2008), 
include several distinct pegmatite groups. a) Dumortier-
ite-bearing dikes (dumortierite + schorl + olenite ± foitite, 
garnet, kyanite) are enclosed in high-grade metamorphic 
rocks (Vrána et al. 2009) and occur almost exclusively 
along NE to E extremity of the Moldanubian Zone, 
mainly in the adjacent Kutná Hora Unit (Cempírek and 
Novák 2006; Cempírek et al. 2006; Vrána et al. 2009) 
and, less commonly, in the Gföhl Unit – Vémyslice 
near Moravský Krumlov (Cempírek and Novák 2004). 
b) Borosilicate-bearing pegmatite veinlet (grandidier-
ite–ominelite + boralsilite + werdingite + dumortierite + 
schorl) cuts leucogranulite of the Bory Granulite Massif, 
which post-dated the development of foliation in the host 
granulite at T ~ 750 °C and P ~ 0.6–0.8 GPa (Cempírek et 
al. 2010). c) Coarse-grained, cordierite-rich leucosomes 
(cordierite + biotite + schorl-dravite ± dumortierite) occur 
in migmatized gneisses of the Bory Granulite Massif and 
locally show pegmatitic textures (Povondra et al. 1992). 
d) Simply zoned, common (likely anatectic) pegmatites 
with accessory andalusite and cordierite are abundant 
mainly in the Strážek Moldanubicum, which mostly 
show transitional (diffuse) contacts to their country 
rocks (migmatized gneisses and granulites) and locally 
contain large crystals of smoky quartz, feldspars, musco-
vite and tourmaline (schorl, oxy-schorl, dravite, foitite, 
magnesio-foitite) typically developed in pockets (Gadas 
et al. 2012; Novák et al. 2004; Povondra 1981). e) Com-
mon pegmatites (sensu London 2008) are enclosed in a 
variety of rocks; anatectic origin is very likely. Where 
the host rocks have contrasting chemical composition, 
the pegmatites may have undergone a variable degree 
of in situ contamination (e.g., diopside pegmatites from 
pyroxene gneisses and marbles, scapolite pegmatites in 
marbles, amphibole-allanite pegmatites from Fe-skarns; 
Novák 2005). Most anatectic pegmatites are spatially 
related to the Gföhl Unit.

(iii) Pegmatites of rare-element class are the most 
abundant and exhibit high variability in shape, size, tex-
tures, degree of fractionation and mineralogy. They are 
simple barren to highly fractionated with LCT, NYF and/
or MIXED geochemical signature (see Černý and Ercit 
2005; Černý et al. 2012). The rare-element granitic peg-
matites of the Moldanubian Zone could be sub-divided 
into four groups (a–d) according to their geochemical 
affinity (family) and P–T conditions.

a) Pegmatites of the LCT family are typically enriched 
in B with tourmaline (schorl, oxy-schorl, dravite, foitite, 
fluor-elbaite, elbaite, fluor-liddicoatite, rossmanite, 

darrellhenryite; e.g., Povondra et al. 1985; Novák and 
Povondra 1995; Selway et al. 1998, 1999; Novák et al. 
1999a, 2012, in print; Novák and Taylor 2000) as an 
omnipresent accessory to minor mineral. Less evolved 
common pegmatites are characterized by the presence 
of dravite, oxy-dravite, oxy-schorl to schorl (Novák et 
al. 2004), locally andalusite, cordierite and garnet. More 
fractionated beryl-type pegmatites, locally with some ac-
cessory minerals (oxy-schorl, schorl, dravite, oxy-dravite, 
beryl, fluorapatite, niobian rutile, ilmenite, monazite-
(Ce), xenotime-(Y), zircon, cordierite, garnet, columbite–
tantalite, Y,REE-oxide minerals; e.g., Povondra 1981; 
Černý et al. 1997, 2000, 2007; Novák et al. 2004, 2008; 
Breiter et al. 2005b; Škoda et al. 2011), are less abundant 
than the more evolved complex pegmatites (Li-bearing; 
Li-micas > Li-tourmalines > amblygonite > petalite; Po-
vondra et al. 1985; Němec 1989, 1990; Černý et al. 1995, 
2003; Teertstra et al. 1995; Novák et al. 1999b, 2013), 
some with variety of accessory minerals (see Novák and 
Cempírek 2010 and references therein). Their mineral 
assemblages with common andalusite, sekaninaite and 
petalite suggest an emplacement and crystallization at 
P < ~0.2–0.3 GPa. Nevertheless, based on fluid-inclusions 
study, Ackerman et al. (2007) suggested P = 0.31–0.43 
GPa for the elbaite-subtype pegmatite from Vlastějovice. 
Parental granites of the rare-element (LCT) pegmatites 
are not known; nevertheless, tourmaline-bearing leuco-
granites (e.g., Buriánek and Novák 2004, 2007) closely 
associated with durbachites were proposed as probable 
source.

b) Some mostly “stockscheider-type” marginal pegma-
tites (LCT family), locally with beryl and Be-phosphates, 
are related to Eisgarn granite and chiefly to highly 
evolved granites of the Moldanubian Batholith near 
Lásenice and Horní Stropnice (e.g, Kostelní Vydří, Ho-
molka, Šejby; Breiter and Scharbert 1995; Cempírek et 
al. 1999; Pavlíček et al. 2009). 

c) Intragranitic pegmatites of NYF family (Škoda et 
al. 2006; Škoda and Novák 2007; Novák and Filip 2010; 
Novák et al. 2011, 2012) occur exclusively in the Třebíč 
Pluton, western Moravia, and in the Čertovo břemeno 
(Milevsko) Pluton, southern Bohemia. Both plutons 
form large syn-exhumation tabular bodies (Dobeš and 
Pokorný 1988; Žák et al. 2005) interpreted as a product 
of mixing between enriched mantle-derived magma 
and a crustal melt (Holub 1997; Janoušek et al. 2000; 
Janoušek and Holub 2007). Typical minor to accessory 
minerals of pegmatites include common phlogopite, 
allanite-(Ce), tourmaline (dravite, schorl, fluor-schorl; 
Novák et al. 2011), aeschynite- and euxenite-group 
minerals, titanite, ilmenite, actinolite, and rare beryl. 
Recently, thin pegmatite dikes with analogous mineral 
assemblages were found in the Tábor Pluton (Dražičky 
SW of Tábor).
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d) Merely the Li-bearing pegmatite from Kracovice 
near Třebíč is considered to belong to the MIXED family 
(Novák et al. 2012). It contains, along with Li-bearing 
minerals (Li-micas, Li-tourmalines), also common to-
paz, Y-bearing spessartine and Y,REE-oxide minerals 
(fergusonite, samarskite, pyrochlore). Also Drahonín 
III and IV pegmatites near Strážek with tourmaline, 
sekaninaite, beryl, Y-rich spessartine and Y,REE-oxide 
minerals (Škoda and Novák 2004) may belong to the 
MIXED family. 

Rare-element (LCT) granitic pegmatites from Bavarian 
Moldanubicum (e.g., Hagendorf, Zwiesel, Pleystein; e.g., 
Mücke et al. 1990; Dill et al. 2012 and references therein) 
with abundant primary Fe,Mn-phosphates but rare tour-
maline are very likely related to the granites dated at 
326–321 Ma (Siebel 1995; Chen and Siebel 2004; Gerdes 
et al. 2003; Finger et al. 2007 and references therein). 
However, there are no analogical occurrences known 
from the territory of Czech Republic. Also rare granitic 
pegmatites in the Austrian part of the Moldanubian Zone, 
where Li-bearing pegmatites with Li-tourmalines and 
scarce Li-micas were found (Ertl et al. 2004, 2005, 2012), 
are not discussed.

(iv) Pegmatites of miarolitic class are very rare and 
only some intragranitic NYF pegmatites enclosed in the 
Čertovo břemeno Pluton, central Bohemia (Kovářov, 
Vepice; Škoda et al. 2004) and from the Třebíč Pluton 
(Velké Meziříčí, Novák and Cempírek 2010; A. Zachař 
pers. comm. 2012) closely spatially and mineralogically 
related to the above NYF pegmatites of rare-element 
class show typical features of miarolitic pegmatites – 
large pockets with crystals of smoky quartz, feldspars 
and titanite, and close relationship to the parental granite. 
Small miarolitic (LCT) pegmatites exceptionally occur 
also in anatectic granites (Eisgarn) of the Central Molda-
nubian Pluton (Telč region). 

2.2.2.	Geochronology

The radiometric ages (U–Pb monazite, U–Pb columbite) 
of the individual pegmatite groups were only scarcely 
published. (i) We do not have any data from metamor-
phosed pegmatites; however, they are expected to be 
Ordovician as their parental orthogneisses are (Vrána 
and Kröner 1995). (ii) The age of anatectic pegmatites 
is also uncertain. Their relations to the MP–HT regional 
metamorphism and anatexis, and the absence of evident 
metamorphic overprint, suggest that they are mostly Va-
riscan but some might be older. (iiia) The pegmatites of 
the rare-element class (LCT) crystallized in a short period 
of ~340–332 Ma (Novák et al. 1998; Ertl et al. 2004; 
Melleton et al. 2012), although new data also indicate 
the age of emplacement of some Li-bearing pegmatites 
at ~325 Ma (Melleton et al. 2012). (iiib) The pegmatites 

related to the Moldanubian Batholith including their 
miarolitic relatives were younger; they have been dated 
at ~320 Ma (whole rock Rb–Sr; “stockscheider-type”; 
Breiter and Scharbert 1998) and 331–326 Ma (the Eisgarn 
and Weinsberg suites), respectively. (iiic) The intragra-
nitic NYF pegmatites of the Třebíč, Čertovo břemeno 
and Tábor plutons as well as their miarolitic relatives 
(iv) were not dated radiometrically but the ages of their 
parental granites of ~340–335 Ma (Holub et al. 1997b; 
Janoušek and Gerdes 2003; Kotková et al. 2010; Kusiak 
et al. 2010) suggest the formation in the same period as 
the LCT pegmatites given above and support orogenic 
origin of these NYF pegmatites (Černý et al. 2012; Novák 
et al. 2012).

2.3.	Geological setting of the Vlastějovice 
region 

The Vlastějovice locality is situated in the Ledeč–Chýnov 
belt of the Varied Group (Drosendorf Unit), Moldanubian 
Zone, along the border with the Kutná Hora Unit (Fig. 
1a). Dominant two-mica paragneisses to locally migma-
tized biotite–sillimanite paragneisses contain common 
intercalations of amphibolite, pyroxene gneiss, quartzite, 
marbles, biotite to two-mica tourmaline-bearing ortho
gneisses and rare eclogite (Breiter et al. 2005a), which 
are spatially associated with large bodies of Fe-skarn. The 
regional metamorphic foliation trends NE–SW and dips 
at moderate to steep angles to the NW. Several lenticular 
bodies of Fe-skarns, up to several tens of meter thick and 
several hundreds of meter long, occur in the NE–SW 
trending synclinal structure at Vlastějovice building the 
Holý vrch and Magdalena Fe-skarn magnetite deposits 
(Fig. 1b; Koutek 1950; Potužák 1996). The contacts of 
the Fe-skarn are generally parallel to the foliation of the 
host gneisses. Small bodies of leucocratic granites and 
simple tourmaline-bearing pegmatites are common in this 
region as well (Kadlec 2009).

Biotite to two-mica orthogneisses form a NE–SW 
elongated body, 3.5–0.5 km in diameter, located N 
of Vlastějovice (Fig. 1b). This body is a member of a 
discontinuous belt of orthogneisses (Klečka et al. 1992; 
Breiter et al. 2005a) including the Přibyslavice orthog-
neiss. The Vlastějovice orthogneiss is a medium-grained 
rock with moderate foliation and mostly tectonic con-
tacts with the adjacent Fe-skarn. The contact was modi-
fied locally by intrusion of a footwall granite–pegmatite. 
Chemical composition of the orthogneiss is given in 
Tab. l. Orthogneiss body contains several simple peg-
matites with minor to accessory biotite, muscovite, and 
tourmaline. 

The Fe-skarn bodies in Vlastějovice are highly het-
erogeneous, consisting of grossular-andradite > heden-
bergite > diopside > magnetite > epidote. Minor to 
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accessory minerals include amphibole, biotite, calcite, 
quartz, allanite-(Ce), plagioclase, K-feldspar, scapolite, 
hematite, titanite, apatite, and fluorite. The following 
rock types were distinguished: (i) very abundant skarn 
s.s.: monomineralic massive garnetite and banded gar-
net–clinopyroxene rock commonly forming central parts 
of the Fe-skarn bodies; (ii) minor clinopyroxene–gar-
net–epidote rock; (iii) lenses of massive magnetite, up 
to several m in diameter; (iv) hybrid rock (hastingsite + 
almandine + biotite + quartz + K-feldspar + plagioclase) 
forming a zone, a few decimeters to several meters 
thick, located between the Fe-skarn and the surrounding 
orthogneisses. The chemical analyses of various types 
of Fe-skarns are given in Tab. 1. The Fe-skarns were 
regionally metamorphosed at T ~590–680 °C and P 
~0.45–0.65 GPa, corresponding to the (ii) MP–HT Va-
riscan metamorphic event (Žáček 1997). Several types 
of hydrothermal mineralization cutting the Fe-skarn 
form veins and pods, up to several dm thick: calcite + 
apophyllite, quartz + prehnite + apophyllite, datolite 
+ prehnite, fluorite + calcite (Tvrdý 2000; Žáček and 
Fišera 2001; Kadlec 2007b, 2012). Rare quartz–calcite 
veins with antimony mineralization (dominant berthi-
erite) are mostly bound to steep S–N trending mylonite 
zones (Koutek and Žák 1953; Brabec 2002).

3.	Experimental methods

3.1.	Electron microprobe

Tourmaline, garnet, amphibole, micas, plagioclase and 
some associated minerals were analyzed by an electron 
microprobe Cameca SX 100 at the Joint Laboratory of 

Electron Microscopy and Microanalysis, Department 
of Geological Sciences, Masaryk University, Brno and 
the Czech Geological Survey, Brno in a wavelength-
dispersive mode and with accelerating voltage of 15 
kV, beam current of 10–20 nA and spot size of 1–5 μm. 
The following X-ray lines and standards were used: 
Kα: sanidine (Si, Al, K), albite (Na), olivine (Mg), 
andradite (Ca, Fe), rhodonite (Mn), hornblende (Ti), 
chromite (Cr), topaz (F), ZnS (Zn), NaCl (Cl), apatite 
(P) and Ni (Ni); Lα: YAG (Y) and Lβ: benitoite (Ba). 
The raw data were reduced using PAP matrix correc-
tions (Pouchou and Pichoir 1985). The crystal-chemical 
formulae of tourmaline were calculated based on the 
general formula XY3Z6T6O18(BO3)3V3W, where X = Na, 
Ca, K, vacancy; Y = Fe, Mg, Mn, Ti, Al, Li; Z = Al, 
Fe, Mg, Cr; T = Si, Al, B; B = B; V = OH,O; W = OH, 
F,O (see Henry et al. 2011). The Z-site was considered 
to be occupied by Al and Mg, Fetot as FeO. Normaliza-
tion to Si = 6 apfu was chosen because of the absence 
of Fe2+/Fe3+ measurements in black tourmaline and 
elevated contents of Li in tourmalines from the Elbaite 
pegmatite (Povondra et al. 1985). The crystal-chemical 
formulae of garnet were calculated from EMPA data 
and normalized to 8 cations and 12 oxygens whereby 
Fe was split to Fe3+ or Fe2+ according to the stoichiom-
etry. The crystal-chemical formulae of amphibole and 
biotite were obtained based on 24 anions or 12 anions 
(O,OH,F) respectively, assuming that all Fe is divalent 
in both cases. The crystal-chemical formulae of feld-
spars were calculated based on 8 oxygens. Calculations 
of Mg/(Mg + Fe) values in tourmaline, amphibole and 
mica were done using total Fe as FeOtot, disregarding 
its potential valence and distinct position in the crys-
tal structure of minerals. All mineral abbreviations in 

Tab. 1 Chemical compositions of rocks from Vlastějovice (wt. %)

1 2 3 4 5 6 7
FGM29 V8 FGM28 V13 VLS-1 VLS-2 VLS-3

SiO2 74.34 71.19 73.55 43.26 40.77 40.11 41.79
TiO2 0.02 0.16 0.17 0.82 0.44 0.59 0.27
Al2O3 15.51 13.30 16.18 12.36 9.94 10.24 1.51
Fe2O3 0.34 0.13 1.46 4.74 20.69 13.89 19.11
FeO – 1.75 – 11.76 – – –
MnO 0.01 0.03 0.03 0.40 0.79 0.51 0.35
MgO 0.01 0.37 0.24 2.00 2.17 2.60 5.21
CaO 0.88 1.30 0.96 14.48 24.04 31.01 29.97
Na2O 4.90 1.17 3.12 2.46 0.34 0.19 0.09
K2O 3.80 8.34 5.45 2.71 0.02 0.03 0.01
P2O5 0.00 0.28 0.23 0.23 0.14 0.14 0.20
H2O – 0.47 – 0.94 – – –
LOI – 1.18 – 2.96 0.50 0.60 1.14
Sum 99.81 99.67 101.39 99.12 99.84 99.91 99.65

1 – orthogneiss, 2 – orthogneiss (Syka 1990), 3 – Footwall granite–pegmatite (granite I), 4 – amphibole-rich pegmatite (Syka 1990), 5, 6, 7 – Fe-skarn
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tables, figures and in the text were taken from Whitney 
and Evans (2010).

3.2.	Whole-rock geochemistry

The bulk compositions of Fe-skarn were determined 
at the Acme Chemical Laboratories Ltd., Vancouver, 
Canada, by using ICP-ES after they were melted with 
lithium borate. Trace elements were analyzed by ICP-MS 
following a lithium tetraborate fusion. See http://www.
acmelab.com for further details.

4.	Geological setting, internal  
structure and mineral assemblages of 
the Vlastějovice granitic pegmatites

Granitic pegmatites from the region were divided into 
three distinct groups based on their likely parental mag-
matic rock, internal structure, shape and size of bodies, 
mineral assemblages and degree of host-rock contamina-
tion (Kadlec 2007a, 2009; Novák and Cempírek 2010). 

4.1.	Tourmaline-bearing pegmatites from 
orthogneiss

Several elongated pods, up to ~0.5–1.5 m long and up 
to 0.5 m thick, were found in the Holý vrch quarry. 
Pegmatite pods show transitional contacts and their 
elongation is often concordant with the foliation of the 
host orthogneiss (Fig. 2). However, this foliation does 
not continue into the coarse-grained pegmatite. Frag-
mentation of elongated tourmaline crystals and their 
healing is common. The pegmatites (Qz + Kfs + Pl) are 
simply zoned showing increasing grain size from the 
contact inwards and locally small quartz core. Biotite, 
abundant in outer parts of pegmatite pods, mostly pre-
dominates over prismatic crystals of black tourmaline 
(dravite, schorl), up to 10 cm long, more common in 
the center. Large flakes of muscovite and small grains 
of green fluorapatite are frequent but other accessory 
minerals, such as zircon, are rare (Kadlec 2007a). 
Staněk and Schnorrer (1983) described also phenakite 
and buergerite from this type of pegmatite; however, 

determination of buergerite is not unequivocal and its 
presence seems very unlikely.

4.2.	Amphibole-bearing pegmatites 

Contaminated, amphibole-bearing pegmatites (barren 
pegmatites according to Ackerman et al. 2007) are very 
common and about 100 dikes were mentioned by Vavřín 
(1960, 1962), Ackerman et al. (2007), Kadlec (2007a, 
2009) and Novák and Cempírek (2010). They are ran-
domly distributed within the whole Fe-skarn body (Fig. 
3a–b), although we have never found them in the hybrid 
rock. Based on major and minor minerals (Tab. 2), degree 
of hydrothermal overprint and presence or absence of 
pockets, four major subtypes were recognized, as follows.

(i) Ordinary amphibole-bearing pegmatites (Pl 
+ Qz + Kfs + Amp) are by far the most abundant but 
also quite variable in size, shape, thickness of reaction 
rims and proportion of the individual minerals (Vavřín 
1962; Novák and Hyršl 1992; Žáček et al. 2003). They 
form elongated dikes to irregular intrusive bodies (Figs 
3b, 4) commonly several dm thick and several m long 
(Fig. 3b–d); the largest dike was ~1.5 m thick. They 
cut exclusively the Fe-skarn with irregularly developed 
reaction zones (Fig. 4). Abundant reaction rims, up to 
30 cm thick, consist of dominant amphibole and locally 
also fluorite, biotite and a relatively Ca-rich plagioclase 
(An06–35) compared to that from the central portions of 

50 cm

orthogneiss

pegmatite

tourmaline

muscovite

apatite

diffuse contact

biotite

Fig. 2 Idealized cross section through pegmatite in orthogneiss (modi-
fied from Kadlec 2007a).

Tab. 2 Mineral assemblages of amphibole-bearing pegmatites

Pegmatite subtype Major minerals Minor minerals Accessory minerals
ordinary pegmatites Pl > Qz, Kfs, Amp Fl, Aln, Bt, Hd, Grt Ttn, Cal, Mag, Ax, Py, Po, Wo 
fluorite-rich pegmatites Pl > Fl > Kfs, Qz, Amp Bt, Aln Ttn, Mag
pegmatites with hydrothermal overprint Pl > Kfs, Qz, Fl Amp, Prh, Apo, Ep, Bt Ttn, Aln, Grt, Cal, Tur, Opl
pocket pegmatite Pl > Kfs, Qz, Ab, Pl Fl, Bt, Amp Aln, Cal, Apo, phenakite

Products of hydrothermal alteration of allanite-(Ce) in most dikes disregarding the subtype include: bastnäsite-(Ce) >> thorogummite, ancylite, 
brockite, parisite-(Ce), rhabdophane-(Ce) (Goliáš 2002); further accessory minerals in amphibole-bearing pegmatites: celadonite, fluorapatite, 
uraninite, thorite, pyrochlore-supergroup mineral, bismuth, bismuthinite (e.g., Rezek and Krist 1985; Goliáš 2002).
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pegmatite (An00–20; Ackerman et al. 2007). The pegmatites 
are coarse-grained, commonly with subhomogeneous 
internal structure (Fig. 3d), and contain locally abundant 
amphibole > fluorite > biotite >> hedenbergite > andra-
dite–grossular ~ allanite ~ epidote ~ titanite ~ calcite ~ 
magnetite (the most common order) along with dominant 
plagioclase, quartz and locally also abundant K-feldspar 
(Tab. 2). Very rare axinite-(Fe) and tourmaline were also 
identified. Monomineralic grey quartz forms locally ir-
regular masses and veins located often along the contact 
with the host skarn, enclosing its fragments. Black to 
green-black amphibole (hastingsite to ferro-edenite) 
is present as euhedral to subhedral phenocrysts, up to 
~10 cm in size, and massive, coarse-grained aggregates 
(Žáček and Povondra 1991; Žáček 2007). Common 
allanite-(Ce) present in amphibole-bearing pegmatites 
and scarcely in host Fe-skarn is often replaced by second-
ary fluorcarbonates (e.g., bastnäsite; Tab. 2), particularly 

if associated with fluorite (Goliáš 2002). Subhedral to 
euhedral crystals of yellowish-brown Al-rich titanite, 
less than 1 cm across, occur in black hastingsite and 
fluorite, chiefly from reaction zones between pegmatite 
and skarn (Mrázek and Vrána 1985). Abundant to scarce, 
dark violet, purple to rarely colorless fluorite forms 
coarse-grained aggregates, up to several dm in size, in 
the pegmatite or in the exocontact zone. Fluorite locally 
predominates over quartz and feldspars. It is closely 
associated with allanite with deep violet to black rims 
around allanite grains. Ackerman (2005), based on the 
REE-geochemistry and fluid inclusion study, suggested 
that the fluorite crystallized during the magmatic–hy-
drothermal transition. Also wollastonite, chlorite, and 
pyrite occur in minor amounts mostly in marginal parts 
of the pegmatite dikes (e.g., Vavřín 1960, 1962; Žáček 
and Povondra 1991; Novák and Hyršl 1992; Žáček et al. 
2003; Houzar et al. 2009).

a b

c d

Fig. 3 Amphibole-bearing pegmatites in Fe-skarn: a – view on the Holý vrch quarry, Vlastějovice, note Pegmatite No. 12 in the upper left part of 
the quarry, several outcrops of Footwall granite–pegmatite (light areas), and amphibole-bearing pegmatites in the upper right part of the quarry; 
b – amphibole-bearing pegmatite dikes cutting the Fe-skarn;  c – crossing of amphibole-bearing (subhorizontal) and tourmaline-bearing pegmatite 
(subvertical); d – detail of amphibole-bearing pegmatite dike ~25 cm thick. Field situation on 31 August 2010 (a) and on 28 March 2009 (b to d); 
photo M. Novák.			 
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(ii) Fluorite-rich, amphibole-bearing pegmatite 
dikes are relatively common only in the Magdalena Fe-
skarn body. They form thin (up to 30 cm thick) elongated, 
vertical and locally asymmetric dikes, where fluorite is 
concentrated to the upper zone adjacent to contact. Re-
action rims are negligible. Biotite is more abundant than 
in the ordinary amphibole-bearing pegmatites (Tab. 2).

(iii) Amphibole-bearing pegmatites with significant 
hydrothermal overprint and small pockets are very 
similar to the ordinary amphibole-bearing pegmatites in 
internal structure and primary mineral assemblages ex-
cept for almost total absence of biotite in this pegmatite 
type. Hydrothermal minerals prehnite and apophyllite are 
typically present in small pockets enclosed in K-feldspar 
associated with fluorite. Minor calcite, garnet, titanite, 
allanite, epidote, opal, and very rare fibrous tourmaline, 
pyrite, and bastnäsite were also identified in this assem-
blage (Tab. 2). Several pegmatite dikes occur exclusively 
in the upper part of the Magdalena Fe-skarn body.

(iv) Amphibole-bearing pegmatite with a large 
pocket (~1 m3) was described by Vavřín (1960), Čujan 
(1966) and Kadlec (2010) from the Magdalena Fe-skarn 
quarry. The zoned dike, ~2 m thick, consists of outer 
oligoclase-rich unit and blocky K-feldspar with quartz 
in the core. The mineral assemblages also include am-
phibole, fluorite, biotite, and rare allanite. In the pocket, 
crystals of smoky quartz (up to 60 cm long), orthoclase, 
albite, calcite, apophyllite, phenakite, and clay minerals 
were identified (Kadlec 2010).

Crosscutting dikes of ordinary amphibole-bearing and 
tourmaline-bearing pegmatites described below have 
been found only recently (Fig. 3c), and show unambigu-
ously that the former crystallized earlier than the latter 
(see also Čech 1985; Novák 2005; Ackerman et al. 2007; 
Novák and Cempírek 2010). The P–T conditions of the 
formation of amphibole-bearing pegmatites (600–640 °C 
and 0.42–0.58 GPa) deduced from fluid inclusions (Ack-
erman et al. 2007) fall into the field of regional MP–HT 
metamorphism of the host rocks (Žáček 1997). Chemical 
compositions of amphibole-rich and quartz-poor ordinary 
amphibole-bearing pegmatites are given in Tab. 1.

4.3.	Tourmaline-bearing pegmatites

4.3.1.	Occurrences

Tourmaline-bearing pegmatites are rather common in 
Vlastějovice; ~20 dikes were recognized including Li-
bearing elbaite-subtype pegmatite studied by Čech (1985) 
and Ackerman et al. (2007). They are concentrated in a 
W–E trending belt exclusively in the central and eastern 
part of the Holý vrch quarry; they are not known from 
the Magdalena Fe-skarn deposit. The pegmatites are 

evidently related to the granite–pegmatite body in the 
footwall contact of the Fe-skarn (Figs 3a–5). In contrast 
to the amphibole-bearing pegmatites from the Fe-skarn, 
the tourmaline-bearing pegmatites were also found in 
paragneisses surrounding the Fe-skarn bodies (Kadlec 
2007a, 2009). The pegmatites form NW–SE trending and 
steeply dipping dikes and rarely irregular bodies, with 
homogeneous to simply zoned internal structure (Kadlec 
2007a, 2009; Novák and Cempírek 2010). Black to grey-
ish black tourmaline forms solitary grains, coarse-grained 
aggregates and quite commonly graphic intergrowths of 
quartz + tourmaline, up to 10 cm in size. Six individual 
pegmatite bodies and Footwall granite–pegmatite were 
studied in detail. They represent typical examples of the 
tourmaline-bearing pegmatites characterized by distinct 
host rocks, degree of textural differentiation, geochemical 
fractionation and external contamination. 

The Březina pegmatite forms a lenticular body, up to 
3 m thick and 10 m long, located ~2 km SW of the Holý 
vrch Fe-skarn body. The pegmatite is heterogeneous, 
consisting of rather irregularly distributed patches of a 
dominant medium- to coarse-grained unit (Qz + Kfs + Ab 
+ Ms + Bt + Grt + Tur), blocky K-feldspar and massive 
quartz (Tab. 3). The pegmatite is enclosed in migmatized 
biotite–sillimanite paragneiss with minor cordierite and is 
mostly concordant, only locally with discordant contacts 
to the foliated host rock. 

The Nosatá skála pegmatite, a dike up to ~5 m thick 
and several tens of m long, crops out ~ 1 km W of the 
Holý vrch Fe-skarn body. The pegmatite shows het-
erogeneous internal structure consisting of irregularly 
distributed patches of a fine- to medium-grained unit 
within the prevalent coarse-grained pegmatite (both 
with an assemblage Qz + Kfs + Ab + Bt + Ms; garnet 
and tourmaline are more common in the coarse-grained 

2 m

Fe-skarn magnetite pegmatite amphibole

ENE WSW

Fig. 4 Amphibole-bearing pegmatites cutting Fe-skarn (slightly modified 
from Novák and Hyršl 1992).
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No.4

No.12

Sps

5.et.

4.et.

3.et.

2.et.

1.et.

15 m gneisses, amphibolites

footwall granite, pegmatites

Fe-skarn

5.et.

4.et.

3.et.
FGP I

No.12

No.4

Sps

FGP III

FGP II

a)

b)

Fig. 5a Schematic geological map of the Holý 
vrch quarry. b – Cross section through the Fe-
-skarn, orthogneiss, Footwall granite–pegmatite 
and related tourmaline-bearing pegmatites. FGP 
– Footwall granite–pegmatite – granite I, II and 
III; Pegmatite No. 4; Pegmatite No. 12; Sps – 
Spessartine pegmatite.

Tab. 3 Mineral assemblages of tourmaline-bearing pegmatites and pegmatites in orthogneiss

Locality/reaction rims Proportions of minerals Accessory minerals

Pegmatites in orthogneiss/absent Tur-common; Bt ~ Ms, Bt > Tur Ap, Zrn, phenakite

Pegmatite Březina/absent Tur-common; Ms >> Bt,  
Tur ~ Grt > Bt Ap, Zrn, Rt, Ttn, Xtm, Mnz, Py, Sil

Pegmatite Nosatá skála/absent Tur-common; Bt ~ Ms,  
Tur > Bt > Grt Ap, Zrn, Rt, Ttn, Xtm, Mnz, Py, Dsp, Ilm

Footwall granite pegmatite/minor Tur-very rare; Bt >>> Tur > Amp Ap, Py, Rt, Zrn, Aln, Ant, Bi-sulphide

Pegmatite No. 12/moderate Tur-rare; Bt >> Tur ~ Amp Ap, Ttn, Zrn, Py, Po, Aln, Cst, Rt, Fl

Pegmatite No. 4/minor Tur-rare; Bt >> Tur > Amp Ap, Ttn, Zrn, Py, Apy, Cal 

Spessartine pegmatite/absent Tur-rare; Bt > Tut > Grt Ap, Ttn, Zrn, Py, Apy, Ep, Cal, Fl, Sp, Cst, Y-rich milarite, uraninite,  
Nb-rich rutile, minasgeraisite-(Y), Sn-rich titanite 

Elbaite pegmatite/absent (Čech 1985) Tur-common; Tur >> Bt Ap, Fl, Zrn, Py, Cst, Mag, Elb, manganocolumbite, pyrochlore-group  
minerals, danburite, datolite, bavenite, stokesite

Mineral assemblages from the authors’ observations including data of Staněk and Schnorrer (1983), Čech (1985) and Povondra et al. (1985).
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facies), blocky K-feldspar and massive quartz locally 
with small pockets. The pegmatite discordantly cuts 
pyroxene paragneisses with thin intercalations of calcite 
marbles. Both the Březina and Nosatá skála pegmatites 
show sharp contacts with the country-rock paragneisses 
and no reaction rims. 

The Footwall granite–pegmatite dike (Qz + Kfs + Pl 
+ Bt) occurs along the footwall contact of the Fe-skarn 
with the underlying orthogneiss at Holý vrch (Figs 3a, 5, 
6a–b, d). This complicated and tectonically fragmented 
dike is at least ~250 m long and ~1 to ~10 m thick in the 
outcrops (Fig. 5). The heterogeneous granite–pegmatite 
body consists of three texturally different facies.  A me-
dium- to coarse-grained and locally porphyritic granite I 
is located exclusively in the north-eastern upper corner 
of the quarry. A coarse-grained, subhomogeneous granite 
II, locally with anhedral grains of K-feldspar, occurs in 
the southwestern part of the body (the lower part of the 
quarry). The most evolved and less abundant, coarse-
grained granite III (Fig. 5), with large subhedral crystals 
of blocky K-feldspar, locally up to 30 cm in size (Fig. 
6e), cropped out  in the centre of the quarry (Fig. 5). 
Graphic intergrowths of Qz with Kfs are locally com-
mon in the granites II and III. The granitic rocks are 
occasionally strongly altered to a mixture of clay miner-
als and quartz. Contacts with the host orthogneiss and 
Fe-skarn are mostly sharp. Only exceptionally a reaction 
zone with amphibole, up to 3 cm thick, occurs along the 
contact with the Fe-skarn; however the contact was often 
tectonically modified. Chemical analysis of the granite I 
is given in Tab. 1.

The Pegmatite No. 12 was evidently derived from the 
least evolved granite I (Figs 5, 6a). The pegmatite forms 
a matrix of brecciated Fe-skarn with a complex mor-
phology (Fig. 6a). The individual parts of the pegmatite 
body are from several dm up to 1 m thick in the current 
outcrops. A medium- to coarse-grained unit (Qz + Kfs 
+ Pl + Bt), with very rare tourmaline and amphibole, 
resembles the parental granite I as the typical pegmatitic 
textures (e.g., graphic intergrowths Qz + Kfs) are absent. 
This body exhibits reaction rims at the contact with the 
host Fe-skarn and its enclaves, up to 10 cm thick, with 
common greenish-black subhedral grains of amphibole, 
and locally rare pyrite, pyrrhotite, fluorite, allanite-(Ce) 
and other accessory minerals (Tab. 3). 

Pegmatite No. 4 occurs as an elongated subhomoge-
neous dike, up to 1 m thick and ~20 m long (Fig. 6b), 
consisting exclusively of a coarse-grained unit (Qz + 
Kfs + Pl + Bt + Tur + Amp). Typical pegmatitic textures 
(e.g., graphic intergrowths) are rare. This pegmatite was 
evidently derived from the granite II (Figs 5, 6b) and the 
textures of the granite and pegmatite are mutually very 
similar. The pegmatite shows sharp to locally transitional 
contacts with the host Fe-skarn. The reaction zone is only 

several mm thick (Fig. 6c) with more abundant biotite in 
the adjacent pegmatite and rare amphibole at both endo- 
and exocontacts with the Fe-skarn. 

The elongated dike of the Spessartine pegmatite, up 
to 0.5 m thick and ~15 m long, was evidently derived 
from the most evolved granite III (Figs 5, 6d). It con-
sists of a dominant coarse-grained unit (Qz + Kfs + Pl ± 
Tur) with only locally developed patches of graphic unit 
(Kfs + Qz), blocky K-feldspars, small quartz core and 
medium-grained albite. The latter contains small masses 
of fluorite and several accessory minerals including 
abundant  spessartine (Tab. 3). The pegmatite evolved to 
massive quartz in the upper tip of the dike. Contact with 
the host Fe-skarn is typically sharp; no reaction rims were 
observed in hand specimens (Fig. 6f). 

Elbaite pegmatite occurred in the western part of the 
Holý vrch Fe-skarn body close to the Spessartine pegma-
tite. It was completely mined out in 1982 and its internal 
structure and individual minerals were briefly described 
(Čech 1985; Povondra et al. 1985; Selway 1999; Acker-
man et al. 2007). The pegmatite dike, up to ~2 m thick, 
exhibited simply zoned internal structure with a fine- to 
medium-grained outer zone (Qz + Kfs + Pl ± Bt ± Tur), 
coarse-grained inner zone (Qz + Kfs + Pl + Tur) with 
abundant graphic intergrowths (Qz + Kfs, Qz + Tur), 
blocky K-feldspar, albite, and rare pockets containing 
crystals of albite, K-feldspar, smoky quartz and red fluor-
elbaite (Tab. 3). No samples from the contact with the 
host Fe-skarn were available for our study; however, the 
contacts were described as sharp (Čech 1985; P. Povondra 
pers. comm. 2010).

4.3.2.	Mineralogy

The tourmaline-bearing pegmatites always contain minor 
to accessory biotite (Tab. 3). The amount of tourmaline 
varies from a very rare to rare accessory mineral in the 
Footwall granite–pegmatite and in the Pegmatite No. 12, 
through an accessory phase in the Spessartine pegmatite 
to a frequent (locally minor) mineral in pegmatites from 
paragneisses and in the Elbaite pegmatite. Primary mus-
covite is common only in the pegmatite bodies hosted by 
gneisses but absent in all pegmatites cutting the Fe-skarn. 
Amphibole is absent in all pegmatites from paragneisses, 
Spessartine pegmatite and Elbaite pegmatite, it is rare 
in the Pegmatite No. 4 and Pegmatite No. 12 (Tab. 3). 
Euhedral grains of garnet are abundant in both pegmatites 
from paragneisses (Tab. 3) but absent in the bodies cut-
ting the Fe-skarn except for the Spessartine pegmatite. 

The assemblage of accessory minerals in the 
tourmaline-bearing pegmatites is dominated by flu-
orapatite. Also magnetite, zircon, rutile, titanite, 
monazite-(Ce), xenotime-(Y), allanite-(Ce), ilmenite, 
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a b

dc

e f

Fig. 6 Tourmaline-bearing pegmatites cutting the Fe-skarn: a – Footwall granite–pegmatite (granite I – right side) and Pegmatite No. 12 (left side); 
b – Footwall granite–pegmatite (granite II) and Pegmatite No. 4 up to 1 m thick; c – detail of the Pegmatite No. 4, about 30 cm thick, note thin 
reaction rim with amphibole in garnet skarn (left footwall); d – Footwall granite–pegmatite (granite III) and thin dike of the Spessartine pegmatite 
up to 50 cm thick, marked by an arrow; e – large crystal of K-feldspar with grains of black tourmaline in the Footwall granite–pegmatite (granite 
III); f – detail of the Spessartine pegmatite, note sharp contacts. Field situation on 28 March 2009 (a), 19 January 2007 (b), 10 December 2004 (c), 
2 June 2009 (d), 6 July 2007 (e) and 31 March 2007 (f). Photo T. Kadlec.
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arsenopyrite, and pyrite are present in most pegmatite 
bodies (Tab. 3). Fluorite as small violet grains and 
masses occurs either in the more evolved Spessartine 
pegmatite and Elbaite pegmatite but also in direct con-
tact with the Fe-skarn in the primitive Pegmatite No. 
12. Further details concerning the pegmatite (granite) 
dikes examined and review of all minerals identified 
from the individual tourmaline-bearing pegmatite dikes 
are given in Tab. 3.

Ackerman et al. (2007) inferred, based on the detailed 
study of fluid inclusions and geological constraints (geo-
thermal gradient, haplogranite solidus with 4.5 wt. % 
B2O3, feldspars thermometry), the following conditions 
for the Elbaite pegmatite formation: P = 0.31–0.43 GPa, 
T = 500–570 °C;  the host-rock temperature during peg-
matite emplacement was estimated at ~300 °C. 

5.	Chemical composition of minerals 

5.1.	Tourmaline 

Tourmalines (schorl, dravite, foitite, elbaite, fluor-el-
baite) from the individual types of pegmatites enclosed 
in the orthogneiss, amphibole-bearing pegmatites hosted 
by the Fe-skarn, and mainly tourmaline-bearing pegma-
tites cutting the paragneisses and Fe-skarn including 
Footwall granite–pegmatite, differ significantly in their 
chemical compositions (Tab. 4). Because tourmaline 
forms fine-grained intergrowths with secondary Fe-rich 
chlorite in all tourmaline-bearing pegmatites cutting the 
Fe-skarn (Fig. 7a–b) except for the Elbaite pegmatite 
and scarcely the Pegmatite No. 12 (Fig. 7c), determina-
tion of Fe2+/Fe3+ by Mössbauer spectroscopy (see e.g., 
Novák et al. 2011) was not possible. The individual 
tourmaline grains are commonly slightly heterogeneous 
(Fig. 7c).

5.1.1.	X-site

Two groups of tourmalines are evident in Fig. 8a, Ca-poor 
(Ca < 0.15 apfu, moderate to high proportion of vacancy 
in the X-site) (Březina and Nosatá skála pegmatites cut-
ting paragneisses, pegmatite in orthogneiss) and Ca-rich 
(Ca = 0.15–0.47 apfu, low to moderate X-site vacancy, 
X□ ≤ 0.25 pfu) (all pegmatites enclosed in the Fe-skarn, 
including rare fibrous tourmaline from amphibole-bearing 
pegmatite). Tourmaline compositions from the individual 
dikes are scattered over a fairly large field (Fig. 8a).

5.1.2	 Y-site and Z-site

Extremely high variability in Al contents of the individ-
ual tourmalines (Altot = 4.81–8.29 apfu) is the most typi-

cal feature. Pegmatites enclosed in the para- (Březina, 
Nosatá skála) and orthogneisses, Footwall granite–
pegmatite and part of tourmaline (with high elbaite 
component) from the Elbaite pegmatite (Fig. 8b) have 
Altot greater than 6 apfu and thus they correspond to 
ordinary tourmalines from granitic pegmatites (Selway 
et al. 1999; Novák et al. 2004). Tourmalines from all 
tourmaline-bearing pegmatites cutting the Fe-skarn and, 
rarely, the amphibole-bearing pegmatite are Al-poor, 
including Spessartine pegmatite (5.20–5.59 apfu Al) and 
black schorl from the Elbaite pegmatite (4.81–6.26 apfu 
Al) (Fig. 8b). Tourmalines from pegmatites cutting the 
Fe-skarn mostly having Altot < 6 indicate the presence 
of Fe3+. The wet chemical analysis of schorl from the 
Elbaite pegmatite showed elevated Fe3+ of 0.54 apfu 
(Povondra et al. 1985). Tourmalines from pegmatites 
in para- and orthogneisses have clearly higher contents 
of Mg (Mg/(Fe + Mg) = 0.22–0.52; Fig. 8b) than from 
the Footwall granite–pegmatite and primitive pegmatites 
cutting the Fe-skarn (Pegmatites No. 12 and No. 4; Mg/
(Fe + Mg) = 0.20–0.24). Tourmaline from orthogneiss 
with Mg/(Fe + Mg) = 0.42–0.53 is the least fraction-
ated. Evidently the most fractionated are the Spessartine 
pegmatite and the Elbaite pegmatite ((Mg/(Fe + Mg) = 
0.07–0.10 and 0.00–0.16, respectively), whereby the 
values close to 0 are typical of elbaite and associated 
schorl. Tourmaline from the Elbaite pegmatite (elbaite, 
fluor-elbaite) is also significantly enriched in Mn (up 
to 0.31 apfu – wet chemical analyses of Povondra et 
al. 1985, or even 0.93 apfu Mn, electron microprobe 
data; Tab. 4) as is common in elbaite-subtype pegma-
tites (Novák and Povondra 1995; Novák 2000; Novák 
et al. 1999a, 2012). Low to moderate contents of Ti 
(0.03–0.16 apfu) are characteristic of tourmaline from 
all examined pegmatites; slightly higher concentrations 
of Ti were found in pegmatites enclosed in the Fe-skarn 
(Tab. 4). High surplus of Y + Z in most of analyses of 
black tourmaline (Tab. 4) imply that the normalization 
on the basis of 6 apfu Si and OH + F = 4 is not ideal 
and that an oxy-tourmaline component is present along 
with Fe3+ and perhaps TAl (Povondra et al. 1985; Novák 
et al. 2004; Bačík et al. 2013).

5.1.3.	W-site

Concentrations of F vary from low in tourmalines from 
the pegmatites enclosed in para- and orthogneisses 
(0.01–0.21 apfu) to moderate in tourmaline-bearing 
pegmatites cutting the Fe-skarn (0.24–0.37); the high-
est concentrations of F (0.31–0.46 apfu) were found 
in the Footwall granite–pegmatite dike. Tourmalines 
in the Elbaite pegmatite show much higher variation 
from 0.22 apfu F in black schorl to 0.56 apfu F in red 
fluor-elbaite. 
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Tur

Ap

Qz

Ab

Ep

Ttn

Pl

Chl

Py

Qz

Qz

Ab

Dsp
Ap

Kfs

(b)(a)

(f)(e)

(d)(c)

Fig. 7 Back-scattered electron (BSE) images of selected minerals: a – euhedral tourmaline with secondary chlorite (bright) in dark plagioclase (Pl) 
from the Footwall granite–pegmatite; b – tourmaline (dark) with secondary chlorite (grey) and late titanite (bright veinlets), Březina pegmatite; 
c – zoned subhedral tourmaline (Tur) in association with quartz (Qz), albite (Ab), and apatite (Ap) from the Pegmatite No. 12;  d – diaspore (Dsp) 
in albite (Ab) and quartz (Qz), in association with K-feldspar (Kfs) and apatite (Ap), Nosatá skála pegmatite; e – zoned titanite (Ttn) with Sn-rich 
rim associated with epidote (Ep), Spessartine pegmatite; f – euhedral crystal of uraninite (bright) in quartz (Qz), see pyrite (Py) in chlorite rim 
(Chl), Spessartine pegmatite. Scale bar = 250 μm.
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5.2.  Biotite, muscovite  
     and chlorite 

Biotite is common to rare in all 
pegmatite groups but typically 
more or less chloritized, espe-
cially in the tourmaline-bearing 
pegmatites and thus a detailed 
discussion of its chemistry is 
not feasible. Biotite from all 
pegmatites is Fe-rich showing 
low variation in Mg/(Mg + Fe) 
(Fig. 9a) and is enriched in F 
(0.08–0.42 apfu). Muscovites 
from pegmatites cutting the 
para- and orthogneisses are all 
similar (Al = 2.74–2.91, Si = 
3.03–3.07, Fe = 0.04–0.08, Mg 
= 0.02–0.07 and F = 0.02–0.07 
apfu). Also secondary chlorites 
are Fe-rich; chamosite replacing 
tourmaline in pegmatites from 
the Fe-skarn has Si = 2.58–
2.78 apfu and Mg/(Mg + Fe) = 
0.05–0.21, i.e.  resembling the 
replaced tourmaline. Second-
ary chamosite after biotite has 
Mg/(Mg + Fe) = 0.01–0.35, i.e. 
comparable with the precursor. 
It differs from secondary chlo-
rite after tourmaline by slightly 
higher Si of 2.70–2.98 apfu.

5.3.  Amphibole

Amphiboles from amphibole-
bearing pegmatites cutting the 
Fe-skarn were examined in 
detail by Žáček and Povondra 
(1991) and Žáček (2007). They 
show similar Mg/(Mg + Fe) 
of 0.13–0.25 in amphibole-
bearing pegmatites (hastingsite 
to potassichastingsite; K ≤ 0.65 
apfu and ≤ 3.15 wt. % K2O) 
and of 0.11–0.29 in tourma-
line-bearing pegmatites with 
Footwall granite–pegmatite 
(potassian hastingsite with ≤ 
0.4 K apfu and ≤ 1.77 wt. % 
K2O to potassian ferro-edenite 
with ≤ 0.37 K apfu and ≤ 1.64 
wt. % K2O; Fig. 9b). Contents 

CaNa+K

Březina pegmatite

Nosatá skála pegmatite

Footwall granite–
pegmatite

Pegmatite No. 4

Pegmatite No. 12

Elbaite pegmatite

Spessartine pegmatite

Fe Al50 50

Al

Mg Al50 50

foitite magnesio-foitite

schorl dravite

pegmatites from
orthogneiss

a)

b)

Amp-bearing pegmatite

X

Fig. 8 Compositional diagrams of tourmaline from granitic pegmatites in the Vlastějovice region:  
a – (Na+K) – vacancy in the X-site – Ca; b – Fe – Al – Mg.
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of Si increase from 6.05 to 
6.70 apfu, together with Mg/
(Mg + Fe) (Fig. 9b). In the 
tourmaline-bearing pegmatites, 
hastingsite is typical of exo-
contacts and ferro-edenite of 
endocontacts, respectively. 

5.4.	Garnet 

Subhedral grains and their ag-
gregates of brownish red an-
dradite–grossular, up to 2 cm 
in size, are typical of some 
amphibole-bearing pegmatites 
(Tab. 2). They are slightly 
heterogeneous in composition 
(Fig. 10). Almandine-domi-
nant garnets from both tour-
maline-bearing pegmatites in 
the paragneisses (Březina and 
Nosatá skála) are only slightly 
heterogeneous in the BSE im-
ages; garnet from the Březina 
pegmatite is slightly enriched 
in Mg and Ca (Fig. 10). By 
comparison, spessartine-dom-
inant garnet from the Spes-
sartine pegmatite is evidently 
enriched in Ca, Mn and Fe3+ 
(Fig. 10). Both the higher de-
gree of fractionation expressed 
by higher Mn/(Mn + Fe) and 
strong Ca,Fe-contamination 
are recorded in this garnet. It 
is also enriched in Y (up to 
0.02 apfu, i.e. up to 0.41 wt. % 
Y2O3). Elevated contents of Y 
were found only exceptionally 
in Czech pegmatites (Hönig et 
al. 2010; Novák et al. 2012).

5.5.	Feldspars 

Composition of plagioclase 
(An0–32; see also Ackerman et 
al. 2007) does not show any 
apparent differences among the individual pegmatite 
types; in particular, high variation in Na/Ca is typical. For 
instance, plagioclase attains up to An15 in the pegmatites 
from the orthogneiss, An25 in the Březina pegmatite, An31 
in plagioclase associated with fluorite from the Pegmatite 
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Žáček (2007)

Amp-bearing pegmatites

Fig. 9 Compositional diagrams for biotite (a), and amphibole (b) (Leake et al. 1997) from granitic peg-
matites in the Vlastějovice region. Amphibole analyses from ampfibole-bearing pegmatites taken from 
Žáček and Povondra (1991) and Žáček (2007).

No. 12 and up to An32 in the amphibole-bearing pegma-
tites. Compositions of perthitic K-feldspar vary from 
almost pure KAlSi3O8 to Or85Ab15 and no significant 
differences were found among the individual pegmatite 
types, either.
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5.6.	Chemical composition of the selected 
accessory minerals

Tourmaline-bearing pegmatites contain several accessory 
minerals (see Tab. 3, Fig. 7d–f). Most of them appar-
ently indicate an elevated degree of fractionation in the 
parental granitic rock. Empirical formulae of selected 
minerals are given below. The Spessartine pegmatite con-
tains several less common to very rare accessory phases 
with unusual compositions: Sn-rich titanite – Ca1.02(Ti0.61 
Sn0.28Al0.09Fe0.04Nb0.01)1.03Si1.00O4.93F0.07 (Fig. 7e), Y-rich 
milarite – (K2.08Na0.04)2.12 (Ca2.24Y1.70Fe0.20Mn0.05)4.19Be4.00 
Si24.85O59.84F0.16.H2O and mineral close to minasgeraisite-
(Y) – Ca0.84(Y0.66Fe0.35Yb0.09Er0.05)1.15Be2.0Si2.04O8(OH)0.89 
F0.11 the latter two as inclusions in spessartine. In the 
Elbaite pegmatite, “fluorcalciopyrochlore” (Ca1.14Na0.77 
Sb0.01U0.01)1.93 (Nb1.40Ta0.52Sn0.07Ti0.01)2.00O6F1.17 and a second-
ary Bi-rich member of pyrochlore group (Bi0.78Ca0.36Fe0.33 
Pb0.28Mn0.15Sb0.06U0.02)1.64 (Nb1.64Ta0.21Sn0.13Ti0.02W0.01)2.00O6 
were found among the other accessory minerals (Tab. 3).

6.	Discussion 

The granitic pegmatites described from the Vlastějovice 
region differ significantly in their mineral assemblages, 
internal structure, host rocks and origin. Except for 
those enclosed in the orthogneiss, the amphibole-bearing 
pegmatites (various subtypes) were already described in 
numerous papers from Vlastějovice as well as from other 
localities in the Moldanubian Zone (see Novák 2005; 
Novák and Cempírek 2010 for review). We focused our 
research on the pegmatites enclosed in the orthogneiss, 
amphibole-bearing pegmatites and, in particular, the 
tourmaline-bearing pegmatites (Tabs 2–3) to demonstrate 
typical examples of various types of granitic pegmatites 
in the Moldanubian Zone.

6.1.	Pegmatites from orthogneisses

The granitic pegmatites enclosed in tourmaline-bearing 
orthogneisses form rather small and uncomplicated bod-

Adr+Grs

Prp

Alm

Alm Sps

Sps

Březina pegmatite

Nosatá skála pegmatite

Spessartine pegmatite

amp-bearing pegmatites

Fig. 10 Compositional diagrams of garnet from granitic pegmatites in the Vlastějovice region (mol. %).
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ies. Simple pegmatites from the Světlík orthogneiss (2.1 
Ga; e.g., Wendt et al. 1993) were not studied in detail 
and they may represent the earliest granitic pegmatite 
population in the Moldanubian Zone.

The parental orthogneisses to the simple pegmatites 
distributed within the Varied Unit (Breiter et al. 2005a) 
were dated as Ordovician (Hluboká nad Vltavou; Vrána 
and Kröner 1995). Only localities Přibyslavice, Bechyně, 
Hamry nad Sázavou, and Vlastějovice were studied in 
detail and show rather distinct assemblages of accessory 
minerals (e.g., tourmaline, fluorapatite, beryl, topaz, 
löllingite, garnet – Hamry nad Sázavou; tourmaline, 
fluorapatite, zircon, phenakite – Vlastějovice; Novák 
1981; Staněk and Schnorrer 1983; Povondra et al. 1987; 
Povondra 1989; Kadlec 2007a; Novák and Cempírek 
2010). They also show variable internal structure from 
simply zoned elongated nests with rather sharp to slightly 
diffuse contacts against the foliated host orthogneiss 
(Vlastějovice) to irregular coarse-grained facies of or-
thogneiss with transitional contacts and small pockets 
(Hamry nad Sázavou). However, lack of geological and 
mineralogical data from these pegmatites hinders a de-
tailed discussion of their relations and origin. 

The pegmatites occurring in the Přibyslavice orthog-
neiss body are more variable and only the most primitive 
among them resemble the above localities in the simple 
mineral assemblages (Novák and Cempírek 2010); how-
ever, primitive pegmatites were not studied in detail. 
Apparently post-tectonic pegmatites with a variety of 
minerals including Li-bearing ones (triphylite, Li-mica, 
Li-tourmaline, amblygonite) and numerous accessory 
minerals (see Povondra et al. 1987; Novák and Cempírek 
2010) are likely Variscan. 

6.2.	Amphibole-bearing pegmatites

Amphibole-bearing pegmatites, frequently with accessory 
allanite and fluorite, cutting Fe-skarn bodies are relatively 
common in the Moldanubian Zone (e.g., Rešice near 
Hrotovice, Líšná near Svratka, Domanínek near Bystřice 
nad Pernštejnem, Malešov near Kutná Hora; e.g., Němec 
1963; Novák 2005; Novák and Cempírek 2010 and ref-
erences therein). They exhibit simple internal structure 
(Fig. 3d) with dominant coarse-grained texture and lo-
cally with masses of quartz. At Vlastějovice, these masses 
are randomly distributed in the pegmatite bodies and do 
not resemble quartz core developed in many granitic 
pegmatites. Also further textural–paragenetic units typi-
cal of granitic pegmatites such as graphic intergrowths of 
quartz with K-feldspar or blocky K-feldspar are absent. 
Their Ca–Fe ± F-rich mineral assemblages, concentrated 
particularly along contacts of the pegmatite bodies (am-
phiboles, fluorite and allanite) (Fig. 4) and in pockets 
(prehnite, apophyllite) suggest strong but variable in situ 

contamination from host Fe-skarn. In the studied pegma-
tites from Vlastějovice, Ca and Fe obviously come from 
the skarn; common allanite-(Ce) also suggests intake of 
REE (Novák and Cempírek 2010). Fluorine was likely 
derived from an early F-rich garnet (Grs79–87And12–18; 
F = 0.82–1.18 wt. %) preserved extensively as relics in 
newly-formed garnets (Grs12–52And40–71Alm2–14Sps0–2; F = 
0.10–0.25 wt. %), which originated during an early stage 
of MP–HT regional metamorphism of the host Fe-skarn 
(Žáček 1997; Žáček et al. 2003). Fluorine-rich garnet is 
known also from other Fe-skarn localities in the Molda-
nubian Zone (Pertoldová et al. 2009; S. Houzar, pers. 
comm. 2012). Ackerman et al. (2007) suggested, based 
on the fluid inclusion study and feldspars thermometry, 
that the amphibole-bearing pegmatite crystallized at 
0.42–0.58 GPa and 600–640 °C (Fig. 11). Such condi-
tions are very similar to those for the regional metamor-
phism in the host Fe-skarn (0.45–0.65 GPa, 590–680 °C: 
Žáček 1997). This tectonometamorphic event very likely 
generated rather primitive anatectic melts of the host 
metapelitic rocks, which intruded the brittle Fe-skarn. 
Absence of amphibole-bearing pegmatites in the hybrid 
rock may suggest that the exchange reactions at the con-
tact of the Fe-skarn and host gneisses and origin of the 
amphibole-bearing pegmatites (early stage of pegmatites 
evolution) were rather simultaneous processes. However, 
high variability of amphibole-bearing pegmatites (shape 
and size of pegmatite bodies, abundance and thickness of 
reaction rims, presence/absence of pockets and propor-
tions of the individual minerals) imply fairly variable 
conditions for their origin such as rheology and tempera-
ture of the host rock, and availability of fluids during 
crystallization. Fluorite, an important accessory, minor 
to exceptionally major mineral in the amphibole-bearing 
pegmatites, crystallized during magmatic–hydrothermal 
transition (Ackerman 2005).

The amphibole-bearing Magdalena pegmatite with 
a large pocket lined with crystals of smoky quartz and 
feldspars differs from common pegmatites with pockets 
lined with crystals of smoky quartz, tourmaline and feld-
spars occurring typically in the Strážek Moldanubicum 
(Gadas et al. 2012). Absence of pegmatite textures (e.g., 
graphic intergrowths of Qz + Kfs) and B-rich minerals 
(tourmalines, dumortierite) is typical of all amphibole-
bearing pegmatites cutting Fe-skarn in the Moldanubian 
Zone. Axinite and tourmaline are very rare or absent not 
only in Vlastějovice but also at other localities (e.g., Filip 
2002; Filip et al. 2006; Novák and Cempírek 2010). Con-
sequently, although amphibole-bearing pegmatites and 
common pegmatites with smoky quartz and tourmaline 
crystals in pockets are very likely anatectic in origin, they 
differ significantly in textures, chemical composition of 
melt (high B and Al in tourmaline-bearing pocket peg-
matites) and mineralogy.



Milan Novák, Tomáš Kadlec, Petr Gadas

40

6.3.	Tourmaline-bearing granite–pegmatite 
system

The granite and pegmatite bodies occurring in the 
Vlastějovice Fe-skarn represent a unique example of 
granite–pegmatite system, where the individual small 
pegmatite dikes show unambiguous relationship to the 
well-defined parts of the texturally heterogeneous pa-
rental granite body (Figs 5, 6a–b, d). Both examined 
tourmaline-bearing pegmatites from the paragneisses 
(Březina, Nosatá skála) were very likely related to the 
same magmatic event as the granite–pegmatite system 
cutting the Fe-skarn, although no explicit evidence is 
provided. 

The Footwall granite–pegmatite is highly hetero-
geneous showing textural evolution from medium- to 
coarse-grained granite I, locally porphyritic (Tab. 1), 

through subhomogeneous coarse-grained granite II to 
coarse-grained granite III with large blocky K-feldspar 
crystals (Fig. 6e). The texturally most primitive part of 
the granite intrusion (granite I) generated rather irregular 
body of the Pegmatite No. 12 with subhomogeneous in-
ternal structure built solely by a coarse-grained granitic 
unit. Striking textural similarity with the granite I and 
brecciated style of emplacement into the host Fe-skarn 
(Fig. 6a) suggest that the Pegmatite No. 12 rather repre-
sents an apophysis of the granite I with no clear evidence 
for advanced fractionation. The more evolved Pegmatite 
No. 4 was derived from the granite II (Fig. 6b); it forms a 
homogeneous dike with a coarse-grained texture (Fig. 6c) 
resembling that of the parental granite II. The Spessartine 
pegmatite with simply zoned internal structure including 
graphic unit, rare blocky K-feldspars, minor albite unit 
and small blocks of quartz, was derived from the most 
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Fig. 11 P–T path in metamorphic rocks of the Moldanubian Zone (modified from Pertoldová et al. 2009 using the P–T-data from Tajčmanová et al. 
2007; Kotková 2007 and Schulmann et al. 2008, 2009). The position of the Al2SiO5 triple point is from Pattison (1994), reaction 1: Alm + Als + 
Qz = Skn (sekaninaite) (Mukhopadhyay and Holdaway 1994); reaction 2: Crd + H2O = Dsp (Hemley et al. 1980). The positions of the individual 
pegmatites: a) borosilicates-bearing veinlet from the Bory Granulite Massif (Cempírek et al. 2010), b) amphibole-bearing pegmatites at Vlastějovice 
(Ackerman et al. 2007), c) common pegmatites with pockets from the Strážek Moldanubicum based on the data of Gadas et al. (2012), d) Elbaite 
pegmatite at Vlastějovice (Ackerman et al. 2007), e) discordant rare-element pegmatites with primary sekaninaite, andalusite and diaspore from 
the Bory–Hatě area, Bory Granulite Massif; f) P–T data of the MP–HT metamorphism from the Fe-skarn (Žáček 1997).



Granitic pegmatites from Vlastějovice, the Moldanubian Zone

41

evolved granite III (Fig. 6d). Generally, the pegmatite 
bodies cutting the Fe-skarn could be linked with the 
different parts of the Footwall granite–pegmatite body 
and show apparent relationship: texturally more evolved 
parental granite generated texturally and compositionally 
more evolved pegmatite. 

Different degrees of geochemical fractionation of 
the individual pegmatite bodies are manifested by their 
mineral assemblages (Tab. 3); e.g., increasing amount 
of tourmaline relative to biotite (or amphibole), or 
presence of garnet in the Spessartine pegmatite and 
Li-bearing tourmaline in the most evolved Elbaite peg-
matite. Clearly, also the amount of albite increases from 
primitive bodies in the paragneisses (Březina and Nosatá 
skála pegmatites) and in the Fe-skarn (Pegmatite No. 12 
and Pegmatite No. 4), through the Spessartine pegmatite 
to the most evolved Elbaite pegmatite. The assemblages 
of accessory minerals illustrate the increased degree of 
fractionation in the Spessartine and Elbaite pegmatites as 
well; e.g. ilmenite and Nb-rich rutile in the Spessartine 
pegmatite and columbite and pyrochlore-group minerals 
in the Elbaite pegmatite (see Tab. 3).

Different degrees of fractionation in the individual 
pegmatite bodies are also evident from the chemical 
composition of tourmalines (see Fig. 8a–b; Tab. 4), dis-
regarding the overprint by Ca,Fe-contamination in the 
pegmatites cutting the Fe-skarn, where introduction of Fe 
into tourmalines significantly decreased the Al contents 
and Mg/(Mg + Fe) ratios. Slightly higher concentrations 
of F in tourmaline (Tab. 4) from the pegmatites cutting 
the Fe-skarn relative to the pegmatites from paragneisses 
may be a product of contamination by the host Fe-skarn 
indicated by abundance of fluorite in the more contami-
nated amphibole-bearing pegmatites (Žáček et al. 2003; 
Ackerman 2005; Ackerman et al. 2007; Kadlec 2009; 
Novák and Cempírek 2010). However, higher contents 
of F in tourmaline may also be explained by crystal 
structure, chiefly high Ca and low vacancy in the X-site 
(Novák 2000; Henry and Dutrow 2011). Moderate to 
high F concentrations in elbaite to fluor-elbaite (Tab. 4) 
very likely imply higher degree of fractionation of the 
parental pegmatite melt enriched in Li, Be, B, F, Mn, Nb 
and Ta (see Tab. 3).

The field evidence from the tourmaline-bearing 
pegmatites of the Vlastějovice region shows that the 
body of Footwall granite–pegmatite was parental to all 
tourmaline-bearing pegmatite dikes cutting the Fe-skarn 
(Figs 5, 11). The existence of a larger concealed granite 
pluton, several km3 in size (see e.g, Baker 1998; London 
2008), which would be related to this granite–pegmatite 
system, is not supported by any field observations or 
geophysical data. Intense mining works in the past also 
confirmed a small size and regional extent of the Foot-
wall granite–pegmatite (Koutek 1950). Such a granite 

intrusion, however, is much smaller than is the size of 
potential granitic plutons fertile to granitic pegmatites 
commonly suggested (e.g., Černý 1991b; London 2008) 
or even modeled (Baker 1998). Hence, the Vlastějovice 
granite–pegmatite system is very unusual and raises the 
question, how granites parental to granitic pegmatites 
may vary in their size, shape, textures, compositions and 
spatial relations (see e.g., Černý 1991b; Martin and De 
Vito 2005; London 2008; Černý et al. 2012). Degrees of 
textural differentiation and fractionation of the individual 
tourmaline-bearing pegmatite dikes are comparable to 
those of the respective parts of their parental granite in-
trusion. They are also related to the shape of pegmatite 
bodies from an irregular brecciated Pegmatite no. 12 (Fig. 
6a) to a thin and long dike of the evolved Spessartine 
pegmatite (Fig. 6d). These are rather consistent with the 
model of sequential derivation of pegmatite melts from 
evolving parental granite (London 2008). However, 
parental granite intrusion is very small and this implies 
thermal regime in its envelope different from large plu-
tons. Thus the comparison between relatively voluminous 
plutons (e.g., Černý 1991b) and small Footwall granite–
pegmatite body from Vlastějovice as fertile granites is 
rather difficult.

6.4.	Positions of granitic pegmatites in the 
P–T space

The positions of the individual types of granitic peg-
matites of the Moldanubian Zone in the P–T space (see 
Fig. 11) illustrate evident distinction between the Elbaite 
pegmatite from Vlastějovice and other rare-element gra-
nitic pegmatites. The pressure of 0.31–0.43 GPa derived 
from the fluid inclusion study (Ackerman et al. 2007) is 
higher than that for the complex Moldanubian pegmatites, 
where the presence of primary petalite (or spodumene 
and quartz intergrowths after petalite), locally abundant 
andalusite and sekaninaite suggests pressures lower than 
c. 0.2–0.3 GPa (Novák 2005; Novák and Cempírek 2010). 
Whether it reflects different depth of pegmatite melt 
emplacement in the Vlastějovice region  relative to other 
(more southerly) parts of the Moldanubian Zone (Strážek 
Moldanubicum, Jihlava region, Český Krumlov Unit) or 
overestimation of the pressure for the Elbaite pegmatite 
from Vlastějovice (Ackerman et al. 2007) is not clear. 

The Fig. 11 shows the estimated P–T conditions for 
various granitic pegmatites from the Moldanubian Zone. 
It illustrates that primitive to highly evolved and typi-
cally B-rich pegmatites originated throughout much of 
the Variscan evolution from the medium- (~0.6–0.7 GPa; 
Cempírek et al. 2010) to the low-pressure conditions (less 
than 0.2 GPa in the Dolní Bory pegmatites, where com-
mon near end-member sekaninaite limits such low pres-
sure). This trend is fairly consistent with the P–T paths 
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of the Variscan metamorphism in the Moldanubian Zone 
(Fig. 11) and indicates that formation of various granitic 
pegmatites was an integral part of the tectono-magmatic 
evolution of the region. Hence, granitic pegmatites and 
their minerals may be utilized in discussions of geo-
logical evolution of the region (e.g., Novák et al. 1998; 
Novák 2001, 2005; Melleton et al. 2012).
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