

Geologische Bearbeitung kurzfristiger Aufschlüsse in Niederösterreich mit Schwerpunkt auf infrastrukturelle Bauten in schlecht aufgeschlossenen Regionen und auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen

Neue Bauaufschlüsse – Neues Geowissen: Niederösterreich

Projekt NC 83/ 2012-2014 Jahresendbericht 2014

von

Gerlinde POSCH-TRÖZMÜLLER & Mandana PERESSON

mit Beiträgen von

B. ATZENHOFER, St. ĆORIĆ, H. GEBHARDT, G. HOBIGER, J. RABEDER, R. ROETZEL, J. WEILBOLD & I. WIMMER-FREY

313 S., 244 Abb., 61 Tab., 1 DVD

Projektleitung:

Dr. Maria HEINRICH & Mag. Gerlinde POSCH-TRÖZMÜLLER

Fachabteilung Rohstoffgeologie

Durchführung:

Mag. Gerlinde POSCH-TRÖZMÜLLER & Mag. Dr. Mandana PERESSON

Fachabteilung Rohstoffgeologie

Mitarbeiter:

DI B. ATZENHOFER Graphik, GIS-Bearbeitung

FA Rohstoffgeologie

Dr. H. GEBHARDT

Dr. St. ĆORIĆ Gemeinsame Geländearbeiten an der Westautobahn, Aufnahme der EVN-Künette, Nannostratigraphische FA Sedimentgeologie

Analysen

Stratigraphische Analysen (Foraminiferen) FA Paläontologie und Stratigraphie

Dr. G. HOBIGER Geochemische Analysen

FA Geochemie

Mag. J. RABEDER Korngrößenuntersuchungen

FA Rohstoffgeologie

Dr. R. ROETZEL Gemeinsame Geländearbeiten in Gumping, Retz, Hol-

labrunn, Weyerburg und Niederrußbach FA Sedimentgeologie

Mag. J. WEILBOLD Baustellendokumentation Klein Meiseldorf

FA Hydrogeologie

Dr. I. WIMMER-FREY Bohrkernaufnahme Windpark Zistersdorf

FA Rohstoffgeologie

Allen Mitarbeitern sei sehr herzlich für die Zusammenarbeit gedankt!

Ebenso sei DI Ch. Pichler (iC Group, ÖBA A1-Verbreiterung Ybbs-Pöchlarn) für Informationen und die Einweisung auf der Autobahnbaustelle der Westautobahn herzlich gedankt.

Mag. Dr. M. Gmeindl (Technische Geologie Niederbacher) ist es zu verdanken, dass die Bohrkerne im Bereich der Brunnenfelder Gumping und Hollabrunn dokumentiert und beprobt werden konnten.

Für die Möglichkeit der Aufnahme von Baggerschürfen und einer Kernbohrung im Zuge der Untersuchungen einer Spange Retz Ost und von fünf Kernbohrungen im Bereich der Anschlussstelle Niederrußbach gebührt DI St. Blovsky ein herzliches Dankeschön, ebenso wie DI Wagesreiter (Hollabrunn) für die Übermittlung eines Lageplans der Bohrungen in Weyerburg.

DI W. Kàlmàn (Baugrund Wien) sei sehr herzlich gedankt für die Ermöglichung von Bohrkernaufnahmen in den Windparks Scharndorf III und Zistersdorf Ost.

Der EVN Netz GmbH gebührt Dank für die Möglichkeit der Aufnahmen an der Gasfernleitung West 4 Westschiene und die Übermittlung der Lagepläne.

Alle Topographien, sofern nicht anders angegeben: ÖK 50 BEV Bundesamt für Eich- und Vermessungswesen, ©Land Niederösterreich.

Die Projektdurchführung erfolgte im Rahmen des Vollzuges des Lagerstättengesetzes im Auftrag des Amtes der Niederösterreichischen Landesregierung und des Bundesministeriums für Wissenschaft, Forschung und Wirtschaft.

Inhalt

ZU:	SAMMENFASSUNG	3
1.	EINLEITUNG	8
2.	BESCHREIBUNG DER BAULOSE UND ERGEBNISSE DER BEARBEITUNG	9
2	2.1. Bauaufschlüsse im Kristallin der Böhmischen Masse und am Übergang zur Molassezone	10
	2.1.1. Neue Aufschlüsse durch die Verbreiterung der A1 (Westautobahn), Abschnitt Ybbs – Pöchlarn (ÖK 54)	10
	2.1.2. Aufnahme von zwei Kernbohrungen im Bereich des Brunnenfeldes Gumping (ÖK 21)	47
	2.1.3. Aufnahme von Schürfen und einer Kernbohrung im Bereich der Spange Retz (ÖK 9)	
	2.1.4. Aufnahme der Baustelle für eine Lagerhalle in Klein Meiseldorf (ÖK 21)	112
2	2.2. Bauaufschlüsse in der östlichen Molassezone	117
	2.2.1. Aufnahme von drei Kernbohrungen im Brunnenfeld IV Hollabrunn (ÖK 22)	120
	2.2.2. Aufnahme von 3 Kernbohrungen zur Standortuntersuchung für die Bodenaushubdeponie Weyerburg (ÖK 23)	147
	2.2.3. Aufnahme von fünf Kernbohrungen im Bereich der B4, Anschlussstelle Ost Niederrußach (ÖK 39)	180
2	2.3. Nördliches Wiener Becken	210
	2.3.1. Bohrkernaufnahmen zur Errichtung zweier Windkraftanlagen im Windpark Zistersdorf Ost (ÖK 25)	210

2.4. Südliches Wiener Becken	246
2.4.1. Aufnahme von vier Kernbohrungen für Windkraftanlagen im Windpark Scharndorf III (ÖK 60)	246
2.5. Dokumentation des Rohrgrabens der EVN Gasleitung West 4 – Westschiene zwischen Kapelln und Amstetten (ÖK 38, 53, 54, 55, 56)	287
3. LABORMETHODIK	303
4. LITERATUR	

ZUSAMMENFASSUNG

Das Projekt "Geologische Bearbeitung kurzfristiger Aufschlüsse in Niederösterreich mit Schwerpunkt auf infrastrukturelle Bauten in schlecht aufgeschlossenen Regionen und auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen" (Kurztitel: Neue Bauaufschlüsse – Neues Geowissen: Niederösterreich) hat die geologisch-lithologische Beschreibung, Dokumentation und analytische Auswertung von Aufschlüssen laufender Bauvorhaben zum Hauptziel. Die erhobenen Parameter werden in einer Datenbank verarbeitet, die laufend aktualisiert wird. Die bearbeiteten Baulose aus dem Arbeitsjahr 2013-2014 sind bereits eingearbeitet.

Außerdem steht das an der Geologischen Bundesanstalt archivierte Gesteinsmaterial aus charakteristischen Aufschlüssen und Bohrprofilen für nachfolgende Fragestellungen zur Verfügung.

Im heurigen Arbeitsjahr (2014/ 2015) konzentrierten sich die Untersuchungen auf folgende Bauvorhaben:

Bauaufschlüsse im Kristallin der Böhmischen Masse und am Übergang zur Molassezone

Neue Aufschlüsse durch die Verbreiterung der A1 (Westautobahn), Abschnitt Ybbs – Pöchlarn (ÖK 54)

Durch die Bautätigkeit wurde Moldanubischer Granulit der Pöchlarn-Wieselburg-Granulitmasse aufgeschlossen. An einer Scherzone erfuhr dieser durch retrograde Metamorphose und dem Vorhandensein vieler Fluids eine Biotitisierung bis hin zum Biotitschiefer.

Darüber wurden Sedimente der Molassezone dokumentiert. Durch die durchgeführten mineralogischen Analysen konnte festgestellt werden, dass es sich bei den im Bereich des Autobahnabschnittes in der geologischen Karte von Niederösterreich ausgeschiedenen Ablagerungen des Egerium nicht um Älteren Schlier, sondern um Pielach-Fm. handelt. Weiters konnte Linz-Melk-Fm. mit Basalkiesen aufgenommen werden.

Das Quartär ist durch Kiessande der Hochterrasse und Löss sowie Lösslehm vertreten.

An insgesamt sechs Proben wurden Analysen der Gesamt-, Tonmineralogie und Granulometrie durchgeführt.

Aufnahme von zwei Kernbohrungen im Bereich des Brunnenfeldes Gumping (ÖK 21)

Die bis zu 9 m tiefen Bohrungen zeigten in den oberen Metern Überlagerungen durch Löss bzw. Solifluktionslehm. Darunter waren Tone und Schluffe der Zellerndorf-Formation (Ottnangium) aufgeschlossen, nach einem Übergang folgten Sande der Zogelsdorf-Formation (Eggenburgium). Ein Geröllhorizont aus Quarz mit Kristallin- und Austernbruchstücken stellt das Basiskonglomerat der Zogelsdorf-Fm. dar.

Mineralogische und granulometrische Analysen wurden an zwei Proben durchgeführt.

Aufnahme von Schürfen und einer Kernbohrung im Bereich der Spange Retz Ost (ÖK 9)

Die bis 3,2 m tiefen Probeschürfe, sowie die 20 m tiefe Bohrung zeigten in den oberen Metern Überlagerung durch Löss, der teilweise umgelagert war. Im Nahbereich des Ladenbaches wurden mächtige anmoorige Sedimente aufgeschlossen.

Die darunter folgenden neogenen Ablagerungen waren durch schluffig-kiesige Sande, die teilweise plattige Diatomitbruchstücke enthielten, vertreten. Diese gehören entweder der Laa-Formation (Karpatium) oder der Grund-Fm. (Unter-Badenium) an, auch teils feinsandige Schluffe der Zellerndorf-Fm. (Ottnangium) wurden aufgeschlossen.

Insgesamt 16 Proben wurden Analysen der Gesamt- und Tonmineralogie, der Granulometrie und der Geochemie unterzogen, zwei Proben wurden mikropaläontologisch untersucht.

Aufnahme der Baustelle für eine Lagerhalle in Klein Meiseldorf (ÖK 21)

Am 16.10.2014 wurde die Baustelle für eine Lagerhalle in Klein-Meiseldorf von J. Weilbold dokumentiert. Die 40 m lange Aufschlusswand zeigte engständig geklüftete Glimmerschiefer. Anders als auf der geologischen Karte von Niederösterreich dargestellt, bestand die Überlagerung der Glimmerschiefer nicht aus Löss, sondern aus einer bis 50 cm mächtigen Verwitterungsschicht der Glimmerschiefer. Dies entspricht der Neukartierung von Blatt 21 Horn (ROETZEL, 2009), hier sind Glimmerschiefer der Theras-Decke (Moravikum) ausgeschieden.

Bauaufschlüsse in der östlichen Molassezone

Aufnahme von drei Kernbohrungen im Brunnenfeld IV Hollabrunn (ÖK 22)

Die Bohrungen KB 1 und KB 2 liegen in den Alluvionen des Göllersbaches, während sich die Bohrung KB 4 am Rand zum Hollabrunner Schotter befindet. In KB 1 und KB 2 gehört daher der obere Teil den Terrassensedimenten des Göllersbaches an, die darunter folgenden Feinsedimente sind vermutlich Anteile der Ziersdorf-Fm. (Sarmatium). In der Bohrung KB 4 sind in den oberen Teilen solifluidale Sedimente zu sehen, die von Hollabrunner Schotter oder solifluidal umgelagerten Kiesen aus diesem Schichtglied unterlagert werden. Darunter folgen wieder wahrscheinlich sarmatische Ablagerungen (Ziersdorf-Fm.).

Bemerkenswert ist, dass in allen drei Bohrungen im unteren Teil karbonatreiche Kiese in die pelitische Schichtfolge eingeschaltet sind. Während in KB 2 und KB 4 die Karbonatkiese in 16,9-20,8 m bzw. 18,25-23,8 m Tiefe liegen, wurden sie in KB 1 in 11,0-14,7 m Tiefe angetroffen. Dies hängt wahrscheinlich mit Abschiebungen an einer im Göllersbachtal verlaufenden Störungszone zusammen, die auch in KB 1 in 15,6-16,0 m Tiefe dokumentiert werden konnte.

Insgesamt wurden sieben Proben aus den Bohrkernen entnommen, davon vier aus der Bohrung KB 2 und drei Proben aus KB 4. Alle Proben wurden gesamt-, tonmineralogisch und granulometrisch untersucht. Außerdem wurden drei Proben mikropaläontologisch analysiert.

Aufnahme von 3 Kernbohrungen zur Standortuntersuchung für die Bodenaushubdeponie Weyerburg (ÖK 23)

Bei dem Standort handelt es sich um eine ehemalige Kiesgrube, die in der Abbaudatenbank der Geologischen Bundesanstalt unter der Nummer 023/044 zu finden ist. Die bis 37 m tiefen Kernbohrungen wurden außerhalb der Kiesgrube um diese herum abgeteuft.

Unter einer quartären Überlagerung aus Löss, solifluidalem Lehm, sowie Schluffen und Tonen wurden Kiese, Sande, Schluffe und Tone der pannonen Hollabrunn-Mistelbach-Formation erbohrt, im Liegenden der Bohrung lagen Schluffe und Tone der Ziersdorf-Formation (Sarmatium). Diese enthielten Molluskenschalenreste und Pflanzenreste, außerdem wurde die stratigraphische Einstufung in das Sarmatium durch eine mikropaläontologische Analyse bestätigt.

Insgesamt wurden sechs Proben für Analysen der Gesamt- und Tonmineralogie, der Granulometrie und der Geochemie ausgewählt, außerdem wurden zwei Proben mikropaläontologisch untersucht.

Aufnahme von fünf Kernbohrungen im Bereich der B4, Anschlussstelle Ost Niederrußach (ÖK 39)

KB 1 und KB 2 wurden jeweils bis in eine Tiefe von 25 m abgeteuft, KB 3 bis KB 5 erreichten nur 10 m Tiefe. KB 1 wurde intensiv beprobt, alle neun Proben wurden mineralogisch, granulometrisch und geochemisch analysiert, zwei Proben wurden außerdem mikropaläontologisch untersucht.

Unter einer mächtigen Überlagerung aus Löss (6-8 m) mit einem Paläobodenhorizont wurden bis über 20 m Tiefe vor allem teils tonige, teils feinsandige Schluffe und Feinsande erbohrt, deren Zuordnung in das Quartär oder Neogen nicht geklärt werden konnte. Darunter konnten tonige Schluffe, die durch zahlreiche Molluskensplitter gekennzeichnet waren, mikropaläontologisch in das Karpatium (Laa-Fm.) eingestuft werden.

Bauaufschlüsse im Nördlichen Wiener Becken

Bohrkernaufnahmen für zwei Windkraftanlagen im Windpark Zistersdorf Ost (ÖK 25)

In beiden Bohrungen war unter einem Schwarzerdehorizont eine 7 bis 8 m mächtige Lössabfolge anzutreffen. Die mit zunehmender Teufe deutlich zunehmenden Verwitterungserscheinungen ließen sich mineralogisch, korngrößenmäßig und vor allem auch geochemisch gut dokumentieren. Im Liegenden des Löss folgte in beiden Fällen ein unterschiedlich mächtiger Rotlehmhorizont, der vermutlich pliozänen Alters ist.

Im Liegenden wurden schließlich in beiden Bohrungen sandige Sedimente des O-Pannoniums erbohrt und in der Bohrung Zistersdorf Ost 1 wurden noch fossilführende Siltsteine angefahren.

Die mineralogische und korngrößenmäßige Zusammensetzung der Lösse ist ein durchaus repräsentatives Beispiel für den Tonrohstoff Löss, der im östlichen Weinviertel für die Ziegelherstellung in großen Mengen abgebaut wurde. In der nächsten Umgebung der Bohrungen ist eine größere Anzahl von Ziegelöfen dokumentiert, darunter zwei Ringofenanlagen, die bis Mitte der 1960er Jahre noch in Produktion standen.

Bauaufschlüsse im Südlichen Wiener Becken

Aufnahme von vier Kernbohrungen für Windkraftanlagen im Windpark Scharndorf III (ÖK 60)

In allen Bohrungen war eine Überlagerung aus Löss bzw. Lösslehm bis 1 m bis 1,8 m Tiefe zu sehen. Darunter folgten Kiese mit wechselnd sandig/ schluffig/ toniger Matrix, welche die Älteren Deckenschotter (SCHNABEL et al., 2002) repräsentieren.

In zwei Bohrungen wurden im Liegenden der Kiessande feinkörnige Sedimente erbohrt, die dem Pannonium zugerechnet wurden.

Aus den insgesamt 26 Proben des Windparks Scharndorf wurden 12 Proben ausgewählt und Analysen der Gesamtmineralogie, der Tonmineralogie, der Granulometrie und der Geochemie unterzogen.

Die quartären Lössproben sind in der Gesamtmineralogie durch die höchsten Karbonatgehalte gekennzeichnet. Die höheren Quarzanteile und geringeren Schichtsilikatgehalte spiegeln die gröbere Korngrößenzusammensetzung wider. Die pannonen Sedimente sind eindeutig feinkörniger ausgebildet, es herrschen Schichtsilikate vor. Ebenso augenfällig ist der wesentlich geringere Karbonatgehalt, ein Phänomen, das mit der Aussüßung des Ablagerungsraums, dem Pannonsee, im Einklang steht.

In der näheren Umgebung des Windparks wurden zwei ehemalige Kiesgruben dokumentiert, die in der Abbaudatenbank der Geologischen Bundesanstalt unter den Nummern 060/029 und 060/197 zu finden sind. Hier sind die Kiessande, die durch die Kernbohrungen erbohrt wurden, flächig im Aufschluss zu sehen. Auffällig ist eine starke Rotfärbung der Kiese sowie Kryoturbationen (060/029), wie sie oft in Deckenschottern auftreten.

Dokumentation des Rohrgrabens der EVN Gasleitung West 4 Westschiene zwischen Kapelln und Amstetten (ÖK 38, 53, 54, 55, 56)

Von Sommer 2012 bis Jänner 2014 wurde während der Errichtung des Rohrgrabens die geologische Situation zwischen Kapelln (ÖK 38) und Amstetten (ÖK 53) nahezu lückenlos im Maßstab 1:2.000 aufgenommen. Dabei wurden Sedimente des Quartärs, der Molassezone und des Kristallins der Böhmischen Masse aufgeschlossen.

Besonders zu erwähnen sind Glaukonitsande des Egerium, die hier erstmals zwischen dem Älteren Schlier und dem *Robulus*-Schlier im Aufschluss in einer gewissen Mächtigkeit festgestellt werden konnten. Auch Lagen aus kristallinen Geröllen wurden mehrfach an der Basis der quartären Ablagerungen gefunden.

Die Ergebnisse der Aufnahme des Rohrgrabens werden im Bericht dargestellt, die Pläne im Maßstab 1:2.000 liegen in digitaler Form (CD) dem Bericht bei.

1. **EINLEITUNG**

Das im Jahr 2012 neu gestartete dreijährige Projekt "Geologische Bearbeitung kurzfristiger Aufschlüsse in Niederösterreich mit Schwerpunkt auf infrastrukturelle Bauten in schlecht aufgeschlossenen Regionen und auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen" (Kurztitel: Neue Bauaufschlüsse – Neues Geowissen: Niederösterreich) stellt ein Fortsetzungsprojekt zu den bereits im Jahre 1991 begonnenen Baustellendokumentationen betreffend den Ausbau der Westbahnstrecke dar (siehe HOFMANN, 1997; PERESSON-HOMAYOUN, 2003). Der Schwerpunkt der Arbeiten hat sich im Laufe der Jahre von den Aufschlüssen entlang der Bahntrasse auf Bauvorhaben auch außerhalb des Ausbaues der Westbahnstrecke und auf alle geologischen Einheiten Niederösterreichs ausgedehnt.

Die seit über 20 Jahren laufende kontinuierliche enge Zusammenarbeit mit der niederösterreichischen Landesregierung zur Baustellendokumentation wurde 1991 durch Hofrat Dr. P. Gottschling begründet und im Laufe der Jahre zusätzlich durch Dr. H. Hinteregger, Mag. H. Steininger, Mag. F. Salzer, Dr. J. Schweigel, Dl. M. Bertagnoli und Mag. K. Grösel verstärkt. Auf diesem Wege sei allen sehr herzlich für ihre Hilfe und ihre Unterstützung gedankt. Die Notwendigkeit einer fortlaufenden Baustellendokumentation liegt in der kurzfristigen, meist einmaligen Gelegenheit, die im Untergrund anstehenden Gesteine in frischen Aufschlüssen wissenschaftlich zu dokumentieren, zu untersuchen und so sichtbar zu erhalten. Eine Vielzahl geologischer Schichten unterschiedlichen stratigraphischen Umfanges (Paläozoikum bis Quartär) wird bei Vorerkundungsbohrungen, Bauaushüben und Sanierungen des Straßennetzes angeschnitten, wodurch sich die Möglichkeit einer Probenahme und Probensicherung für wissenschaftliche Zwecke ergibt. Aus der Dokumentation der Aufschlüsse können wertvolle Hinweise für die geologische Kartierung und die Grundlagenforschung, auch im Hinblick auf rohstoffgeologische und umweltgeologische Aspekte, gewonnen werden.

Der Arbeitsschwerpunkt des Projektes liegt in der Geländeaufnahme, der Bohrkernbemusterung, der Beprobung charakteristischer Streckenabschnitte, der Archivierung der Proben und der Analytik (Mineralogie, Korngrößen und Geochemie) und stratigraphischen Bearbeitung an ausgewähltem Probenmaterial. Zusätzlich wird eine Datenbankeingabe und GIS-Verarbeitung durchgeführt. Eine weitere Datenquelle bildet auch das Archiv der Bibliothek der Geologischen Bundesanstalt, wo aus Kartierungsberichten und diversen Kartenunterlagen ebenfalls Informationen in die Bearbeitung der Aufschlüsse einfließen. Diese multidisziplinäre Bearbeitungsweise des Gesteinsmaterials führt zu verbesserten und auch neuen Erkenntnissen des Arbeitsgebietes.

Da in dem Projekt unterschiedliche Bearbeitungsmethoden zum Einsatz kommen, ist die interdisziplinäre Zusammenarbeit zwischen Universitäten, Forschungslabors und Ingenieurbüros ebenfalls ein wesentlicher Aspekt des Vorhabens.

2. BESCHREIBUNG DER BAULOSE UND ERGEBNISSE DER BEARBEITUNG

Im Arbeitsjahr 2014/2015 wurden im Rahmen des Projektes "Geologische Bearbeitung kurzfristiger Aufschlüsse in Niederösterreich mit Schwerpunkt auf infrastrukturelle Bauten in schlecht aufgeschlossenen Regionen und auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen" Baulose bzw. Bauaufschlüsse im Kristallin der Böhmischen Masse, der Molassezone, dem Nördlichen und dem Südlichen Wiener Becken bearbeitet. Der westlichste und zuletzt errichtete Abschnitt der EVN-Gasleitung Westschiene 4 quert Ablagerungen des Quartär, der Molassezone und Kristallin der Böhmischen Masse. Die bearbeiteten Baulose werden im Folgenden nach ihren geologisch-tektonischen Einheiten abgehandelt.

2.1. Bauaufschlüsse im Kristallin der Böhmischen Masse und am Übergang zur Molassezone

2.1.1. Neue Aufschlüsse durch die Verbreiterung der A1 (Westautobahn), Abschnitt Ybbs – Pöchlarn (ÖK 54)

Im Jahr 2014 wurde der 9,2 km lange Abschnitt Ybbs-Pöchlarn der Westautobahn von der Asfinag Instand gesetzt und verbreitert, sodass nach dem dreispurigen Ausbau der Richtungsfahrbahn Salzburg auch die Richtungsfahrbahn Wien einen dreispurigen Ausbau erhielt. Auch der Lärmschutz wurde optimiert. Der Baubeginn erfolgte im März, das Projekt wurde im November 2014 abgeschlossen (Abb. 2.1.1.).

Am 30.4.2014 wurden die bis zu diesem Tag entstandenen Aufschlüsse von St. Ćorić und G. Posch-Trözmüller aufgenommen und beprobt (Abb. 2.1.2.). Diese umfassten den gesamten Bereich von der Autobahnauffahrt Ybbs bis E Erlauf.

Für die Erlaubnis zur Baustellenbegehung sei dem Projektleiter der ASFINAG Bau Management GmbH, Herrn Ing. Christian Albrecht, und für Informationen und die Einweisung vor Ort sei Herrn DI Christoph Pichler (Örtliche Bauaufsicht, iC Group) sehr herzlich gedankt.

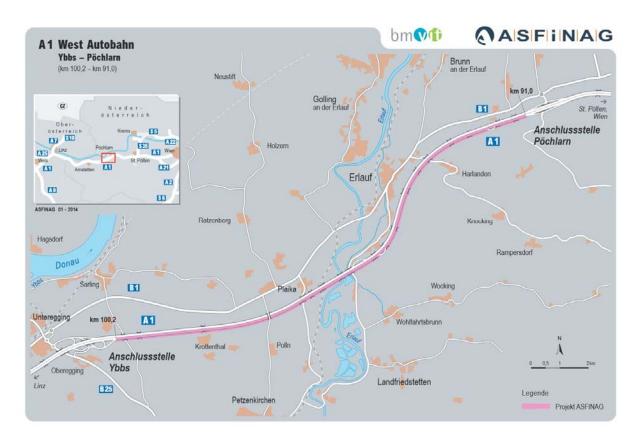


Abb. 2.1.1.: Streckengraphik des Abschnittes Ybbs-Pöchlarn (www.asfinag.at).

Geologie

Der Untergrund wird hier von Gesteinen des Moldanubikums gebildet, darüber wurden Molassesedimente abgelagert. Quartäre Kiese und Löss bilden die jüngsten geologischen Einheiten (Abb. 2.1.3.).

Das Kristallin, hier vor allem vertreten durch den Moldanubischen Granulit, der eigentlich als granitfazieller mylonitischer Orthogneis zu bezeichnen ist (freundl. mündl. Mitt. R. Schuster, M. Linner), gehört dem Kristallin des Dunkelsteiner Waldes an. Der Dunkelsteiner Wald wurde von dem hier als "Pöchlarn-Wieselburg-Granulitmasse" bezeichneten Kristallin durch die Diendorfer Störung, einer linkssinnigen Blattverschiebung, um etwa 25 km versetzt.

Die scharfe Grenze der Diendorfer Störung, die besonders an der NW-Seite des Hiesberges ein deutliches Lineament bildet, stellt einen von mehreren parallelen Staffelbrüchen dar, welche die Region in verkippte Schollen mit dazwischenliegenden Halbgräben gliedert (freundl. mündl. Mitt. M. Linner).

Diese Zerlegung, die zumindest teilweise sehr jung sein dürfte (Stichwort Neotektonik), ist unter anderem für die große geologische Vielfalt auf engem Raum verantwortlich.

Darüber wurden Sedimente der autochthonen Molasse abgelagert. Nach der geologischen Karte von Niederösterreich (SCHNABEL et al., 2002) sind im Bereich des gegenständlichen Autobahnabschnittes vor allem Ablagerungen des Egerium zu finden, es sind Älterer Schlier und Melker Sand (Linz-Melk-Fm.) eingetragen. Die Baustellendokumentation konnte die Einstufung in das Egerium bestätigen, es handelt es sich aber nicht um Älteren Schlier, sondern um Pielach-Fm., wie aus den mineralogischen Analysen hervorgeht.

Quartäre Terrassen (Hochterrasse, Niederterrasse), sowie "Quartäre Kiese und Sande i.A.", sowie Löss und Lösslehm bilden die jüngsten Ablagerungen im betrachteten Gebiet.

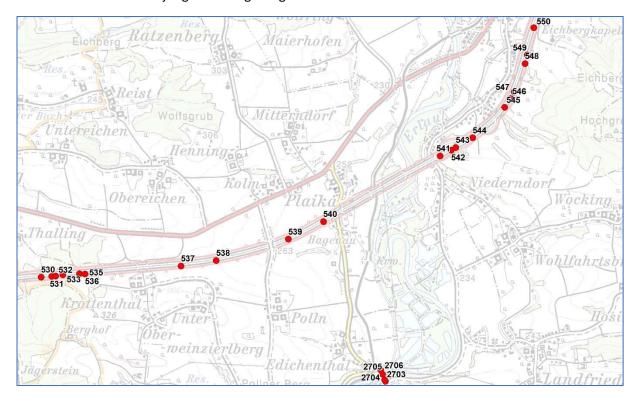


Abb. 2.1.2.: Lage der GPS-Punkte entlang des dokumentierten Autobahnabschnittes. Die Punkte am südlichen Rand des Bildes beziehen sich auf Kernbohrungen, die im Rahmen der Errichtung der EVN West 4 Gasleitung abgeteuft und seitens der GBA dokumentiert und beprobt wurden (POSCHTRÖZMÜLLER & PERESSON, 2013).

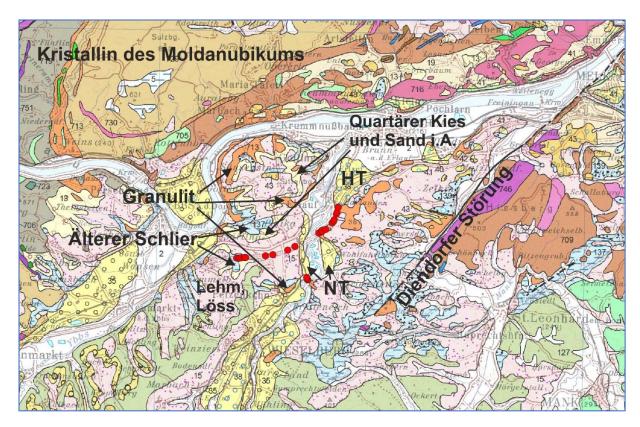


Abb. 2.1.3.: Lage der GPS-Punkte entlang des aufgenommenen Baustellenstücks auf der geologischen Karte von Niederösterreich (SCHNABEL et al., 2002).

Beschreibung der Aufschlüsse

Die Aufnahme der Aufschlüsse erfolgte in Fahrtrichtung Wien, beginnend nach der Autobahnauffahrt Ybbs. Der erste Aufschluss war bei GPS 530 zu sehen.

GPS 530 bis E GPS 535

Von GPS 530 bis 534 konnte an einem Hanganschnitt folgendes Profil aufgenommen werden:

- **Löss**: gelbbraun, stark kalkhältig, mit Pflanzenresten und Konkretionen (Lösskindel, Abb. 2.1.4., 2.1.5.)
- **Kiessand**, etwa 1 m mächtig, Kiese in rostbrauner schluffig-sandiger Matrix; Komponenten: v.a. Quarz, kristalline Komponenten (Gneise, Quarzite), auch sehr stark verwitterte Gerölle, Flysch-Komponenten (Sandstein, Tonstein); Rundungsgrad vor allem sehr gut, aber auch schlecht gerundet; Größtkorn: 30 cm Durchmesser (Abb. 2.1.4., 2.1.5.)
- Pielach-Fm.: Schluffe und Tone mit mehreren Sandlagen (wenige cm bis 0,3 m mächtig);
 <u>Schluffe</u>: dunkelgraue, fein geschichtete, gebankte Schluffe, kalkfrei, an Klüften und Schicht-/
 Bankungsflächen rostrot verwittert; <u>Tone</u>: dunkelgrau bis schwarz, schmierig glänzend, kalkfrei, mit Pflanzenresten, bituminöser Geruch, mit kleinen Gipskristallen; <u>Sandlagen</u>: mehrere Sandlagen- und Linsen aus hellgrauem Fein- bis Mittelsand im Pielacher Tegel, mit interessanten Strukturen unklarer Entstehung

Im Bereich von GPS 530 (Abb. 2.1.6., 2.1.7.) waren die Pielacher Tegel als geschichtete Schluffe, 100 m Richtung E (GPS 531) als dunkelgraue, fast schwarze Tone mit bituminösem Geruch ausgebildet (Abb.

2.1.8. bis 2.1.10.). Nach der geologischen Karte von Niederösterreich sollte hier Älterer Schlier aufgeschlossen sein, die mineralogische Analyse konnte diese Tone und Schluffe jedoch durch das Fehlen von Chlorit der Pielach-Fm. zuordnen.

Die Raumlage der Schluffe der Pielach-Fm. wurde mit 210/10 gemessen, allerdings schien dies im Aufschluss wellig zu variieren.

Zwischen GPS 532 und GPS 534 wurden durch die Einschaltungen von Sandlagen in die Tone der Pielach-Fm. eine Reihe interessanter Strukturen im cm- bis m-Bereich sichtbar (Abb. 2.1.11. bis 2.1.15.). Wie diese Strukturen entstanden, ist unklar. Möglicherweise könnte die Ursache (neo-)tektonische Gründe haben.

Der bei GPS 530 aufgeschlossene, etwa 1 m mächtige Kiessand (Abb. 2.1.4., 2.1.5.) wurde weiter östlich nicht mehr angetroffen. In der geologischen Karte von Niederösterreich sind in diesem Bereich "Quartärer Kies und Sand i.A." eingetragen. Da dieser hier von einer 2-4 m mächtigen Lössschicht überlagert wird, handelt es sich bei den Kiessanden um Hochterrasse oder ältere Terrassenkörper.

Zwischen GPS 533 und 534 beträgt die Aufschlusshöhe nur noch etwa 1 m, es ist nur noch Löss aufgeschlossen (Abb. 2.1.16.). Bei GPS 534 ist in 2 ausgehobenen, je 3 m tiefen Rinnen ein solifluidal entstandenes Gemisch aus Löss, Boden und Schlier zu sehen (Abb. 2.1.17.). Bei GPS 535 war in einem kleinen Böschungsausbruch durch Wasseraustritt solifluidal umgelagerter Löss zu sehen. Er war hellbraun – grau gefleckt, von toten Wurzeln und Hohlräumen durchsetzt.

Die weiteren 100 m bis zum Ende dieses Anschnittes waren durch Matten verdeckt.

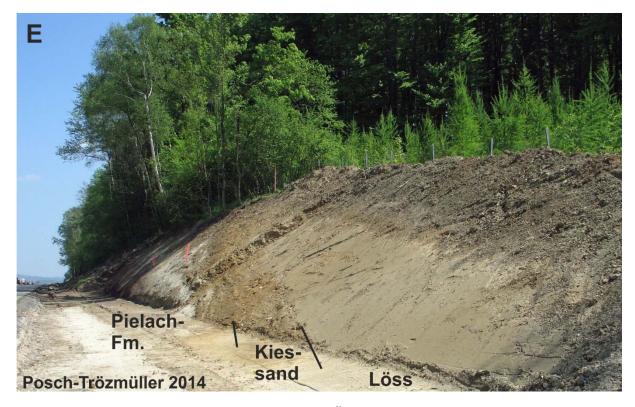


Abb. 2.1.4.: Aufschluss bei GPS 530: Unter einer Löss-Überlagerung ist etwa 1m Kiessand aufgeschlossen, darunter liegen Schluffe und Tone der Pielach-Fm., in die mehrere Sandlagen und –linsen eingeschaltet sind.

Abb. 2.1.5.: Löss über rostrotem Kiessand bei GPS 530.

Abb. 2.1.6.: Sandlagen in Schluffen der Pielach-Fm.

Abb. 2.1.7.: Geschichtete Schluffe der Pielach-Fm. bei GPS 530.

Abb. 2.1.8.: Aufschluss bei GPS 531: Schluffe und Tone der Pielach-Fm., mit mehreren Sandlagen (mit "S" gekennzeichnet; die auf dem Bild sichtbaren Blöcke stammen nicht von hier).

Abb. 2.1.9.: Aufschluss von GPS 531 Richtung E: Pielach-Formation mit mehreren Sandlagen.

Abb. 2.1.10.: Sandlagen in den Schluffen und Tonen der Pielach-Fm.; rechts im Bild ist eine Hangsicherung zu sehen (unaufgeschlossen), unmittelbar davor liegt GPS 531.

Abb. 2.1.11.: Strukturen in der Pielach-Fm. bei GPS 532 (dunkelgrau: Tone, hell: Sandlage).

Abb. 2.1.12.: Strukturen in den Tonen und Sanden der Pielach-Fm. bei GPS 532.

Abb. 2.1.13.: Strukturen in den Tonen und Sanden der Pielach-Fm. bei GPS 532.

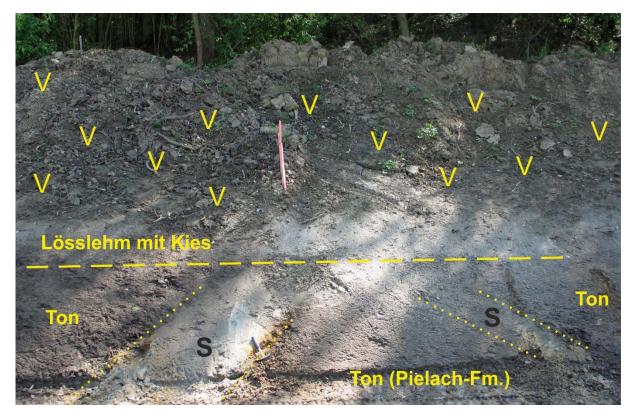


Abb. 2.1.14.: Aufschluss bei GPS 533: Lösslehm mit einzelnen Kiesen über Tonen mit Sandlagen der Pielach-Fm.

Abb. 2.1.15.: Detail der Situation in Abb. 2.1.14.: Sandlage in Tonen der Pielach-Fm.

Abb. 2.1.16.: Lösslehm mit Kies zwischen GPS 533 und GPS 534. Der Lösslehm war hier relativ fest und kalkfrei, erreichte eine Mächtigkeit bis 2 m und enthielt relativ viel Kies.

Abb. 2.1.17.: Rinne bei GPS 534, die solifluidal "vermischt" Löss, Schlier und Boden zeigt.

Einschnitt W GPS 537 bis 538

GPS 537 markiert bereits etwa die Mitte dieses langgezogenen Anschnittes. Der Beginn ist etwa 300 m W davon zu sehen, gleich E einer Brücke unter der Autobahn.

Hier stehen etwa 5 m mächtige Schluffe und Tone der Pielach-Fm. an (Abb. 2.1.18. bis 2.1.20.). Sie sind dunkelgrau, fest, kalkfrei und geschichtet. An Schichtflächen kann man teilweise Fischschuppen und Fischknochen sehen.

Das Schichteinfallen ist relativ eben, die Schluffe und Tone zerbrechen an Klüften in Kluftkörper von 5 bis 20 cm Größe (Abb. 2.1.19.). Die Schicht- und Kluftflächen sind oft rötlich verwittert, weiters ist ein Glitzern aufgrund von sekundären Gipskristallen zu sehen.

Östlich von GPS 537 wird die Pielach-Fm. von solifluidal umgelagertem Lösslehm überdeckt, der bei GPS 538 – hier beträgt die Aufschlusshöhe nur noch 2 m – bereits die gesamte Aufschlusshöhe einnimmt.

Abb. 2.1.18.: Blick von GPS 537 Richtung W: Schluffe und Tone der Pielach-Fm.

Abb. 2.1.19.: Detail der Schluffe bei GPS 437: Die grauen, festen Schluff zerbrechen in 5-20 cm große Kluftkörper.

Abb. 2.1.20.: Blick von GPS 537 Richtung E: Schluffe und Tone der Pielach-Fm.

GPS W 539 - 540

Der nächste Aufschlussbereich Richtung E (GPS W 539-540) zeigt etwa 2 m Löss (Abb. 2.1.21., 2.1.22.). Dieser ist graubraun-rötlich gefleckt und zeigt viele (zerdrückbare) limonitische Ausfällungen. Außerdem sind viele Lössschnecken darin zu sehen (Abb. 2.1.23.).

Abb. 2.1.21.: Blick von GPS 539 Richtung W zum Beginn des Aufschlussbereichs: Löss.

Abb. 2.1.22.: Blick von GPS 539 Richtung E.

Abb. 2.1.23.: Detail des Löss bei GPS 539: Durch limonitische Ausfällungen ist der graubraune Löss rötlich gefleckt. Die Pfeile weisen auf Lössschnecken hin.

GPS 541 - 544

Bei GPS 541, nach Querung des Erlauftales, wurde durch die Baustelle das Kristallin angeschnitten. Der frische Moldanubische Granulit, der korrekterweise als granulitfazieller mylonitischer Orthogneis zu bezeichnen ist (freundl. mündl. Mitt. R. Schuster), ist hellgrau und weist relativ große Granate (von <1mm bis 3 mm) auf. Die Klüftung variiert von teilweise engständig bis etwas weiter, wodurch Kluftkörper in der Größenordnung zwischen 0,5 m und wenigen Zentimetern Durchmesser entstehen (Abb. 2.1.24, 2.1.25., 2.1.31.).

Die dominanten Kluftrichtungen sind:

- 280/80
- 000/65
- 200/65 (untergeordnet)

Sowohl wenige Meter E GPS 541 (Abb. 2.1.26.), als auch bei GPS 542 (Abb. 2.1.27. bis 2.1.30.) sind Scherzonen im Moldanubischen Granulit zu sehen. Die (vermutliche) Scherzone bei GPS 542 zeichnet sich dadurch aus, dass durch das Vorhandensein besonders vieler Fluids im Zuge einer retrograden Metamorphose eine Biotitisierung bis hin zum Biotitschiefer stattgefunden hat (Abb. 2.1.28, 2.1.30.). Ein schmälerer Teil der Scherzone zeigt festen, dünkleren Biotit- und Plagioklas-reichen Gneis, wobei der Plagioklas kleine Augen bildet (Abb. 2.1.28., 2.1.29.), freundl. mündl. Mitt. R. Schuster und M. Linner)

Ab GPS 543 liegen über dem Moldanubischen Granulit Basalkiese der Melker Sande (Abb. 2.1.32., 2.1.33.). Diese präsentieren sich als lokale, gut gerundete Gerölle mit Durchmessern bis 30 cm in einer sandigen Matrix.

Nach wenigen Metern können auch Melker Sande im Aufschluss beobachtet werden (Abb. 2.1.33.), die in weitere Folge von Löss (mit zahlreichen Lössschnecken) überlagert werden (Abb. 2.1.34., 2.1.35.).

Abb. 2.1.24.: Aufschluss von Moldanubischem Granulit bei GPS 541.

Abb. 2.1.25.: Aufschluss von GPS 541 (rechts im Bild) bis 544 (Auto ganz links im Bild).

Abb. 2.1.26.: Dünklere Lage im Moldanubischen Granulit, die möglicherweise eine Scherzone darstellt bei GPS 541.

Abb. 2.1.27.: Scherzone bei GPS 542 im Moldanubischen Granulit.

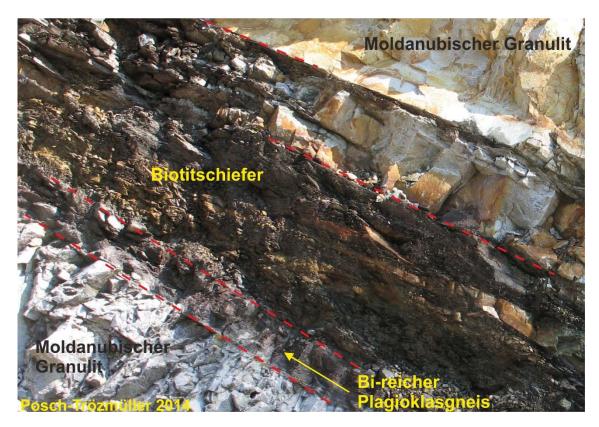


Abb. 2.1.28.: Detail der Scherzone bei GPS 542: Der größte Teil der Scherzone wird durch Biotitschiefer eingenommen, im unteren Teil ist Biotit- und Plagioklas-reicher Gneis zu sehen.

Abb. 2.1.29.: Moldanubischer Granulit (hellgrau) und Biotit-reicher Plagioklasgneis im Bereich der Scherzone bei GPS 542.

Abb. 2.1.30.: Biotitschiefer im Bereich der Scherzone bei GPS 542.

Abb. 2.1.31.: Moldanubischer Granulit bzw. granulitfazieller mylonitischer Orthogneis östlich der Scherzone bei GPS 542. Hier ist deutlich eine Schieferung zu erkennen.

Abb. 2.1.32.: Basalkiese der Melker Sande bei GPS 543.

Abb. 2.1.33.: Blick auf den Übergang vom Kristallin zu den Melker Sanden bei GPS 543.

Abb. 2.1.34.: Löss über Melker Sand zwischen GPS 543 und 544.

Abb. 2.1.35.: Löss bei GPS 544.

GPS 545 - 547

Der nächste aufgeschlossene Bereich reicht von GPS 545 bis 547. In diesem etwa 160 m langen Aufschlussstück waren zunächst wieder Moldanubische Granulite aufgeschlossen (Abb. 2.1.36. bis 2.1.39.). Es wurden einige markante Klüfte eingemessen:

- 115/60
- 300/40
- 344/35
- 216/50 ?Schieferung
- 120/45
- 110/80
- 290/75 (markant, autobahnparallel, rot-braun)

Ab GPS 546 liegen über einer Verwitterungsschicht des Kristallins Sande der Melk-Fm (Abb. 2.1.40., 2.1.41.). In den letzten 50 m des Aufschlusses werden die Sande durch Löss überlagert und schließlich ganz abgelöst (Abb. 2.1.42.).

Abb. 2.1.36.: Moldanubischer Granulit bei GPS 545, Blickrichtung NE.

Abb. 2.1.37.: Moldanubischer Granulit bei GPS 545.

Abb. 2.1.38.: Moldanubischer Granulit zwischen GPS 545 und 546.

Abb. 2.1.39.: Moldanubischer Granulit zwischen GPS 545 und 546 (Blick Richtung SW).

Abb. 2.1.40.: Überlagerung des Kristallins bei GPS 546. In den Sanden der Melk-Fm. sieht man eine Lage mit aufgearbeiteten Kristallinkomponenten.

Abb. 2.1.41.: Detailaufnahme der Sande der Melk-Fm.

Abb. 2.1.42.: Löss bei GPS 547 (Blickrichtung SW).

GPS 548 - 549

Zwischen GPS 548 und 549 war ein etwa 70 m langer Anschnitt aufgeschlossen, der zur Gänze aus Löss mit zahlreichen Lössschnecken bestand (Abb. 2.1.43.).

Abb. 2.1.43.: Aufschluss aus Löss zwischen GPS 548 und 549.

GPS 549 - 550

Der nordöstlichste aufgeschlossene Abschnitt war zwischen GPS 549 und 550 zu sehen und bestand aus Kristallin (Abb. 2.1.44.), vermutlich handelte es sich auch hier um den bereits oben beschriebenen Moldanubischen Granulit. Da hier zum Zeitpunkt der Baustellendokumentation gearbeitet wurde, war es nicht möglich, diesen Aufschluss genauer anzusehen.

Abb. 2.1.44.: Kristallin bei GPS 549.

Proben und Analysen

Insgesamt wurden 8 Proben genommen, je 3 aus dem Kristallin des Moldanubikums, aus dem vermeintlichen Älteren Schlier, der sich durch die mineralogischen Analysen als Pielach-Fm. herausstellte, und aus dem überlagernden Löss. Die Probenliste inklusive Koordinaten und durchgeführter Analysen ist in Tab. 2.1.1. dargestellt.

Die Proben aus dem Kristallin wurden mit R. Schuster und M. Linner besprochen, die Ergebnisse flossen bereits in den Bericht ein. Der Moldanubische Granit (Probe 6), der entlang der Baustelle immer wieder aufgeschlossen ist, ist korrekterweise als Granulitfazieller mylonitischer Orthogneis zu bezeichnen.

In eine Scherzone wurden die Proben 7a und 7b genommen, Probe 7a ist ein Biotitschiefer, Probe 7b ein Biotit-reicher, Plagioklas-reicher Gneis. Sie entstanden durch retrograde Überprägung und Biotitisierung bei Vorhandensein von besonders vielen Fluiden in der Scherzone.

Dünnschliffe wurden bisher nicht hergestellt, es wurde aber im Zuge der Bearbeitung der Kernbohrungen der Erlauf-Querung der EVN West 4 Gasleitung ein Dünnschliff bearbeitet, dessen Beschreibung bereits in einem älteren Bericht zu finden ist (POSCH-TRÖZMÜLLER & PERESSON, 2013). Die Bohrung, aus welcher die Probe genommen wurde, ist lediglich 2 km von GPS 541 (dem nächsten im Baustellenbereich anstehenden Kristallin) entfernt. Außerdem wurde die Dünnschliffbeschreibung von R. Schuster nochmal von M. Linner überarbeitet, weiters wurden zwischenzeitlich auch Dünnschlifffotos angefertigt. Aus diesem Grund soll die Dünnschliffbeschreibung hier nochmal Platz finden.

Dünnschliffbeschreibung KB 2703 (5,2-5,3 m)

Lage siehe Abb. 2.1.2., Dünnschlifffotos siehe Abb. 2.1.45. bis 2.1.47.

(R. Schuster, M. Linner)

Saurer "Granulit"

Mineralbestand: Kalifeldspat, Plagioklas, Quarz, Granat, Biotit, Orthopyroxen, brauner Amphibol 1, grüner Amphibol 2, opakes Erz, Akzessorien

Das Gestein ist feinkörnig und zeigt eine leichte Schieferung (Plättung der Körner). Quarz ist nur wenig undulös auslöschend, die Korngrenzen zwischen Feldspat und Quarz sind rund und das Gefüge im Allgemeinen ist gut getempert. Biotit ist rotbraun. Die idiomorphen Granate zeigen im Kern Einschlüsse von dunkelgrünem Spinell und Erzen. Die Erze zeigen Symplektit-ähnliche Strukturen. Hellglimmer ist nur sehr wenig als sekundäre Bildung vorhanden. Senkrecht zu Schieferung durchschlagen Klüfte das Gestein. Im Gang sind 2 Phasen von Sekundärmineralen: 1. Phase: grün- ?Chlorit, 2. Phase: braun-Eisenhydroxid. Im an den Gang angrenzenden Gestein sind die Pyroxene in grünen Amphibol umgewandelt

Bei dem Gestein handelt es sich um Orthogestein mit granitischer Zusammensetzung, der eine granulitfazielle Metamorphose erfuhr.

Tab. 2.1.1.: Probenliste des Baustellenabschnittes Ybbs – Pöchlarn der A1 Westautobahn.

			Probenliste A1 Ybbs-Pöchlarn				
Pr. Nr.	GPS	Material	Beschreibung	RW_M34	HW_M34	Analy- sen	
1	E' 530	Pielach-Fm.	Schluff, Ton, grau, geschichtet, nicht kalkhältig, mit rötlicher Verwitterung an Schichtflächen und Klüften	660507,3241	336480,3417	Min, Gran	
2	530	Löss	Schluff, sandig, tonig, gelbbraun, mit Pflanzenresten und Konkretionen (Lösskindel)	660507,3241	336480,3417	Min, Gran	
3	532	Pielach-Fm.	Schluff, Ton, dunkelgrau bis fast schwarz, schmierig glänzend, tonig, mit kl. Gipskristallen (sekundär)	660636,7234	336489,8902	Min, Gran	
4	537	Pielach-Fm.	Schluff, Ton, dunkelgrau, fest, geschichtet, geklüftet, mit Fischschuppen und -knochen an Schichtflächen, mit kl., sekundären Gipskristallen	661762,1974	336581,3087	Min, Gran	
5	539	Löss	Schluff, sandig, tonig, grau-braun bis rötlich gefleckt mit vielen kleinen Schnecken, mit Limonitausfällungen (rötlich, zerdrückbar)	662723,9291	336821,6791	Min, Gran	
6	541	Moldanubischer Granulit	hellgrau, mit kl. (<1mm-3mm) Granaten	664084,5918	337567,9176		
7a	542	Biotitschiefer	weich, schwarz, fein geschiefert	664185,0523	337620,3602		
7b	542	Bioti-reicher Plagi- oklasgneis	fest, schwarz, fein geschiefert	664185,0523	337620,3602		
8	546- 547	Löss	Schluff, sandig, tonig, braun	664719,4792	338081,9083	Min, Gran	

Abb. 2.1.45.: 2703: Überblick mit Granat und Klinopyroxen: 2,5 mm (Aufnahme: R. Schuster).

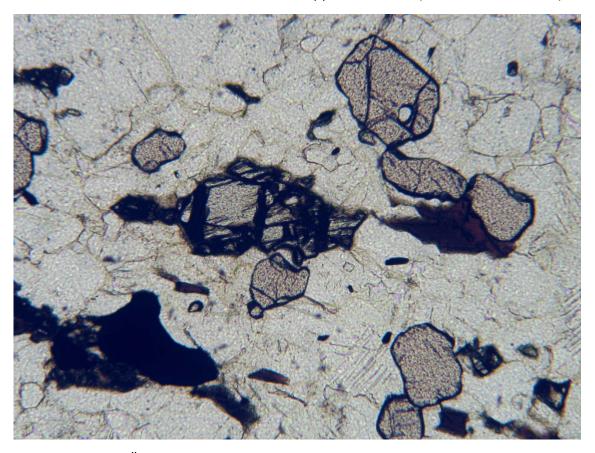


Abb. 2.1.46.: 2703: Überblick mit Granat und Klinopyroxen: 2,5 mm (Aufnahme: R. Schuster).

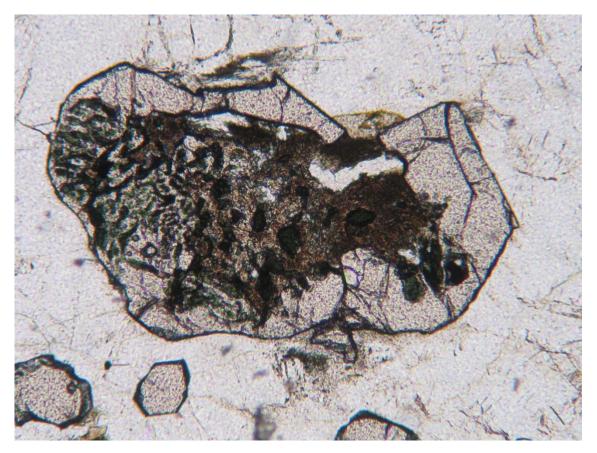


Abb. 2.1.47.: 2703: Granat mit Einschlüssen von Spinell: 1,9 mm (Aufnahme: R. Schuster).

Mineralogische Untersuchungen

Im Jahr 2014 wurde der 9,2 km lange Abschnitt Ybbs-Pöchlarn an der Westautobahn von der Asfinag Instand gesetzt und verbreitert, sodass auch die Richtungsfahrbahn Wien einen dreispurigen Ausbau erhielt. Im April 2014 wurde der gesamte Bereich von der Autobahnauffahrt Ybbs bis östlich Erlauf dokumentiert und beprobt. Basierend auf der geologischen Karte 1:200.000 von SCHNABEL et al. (2002) liegen die Bohrungen in quartären (Löss, Lösslehm) und neogenen (wahrscheinlich Pielach-Formation) Sedimenten. Für mineralogische und korngrößenmäßige Analysen wurden sechs Proben bearbeitet.

Gesamtmineralogische Analysen (Abb. 2.1.48)

Die sechs bearbeiteten Proben setzen sich stratigraphisch aus Sedimenten des Quartär (Lösse bzw. Lösslehm) und Neogen (Pielach-Formation; Kiscellium-Egerium) zusammen.

Die drei quartären Sedimentproben stammen aus verschiedenen Probenahmepunkten und unterscheiden sich neben dem Karbonatgehalt auch deutlich in der Korngrößenzusammensetzung.

Die Proben A1-2 und A1-5 sind typische Lösse mit Gesamtkarbonatgehalten von knapp unter 40 Gew. %, wobei Dolomit gegenüber Calcit überwiegt. In der gesamtmineralogischen Zusammensetzung dominieren die Quarzanteile mit bis zu 31 Gew. % über die Schichtsilikate mit maximal 23 Gew. %. Innerhalb der Feldspatreihe ist Albit mit bis zu 8 Gew. % deutlich stärker vertreten als Alkalifeldspat mit 3 Gew. %. In beiden Proben wurde Goethit nachgewiesen, ein Eisenhydroxidmineral das durch sekundäre Verwitterung von Pyrit oder Magnetit gebildet wird.

Die karbonatfreie, verlehmte Deckschicht mit der Probenbezeichnung A1-8 weist aufgrund des höheren Verwitterungsgrades mit 38 Gew. % die höchsten Schichtsilikatanteile auf. Der Quarzgehalt erreicht 37 Gew. %, maßgeblich höher sind auch die Feldspatgehalte mit 22 Gew. %, wobei Albit doppelt so hoch wie Alkalifeldspat vertreten ist.

Auch in der Korngrößenzusammensetzung (Tab. 2.1.2., Abb. 2.1.50., 2.1.51.) unterscheiden sich die beiden karbonatischen Lössproben von der Lösslehmprobe. Sämtliche quartäre Proben haben ihr Korngrößenmaximum im Siltbereich, wobei die Grobsiltkomponente augenfällig dominiert. Der Lösslehm ist aber deutlich feinkörniger ausgebildet im Vergleich zu den Lössen. Die Probe erreicht den höchsten Tonanteil mit 15 Gew. % und einen etwas geringeren Siltgehalt mit 70 Gew. %. Die beiden Lösse weisen Siltgehalte von 75 bis 78 Gew. % und Tonanteile bis maximal 11 Gew. % auf. Es handelt sich nach MÜLLER (1961) und FÜCHTBAUER (1959) um tonige Silte bzw. tonig-sandige Silte.

Die *neogenen Sedimente* (A1-1, A1-3, A1-4), ebenfalls aus unterschiedlichen Aufschlussabschnitten, sind deutlich feinkörniger ausgebildet mit Schichtsilikatgehalten bis zu maximal 64 Gew. %. Sämtliche Proben sind karbonatfrei. Die Gesamtfeldspatgehalte sind ähnlich hoch wie bei den Deckschichten und erreichen maximal 13 Gew. %. Das Verhältnis zwischen Alkalifeldspat und Albit ist im Gegensatz zu den Deckschichten sehr ausgewogen.

Die neogenen Proben sind durch abwechslungsreichere Korngrößenzusammensetzung gekennzeichnet. Es dominiert entweder die Silt- oder die Tonfraktion. Innerhalb der Siltfraktion liegt das Hauptaugenmerk auf der Mittel- und Feinsiltkomponente. Der Sandanteil, der knapp 5 Gew. % erreicht, besteht im Wesentlichen aus Feinsanden. Die Probe A1-1 ist deutlich feinkörniger ausgebildet mit dem höchsten Tonanteil von 54 Gew. % im Vergleich zu den Proben A1-3 und A1-4 mit Tongehalten bis maximal

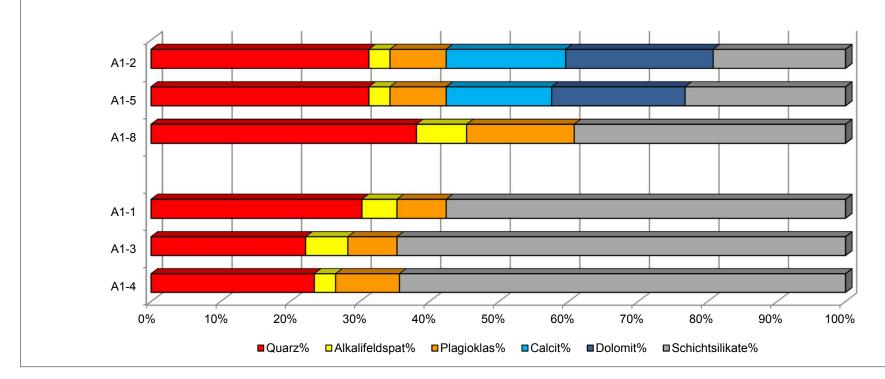
30 Gew. %. Nach der Klassifizierung von MÜLLER (1961) und FÜCHTBAUER (1959) werden die Sedimente als sandige Tonsilte und Silttone mit extrem schlechter Sortierung (A1-1) und sehr schlechter Sortierung ausgewiesen.

Die tonmineralogischen Analysen wurden an der Fraktion <2 µm durchgeführt (Abb. 2.1.49).

Generell lässt das Gesamtbild der röntgenographischen Phasenanalyse auf gute Kristallinität der Tonminerale schließen. Die Basisreflexe der Minerale sind zumeist schmal und zeigen relativ gute Intensitäten. In der Ausbildung der Basisreflexe können keine maßgeblichen Unterschiede zwischen quartären und neogenen Proben erkannt werden.

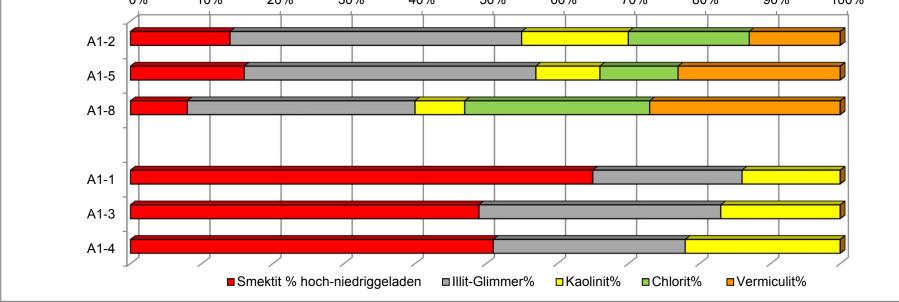
Qualitativ sind jedoch deutliche Unterschiede in der Tonmineralzusammensetzung bestimmt worden.

Sämtliche *quartäre Proben* sind durch ein buntes Spektrum an Tonmineralen gekennzeichnet. Innerhalb der Lösse überwiegen ganz dominant Illit-Hellglimmerminerale mit 41 Gew. %, gefolgt von Chlorit, Kaolinit, klassisch niedrig geladenen Smektiten und Vermiculiten. Die Vermiculite sind wahrscheinlich auf einen Glimmerabbau (Biotit) aus dem Nahbereich des kristallinen Hinterlandes zurückzuführen. In der verlehmten Deckschichtprobe (A1-8) dominiert immer noch Illit-Hellglimmer, vor allem der Anteil an Chlorit und Vermiculit steigt deutlich an, Kaolinit tritt weitgehend zurück.


Die neogenen Sedimente zeigen ein prägnant unterschiedliches Spektrum. Chlorit und Vermiculit fehlen gänzlich in der Zusammensetzung. Es herrscht Smektit in hochgeladener Form vor (Verwitterungsbildung), mit schwankenden Anteilen von Illit-Hellglimmer und Kaolinit. Auf der geologischen Karte von Niederösterreich wird im Bereich der Aufschlüsse "Älterer Schlier" (Kiscellium-Egerium) als Schichtglied ausgeschieden. Der "Älterer Schlier" zeichnet sich aber in praktisch allen Analysen durch ein Tonmineralspektrum bestehend aus Smektit, Illit-Hellglimmer, Kaolinit und Chlorit aus. Aufgrund des fehlenden Chlorits wird angenommen, dass es sich bei den Sedimenten um Pielach-Formation handelt. Sandstreifenschlier (Eggenburgium-Ottnangium), der ebenfalls aus der näheren Umgebung bekannt ist, zeichnet sich durch Kaolinitfreiheit aus, und wird deshalb ausgeschlossen.

Zusammenfassend können folgende Charakteristika für den Baustellenbereich festgestellt werden:

In der *Gesamtmineralogie* äußert sich der Unterschied zwischen quartären und neogenen Sedimenten im Wesentlichen im Karbonatgehalt und in der Korngrößenverteilung. Die quartären Lösse sind durch relativ hohe Karbonatgehalte (Ausnahme: verlehmte Deckschicht) und gröbere Korngrößenzusammensetzung und damit einhergehend auch geringere Schichtsilikatanteile gekennzeichnet. Die neogenen Proben zeigen einen Überhang im Schichtsilikatanteil und durchgehende Karbonatfreiheit. Gravierender ist der Unterschied zwischen den Schichtgliedern aber in der *tonmineralogischen Zusammensetzung*. Die quartären Sedimente weisen ein buntes Spektrum mit einer Dominanz von Illit-Hellglimmer, gefolgt von Chlorit, Kaolinit und Vermiculit auf. Die quellfähigen Smektite sind untergeordnet vertreten und liegen in Form klassisch niedrig geladener Minerale vor. Vermiculite sind ein deutlicher Gradmesser für Verwitterungsbildungen im Ablagerungsraum. Die neogenen Schichten werden im Gegensatz dazu von hochgeladenen Smektiten dominiert mit wechselnden Anteilen an Illit-Hellglimmer und Kaolinit. Chlorit und Vermiculit fehlt gänzlich im Spektrum.


Baustelle A1 Westautobahn zwischen Ybbs und Pöchlarn (ÖK 54)

GESAMTMINE	RALOGIS	CHE ZUSAMMEN	NSETZUNG				
Probenummer	Quarz%	Alkalifeldspat%	Plagioklas%	Calcit%	Dolomit%	Schichtsilikate%	Lithologie /Stratigraphie
A1-2	31	3	8	17	21	19	Schluff, sandig, tonig (Löss; Quartär)
A1-5	31	3	8	15	19	23	Schluff, sandig, tonig (Löss; Quartär)
A1-8	37	7	15	0	0	38	Schluff, sandig, tonig (Lösslehm; Quartär)
A1-1	30	5	7	0	0	57	Schluff, Ton ("Pielach-Fm."; Kiscellium-Egerium)
A1-3	22	6	7	0	0	64	Schluff, Ton ("Pielach-Fm."; Kiscellium-Egerium)
A1-4	23	3	9	0	0	63	Schluff, Ton ("Pielach-Fm."; Kiscellium-Egerium)

Baustelle A1 Westautobahn zwischen Ybbs und Pöchlarn (ÖK 54)

robenummer	Smektit % hoch- niedriggeladen	Illit-Glimmer%	Kaolinit%	Chlorit%	Vermiculit%	Goethit	Lithologie /Stratigraphie
1-2	14	41	15	17	13	ja	Schluff, sandig, tonig (Löss; Quartär)
\1-5	16	41	9	11	23	ja	Schluff, sandig, tonig (Löss; Quartär)
\1-8	8	32	7	26	27	nein	Schluff, sandig, tonig (Lösslehm; Quartär)
\1-1	65	21	14	0	0	nein	Schluff, Ton ("Pielach-Fm."; Kiscellium-Egerium)
N1-3	49	34	17	0	0	nein	Schluff, Ton ("Pielach-Fm."; Kiscellium-Egerium)
\1-4	51	27	22	0	0	nein	Schluff, Ton ("Pielach-Fm."; Kiscellium-Egerium)
	0% 10%	20% 3	30% 409	% 50'	% 60%	70%	80% 90% 100%

Baustelle A1 Westautobahn zwischen Ybbs und Pöchlarn (ÖK 54)

		Müller, G. (1959) & Füchtbauer, H. (1961)												Win	(1954)		
	Benennung		Gewichtsprozent														
Probe	Denemiang					Kies			Sand			Silt					
	Sand-Silt-Ton					Gkies	Mkies	Fkies	Gsand	Msand	Fsand	Gsilt	Msilt	Fsilt	Ton		
	Cana One 1011					O.II.OO		1 14.100	Count	mouna	· ouria			. 0	< 2 µm	2-20 μm	> 20 µm
		Kies	Sand	Silt	Ton												
A1-2	toniger Silt	1,4	6,1	77,7	14,9		0,5	0,8	1,0	0,8	4,2	35,0	31,0	11,7	14,9	42,7	42,4
A1-5	tonig-sandiger Silt	0,0	10,1	74,7	15,1				0,5	1,8	7,9	35,9	28,3	10,5	15,1	38,8	46,1
A1-8	tonig-sandiger Silt	1,1	10,7	70,6	17,5		0,3	0,9	0,5	2,4	7,8	32,2	23,2	15,2	17,5	38,4	44,1
A1-1	Siltton	0,0	4,7	41,0	54,3				0,01	0,3	4,4	13,4	12,8	14,7	54,3	27,6	18,1
A1-3	Tonsilt	0,0	2,6	67,3	30,1					0,1	2,5	14,2	26,5	26,6	30,1	53,1	16,8
A1-4	Tonsilt	0,0	5,6	68,4	26,0					0,3	5,3	13,2	27,1	28,0	26,0	55,1	18,9

		Statistische Parameter														
Probe		M	omentverfahre	n	Folk, R	.L. & Ward, W.	(1957)		Ir Monto (m/o)							
Flobe	Continuuma	Arithmet.	Standard- Schiefe		Arithmet.	Standard-	Schiefe	U	K-werr	k-Werte (m/s)						
	Sortierung	Mittelwert	Abweichung	Schleie	Mittelwert	Abweichung	Schleie		Beyer	Bialas						
A1-2	extrem schlecht sortiert	6,42	2,74	0,47	6,45	2,29	0,35	20,9	6,50E-09	8,60E-09						
A1-5	extrem schlecht sortiert	6,48	2,82	1,23	6,34	2,53	0,39	29,49	4,10E-09	1,00E-08						
A1-8	extrem schlecht sortiert	6,48	2,98	0,45	6,50	2,60	0,26	27,09	5,00E-09	3,60E-09						
A1-1	extrem schlecht sortiert	9,86	3,89	-0,04	9,68	4,17	0,11	144,65	2,70E-12	1,50E-12						
A1-3	sehr schlecht sortiert	7,83	2,26	0,33	7,73	2,21	0,06	9,21	4,90E-09	7,30E-10						
A1-4	sehr schlecht sortiert	7,47	2,06	-0,09	7,40	2,07	-0,10	7,67	8,30E-09	1,30E-09						

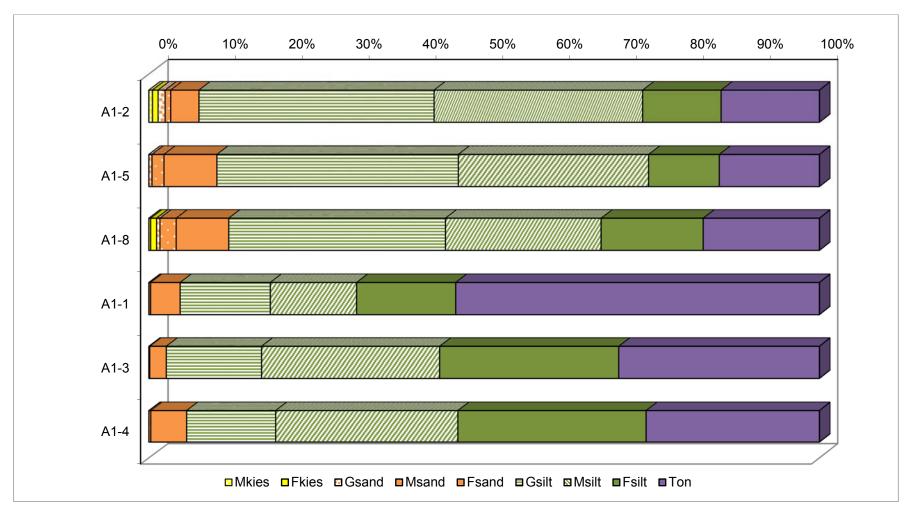


Abb. 2.1.50.: Korngrößen-Diagramm A1 Ybbs-Pöchlarn.

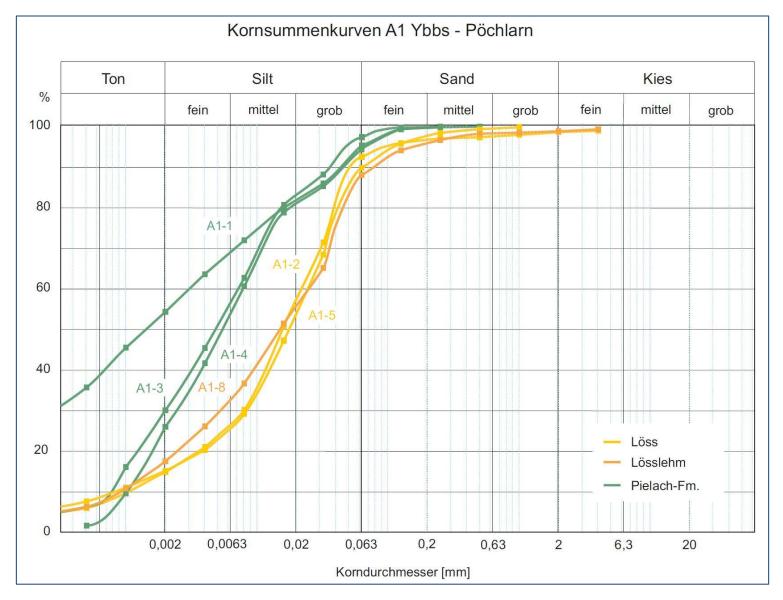


Abb. 2.1.51.: Kornsummen der Proben A1 Ybbs-Pöchlarn.

2.1.2. Aufnahme von zwei Kernbohrungen im Bereich des Brunnenfeldes Gumping (ÖK 21)

Im April 2014 wurden durch das Büro Technische Geologie Niederbacher 2 Kernbohrungen im Bereich des Brunnenfeldes Gumping durchgeführt, die von R. Roetzel und G. Posch-Trözmüller am 18.6.2014 aufgenommen und beprobt wurden. Für die diesbezüglichen Informationen sei Herrn Mag. Dr. Markus Gmeindl sehr herzlich gedankt.

Die Bohrungen liegen in der Gemeinde Maissau etwa 500 und 700 m N Reikersdorf (Abb. 2.1.52., Tab. 2.1.3.).

Tab. 2.1.3.: Koordinaten der Bohrungen.

	RW_M34	HW_M34
KB 5	708260,79	382410,14
KB 6	708319,94	382176,92

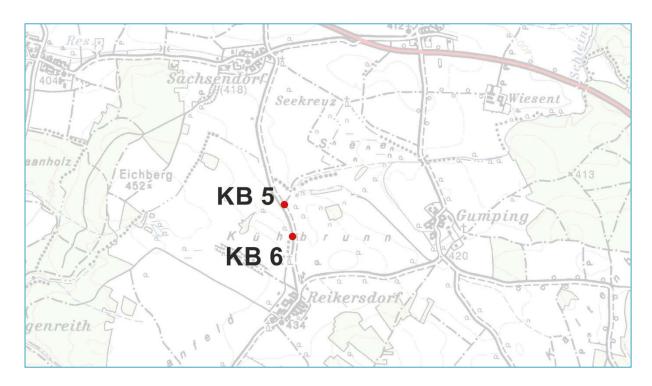


Abb. 2.1.52.: Lage der beiden Kernbohrungen im Brunnenfeld Gumping auf der topographischen Karte.

Geologie

(nach WESSELY, 2006, ROETZEL et al., 1998, ROETZEL et al., 1999; Zusammenfassung tw. übernommen aus POSCH-TRÖZMÜLLER, 2008, Abb. 2.1.52.)

Die Kernbohrungen liegen im Bereich des Kristallins der Böhmischen Masse, genauer gesagt im verglichen mit dem Moldanubikum schwächer metamorphen Anteil der Böhmischen Masse, dem Moravikum. Große Teile werden hier vom Thaya-Batholith eingenommen, der aus cadomischen

Graniten und Granodioriten besteht. Nach der Intrusion wurden diese leicht deformiert und metamorphisiert (SCHARBERT, 2002). Durch die Diendorfer Störung, eine sinistrale Blattverschiebung mit Versatzweiten bis 25 km, wird dieser Pluton im Osten abgeschnitten.

Östlich der Diendorfer Störung wurden Sedimente der Molassezone abgelagert, wobei die Einheiten am SE-Rand der Böhmischen Masse die von SE gegen N und NW vordringende marine Transgression des Eggenburgium auf das stark gegliederte Kristallin der Böhmischen Masse widerspiegelt. In seichtmarinen, z.T. auch terrestrisch beeinflussten Ablagerungsräumen der beginnenden Transgressionsphase entstanden lokal sehr unterschiedliche Bereiche mit verschiedenen Lithologien und Biofazies (älteres U-Eggenburgium – älteres O-Eggenburgium, z.B. Burgschleinitz-Fm.). Der Raum Maissau wurde im O-Eggenburgium von der Transgression erfasst, es kam zur Ablagerung der Burgschleinitz-Fm. Basal tritt hier die Kühnring-Subfm. auf, die aus schlecht sortierten, fossilreichen Schluffen, Sanden und Kiesen besteht. Die Burgschleinitz-Fm wird aus einer raschen Wechselfolge von gut bis mäßig sortierten Grob-, Mittel- und Feinsanden mit Kieseinschaltungen aufgebaut. Typische Sedimentstrukturen sprechen für eine Bildung in einem wellendominierten, von Sturmereignissen geprägten Seichtwasserbereich im Eulittoral bis seichten Sublittoral.

Im jüngeren O-Eggenburgium wurde diese Transgression durch eine kurze Regression unterbrochen. Im O-Eggenburgium bis Ottnangium erfolgte eine neuerliche Transgression ("Ottnangtransgression"). Diese reichte über die vorhergehenden Ablagerungen hinaus, was auch zur Folge hatte, dass durch den so weit fortgeschrittenen Reliefausgleich die lokalen Einflüsse für die Sedimentprägung, wie sie noch bei der Ablagerung der Burgschleinitz-Fm. herrschten, nur noch untergeordnete Bedeutung hatten. Es folgte die Ablagerung der Zogelsdorf-Fm., die aufgrund der größeren Reichweite der Ottnangtransgression z.T. auch direkt auf Kristallin abgelagert wurde. Es handelt sich hier um meist gut verfestigte, bioklastische Kalksandsteine, wobei man biofaziell einen karbonatreicheren Bereich innerhalb der Eggenburger Bucht von einem terrigenreicheren Bereich an deren Außenrand unterscheiden kann.

Es folgt im Raum Maissau die Zellerndorf-Fm., die zunächst mit der Zogelsdorf-Fm. lateral verzahnte und später diese durch die fortschreitende Transgression überlagerte. Es kam auch zur transgressiven Ablagerung von Zellerndorf-Fm. auf Kristallin. Es handelt sich bei der Zellerndorf-Fm. um vollmarine Tone und Tonmergel, die weitgehend fossilleer und kalkfrei sind. Lediglich im liegenden Bereich, am Übergang von der Zogelsdorf-Fm., sowie im hangendsten Bereich kann eine reiche Mikrofauna beobachtet werden.

Im Bereich Limberg-Parisdorf ist die Limberg-Subformation der Zellerndorf-Fm. zwischengeschaltet, die aus Diatomiten besteht. Gelegentlich führen diese Menilit, eine reiche Fischfauna ist zu beobachten.

Im Oberen Ottnangium folgte eine weitere Regressionsphase, die von einer neuerlichen marinen Transgression im Karpatium abgelöst wurde. Es kam die Laa-Fm. zur Ablagerung, welche fast ausschließlich E der Diendorfer Störung zu finden ist. Sie ist im W durch eine Schichtfolge von Schluffen, Sanden und Kiesen gekennzeichnet, die sowohl horizontal als auch lateral sehr schnell wechseln. Die Ablagerungen sind z.T. tektonisch stark gestört. Im E und SE wird die Sedimentation durch Pelit dominiert, der regelmäßig von Sanden unterbrochen ist. Aufgrund sedimentologischer Merkmale sind sie auf Sturmereignisse zurückzuführen. Submarine debris flows stehen möglicherweise mit der Überschiebung der Waschbergzone auf die Molassezone in Zusammenhang.

Im Hangenden folgt die Gaindorf-Fm., die überwiegend aus Sanden und Kiesen mit geringmächtigen Mergeleinschaltungen besteht.

In einem 7-15 km breiten, WSW-ENE-verlaufenden Streifen quer durch das Weinviertel zwischen Hohenwarth, Ziersdorf, Hollabrunn, Mistelbach, N der Leiser Berge, Zaya-Furche bis zum Steinbergbruch, sind die vorwiegend fluviatilen Sedimente der Hollabrunn-Mistelbach-Fm. aufgeschlossen. Diese stellen Sedimente einer Ur-Donau dar, die durch Reliefumkehr erhalten geblieben sind.

An quartären Sedimenten im Raum Maissau ist besonders der Löss zu erwähnen, welcher dort in einer Mächtigkeit von mehreren Metern angetroffen werden kann. Verlehmungszonen innerhalb dieser kaltzeitlichen äolisch abgelagerten Schluffe und Feinsande repräsentieren wärmere, feuchtere Klimaphasen.

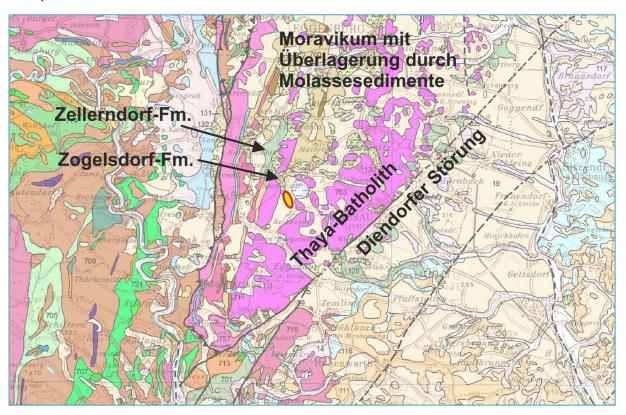


Abb. 2.1.52.: Lage der beiden Kernbohrungen auf der geologischen Karte von Niederösterreich (SCHNABEL et al., 2002).

Beschreibung der Kernbohrungen

KB5

KB 5 zeigte in den oberen 3,5 m vor allem Solifluktionslehm, sandige, braune, gering kalkhaltige Schluffe. Darunter wurden Tone und Schluffe der Zellerndorf-Fm. erbohrt, die zumeist grünlichgraubraun gefleckt waren und sich ausgenommen der zahlreichen Kalkausfällungen als kalkfrei auszeichneten. Zwischen 5,9 und 7,2 m wurden stark schluffig-tonige Grob- bis Mittelsande aufgeschlossen, wobei es sich um den Übergang von der Zellerndorf-Fm. zur Zogelsdorf-Fm. handeln dürfte. Ab 7,2 m bis zur Endteufe in 9,2 m waren Sande der Zogelsdorf-Fm. zu sehen, hellgraue, stark kalkhaltige schluffig-kiesige Grob- bis Mittelsande, die teilweise verfestigt waren. In den untersten 20 cm der Bohrung lag ein Geröllhorizont vor, der als Basiskonglomerat der Zogelsdorf-Fm. interpretiert wurde.

Das genaue Bohrprofil ist in Tab. 2.1.4. zu sehen, in Abb. 2.1.53. und 2.1.54. ist die Bohrung fotographisch dokumentiert.

Tab. 2.1.4.: Profil der Bohrung KB 5.

Gumping/ Maissau KB 5									
Tiefe	lithologische Beschreibung	Interpretation							
0-0,4 m	Boden: Schluff, tonig, vereinzelt kiesig, braun bis dun- kelgrau	Mutterboden							
0,4-1,0 m	Schluff, tonig, schwach kiesig, mittelbraun bis gelb- braun, schwach kalkhältig	Solifluktionslehm							
1,0-1,7 m	Schluff, sandig (Feinsand bis Grobsand), tonig, gelb- braun, schwach kalkhältig	Solifluktionslehm							
1,7-2,6 m	Schluff, tonig, z.T. schwach sandig, braun bis braungrau, bindig, mit Konkretionen, schwach kalkhältig	Lösslehm und So- lifluktionslehm							
2,6-3,5 m	Schluff, tonig; wie oben, aber stärker sandig (grobsandig), schwach kalkhältig bis kalkhältig	Solifluktionslehm							
3,5-5,3 m	Ton, schluffig, grünlichgrau, braun gefleckt, mit vielen Kalkausfällungen, sonst kalkfrei	Zellerndorf-Fm.							
5,3-5,7 m	Ton, schluffig, grünlichbraun - braun, mit grobsandigen und feinkiesigen Einstreuungen (z.B. plattigem Schiefer, eckig), kalkfrei	Zellerndorf-Fm.							
5,7-5,95 m	Schluff, tonig-feinsandig, gelbbraun - gelbgrau fleckig, kalkfrei	Zellerndorf-Fm.							
5,9-7,2 m	Grobsand-Mittelsand, stark schluffig-tonig, matrix- reich, schwarzgrau - gelbbraun fleckig, dunkle Anteile (Mn-Ausfällungen) kalkfrei , graue Anteile stark kalk- hältig	Übergang Zogels- dorf-Fm. in Zel- lerndorf-Fm.							
7,2-8,8 m	Grobsand-Mittelsand, kiesig, stark schluffig, hellgrau - weißgrau, stark kalkhältig, z.T. verfestigt, einzelne Kiese bis 7 cm Durchmesser, sehr gut gerundet, bio- gene Reste	Zogelsdorf-Fm.							
8,8-9,0 m	Grobsand-Mittelsand, kiesig, stark schluffig, hellgrau - weißgrau, stark kalkhältig, stärker verfestigt, Austernbruchstücke	Zogelsdorf-Fm.							
9,0-9,2 m	Geröllhorizont in sandig-schluffiger Matrix, weißgrau - gelbgrau; Gerölle aus Quarz, gut gerundet und Kristal- linstücken (Schiefer), eckig - schlecht gerundet, bis 8 cm Durchmesser, Austernbruchstücke	Basiskonglomerat der Zogelsdorf- Fm.							

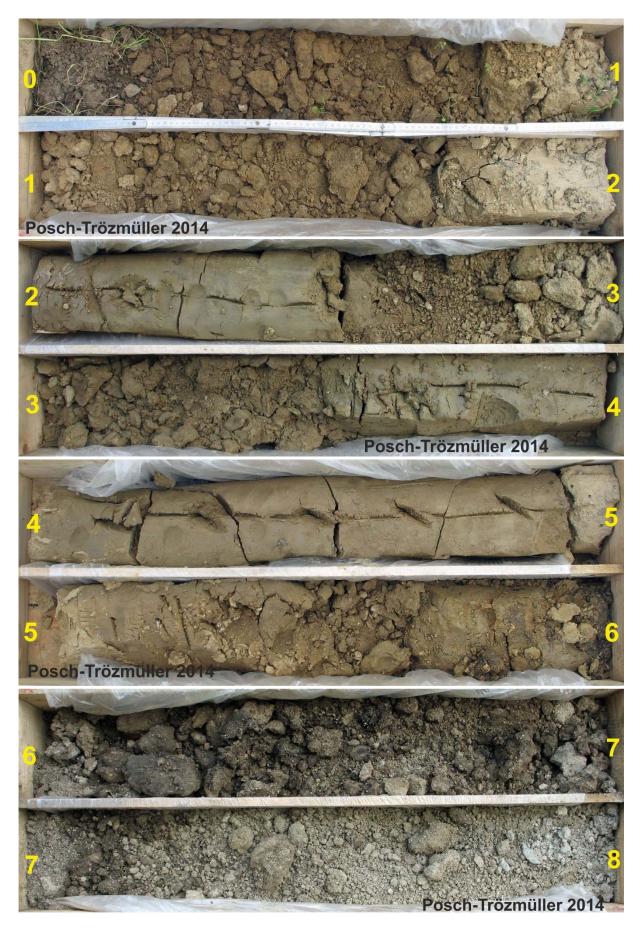


Abb. 2.1.53.: Fotodokumentation von KB 5: 0-8 m.

Abb. 2.1.54.: Fotodokumentation von KB 5: 8-9,2 m.

KB 6

In der Bohrung KB 6 war unter dem Mutterboden eine Lössbedeckung bis 4 m Tiefe zu sehen. Darunter folgte quartärer Schutt (kantengerundete Quarz- und Kristallinbruchstücke in schluffig-toniger Matrix). Von 4,35 bis 6,0 m Tiefe wurden schluffige Tone der Zellerndorf-Fm. erbohrt, im Liegenden der Bohrung (6,0-7,1 m / ET) waren schluffige Sande der Zogelsdorf-Fm. aufgeschlossen.

Aus der Bohrung KB 6 wurden zwei Proben entnommen und mineralogisch und granulometrisch analysiert.

Das Profil der Bohrung ist in Tab. 2.1.5. dargestellt, in Abb. 2.1.55. und 2.1.56. ist die Fotodokumentation der Bohrung zu finden.

Tab. 2.1.5.: Profil der Bohrung KB 6.

	Gumping/ Maissau k	(B 6		
Tiefe	lithologische Beschreibung	Interpreta- tion	Proben	Analysen
0-0,5 m	Boden: Schluff, tonig, etwas feinsandig, braun, an Basis etwas feinkiesig	Mutterbo- den		
0,5-4,0 m	Löss: Schluff, etwas tonig, lehmig, wechselnd braun (hellbraun bis schokobraun), stark kalk- hältig, tw. mit reichlich Pseudomycelien	Löss	3,4-3,5 m	Mineralogie Granulo- metrie
4,0-4,35 m	Kies in schluffig-toniger Matrix, gelbbraun-gelborange, Kieskomponenten kantengerundet, Quarz, Kristallinbruchstücke, Kies 0,5 - 1 cm, selten bis 3 cm	quartärer Schutt		
4,35-5,4 m	Ton, schluffig, Top (4,35-4,6 m) hellgrau-weißgrau, kalkhältig, ab 4,6 m grüngrau-gelbbraungelborange fleckig, kalkfrei mit Ausnahme von Kalkausfällungen	Zellerndorf- Fm.	5,2-5,3 m	Mineralogie Granulo- metrie
5,4-6,0 m	Ton, schluffig, braun, kalkfrei, jedoch Kalkausfällungen; Erscheinungsbild ähnlich dem Löss	Zellerndorf- Fm.		
6,0-7,0 m	Sand (Grobsand bis Mittelsand), etwas feinkiesig, stark schluffig, gelbgrau-weißgrau, kalkhältig, Kiese: Quarz, vereinzelt, bis 3 cm Durchmesser, gut-sehr gut gerundet, Turritellen-Steinkerne und Pectiniden	Zogelsdorf- Fm.		
7,0-7,1 m	Mittelsand bis Grobsand, schluffig, mit vereinzelten Kristallingeröllen bis 7 cm Durchmesser	Zogelsdorf- Fm.		

Abb. 2.1.55.: Fotodokumentation von KB 6: 0-2 m.

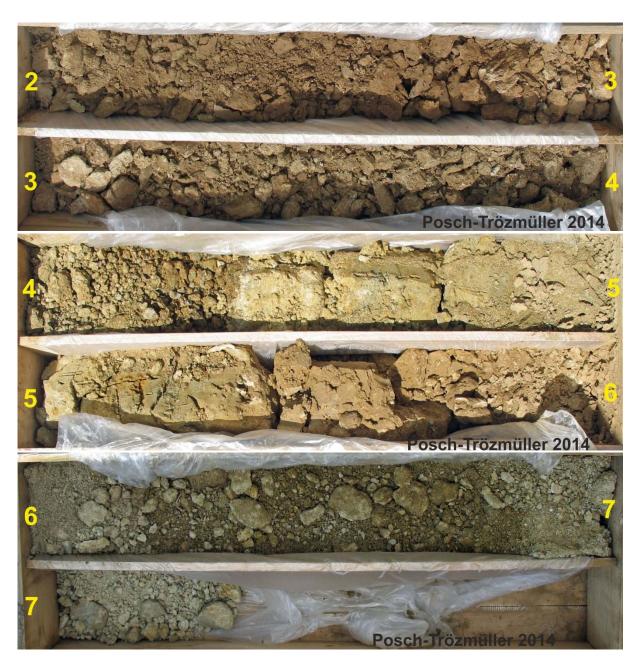


Abb. 2.1.56.: Fotodokumentation von KB 6: 2-7,1 m.

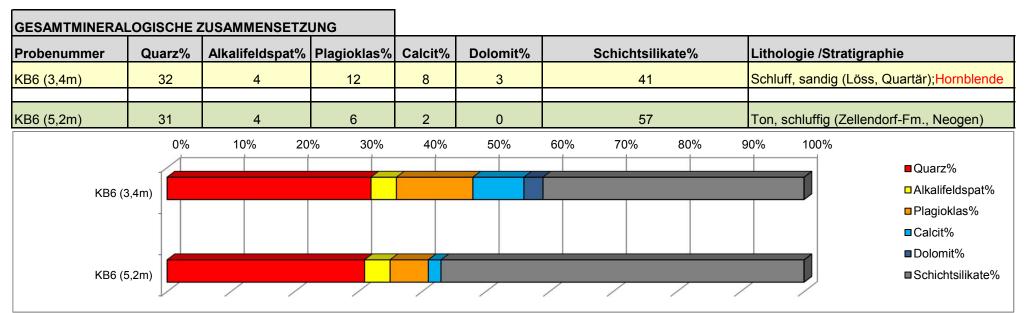
Mineralogische Untersuchungen

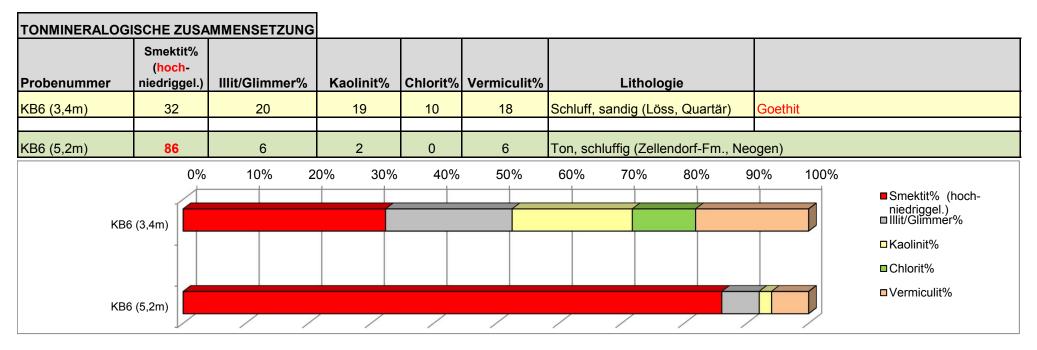
Im Frühjahr 2014 wurden in der Gemeinde Maissau zwei Kernbohrungen im Bereich des Brunnenfeldes Gumping durchgeführt, die im Sommer 2014 aufgenommen und beprobt wurden. Geologisch betrachtet liegen die Bohrungen im Moravikum mit Überlagerung durch Molassesedimente. Bei den beiden bearbeiteten Proben handelt es sich um Sedimente aus dem Quartär (Löss) und der neogenen Zellendorf-Formation (Eggenburgium-Ottnangium).

Gesamtmineralogische Analysen (Abb. 2.1.57.)

Insgesamt wurden zwei Proben aus der Bohrung KB6 mineralogisch und granulometrisch bearbeitet.

Die gesamtmineralogische Zusammensetzung der quartären Probe aus einer Tiefe von 3,4 m zeigt niedrigere Schichtsilikatanteile mit 41 Gew. % und deutlich höhere Karbonatgehalte (11 Gew. %) im Gegensatz zur Probe aus der Zellendorf-Formation, die praktisch karbonatfrei ist. Die Quarzgehalte der beiden Proben sind ident. Unterschiede sind im Feldspatgehalt zu erkennen, der im quartären Anteil innerhalb der Albite markant höher ist. Der Löss ist auch durch das Vorkommen von Hornblenden und Goethit im Spektrum charakterisiert.

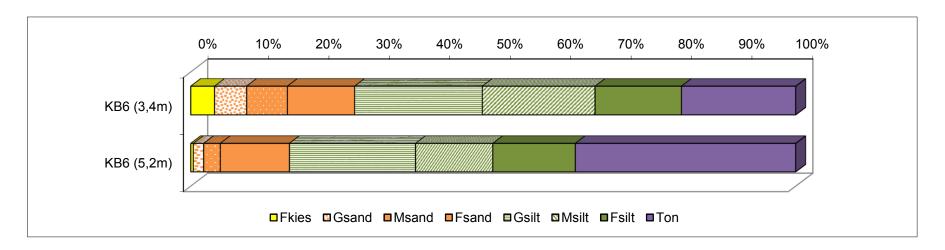

Die Korngrößenverteilung (Abb. 2.1.58., 2.1.59.) der quartären und der neogenen Probe unterscheidet sich markant. Die quartäre Lössprobe ist eindeutig grobkörniger ausgebildet. Der Siltanteil erreicht 54 Gew. %, wobei Grob- und Mittelsilt überwiegen. Der Sandgehalt, überwiegend Feinsand, liegt bei 23 Gew. % und der Tonanteil bei 19 Gew. %. Nach der Nomenklatur von MÜLLER (1961) und FÜCHTBAUER (1959) handelt es sich um tonigen Sandsilt. Im Gegensatz dazu weist die Probe der Zellendorf-Formation deutlich höheren Tonanteil mit 36 Gew. % und niedrigere Sand- und Siltgehalte auf. Die Probe ist als sandiger Tonsilt einzustufen (MÜLLER, 1961; FÜCHTBAUER, 1959). Beide Proben sind durch extrem schlechte Sortierung gekennzeichnet.


Die **tonmineralogischen Analysen** wurde an der Fraktion <2μm durchgeführt (Abb. 2.1.57.).

In der Tonmineralzusammensetzung ist der Unterschied zwischen quartären und neogenen Ablagerungen sehr deutlich zu erkennen. Innerhalb des Quartärs dominieren klassisch niedrig geladene Smektite mit 32 Gew. %, gefolgt von Illit/Hellglimmer, Kaolinit und Vermiculit mit rund 20 Gew. %. Chlorit konnte mit 10 Gew. % nachgewiesen werden. Die hohen Gehalte von Kaolinit und Vermiculit verkörpern Verwitterungsprodukte des kristallinen Hinterlandes.

Die neogene Probe besteht überwiegend aus Smektit (86 Gew. %) und zwar in hochgeladener Form. Untergeordnet konnten Illit/Hellglimmer, Vermiculit und Kaolinit bestimmt werden. Chlorit fehlt zur Gänze.

Bohrung Gumping, Maissau (ÖK 21)



Bohrung Gumping, Maissau (ÖK 21)

	Müller, G. (1959) & Füchtbauer, H. (1961)									Winl	kler, H.G.F.	(1954)					
	Rononnung		Gewichtsprozent														
Probe	Benennung						Kies			Sand		Silt					
	Sand-Silt-Ton					Ckies	Mkios	Ekios	Gsand	Meand	Ecand	Goilt	Meilt	Ecilt	Ton		
	Kies-Sand-Silt					GKIES	INIKIES	FRIES	GSanu	IVISATIU	rsanu	GSIII	INIZIII	FSIIL	< 2 µm	2-20 μm	> 20 µm
		Kies	Sand	Silt	Ton												
KB6 (3,4m)	toniger Sandsilt	3,9	23,2	54,1	18,8			3,9	5,3	6,7	11,1	21,1	18,7	14,3	18,8	33,0	48,3
KB6 (5,2m)	sandiger Tonsilt	0,4	15,9	47,3	36,3			0,4	1,7	2,8	11,5	20,9	12,8	13,7	36,3	26,4	37,2

		Statistische Parameter													
Probe		M	omentverfahre	n	Folk, R.	L. & Ward, W.	(1957)		k-Werte (m/s)						
Flobe	Sortierung	Arithmet.	Standard-	Schiefe	Arithmet.	Standard-	Schiefe	U							
	Sortierung	Mittelwert	Abweichung	Scriiere	Mittelwert	Abweichung	Scriiere		Beyer	Bialas					
KB6 (3,4m)	extrem schlecht sortiert	5,89	3,66	0,11	5,83	3,71	0,00	43,82	3,60E-09	2,90E-09					
KB6 (5,2m)	extrem schlecht sortiert	7,54	3,65	0,15	7,45	3,55	0,11	93,36	1,60E-10	1,80E-10					

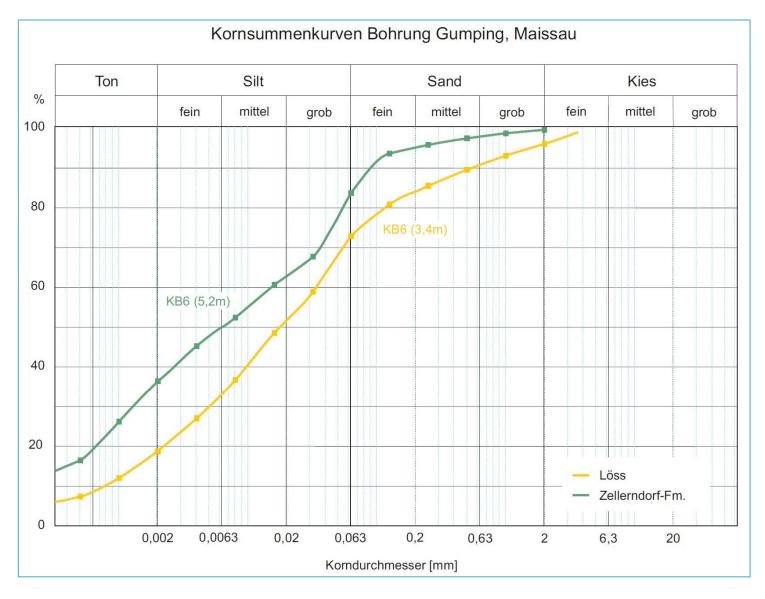


Abb. 2.1.59.: Kornsummenkurven der Proben der Bohrung KB 6 Gumping.

2.1.3. Aufnahme von Schürfen und einer Kernbohrung im Bereich der Spange Retz Ost (ÖK 9)

Im Zuge der Untersuchungen einer Spange Retz Ost im Bereich Unterretzbach – Kleinhöflein, welche Retz an die B 303 anbinden soll, wurden am 7.5.2014 zehn Baggerschürfe durchgeführt. Diese, sowie eine 20 m tiefe Kernbohrung im Norden der Trasse wurden von R. Roetzel und G. Posch-Trözmüller dokumentiert und beprobt. Die Lage der Aufschlüsse geht aus Abb. 2.1.60. und Tab. 2.1.6. hervor.

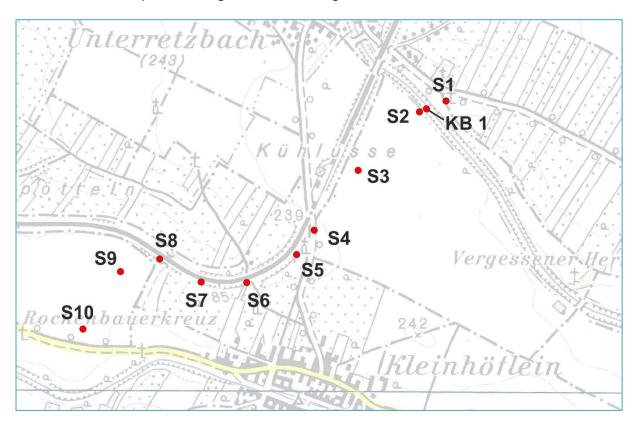


Abb. 2.1.60.: Lage der Schürfe und der Kernbohrung der Spange Retz Ost auf der topographischen Karte.

Tab. 2.1.6.: Koordinaten der Baggerschürfe und der Kernbohrung der Spange Retz Ost.

Aufschluss	RW_BMN M34	HW_BMN M34
Schurf 1	726409,6647	402705,6494
Schurf 2	726284,0526	402654,9192
Schurf 3	725994,5344	402377,6474
Schurf 4	725787,1005	402094,9224
Schurf 5	725703,3241	401979,7335
Schurf 6	725467,9866	401848,1386
Schurf 7	725252,4155	401849,9742
Schurf 8	725056,9065	401958,5311
Schurf 9	724871,3862	401899,3219
Schurf 10	724694,4074	401627,5915
KB 1 Retz	726318,0455	402669,3521

Geologie

(nach WESSELY, 2006, ROETZEL et al., 1998, ROETZEL et al., 1999)

Retz liegt am SE-Rand der Böhmischen Masse, das Kristallin wird hier vom Thaya-Batholith (Moravikum) aufgebaut. Dieser besteht vorwiegend aus dem "Hauptgranit", einem mittelkörnigen Meta-Granit oder Meta-Granodiorit mit nur etwa 5% Biotitanteil. Vereinzelt findet man Aplit- und Pegmatitgänge oder Lamprophyre.

Die Molassesedimente am SE-Rand der Böhmischen Masse spiegeln die von SE gegen N und NW vordringende marine Transgression im Eggenburgium auf das stark gegliederte Kristallin der Böhmischen Masse wider. In seichtmarinen, z.T. auch terrestrisch beeinflussten Ablagerungsräumen der beginnenden Transgressionsphase entstanden lokal sehr unterschiedliche Bereiche mit verschiedenen Lithologien und Biofazies (älteres U-Eggenburgium – älteres O-Eggenburgium, z.B. Burgschleinitz-Fm.).

Im jüngeren O-Eggenburgium wurde diese Transgression durch eine kurze Regression unterbrochen.

Im oberen Eggenburgium bis Ottnangium erfolgte eine neuerliche Transgression ("Ottnangtransgression"). Diese reichte über die vorhergehenden Ablagerungen hinaus, was auch zur Folge hatte, dass durch den so weit fortgeschrittenen Reliefausgleich die lokalen Einflüsse für die Sedimentprägung, wie sie noch bei der Ablagerung der Burgschleinitz-Fm. herrschten, nur noch untergeordnete Bedeutung hatten.

Es folgte die Ablagerung der Zogelsdorf-Fm., die aufgrund der größeren Reichweite der Transgression im Ottnangium z.T. auch direkt auf Kristallin abgelagert wurde. Es handelt sich hier um meist gut verfestigte, bioklastische Kalksteine, wobei man biofaziell einen karbonatreicheren Bereich innerhalb der Eggenburger Bucht von einem terrigenreicheren Bereich an deren Außenrand ("Zogelsdorfer Sandstein") unterscheiden kann. Im Raum Retz wurde die biostratigraphisch der Zogelsdorf-Fm. entsprechende Retz-Fm. abgelagert, die jedoch nur untergeordnet Einschaltungen von Kalkstein aufweist und lithologisch weitgehend mit der Burgschleinitz-Fm. vergleichbar ist.

Über der Retz-Fm. bzw. der Zogeldorf-Fm. folgte die Zellerndorf-Fm., vollmarine Pelite verzahnten zunächst lateral mit der Retz-/ Zogelsdorf-Fm., und folgten schließlich durch die fortschreitende Transgression als hochmarine Beckenfazies des oberen Eggenburgium bis Ottnangium. Es kam auch zur transgressiven Ablagerung von Zellerndorf-Fm. auf Kristallin. Es handelt sich bei der Zellerndorf-Fm. um vollmarine Tone und Tonmergel, die weitgehend fossilleer und kalkfrei sind. Lediglich im liegenden Bereich, am Übergang von der Zogelsdorf-Fm., sowie im hangendsten Bereich kann eine relativ reiche Mikrofauna beobachtet werden.

Im Bereich Limberg-Parisdorf ist die Limberg-Subformation der Zellerndorf-Fm. zwischengeschaltet, die aus Diatomiten besteht. Gelegentlich führen diese Menilit, eine reiche Fischfauna ist zu beobachten.

Im oberen Ottnangium folgte eine weitere Regressionsphase, die von einer neuerlichen marinen Transgression im Karpatium abgelöst wurde. Es kam die Laa-Fm. zur Ablagerung, welche fast ausschließlich E der Diendorfer Störung zu finden ist, nur in der Umgebung von Oberdürnbach und Oberretzbach ist sie in Form von Erosionsresten W der Diendorfer Störung über Eggenburgium und Ottnangium erhalten. Sie ist im W durch eine Schichtfolge von Schluffen, Sanden und Kiesen gekennzeichnet, die sowohl horizontal als auch lateral lithologisch sehr schnell wechseln. Die Ablagerungen sind z.T. tektonisch

stark gestört. Im E und SE wird die Sedimentation durch Pelit dominiert, der regelmäßig von Sanden unterbrochen ist. Aufgrund sedimentologischer Merkmale sind sie auf Sturmereignisse zurückzuführen. Darüber folgen Sedimente der Grund-Fm., der Übergang von der Laa-Fm. ist fließend. Die Grund-Fm. aus dem unteren Badenium weist in ihrem unteren, pelitischen Anteil mächtige Sandeinschaltungen auf, die auf eine submarine, energiereiche Rinnenfazies hinweisen. Nach oben hin erfolgt ein Übergang in stark verwühlte, tonige Silte mit dünnen Sandbestegen, Sedimente eines tieferen Ablagerungsbereichs unterhalb der Wellenbasis.

In Abb. 2.1.61. ist die Lage der Aufschlüsse im Überblick auf der geologischen Karte von Niederösterreich dargestellt. Die genaue Lage der Schürfe und der Kernbohrung geht aus Abb. 2.1.62. hervor.

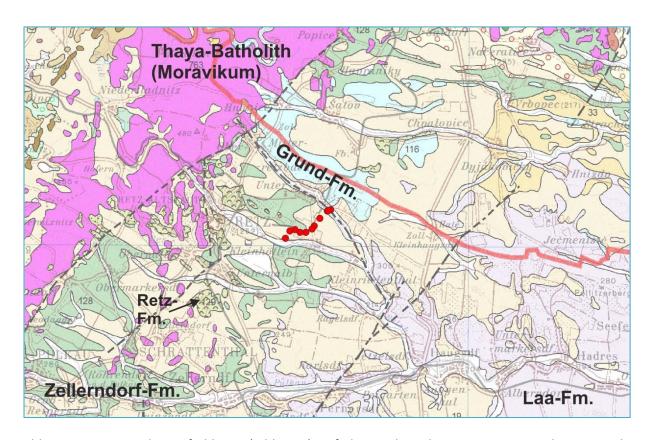


Abb. 2.1.61.: Lage der Aufschlüsse (Bildmitte) auf der geologischen Karte von Niederösterreich (SCHNABEL et al., 2002).

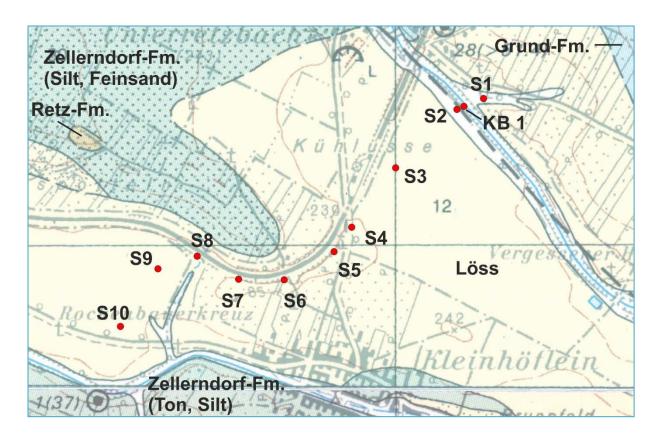


Abb. 2.1.62.: Lage der Baggerschürfe und der Kernbohrung auf der geologischen Karte von Retz (RO-ETZEL et al., 1999); ganz im Süden ist ein kleiner Streifen der geologischen Karte von Hollabrunn zu sehen (ROETZEL et al., 1998).

Beschreibung der Baggerschürfe

Die Baggerschürfe wurden am 7.5.2014 durchgeführt, der verantwortliche Geotechniker war DI Dr. Stefan Blovsky.

Schurf 1

Schurf 1, der nördlichste der künstlichen Aufschlüsse entlang der Trasse der Spange Retz Ost erreichte eine Tiefe von 2,7 m, unter dem Boden wurde zunächst Löss bis 1,5 m Tiefe aufgeschlossen, darunter folgte vermutlich solifluidal umgelagertes Material, bestehend aus tertiären Schluffen und Löss (Tab. 2.1.7., Abb. 2.1.63. und 2.1.64.).

Tab. 2.1.7.: Profil von Schurf 1.

Schurf 1	
0-0,4 m	Boden (Schluff, tonig, mittelbraun)
0,4-1,5 m	Löss, umgelagert (Schluff, tonig-feinsandig, beige-braun, mit Pseudomycelien, fein geschichtet - solifluidal verschwemmt, kalkhältig)
1,5-2,7 m (ET)	Schluff, +/- tonig-feinsandig, braun-grau gefleckt, kalkhältig; wahrscheinlich solifluidal umgelagertes, tertiäres Material, mögl. mit Löss vermischt

Abb. 2.1.63.: Lage von Schurf 1 im Norden der Trasse, Blickrichtung N.

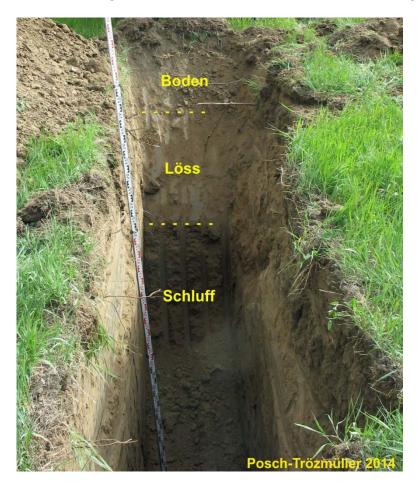


Abb. 2.1.64.: Blick in Schurf 1: Unter dem Boden ist etwa 1 m Löss zu sehen, der wiederum von Schluff unterlagert wird. Die Endteufe beträgt 2,7 m.

Schurf 2

135 m SSW von Schurf 1 und 40 m SSW der KB 1 gelegen zeigte Schurf 2 unter dem Boden ebenfalls im Hangenden eine Überlagerung aus Löss, die allerdings bereits ab 0,7 m Tiefe einen Übergang in darunter liegende anmoorige Sedimente des Landbaches erkennen ließ (Tab. 2.1.8., Abb. 2.1.65. bis 2.1.67.).

Tab. 2.1.8.: Profil von Schurf 2.

Schurf 2	
0-0,4 m	Boden (Schluff, tonig, braun)
0,4-0,7 m	Löss (Schluff, tonig), verschwemmt/ umgelagert, braun-grau
0,7-1,6 m	Schluff, braun-grau gefleckt, kalkhältig, Übergang
1,6-2,5 m (ET)	Schluff/ Ton, dunkelgrau-schwarzgrau, wenig kalkhältig-kalk- frei; anmoorige Sedimente des Tales, Wasserzufluss, spiegelt in 1 Stunde auf Höhe -2 m auf

Abb. 2.1.65.: Lage von Schurf 2 einige Meter S des Landbaches, Blickrichtung N.

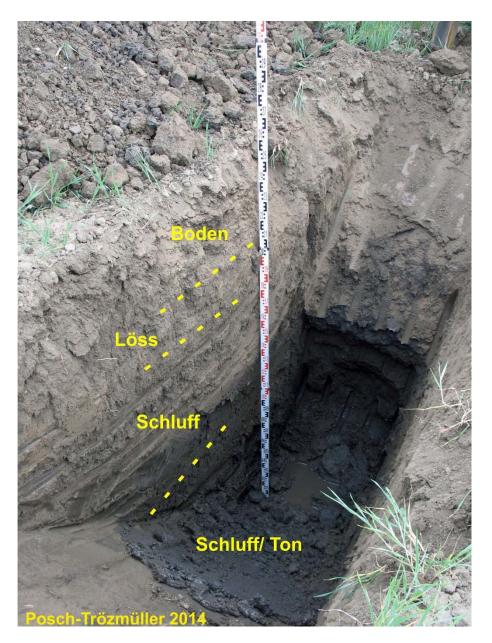


Abb. 2.1.66.: Blick in Schurf 2: Unter dem Boden waren etwa 0,3 m umgelagerter Löss zu sehen, darunter folgten dunkle Schluffe bzw. Tone.

Abb. 2.1.67.: Anmoorige Sedimente aus Schurf 2 auf dem Aushubhaufen.

Schurf 3

400 m SW Schurf 2 gelegen, zeigte Schurf 3 unter dem Boden und dem darunter folgenden Löss ab 1,1 m Tiefe sandige Schluffe mit einzelnen grobsandig-feinkiesigen Einschaltungen. Dabei handelt es sich vermutlich um solifluidal umgelagerte tertiäre Ablagerungen mit Löss (Tab. 2.1.9., Abb. 2.1.68. und 2.1.69.).

Tab. 2.1.9.: Profil von Schurf 3.

Schurf 3		
0-0,3 m	Boden (Schluff, +/- tonig, mittel- bis dunkelbraun)	
0,3-1,1 m	Löss (Schluff, feinsandig), gelbbraun, mit Pseudomycelien und Kalkkonkretionen (hart, tw. groß/ bis 10 cm), stark kalkhältig	
1,1-2,2 m (ET)	Schluff, braun, stark feinsandig, kalkhältig, gelbbraun-limonitisch/rötlich und grau gefleckt, +/- tonig, +/- geschichtet, vereinzelt mit grobsandigen-feinkiesigen Einspülungen (v.a. Quarz <3 mm) - ?Löss mit Tertiär - solifluidal umgelagert?	

Abb. 2.1.68.: Lage von Schurf 3 nahe dem Bahndamm, Blickrichtung ca. N.

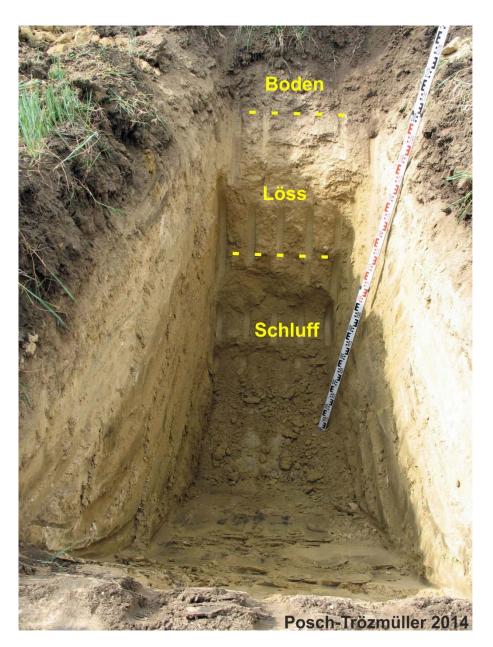


Abb. 2.1.69.: Blick in Schurf 3: Unter dem Boden ist Löss zu sehen, darunter waren tonige Schluffe aufgeschlossen.

Schurf 4

Knapp an der Straße und 350 m SSW Schurf 3 gelegen wurde auch hier unter dem Boden eine Überlagerung aus Löss bis 1,4 m Tiefe angetroffen. Darunter folgten Sande und Kiese, die der Laa-Fm. (Karpatium) oder der Grund-Fm. (unteres Badenium) zugerechnet werden können (Tab. 2.1.10., Abb. 2.1.70. bis 2.1.72.).

Tab. 2.1.10.: Profil von Schurf 4.

Schurf 4	
0-0,3 m	Boden (Schluff, +/- tonig, mittel- bis dunkelbraun, vereinzelt feinkiesig)
0,3-1,4 m	Löss (Schluff, feinsandig), gelbbraun, porös, mit Pseudomy- celien, wenige bröselige Kalkausfällungen; wird nach unten leicht sandig; mit einzelnen Grobsandkomponenten darin
1,4-2,0 m	Feinsand bis Grobsand und Kies, hellbraun, mit rein sandigen Zwischenlagen; tw. rötlich, tw. mit Schluff-"Klasten"; Korn- größe von Kies: 1-3 cm, selten bis 10 cm, schlecht bis gut ge- rundet, viel Quarz, Kristallin, Laa-Fm. oder Grund-Fm.
2,0-2,4 m (ET)	Mittelsand bis Feinsand, grobsandig, schwach kalkhältig, mit etwas Kies und kleinen Schluff-/Tonklasten (kalkig), Laa-Fm. oder Grund-Fm.

Abb. 2.1.70.: Lage von Schurf 4 neben der Straße Unterretzbach – Kleinhöflein.

Abb. 2.1.71.: Aushub von Schurf 4: Löss.

Abb. 2.1.72.: Blick in Schurf 4: Unter dem Boden war etwa 1 m Löss aufgeschlossen, darunter folgten leicht kiesige Sande der Laa-Fm. oder Grund-Fm.

Knapp 150 m SSW von Schurf 4, zwischen Straße und Bahn gelegen, zeigte das Profil von Schurf 5 unter dem Boden Löss bis 1,3 m Tiefe. Unter einem Übergangbereich wurden ab 1,7 m Tiefe Grobsand bis Feinkies aufgeschlossen, der dünnplattige Diatomitlagen enthielt. Ob es sich hierbei um Laa-Fm. (Karpatium) oder Grund-Fm. (unteres Badenium) handelt, konnte mikropaläontologisch leider nicht festgestellt werden (Tab. 2.1.11., Abb. 2.1.73. und 2.1.74.).

Tab. 2.1.11.: Profil von Schurf 5.

Schurf 5	
0-0,4 m	Boden (Schluff, +/- tonig, mittel- bis dunkelbraun, vereinzelt feinkiesig)
0,4-1,3 m	Löss (Schluff, feinsandig, gelbbraun, kalkig), Pseudomycelien, ab 1,1 m vermehrt Kalkausfällungen (kreidig)
1,3-1,7 m	Übergangsbereich: Schluff, grünlichgrau, fleckig, weiterhin Kalkausfällungen, mit etwas Kies, ?Laa-Fm. oder Grund-Fm.
1,7-2,2 m (ET)	Grobsand bis Feinkies, grau, mit weißgrauen, dünnplattigen Komponenten: Diatomitlagen, umgelagert, Laa-Fm. oder Grund-Fm.

Abb. 2.1.73.: Lage von Schurf 5 am Waldrand zwischen Bahn und Straße.

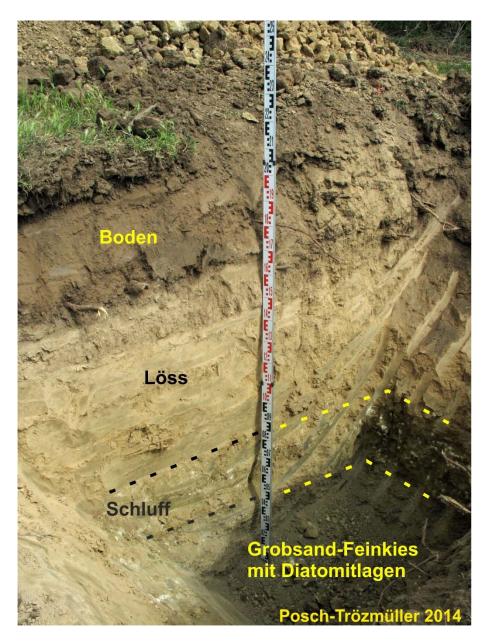


Abb. 2.1.74.: Blick in Schurf 5: Unter dem Boden sieht man zunächst Löss, der ab 1,3 m Tiefe in grünlichgrauen Schluff übergeht, im Liegendsten wurde Grobsand bis Feinkies mit Diatomitlagen aufgeschlossen.

270 m WSW Schurf 5 wurde Schurf 6 südlich der Bahn abgeteuft. Der hier mit 80 cm mächtigere Boden ließ Spuren von anthropogener Verunreinigung erkennen (Ziegelstückchen). Unter wahrscheinlich verschwemmtem Lösslehm wurde von 1 bis 2,2 m Tiefe Löss aufgeschlossen, darunter traten nach einem Übergangshorizont (feinsandig-tonige Schluffe mit etwas Kies) sandige Fein- bis Mittelkiese mit plattigen Diatomitbruchstücken auf. Auch hier konnte mikropaläontologisch nicht festgestellt werden, ob es sich hierbei um Laa-Fm. (Karpatium) oder Grund-Fm. (unteres Badenium) handelt. Die geschlämmte Probe war reich an bunten Mineralien, was die Nähe zum Kristallin anzeigt (Tab. 2.1.12., Abb. 2.1.75. und 2.1.76.).

Tab. 2.1.12.: Profil von Schurf 7.

Schurf 6	
0-0,8 m	Boden (Schluff, tonig, etwas kiesig), dunkelbraun, mit Ziegelstücken, ab 0,4 m mit massiv Pseudomycelien, sonst kalkfrei
0,8-1,0 m	Schluff, braun, kalkfrei, +/- einzelne Kiese oder Konkretionen
1,0-2,2 m	Löss (Schluff, feinsandig, gelbbraun, kalkhältig), mit Pseudomycelien
2,2-2,6 m	Übergang: Schluff, feinsandig-tonig, braungrau-grüngrau, mit etwas Kies, kalkhältig, ?Laa-Fm. oder Grund-Fm.
2,6-2,7 m (ET)	Fein-Mittelkies (Dm. 1-3 cm, quarzreich), grobsandig-mittelsandig, grau-grünlich, vereinzelt mit plattigen Diatomitbruchstücken, Laa-Fm. oder Grund-Fm.

Abb. 2.1.75.: Lage von Schurf 6 wenige Meter neben der Bahn.

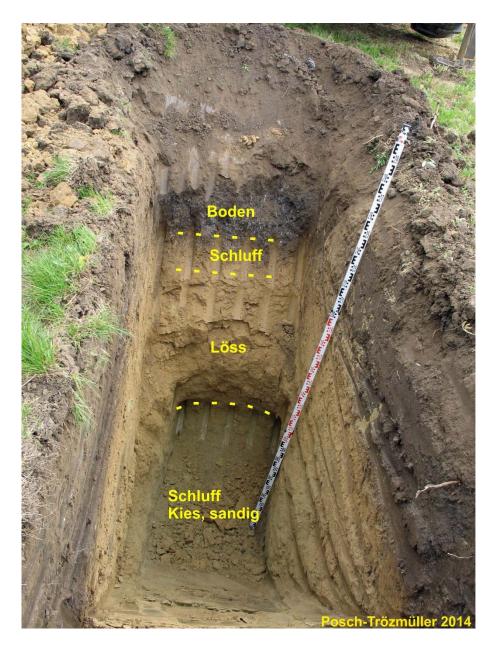


Abb. 2.1.76.: Blick in Schurf 6: Unter einer mächtigen Bodenschicht und kalkfreien Schluffen mit einzelnen Kiesen folgte von 1-2,2 m Löss, welcher zunächst in grüngraue Schluffe und im Liegendsten des Schurfs in Fein- bis Mittelkiese überging.

215 m westlich Schurf 6, ebenfalls knapp S der Bahn gelegen, war auch in Schurf 7 der 1 m mächtige Boden stark anthropogen verunreinigt. Darunter folgten Kiese in schwarzer schluffig-sandiger Matrix, wobei es sich um Terrassenkiese handeln dürfte. Im Liegenden des Schurfs wurden Schluffe der Zellerndorf-Fm. aufgeschlossen (Tab. 2.1.13., Abb. 2.1.77. bis 2.1.80.).

Tab. 2.1.13.: Profil von Schurf 7:

Schurf 7	
0-1,0 m	Boden (Schluff, sandig-tonig, vereinzelt kiesig) mit Anschüttung von Steinen, Ziegelstücken u.a. anthropogenen Teilen; bei 1,0 m: in einem Eck: Plastikbänder
1,0-1,4 m	Kies (Mittel-Grobkies), in schwarzem Schluff-Sand; Kies: teils gut, teils schlecht gerundet, v.a. <3 bis 7 cm, Terrassenkiese
1,4-2,8 m (ET)	Schluff, +/- feinsandig, gelbbraun, kalkfrei; wird nach unten fleckig (rost-gelb/ hellgrau); Zellerndorf-Fm.

Abb. 2.1.77.: Lage von Schurf 7 zwischen der Bahn und Weingärten.

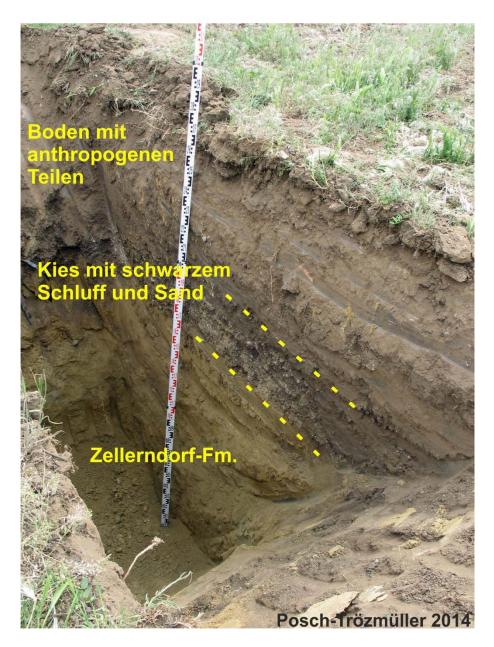


Abb. 2.1.78.: Blick in Schurf 7: Der oberste Meter von Schurf 7 war stark anthropogen beeinflusst, darunter folgten Mittel- bis Grobkiese in einer schwarzen schluffig-sandigen Matrix. Ab 1,4 m Tiefe wurden Schluffe der Zellerndorf-Fm. angetroffen.

Abb. 2.1.79.: Mittel- bis Grobkiese in schwarzer schluffig-sandiger Matrix aus 1,0 bis 1,4 m Tiefe.

Abb. 2.1.80.: Schluff der Zellerndorf-Fm. aus Schurf 7.

Schurf 8 wurde ebenfalls knapp S der Bahn, 220 m WNW Schurf 7 niedergebracht. Eine mächtige Bodenbildung aus dunkelbraun bis schwarzem Tschernosem lag über feinsandigem Schluff (?Löss), darunter traten Schluffe und Tone der Zellerndorf-Fm. zutage (Tab. 2.1.14., Abb. 2.1.81. und 2.1.82.).

Tab. 2.1.14.: Profil von Schurf 8.

Schurf 8	
0-0,8 m	Boden (Tschernosem; Schluff, tonig), dunkelbraun, kalkfrei, bis 0,3 m mit massiven weißen Ausfällungen (kein Kalk - aus Dünger?)
0,8-2,0 m	Schluff, feinsandig, gelbbraun, plastisch, weich, kalkhältig, ?Löss
2,0-2,9 m	Schluff/ Ton, gelbbraun bis graugrünlich, plastisch, schwach kalkhältig; ?Zellerndorf-Fm.
2,9-3,2 m (ET)	Schluff/ Ton, wie oben aber fester, leicht kalkhältig bis kalkfrei, Zellerndorf-Fm.

Abb. 2.1.81.: Lage von Schurf 8, Blickrichtung W. Im Hintergrund ist Retz zu sehen.

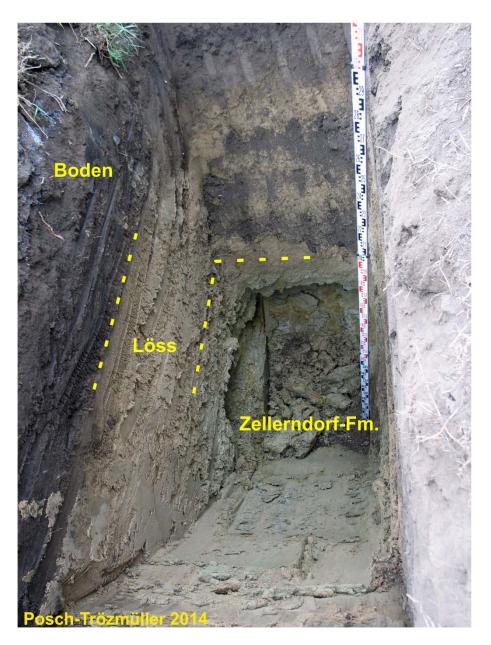


Abb. 2.1.82.: Blick in Schurf 8: Unter 0,8 m Boden wurde über 1 m Löss aufgeschlossen, darunter folgten Schluffe der Zellerndorf-Fm.

Knapp 200 m WSW Schurf 8 wurde Schurf 9 gegraben. Auch hier war ein mächtiger Tschernosem entwickelt, darunter wurden kalkfreie Schluffe mit feinkiesig-grobsandigen Einspülungen aufgeschlossen, wobei es sich um solifluidal umgelagerten Lösslehm handeln dürfte (Tab. 2.1.15., Abb. 2.1.83. bis 2.1.85.).

Tab. 2.1.15.: Profil von Schurf 9.

Schurf 9	
0-1,2 m	Boden (Tschernosem, Schluff, feinsandig-tonig, dunkelbraunschwarz)
1,2-2,7 m (ET)	Schluff, +/- tonig, kalkfrei, gelbbraun, tw. feinkiesige-grobsandige Einspülungen (feine Quarz-Kiese), ab 2,5 m: weich, plastisch; Lösslehm, solifluidal umgelagert?

Abb. 2.1.83.: Lage von Schurf 9, Blick Richtung Retz.

Abb. 2.1.84.: Blick in Schurf 9: Unter einer mächtigen Bodenbildung war ab 1,2 m Tiefe Lösslehm anzutreffen.

Abb. 2.1.85.: Mächtiger Tschernosem aus Schurf 9.

325 m SW Schurf 9 wurde durch Schurf 10 unter 0,6 m Tschernosem zunächst Lösslehm und in weiterer Folge Löss aufgeschlossen (Tab. 2.1.16., Abb. 2.1.86. und 2.1.87.).

Tab. 2.1.16.: Profil von Schurf 10.

Schurf 10	
0-0,6 m	Boden (Tschernosem, Schluff, tonig, schwarzbraun)
0,6-1,1 m	Schluff, feinsandig-tonig, gelbbraun, kalkfrei; Lösslehm
1,1-2,3 m (ET)	Löss (Schluff, feinsandig-tonig), gelbbraun, stark kalkhältig

Abb. 2.1.86.: Lage von Schurf 10, Blickrichtung S.

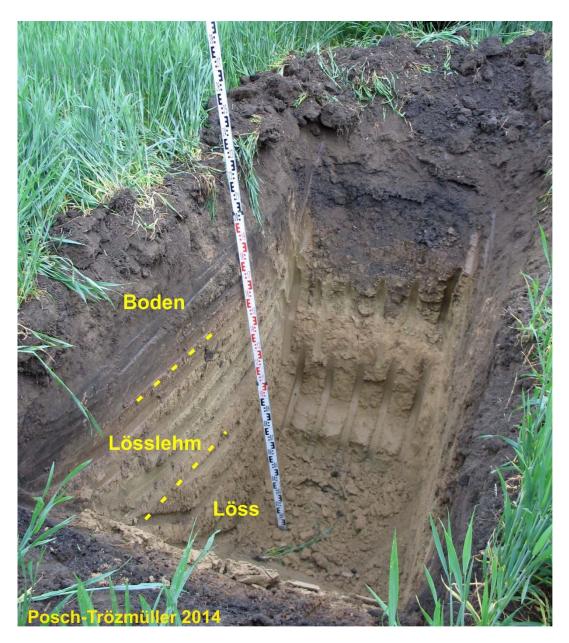


Abb. 2.1.87.: Blick in Schurf 10: Unter 0,6 m Boden (Tschernosem) wurde zunächst Lösslehm, und darunter Löss angetroffen.

Kernbohrung KB1

Die Kernbohrung wurde zwischen den Schürfen 1 und 2 abgeteuft, unmittelbar südlich des Landbaches (Abb. 2.1.60., 2.1.62.). Aufgrund dieser Position sind die mächtigen anmoorigen Ablagerungen, die in der Bohrung bis in eine Tiefe von 8,5 m angetroffen wurden, zu erklären. Auch im nahen Schurf 2 kamen derartige anmoorige Sedimente zutage (Abb. 2.1.67.). Überlagert werden diese durch Boden und Schwemmlöss.

Im Liegenden der anmoorigen Sedimente wurden bis zur Endteufe in 20 m Schluffe und Tone erbohrt, die entweder der Laa-Fm. (Karpatium) oder der Zellerndorf-Fm. (Ottnangium) zuzurechnen sind.

In Tab. 2.1.17. ist das Profil der Bohrung dargestellt, Abb. 2.1.88. bis 2.1.90. liefern eine Fotodokumentation der Bohrkerne.

Tab. 2.1.17.: Profil der Kernbohrung KB1.

KB 1 Spange Retz Ost										
Tiefe	Lithologie	Lithostratigraphie	Bemerkung							
0-1,75 m	Schluff, tonig, dunkelbraun, kalkhältig, teils fester Kern, teils zerbrochen;	Boden und Schwemmlöss								
1,75-2,2 m	Schluff, tonig, braun-grau bis rostbraun gefleckt, stark kalkhältig, ?Pflanzenreste									
2,2-3,95 m	Schluff/ Ton, plastisch, kalkfrei bis schwach kalkhältig, dunkel-graubraun	Anmoor	Probe 3,7 - 3,8 m							
3,95-4,0 m	Feinsand-Mittelsand, tonig/ schluffig, grau	Anmoor								
4,0-5,6 m	Schluff, plastisch-weich, graubraun, kalkfrei	Anmoor								
5,6-6,0 m	Schluff/ Ton, plastisch, dunkelgrau-schwarzgrau, kalkfrei; 5,6-5,8 m: grau, leicht grobsandig, 5,8-6,0 m: Ton, schwarzgrau, fest	Anmoor	Probe 5,95 - 6,0 m							
6,0-6,8 m	Schluff, leicht grobsandig, grau, weich, plastisch, kalkfrei	Anmoor								
6,8-8,5 m	Schluff/ Ton, fester Kern, dunkelgrau, kalkfrei, ab 8,0 m: graurostrot gefleckt	Anmoor								
8,5-10,0 m	Schluff, tonig, stark grobsandig, schlecht sortiert, grau, kalkfrei, ab 9,3 m: mit Kies (Quarz bis 5 cm)	Laa-Fm. oder Zel- lerndorf-Fm.	Kernverlust, Sediment ge-							
10,0-11,0 m	Schluff/ Ton, z.T. sandig, vereinzelt kiesig, grau	Laa-Fm. oder Zel- lerndorf-Fm.	mischt							
11,0-12,0 m	Schluff/ Ton, braungrau, mit einzelnen gut gerundeten, matrix- gestützten (Quarz-)Kiesen bis 3 cm, fester Kern, grau-Anteil nimmt nach unten zu, kalkfrei	Laa-Fm. oder Zel- lerndorf-Fm.	Probe 11,35 - 11,4 m							
12,0-20,0 m	Schluff/ Ton, glimmerig, fester Kern, kalkfrei, dunkelgrau; Festigkeit wechselt, scheint bioturbat/ durchwühlt zu sein; bei 19,95 m: Molluskenbruchstück	Laa-Fm. oder Zel- lerndorf-Fm.	Probe 13,7 m, Probe 19,9 - 19,95 m							
Grundwasser	bei: 2,9 m und 9,0 m (spiegelt nach 1/2 Stunde auf 8,2 m auf)									

Abb. 2.1.88.: KB 1 Spange Retz Ost: 0-8 m.

Abb. 2.1.89.: KB 1 Spange Retz Ost: 8-16 m.

Abb. 2.1.90.: KB 1 Spange Retz Ost: 16-20 m.

Proben und Analysen

Insgesamt wurden im Zuge der Schurf- und Bohrkernaufnahmen 17 Proben genommen, davon 5 aus der Kernbohrung und 12 aus den Schürfen. 16 Proben wurden Analysen der Gesamt- und Tonmineralogie, der Granulometrie und der Geochemie unterzogen, 2 Proben wurden mikropaläontologisch untersucht. Alle Proben und durchgeführten Analysen sind in Tab. 2.1.18. dargestellt.

Mikropaläontologische Untersuchungen

Untersuchung auf Foraminiferen (H. Gebhardt)

Schurf 5, 1,5 m

Sand und Kies, fast keine Mikrofauna, weder Nachweis für Laa-Fm. noch für Grund-Fm., beides möglich.

Schurf 6, 2,5 m

Sand und Kies, fast keine Mikrofauna, weder Nachweis für Laa-Fm. noch für Grund-Fm., beides möglich, reich an bunten Mineralien (nahes Kristallin).

Die Untersuchung beider Proben auf **kalkiges Nannoplankton** durch **St. Ćorić** brachte leider kein Ergebnis, da keine der beiden Proben kalkiges Nannoplankton enthielt.

Tab. 2.1.18.: Probenliste Spange Retz Ost.

	Pro	benliste Spange Retz Ost		durchgef	ührte Ana	llysen	
Aufschluss	Tiefe	Beschreibung	Mineralogie	Korngröße	Chemie	Mikropaläontologie	
KB 1 Retz	3,7-3,8 m	Schluff/ Ton, plastisch, kalkfrei bis schwach kalkhältig, dunkelgraubraun	Х	Х	х		
	5,95-6,0 m	Ton, schwarz, fest, kalkfrei	Х	Х	Х		
	11,35-11,40 m	Schluff/ Ton, braungrau, mit einzelnen (Quarz-)Kiesen bis 3 cm, fester Kern, grau-Anteil nimmt nach unten zu, kalkfrei	х	Х	х		
	13,7 m	Schluff/ Ton, fester Kern, kalkfrei, dunkelgrau; Festigkeit wechselt, scheint bioturbat/ durchwühlt zu sein	х	х	х		
	19,9-19,95 m	Schluff/ Ton, fester Kern, kalkfrei, dunkelgrau; Festigkeit wechselt, scheint bioturbat/ durchwühlt zu sein, bei 19,95 m: Molluskenbruchstück	Х	Х	х		
Schurf 3	0,9 m	Löss	X	X	x		
Schurf 4	0,8 m	Löss	Х	Х	Х		
Schurf 5	1,1 m	Löss	Х	Х	Х		
	1,5 m	Übergangsbereich: Schluff, tonig-feinsandig, etwas kiesig, grüngrau	Х	Х	х	Х	
	1,7-2,2 m	Diatomit im Kies					
Schurf 6	1,6 m	Löss	Х	Х	Х		
	2,5 m	Übergangsbereich: Schluff, sandig-tonig, braun-grau, kalkig, fleckig, tw. rot, tw. mit etwas Kies; Mikropaläon- tologie: kein Nachweis für Laa- od. Grund-Fm., aber reich an bunten Mineralien: Kristallin nahe	х	х	х	х	
Schurf 7	Zellerndorf-Fm.: Schluff, feinsandig, gelbbraun-grüngrau, kalkfrei		Х	Х	х		
Schurf 8	1,5-2,0 m	Löss	Х	Х	Х		
	3,2 m	Zellerndorf-Fm.: Schluff, tonig-feinsandig, grüngraugelborange fleckig, kalkfrei	Х	Х	х		
Schurf 9	2,0 m	Lösslehm	Х	Х	Х		
Schurf 10	2,2 m	Löss, tonig	Х	Х	Х		

Mineralogische Untersuchungen

Im Mai 2014 wurde eine große Anzahl von Kernbohrungen und Schürfen im Rahmen des Bauvorhabens der Umfahrung "Spange Ost" im Pulkautal lithologisch aufgenommen und beprobt. Die stratigraphische Einstufung der Proben in das Quartär (Lösse, Lösslehme, Anmoor) und Neogen (Badenium, Karpatium, Eggenburgium-Ottnangium) basiert auf der geologischen Karte von SCHNABEL et al. (2002). Mikropaläontologische Untersuchungen, die an der Geologischen Bundesanstalt durchgeführt wurden, waren aufgrund der Fossilfreiheit nicht verwertbar. Für mineralogische und korngrößenmäßige Analysen wurden insgesamt 16 Proben aus einer Kernbohrungen und acht Schürfen ausgewählt.

Gesamtmineralogische Analysen (Abb. 2.1.91., 2.1.92.)

Die bearbeiteten Proben umfassen stratigraphisch Sedimente des Quartär und Neogen.

Aus der *Kernbohrung KB 1* wurden fünf Proben analysiert. Die beiden hangenden, sehr dunklen, feinkörnigen Sedimentproben wurden als quartäre, anmoorige Ablagerungen bezeichnet. Gesamtmineralogisch sind sie bis auf den Karbonatgehalt gleich zusammengesetzt mit einer Dominanz an Schichtsilikaten gegenüber Quarz. Die Gesamtfeldspatgehalte liegen bei knapp 15 Gew. %. Die hangende Probe bei 3,7 m erreicht 8 Gew. % Karbonat, die Probe bei 5,95 m ist karbonatfrei. Die neogenen Sedimente (Laa- oder Zellerndorf-Formation) der Bohrung sind ebenfalls durch einen Überhang an Schichtsilikaten gegenüber Quarz gekennzeichnet. Die Feldspatgehalte liegen unter 15 Gew. %, alle Proben sind karbonatfrei. In den beiden liegendsten Proben konnte Pyrit nachgewiesen werden.

Granulometrisch (Tab. 2.1.19., 2.1.20., Abb. 2.1.95.-2.1.107.) ist innerhalb der Bohrung KB 1 kein markanter Unterschied zwischen quartären und neogenen Sedimenten zu beobachten. Das Korngrößenmaximum liegt bis auf eine Ausnahme (Probe bei 5,95 m) im Grobsiltbereich. Zweitstärkste Korngröße bildet die Tonfraktion die relativ einheitlich im Mittel um 35 Gew. % rangiert. Unter 20 Gew. % aber mit großen Schwankungen liegt der Feinsandanteil. Nach der Klassifizierung von MÜLLER (1961) und FÜCHTBAUER (1959) werden die Sedimente als sandige Tonsilte, Silttone und Tonsilte bezeichnet.

Die *quartären Sedimente der acht bearbeiteten Schürfe* zeichnen sich mehrheitlich durch ein Vorherrschen von Quarz gegenüber den Schichtsilikatanteilen aus. Die Quarzgehalte schwanken zwischen 32 und 51 Gew. %, die Schichtsilikate zwischen 27 und 37 Gew. %. Bis auf eine Ausnahme (Schurf 9; 2,0 m) enthalten die Proben Karbonatanteile um die 20 Gew. %. Der Feldspatgehalt liegt bei maximal 17 Gew. %, wobei sowohl Alkalifeldspat als auch Plagioklas dominant sein können. Die Sedimente wurden als Lösse bzw. Lösslehme (karbonatfrei) bezeichnet. Vereinzelt tritt Goethit und Hornblende im Spektrum auf.

Auch die **Korngrößenzusammensetzung** mit einem Maximum innerhalb der Grobsiltfraktion entspricht der typischer Lösse. Der Tonanteil variiert zwischen 23 und 27 Gew. %, der Sandgehalt liegt praktisch immer unter 15 Gew. %. Die Ausnahme, der Lösslehm aus dem Schurf 9, zeichnet sich durch einen Überhang im Feinsandbereich aus. Die Klassifizierung von MÜLLER (1961) und FÜCHTBAUER (1959) weist die Proben als tonige, sandige Silte bzw. sandige Tonsilte aus.

Die neogenen Sedimente (Laa- Grund- oder Zellerndorf-Formation) in den Schürfen unterliegen großen Schwankungen in ihrer gesamtmineralogischen Zusammensetzung. Es überwiegen abwechselnd

Quarz- oder Schichtsilikatanteile in Abhängigkeit vom Korngrößenaufbau. Innerhalb der Feldspäte, deren Anteil zwischen 11 und 19 Gew. % liegt, überwiegt immer Albit. Der Karbonatgehalt zeigt ebenfalls stark wechselnde Zusammensetzung, generell ist er aber eher niedrig mit maximal 11 Gew. %.

Granulometrisch dominiert entweder die Feinsand- oder Grob- bis Mittelsiltfraktion. Vereinzelt treten auch Kiesanteile mit bis zu 14 Gew. % im Kornaufbau hinzu. Innerhalb der Felder von MÜLLER (1961) und FÜCHTBAUER (1959) werden die Sedimente als tonige Siltsande bzw. tonige Sandsilte bezeichnet.

Die tonmineralogischen Analysen wurden an der Fraktion <2 µm durchgeführt (Abb. 2.1.93., 2.1.94.).

Anhand der *Tonmineralzusammensetzung der Bohrung KB 1* kann zwischen quartären anmoorigen und neogenen Sedimenten unterschieden werden. Die *quartären Proben* zeichnen sich durch eine prägnante Vormacht an Illit/Hellglimmerspektren aus. Quellfähige Smektite, Kaolinit und Chlorit sind mit Anteilen von 11 bis 15 Gew. % vertreten. Vermiculit konnte in allen Proben nachgewiesen werden. Innerhalb der *neogenen Proben* ist ein ± ausgewogenes Verhältnis von quellfähigen Smektiten und Illit/Hellglimmer gegeben. Kaolinit erreicht bis zu 20 Gew. %, Chlorit ist nur untergeordnet vertreten, Vermiculit fehlt praktisch in fast allen Analysen.

Die quartären Lössproben aus den Schürfen sind charakterisiert durch sehr hohe Kaolinitgehalte mit bis zu 38 Gew. %, die teilweise die dominante Tonmineralphase bilden. Als zweitstärkste Phase tritt überwiegend quellfähiger Smektit auf, gefolgt von Illit/Hellglimmer und Chlorit. Vermiculite sind praktisch nicht vorhanden. Die sehr hohen Kaolinitgehalte, wahrscheinlich Verwitterungsprodukte von Feldspäten, lassen auf starken Einfluss kristalliner Liefergebiete schließen.

Bei den *neogenen Sedimenten aus den Schürfen* dominiert immer quellfähiger Smektit (60-72 Gew. %) ganz eindeutig das Spektrum. Illit/Hellglimmer und Kaolinit treten stark zurück, Chlorit ist zumeist nicht vorhanden.

Geochemische Untersuchungen

Alle Proben wurden an der Fachabteilung Geochemie der Geologischen Bundesanstalt auf Haupt- und Spurenelemente untersucht (Tab. 2.1.21.). Die grobkörnigeren Sedimente (siehe Probe KB 2; 18,5 m) zeigen eine Vormacht an SiO₂, die aus den hohen Gehalten von Quarz resultieren. Die Al₂O₃-Gehalte spiegeln im Wesentlichen den Tonmineralgehalt wider und zeigen entsprechend den röntgenographischen Analysen relativ einheitliche Werte. Die K₂O-Anteile sind sowohl für die Hellglimmeranteile als auch für die Kalifeldspatgehalte verantwortlich. Mittels des Na₂O-Gehaltes können die Albitanteile ermittelt werden. Die schwankenden Gehalte vor allem von CO₂ aber auch CaO und MgO passen sehr gut zu den variierenden Karbonatgehalten der Gesamtmineralogie. Die erhöhten SO₃-Werte der Proben KB1 (13,7 m) und KB1 (19,9 m) sind mit dem Auftreten von Pyrit im Sediment in Verbindung zu setzen.

Baustelle "Spange Retz Ost" (ÖK 9)

GESAMTMINERA	ALOGISCH	IE ZUSAMMENSE	TZUNG				
Probenummer	Quarz%	Alkalifeldspat%	Plagioklas%	Calcit%	Dolomit%	Schichtsilikate%	Lithologie /Stratigraphie
KB1 (3,7m)	34	5	9	5	3	44	Schluff, Ton (Quartär, Anmoor)
KB1 (5,95m)	34	7	6	0	0	55	Schluff, Ton (Quartär, Anmoor)
KB1 (11,35m)	37	5	8	0	0	50	Schluff, Ton,kiesig (Neogen, Laa-od. Zellerndorf Fm.)
KB1 (13,7m)	40	6	5	1	0	48	Schluffstein (Neogen, Laa-od. Zellerndorf Fm.), Pyrit
KB1 (19,9m)	38	5	7	0	0	50	Schluffstein (Neogen, Laa-od. Zellerndorf Fm.), Pyrit
	0.0		0	4.4		07	
Schurf3 (0,9m)	36	3	9	11	4	37	Schluff, sandig (Quartär, Löss)
Schurf4 (0,8m)	32	8	9	14	5	32	Schluff, sandig (Quartär, Löss)
Schurf5 (1,1m)	37	6	9	12	6	30	Schluff, sandig (Quartär, Löss), Hornblende
Schurf5 (1,5m)	35	5	6	4	3	47	Schluff, tonig (Neogen, Laa-od. Grund Fm.)
Schurf6 (1,6m)	34	8	8	15	6	29	Schluff, sandig (Quartär, Löss)
Schurf6 (2,5m)	43	5	11	3	0	38	Schluff, sandig (Neogen, Laa-od. Grund Fm.)
Schurf7 (2,0m)	40	4	9	11	0	36	Schluff, sandig (Neogen, Zellerndorf Fm.)
Schurf8 (1,5m)	36	10	7	15	5	27	Schluff, sandig (Quartär, Löss)
Schurf8 (3,2m)	45	9	12	0	0	34	Schluff, sandig (Neogen, Zellerndorf Fm.)
Schurf9 (2,0m)	51	3	10	0	0	36	Schluff, sandig (Quartär, Lösslehm?)
Schurf10 (2,2m)	36	9	8	8	5	34	Schluff, sandig (Quartär, Löss)

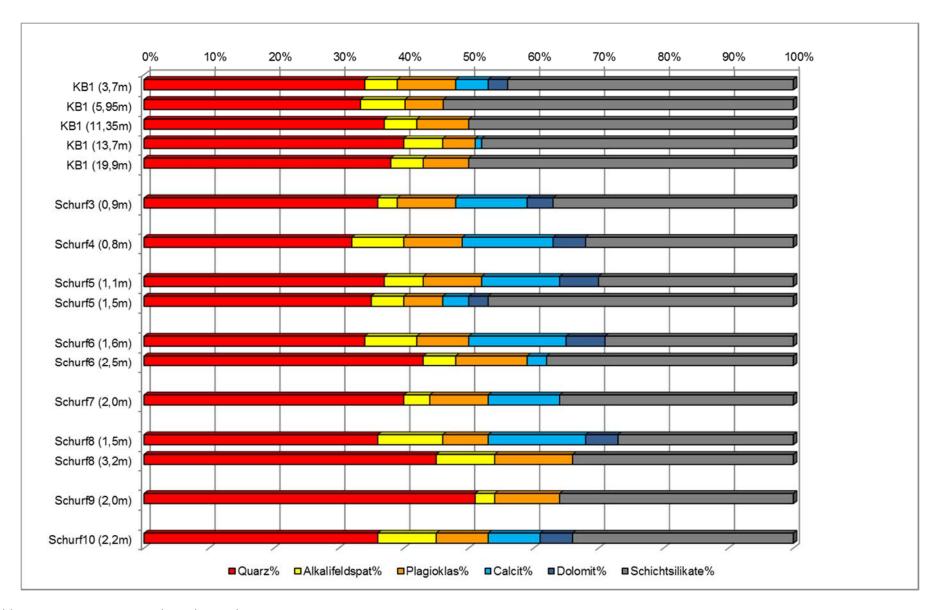


Abb. 2.1.92.: Gesamtmineralogische Analysen: Diagramm.

Baustelle "Spange Retz Ost" (ÖK 9)

TONMINERALOG	ISCHE ZUSAMMENSE	TZUNG				
	Smektit %					
Probenummer	niedrig/hoch	Illit-Glimmer%	Kaolinit%	Chlorit%	Vermiculit%	Lithologie /Stratigraphie
KB1 (3,7m)	12	60	15	11	2	Schluff, Ton (Quartär, Anmoor);Biotit
KB1 (5,95m)	16	59	13	5	7	Schluff, Ton (Quartär, Anmoor);Biotit
KB1 (11,35m)	45	29	18	2	6	Schluff, Ton,kiesig (Neogen, Laa-od. Zellerndorf Fm.);
KB1 (13,7m)	35	42	17	6	0	Schluffstein (Neogen, Laa-od. Zellerndorf Fm.); Hydrobiotit
KB1 (19,9m)	33	39	20	8	0	Schluffstein (Neogen, Laa-od. Zellerndorf Fm.); Hydrobiotit
Schurf3 (0,9m)	42	18	21	9	10	Schluff, sandig (Quartär, Löss)
Schurf4 (0,8m)	28	20	38	14	0	Schluff, sandig (Quartär, Löss)
Schurf5 (1,1m)	33	17	38	12	0	Schluff, sandig (Quartär, Löss)
Schurf5 (1,5m)	72	14	11	3	0	Schluff, tonig (Neogen, Laa-od. Grund Fm.)
Schurf6 (1,6m)	23	27	33	17	0	Schluff, sandig (Quartär, Löss); Goethit
Schurf6 (2,5m)	61	12	14	0	13	Schluff, sandig (Neogen, Laa-od. Grund Fm.)
Schurf7 (2,0m)	72	18	9	0	0	Schluff, sandig (Neogen, Zellerndorf Fm.)
Schurf8 (1,5m)	18	28	31	23	0	Schluff, sandig (Quartär, Löss); Goethit
Schurf8 (3,2m)	60	26	9	0	5	Schluff, sandig (Neogen, Zellerndorf Fm.)
Schurf9 (2,0m)	59	26	15	0	0	Schluff, sandig (Quartär, Lösslehm?)
Schurf10 (2,2m)	37	24	32	7	0	Schluff, sandig (Quartär, Löss); Goethit

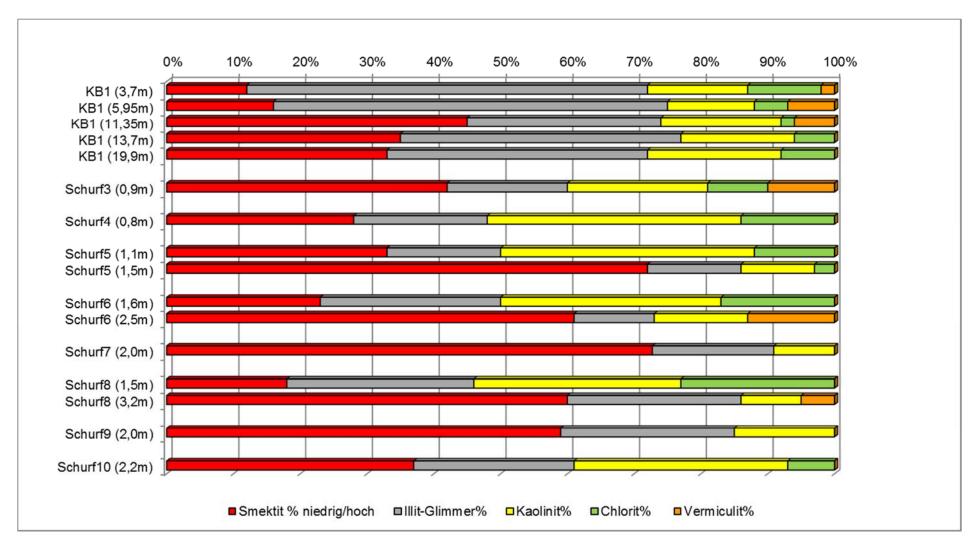


Abb. 2.1.94.: Tonmineralogische Analysen: Diagramm.

Tab. 2.1.19.: Korngrößen der Proben der Kernbohrung und der Schürfe Spange Retz Ost.

	Müller, G. (1959) & Füchtbauer, H. (1961)												Wink	ler, H.G.F.	(1954)		
	Benennung	Gewichtsprozent															
Probe	benefititing						Kies		Sand			Silt					
	Sand-Silt-Ton					Gkies	Mkies	Fkies	Gsand	Msand	Fsand	Gsilt	Msilt	Fsilt	Ton < 2 µm	2-20 µm	> 20 µm
		Kies	Sand	Silt	Ton										- 2 μπ	Σ-20 μπ	- 20 μπ
KB1 (3,7m)	sandiger Tonsilt	0,0	18,7	45,0	36,3				0,8	3,1	14,8	17,1	15,3	12,5	36,3	27,9	35,8
KB1 (5,95m)	Siltton	0,0	4,7	36,7	58,6				0,2	0,7	3,7	8,2	14,6	13,8	58,6	28,5	12,9
KB1 (11,35m)	sandiger Tonsilt	0,1	18,0	46,2	35,7			0,1	3,9	2,3	11,8	21,4	13,5	11,4	35,7	24,9	39,4
KB1 (13,7m)	Tonsilt	0,0	5,6	55,6	38,9				0,1	0,1	5,4	21,1	19,8	14,6	38,9	34,5	26,7
KB1 (19,9m)	sandiger Tonsilt	0,0	13,1	56,4	30,5				0,3	0,1	12,7	28,8	15,4	12,2	30,5	27,6	41,9
Schurf3 (0,9m)	tonig-sandiger Silt	1,0	17,3	58,6	23,1		0,3	0,7	1,4	2,8	13,1	22,2	20,9	15,5	23,1	36,4	40,5
Schurf4 (0,8m)	sandiger Tonsilt	0,5	10,1	61,5	27,9			0,5	0,9	1,5	7,6	23,5	22,0	16,0	27,9	38,0	34,1
Schurf5 (1,1m)	tonig-sandiger Silt	0,3	11,5	64,0	24,3			0,3	0,9	1,6	9,0	27,4	22,9	13,7	24,3	36,6	39,1
Schurf5 (1,5m)	toniger Siltsand	4,0	36,0	35,8	24,2		0,6	3,3	3,1	10,0	22,9	15,7	9,0	11,1	24,2	20,1	55,7
Schurf6 (1,6m)	sandiger Tonsilt	1,7	12,9	58,5	26,8			1,7	1,5	2,3	9,1	23,3	21,3	13,9	26,8	35,2	38,0
Schurf6 (2,5m)	toniger Siltsand	14,3	37,4	28,9	19,3		6,8	7,5	7,0	8,1	22,3	11,6	9,5	7,8	19,3	17,3	63,4
Schurf7 (2,0m)	Sandsiltton	0,2	31,7	43,0	25,1			0,2	1,0	1,6	29,1	23,4	10,3	9,4	25,1	19,6	55,3
Schurf8 (1,5m)	sandiger Tonsilt	2,4	13,1	57,7	26,9			2,4	2,9	2,5	7,7	20,4	23,0	14,3	26,9	37,3	35,8
Schurf8 (3,2m)	toniger Sandsilt	0,4	29,3	50,9	19,4			0,4	2,5	1,3	25,4	31,4	11,7	7,9	19,4	19,6	61,0
Schurf9 (2,0m)	toniger Siltsand	0,2	45,2	30,7	23,9			0,2	1,2	5,5	38,5	15,4	7,5	7,7	23,9	15,3	60,8
Schurf10 (2,2m)	sandiger Tonsilt	0,6	12,0	60,4	27,0			0,6	1,0	2,2	8,7	27,2	21,8	11,4	27,0	33,2	39,8

Tab. 2.1.20.: Korngrößen der Proben der Kernbohrung und der Schürfe Spange Retz Ost: Statistische Parameter.

	Statistische Parameter													
Probe		Mo	omentverfahren		Folk, R		k-Werte (m/s)							
	Sortierung	Arithmet.	Standard-	Schiefe	Arithmet.	Standard-	Schiefe	U	K-VVCI (.e (III/5)				
	Sortierung	Mittelwert	Abweichung	Scillete	Mittelwert	Abweichung	Scillete		Beyer	Bialas				
KB1 (3,7m)	extrem schlecht sortiert	7,97	4,14	0,39	7,82	4,19	0,27	267,51	1,60E-11	4,30E-11				
KB1 (5,95m)	extrem schlecht sortiert	10,53	4,11	-0,18	10,45	4,34	0,13	206,66	7,10E-13	3,60E-13				
KB1 (11,35m)	extrem schlecht sortiert	7,82	4,37	0,30	7,84	4,44	0,26	396,7	1,30E-11	3,00E-11				
KB1 (13,7m)	extrem schlecht sortiert	8,22	3,25	0,36	8,00	3,30	0,20	73,90	9,50E-11	1,10E-10				
KB1 (19,9m)	extrem schlecht sortiert	7,29	3,28	0,62	7,08	3,18	0,35	93,82	3,60E-10	3,20E-10				
Schurf3 (0,9m)	extrem schlecht sortiert	6,77	3,27	0,35	6,72	3,14	0,19	39,77	1,60E-09	1,20E-09				
Schurf4 (0,8m)	extrem schlecht sortiert	7,29	3,15	0,35	7,17	3,02	0,24	40,05	8,40E-10	5,60E-10				
Oction 4 (0,011)	extrem schiedit somert	7,29	3,13	0,33	7,17	3,02	0,24	40,05	0,400-10	5,00⊑-10				
Schurf5 (1,1m)	extrem schlecht sortiert	6,74	2,68	0,23	6,77	2,50	0,18	21,08	4,90E-09	1,20E-09				
Schurf5 (1,5m)	extrem schlecht sortiert	5,83	4,05	0,32	5,66	4,05	0,31	150,8	1,10E-09	9,00E-10				
Schurf6 (1,6m)	extrem schlecht sortiert	6,96	3,37	0,18	6,93	3,19	0,20	41,78	1,10E-09	7,20E-10				
Schurf6 (2,5m)	extrem schlecht sortiert	4,63	4,85	0,18	4,33	5,14	0,20	241,26	9,30E-10	2,90E-09				
(=,0)	CARCIN GOINGOIL GOILGIC	1,00	1,00	0,01	1,00	0,11	0,10	211,20	0,002 10	2,002 00				
Schurf7 (2,0m)	extrem schlecht sortiert	6,57	3,69	0,83	6,35	3,40	0,65	220,09	3,30E-10	5,20E-10				
Colourfo (4 Em)							0.10		2 2 2 2 4 2	2 2 2 2 1 2				
Schurf8 (1,5m)	extrem schlecht sortiert	6,97	3,56	0,03	6,99	3,56	0,12	49,17	6,30E-10	6,00E-10				
Schurf8 (3,2m)	extrem schlecht sortiert	6,10	3,51	0,99	6,03	3,16	0,66	125,74	1,00E-09	2,70E-09				
Schurf9 (2,0m)	extrem schlecht sortiert	6,15	3,95	0,90	5,95	3,74	0,67	373,14	2,20E-10	6,00E-10				
Schurf10 (2,2m)	extrem schlecht sortiert	7,23	3,57	0,59	7,12	3,41	0,38	122,47	1,60E-10	3,80E-10				

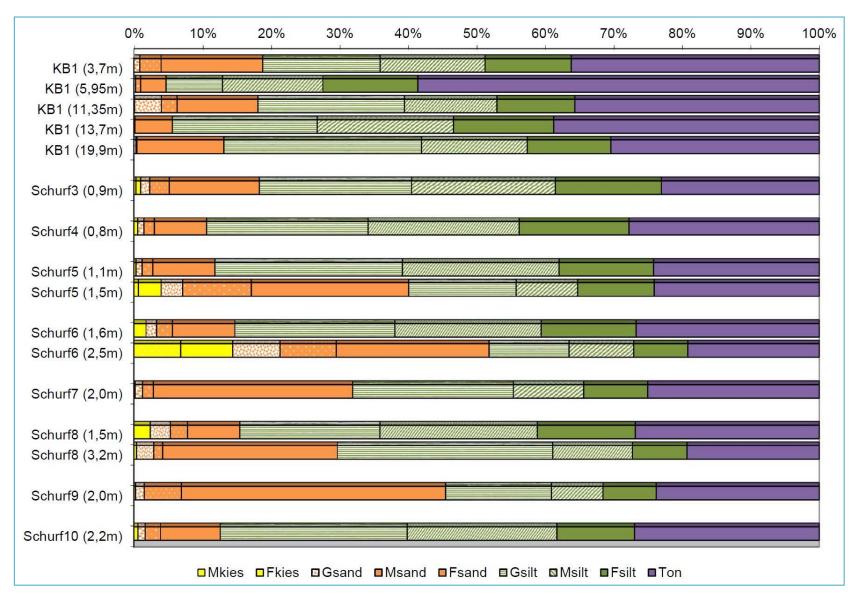


Abb. 2.1.95.: Korngrößen-Diagramm der Proben der Kernbohrung und der Schürfe Spange Retz Ost.

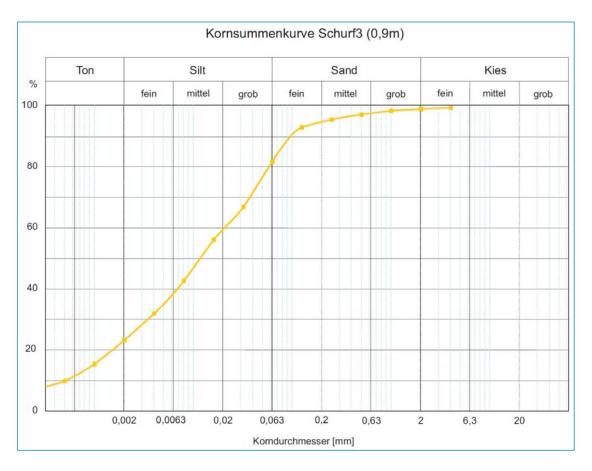


Abb. 2.1.96.: Kornsummenkurve der Probe Schurf 3, 0,9 m Tiefe.

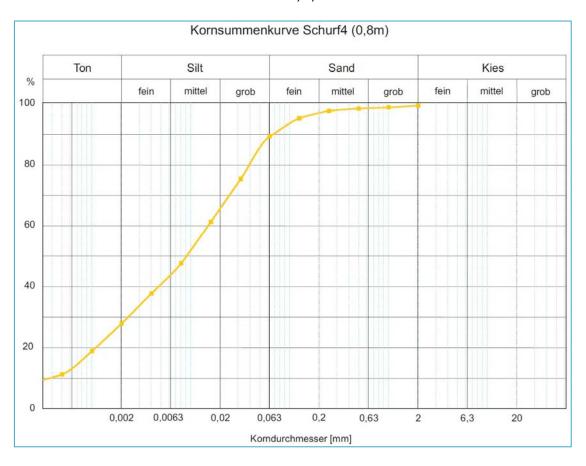


Abb. 2.1.97.: Kornsummenkurve der Probe Schurf 4, 0,8 m Tiefe.

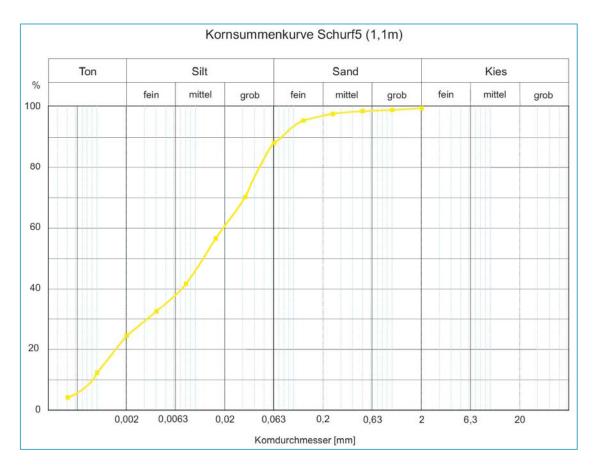


Abb. 2.1.98.: Kornsummenkurve der Probe Schurf 5, 1,1 m Tiefe.

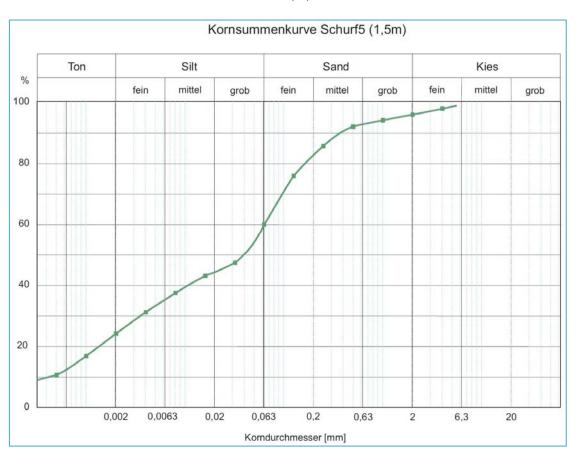


Abb. 2.1.99.: Kornsummenkurve der Probe Schurf 5, 1,5 m Tiefe.

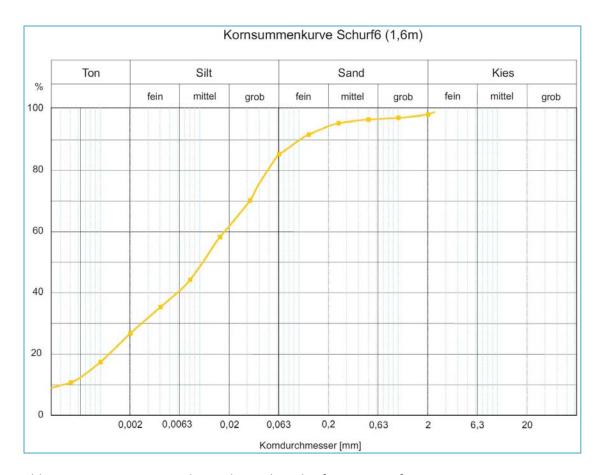


Abb. 2.1.100.: Kornsummenkurve der Probe Schurf 6, 1,6 m Tiefe.

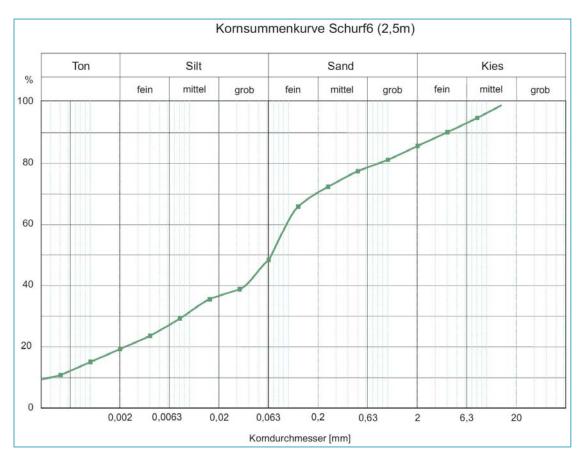


Abb. 2.1.101.: Kornsummenkurve der Probe Schurf 6, 2,5 m Tiefe.

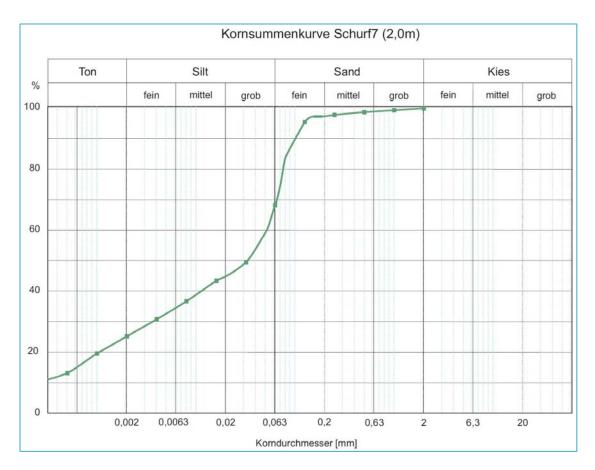


Abb. 2.1.102.: Kornsummenkurve der Probe Schurf 7, 2,0 m Tiefe.

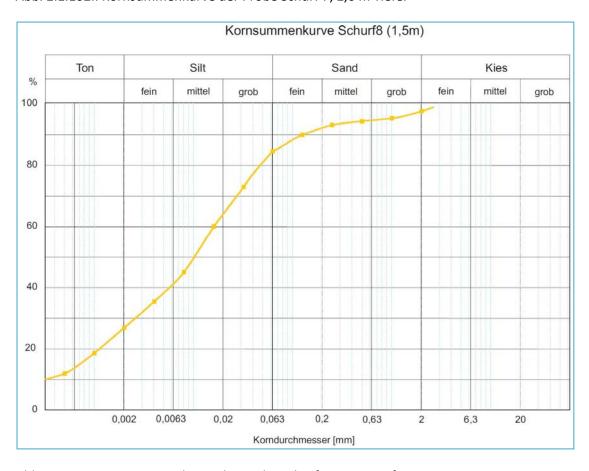


Abb. 2.1.103.: Kornsummenkurve der Probe Schurf 8, 1,5 m Tiefe.

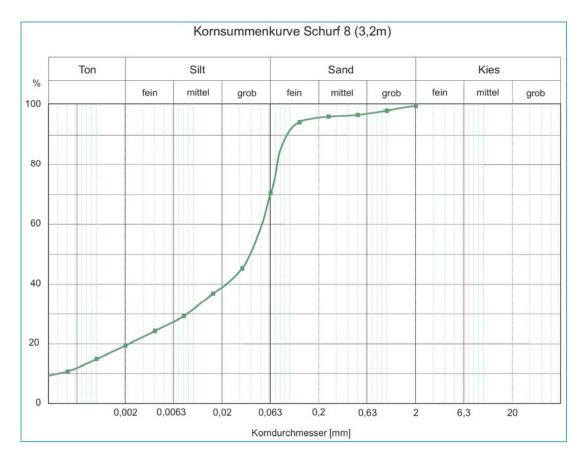


Abb. 2.1.104.: Kornsummenkurve der Probe Schurf 8, 3,2 m Tiefe.

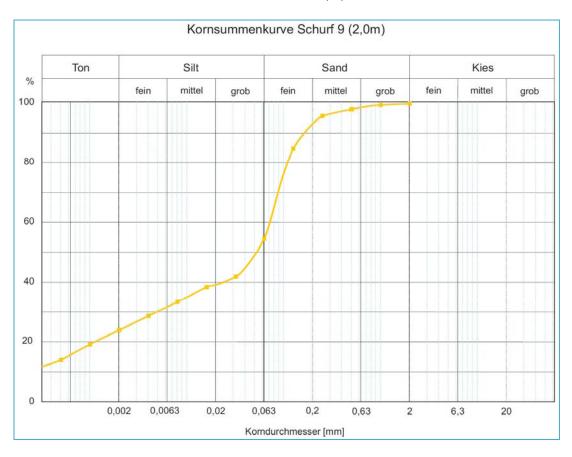


Abb. 2.1.105.: Kornsummenkurve der Probe Schurf 9, 2,0 m Tiefe.

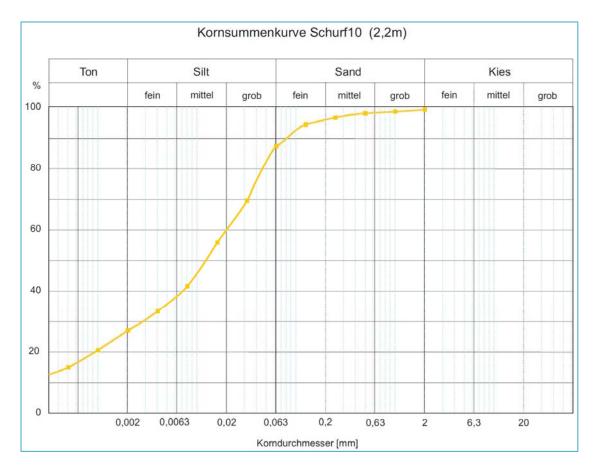


Abb. 2.1.106.: Kornsummenkurve der Probe Schurf 10, 2,2 m Tiefe.

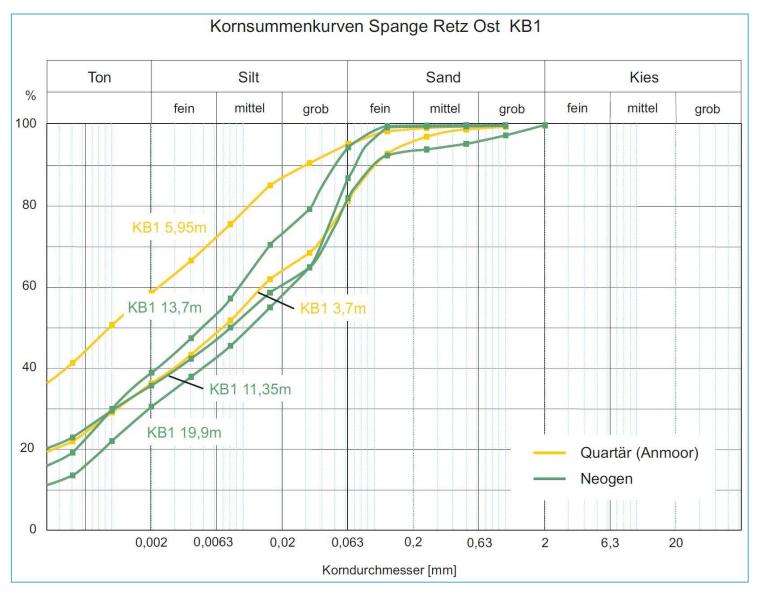


Abb. 2.1.107.: Kornsummenkurven der Bohrung KB Spange Retz Oste: 3,7 m, 5,95 m, 11,35 m, 13,7 m und 19,9 m Tiefe.

Tab. 2.1.21.a.: Ergebnis der geochemischen Analysen der Proben Spange Retz Ost.

	1	2	3	4		
GCH-2015-055	GCH-2014-055- 001	GCH-2014-055- 002	GCH-2014-055- 003	GCH-2014-055- 004		
Bezeichnung	KB1 (3,7m) Spange Retz Ost	KB1 (5,95m) Spange Retz Ost	KB1 (11,35m) Spange Retz Ost	KB1 (13,7m) Spange Retz Ost		
SiO ₂ (%)	60,0	62,0	68,0	67,0		
TiO ₂ (%)	0,8	0,8	0,8	0,9		
Al ₂ O ₃ (%)	13,7	14,4	15,0	15,2		
FeO (%)	4,8	4,9	4,6	4,7		
MnO (%)	0,07	0,05	0,03	0,04		
MgO (%)	1,8	1,3	1,1	1,6		
CaO (%)	5,3	0,8	0,2	0,4		
Na ₂ O (%)	0,5	0,5	0,34	0,23		
K ₂ O (%)	2,9	3,01	3,09	3,00		
P ₂ O ₅ (%)	0,13	0,08	0,06	0,09		
SO ₃ (%)	0,4	0,5	0,2	1,6		
$H_2O^{110^{\circ} C}(\%)$	1,5	2,4	1,5	1,7		
$H_2O+(\%)$	0,1	< 0,1	2,5	0,8		
CO2 (%)	7,62	8,90	1,59	2,73		
Summe	99,6	99,6	99,1	99,9		
As (ppm)	15	13	17	16		
Ba (ppm)	454	482	424	399		
Cd (ppm)	< 1	< 1	< 1	< 1		
Ce (ppm)	72	83	59	68		
Co (ppm)	19	17	14	17		
Cr (ppm)	93	76	73	87		
Cs (ppm)	7	8	10	11		
Cu (ppm)	27	35	18	21		
La (ppm)	35	41	32	34		
Nb (ppm)	17	17	16	16		
Nd (ppm)	32	36	27	30		
Ni (ppm)	42	38	25	50		
Pb (ppm)	29	29	31	34		
Pr (ppm)	8	8	6	7		
Rb (ppm)	133	153	149	153		
Sr (ppm)	160	137	143	115		
V (ppm)	105	94	112	122		
Y (ppm)	32	38	19	27		
Zn (ppm)	95	119	76	99		
Zr (ppm)	313	296	245	252		
Summe (ppm)	1686	1718	1497	1558		
Summe (%)	0,17	0,17	0,15	0,16		
Gesamtsumme (%)	99,8	99,8	99,2	100,1		

Tab. 2.1.21.b.: Ergebnis der geochemischen Analysen der Proben Spange Retz Ost.

	5	6	7	8		
GCH-2015-055	GCH-2014-055- 005	GCH-2014-055- 006	GCH-2014-055- 007	GCH-2014-055- 008		
Bezeichnung	KB1 (19,9m) Spange Retz Ost	Schurf 3 (0,9m) Spange Retz Ost	Schurf 4 (0,8m) Spange Retz Ost	Schurf 5 (1,1m) Spange Retz Ost		
SiO ₂ (%)	68,0	53,0	49,0	51,0		
TiO ₂ (%)	0,8	0,8	0,8	0,8		
Al ₂ O ₃ (%)	14,2	12,1	11,3	11,6		
FeO (%)	4,3	4,5	4,3	4,3		
MnO (%)	0,04	0,07	0,07	0,06		
MgO (%)	2,0	2,4	2,1	2,5		
CaO (%)	0,7	12,4	15,0	13,1		
Na ₂ O (%)	0,3	0,5	0,6	0,6		
K ₂ O (%)	2,87	2,1	1,8	1,8		
P2O5 (%)	0,15	0,04	0,05	0,06		
SO ₃ (%)	1,8	0,1	0,1	0,2		
H ₂ O ^{110° C} (%)	1,3	1,266	0,94	1,1		
H ₂ O+ (%)	0,2	2,5	2,3	2,3		
CO2 (%)	2,51	8,19	11,33	10,10		
Summe	99,0	99,9	99,6	99,4		
As (ppm)	13	14	14	14		
Ba (ppm)	400	427	425	434		
Cd (ppm)	< 1	< 1	< 1	< 1		
Ce (ppm)	59	67	72	74		
Co (ppm)	15	18	17	17		
Cr (ppm)	76	107	78	75		
Cs (ppm)	9	7	6	7		
Cu (ppm)	17	21	21	20		
La (ppm)	32	32	35	35		
Nb (ppm)	15	17	16	16		
Nd (ppm)	27	30	31	31		
Ni (ppm)	41	29	22	24		
Pb (ppm)	31	27	26	27		
Pr (ppm)	6	7	9	8		
Rb (ppm)	140	118	108	112		
Sr (ppm)	139	186	196	204		
V (ppm)	103	105	103	95		
Y (ppm)	25	34	34	33		
Zn (ppm)	86	81	75	76		
Zr (ppm)	268	338	343	351		
Summe (ppm)	1502	1665	1630	1653		
Summe (%)	0,15	0,17	0,16	0,17		
Gesamtsumme (%)	99,2	100,1	99,7	99,6		

Tab. 2.1.21.c.: Ergebnis der geochemischen Analysen der Proben Spange Retz Ost.

	9	10	11	12	
GCH-2015-055	GCH-2014-055- 009	GCH-2014-055- 010	GCH-2014-055- 011	GCH-2014-055- 012	
Bezeichnung	Schurf 5 (1,5m) Spange Retz Ost	Schurf 6 (1,6m) Spange Retz Ost	Schurf 6 (2,5m) Spange Retz Ost	Schurf 7 (2,0m) Spange Retz Ost	
SiO ₂ (%)	62,0	51,0	71,0	64,0	
TiO ₂ (%)	0,7	0,8	0,7	0,7	
Al ₂ O ₃ (%)	12,1	11,1	12,1	9,9	
FeO (%)	4,8	4,2	4,5	3,5	
MnO (%)	0,06	0,06	0,06	0,02	
MgO (%)	2,2	2,0	< 1	< 1	
CaO (%)	6,1	14,3	2,5	9,9	
Na ₂ O (%)	0,4	0,6	0,5	0,5	
K ₂ O (%)	2,2	1,8	2,3	2,2	
P ₂ O ₅ (%)	0,03	0,06	0,01	0,11	
SO ₃ (%)	0,1	0,1	0,1	0,6	
H ₂ O ^{110° C} (%)	1,8	1,0	1,6	1,4	
H ₂ O+ (%)	2,6	2,3	2,2	1,3	
CO2 (%)	4,41	10,39	2,19	5,00	
Summe	99,6	99,6	99,7	99,2	
	,	,	,	,	
As (ppm)	17	13	18	7	
Ba (ppm)	460	419	488	472	
Cd (ppm)	< 1	< 1	< 1	< 1	
Ce (ppm)	56	68	49	48	
Co (ppm)	20	16	15	12	
Cr (ppm)	80	78	64	92	
Cs (ppm)	8	7	6	7	
Cu (ppm)	25	19	19	15	
La (ppm)	29	33	32	27	
Nb (ppm)	14	16	13	13	
Nd (ppm)	27	29	33	23	
Ni (ppm)	45	21	33	11	
Pb (ppm)	29	26	27	26	
Pr (ppm)	6	7	5	4	
Rb (ppm)	122	111	121	128	
Sr (ppm)	170	185	120	177	
V (ppm)	115	97	89	90	
Y (ppm)	26	33	24	19	
Zn (ppm)	89	74	77	56	
Zr (ppm)	217	329	214	253	
Summe (ppm)	1552	1579	1448	1480	
Summe (%)	0,16	0,16	0,14	0,15	
Gesamtsumme (%)	99,8	99,7	99,8	99,3	

Tab. 2.1.21.d.: Ergebnis der geochemischen Analysen der Proben Spange Retz Ost.

	13	14	15	16	
GCH-2015-055	GCH-2014-055- 013	GCH-2014-055- 014	GCH-2014-055- 015	GCH-2014-055- 016	
Bezeichnung	Schurf 8 (1,5m) Spange Retz Ost	Schurf 8 (3,2m) Spange Retz Ost	Schurf 9 (2,0m) Spange Retz Ost	Schurf 10 (2,2m) Spange Retz Ost	
SiO ₂ (%)	51,0	74,0	75,0	57,0	
TiO ₂ (%)	0,7	0,7	0,7	0,8	
Al ₂ O ₃ (%)	10,7	12,5	12,1	12,3	
FeO (%)	4,1	3,7	3,8	4,2	
MnO (%)	0,06	0,02	0,05	0,06	
MgO (%)	2,1	< 1	< 1	1,9	
CaO (%)	14,9	0,7	0,5	9,4	
Na ₂ O (%)	0,6	0,5	0,4	0,6	
K ₂ O (%)	1,8	2,8	2,5	2,2	
P ₂ O ₅ (%)	0,07	0,08	0,03	0,05	
SO ₃ (%)	0,3	0,6	0,2	0,2	
$H_2O^{110^{\circ} C}(\%)$	0,9	1,4	1,3	1,0	
$H_2O+(\%)$	2,1	2,4	2,1	2,4	
CO2 (%)	10,20	0,41	0,56	7,30	
Summe	99,6	99,8	99,2	99,4	
As (ppm)	13	13	15	15	
Ba (ppm)	432	427	429	453	
Cd (ppm)	< 1	< 1	< 1	< 1	
Ce (ppm)	70	76	52	73	
Co (ppm)	16	11	13	16	
Cr (ppm)	77	57	65	70	
Cs (ppm)	7	8	7	7	
Cu (ppm)	19	15	15	21	
La (ppm)	34	35	28	36	
Nb (ppm)	15	14	13	16	
Nd (ppm)	29	29	28	32	
Ni (ppm)	22	19	32	27	
Pb (ppm)	26	29	30	27	
Pr (ppm)	8	7	6	8	
Rb (ppm)	112	127	121	128	
Sr (ppm)	207	164	105	180	
V (ppm)	101	82	84	92	
Y (ppm)	33	23	23	32	
Zn (ppm)	73	73	67	78	
Zr (ppm)	332	264	258	341	
Summe (ppm)	1625	1471	1390	1653	
Summe (%)	0,16	0,15	0,14	0,17	
Gesamtsumme (%)	99,8	100,0	99,3	99,5	

2.1.4. Aufnahme der Baustelle für eine Lagerhalle in Klein Meiseldorf (ÖK 21)

J. Weilbold

In Klein-Meiseldorf (nordwestlich von Eggenburg) wurde im September/ Oktober 2014 eine Lagerhalle mit 40 m Länge und 20 m Breite gebaut. Dabei wurde auf der gesamten Länge und ca. 8 m der Breite anstehender Glimmerschiefer freigelegt. Die Lage der Baustelle ist in Abb. 2.1.108. dargestellt.

Am 16.10.2014 wurde die Felswand hinter der Lagerhalle dokumentiert und beprobt.

Auf dem Orthofoto der Abb. 2.1.109. ist das Grundstück und die ungefähre Ausrichtung der Baustelle sichtbar.

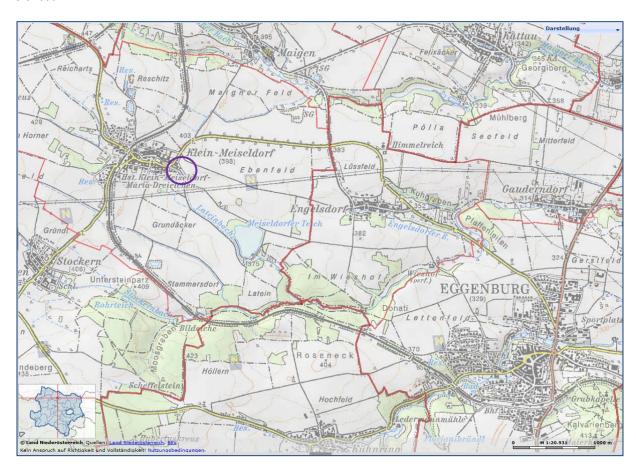


Abb. 2.1.108.: Lageplan der Baustelle für eine Lagerhalle in Klein-Meiseldorf.

Geologie

Nach der geologischen Karte von Niederösterreich 1:200.000 (SCHNABEL et al., 2002) liegt die Baustelle im Löss bzw. Lösslehm des Pleistozäns (Abb. 2.1.110.). Eine geologische Karte 1:50.000 gibt es für das Blatt Horn noch nicht. Zurzeit wird das Kartenblatt Horn von R. Roetzl im Maßstab 1:10.000 (Abb. 2.1.111.) kartiert, im Bereich der Baustelle ist in dieser Neukartierung Glimmerschiefer des Moravikums ausgeschieden.

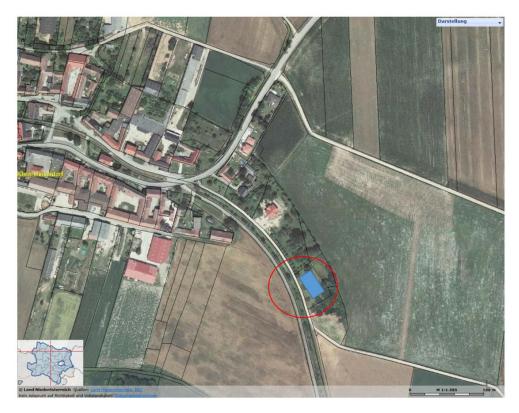


Abb. 2.1.109.: Ungefähre Lage und Ausrichtung der Lagerhalle auf einem Orthophoto (Quelle NÖ-GIS).

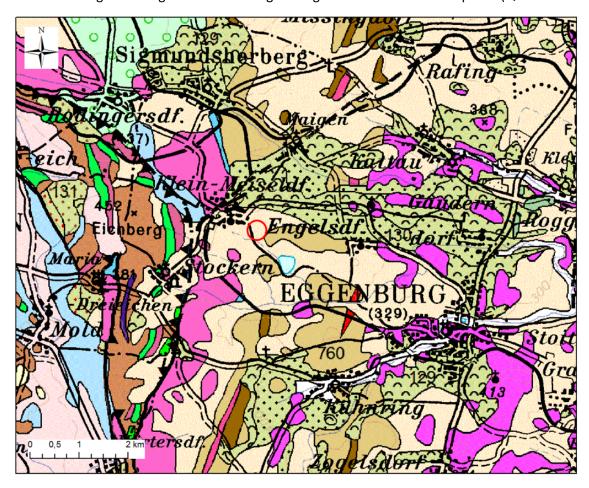
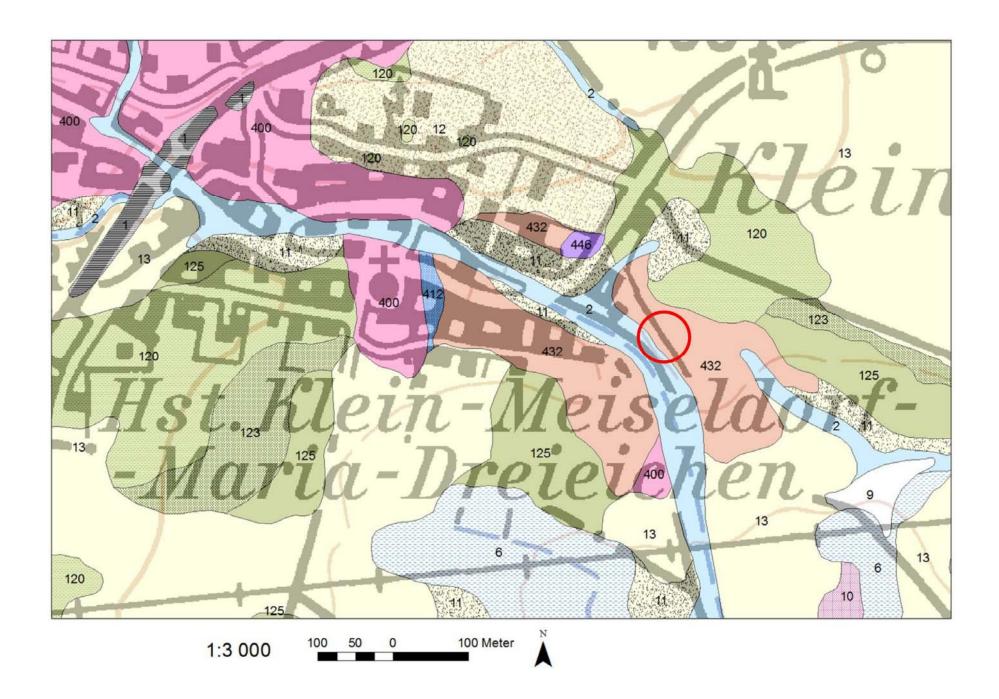



Abb. 2.1.110.: Ausschnitt aus der geologischen Karte NÖ 1:200.000 (SCHNABEL et al., 2002) mit der ungefähren Lage der Baustelle (rote Markierung).

Legende

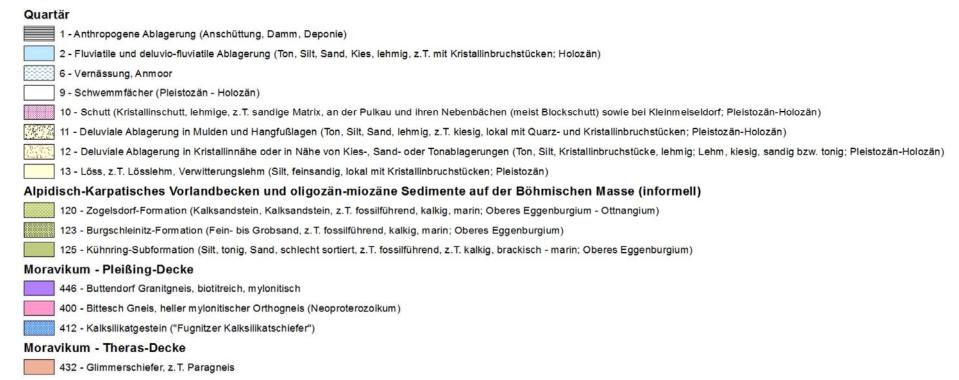


Abb. 2.1.111.: Lage der Baustelle auf der Manuskriptkarte von Blatt 21 Horn (ROETZEL, 2009).

Beschreibung der Baustelle

Die Baustelle war am Tag der Aufnahme auf einer Länge von 40 m und ca. 8 m Breite erschlossen. Es wurden an diesem Tag schon die Betonwände aufgestellt, daher konnte kein Übersichtsfoto gemacht werden. Hinter den Betonteilen und dem anstehenden Glimmerschiefer war ein Platz von ca. 40-60 cm. In diesem Bereich war zu dem Zeitpunkt bereits die Drainage verlegt und mit Kies/ Schotter auf Höhe des Fundaments verfüllt.

Der Glimmerschiefer wird stellenweise von einer bis zu 50 cm mächtigen Schicht von Mutterboden und verwittertem Glimmerschiefer überdeckt. Im nordwestlichsten (A) Teil des Aufschluss war das Gestein stärker zerlegt als im südöstlichsten Teil (B) (Abb. 2.1.112. und 2.1.113.). Im oberen Teil des Aufschlusses war das Gestein zusätzlich von Wurzeln durchdrungen.

Abb. 2.1.113.: Ansicht von B nach A

Das Gestein im Aufschluss war ziemlich stark zerklüftet, das zeigte sich auch während der Bauarbeiten. Bis auf eine Stelle im südöstlichsten Teil konnte das Gestein mit dem Bagger entfernt werden. Es musste nur wenig mit schwerem Gerät gearbeitet werden (Auskunft von DI Zauner). Die Klüfte waren verkittet und trocken.

Nach Beendigung der Bauarbeiten wird der Raum zwischen der Glimmerschieferwand und den Betonwänden der Lagerhalle wieder verfüllt, um die Stabilität zu gewährleisten.

Während der Dokumentation wurden auch Trennflächen aufgenommen, die aber strukturgeologisch nicht weiter ausgewertet wurden.

K 160/72

K 160/54

K 278/70

K 278/75

K 002/65

s 270/40

s 216/40

Proben

Insgesamt wurden entlang des Aufschlusses 5 Proben genommen (Abb. 2.1.114.), die nicht analysiert wurden, aber für zukünftige Untersuchungen bzw. zu Dokumentationszwecken aufbewahrt werden.

Abb. 2.1.114.: Übersicht über die Probennahmepunkte.

2.2. Bauaufschlüsse in der östlichen Molassezone

In der östlichen Molassezone wurden Bohrkerne für drei verschiedene Bauvorhaben dokumentiert und beprobt. Dabei handelt es sich um eine Schutzgebietsausweisung im Brunnenfeld IV von Hollabrunn, um eine Standortuntersuchung für eine Bodenaushubdeponie in Weyerburg, und um die Anschlussstelle an die B4 südöstlich Niederrußbach. Die geologische Einführung gilt für diese drei Kapitel.

Geologie

Nach der geologischen Karte von Niederösterreich (SCHNABEL et a., 2002), sowie der geologischen Karte Blatt 22 Hollabrunn (ROETZEL et al., 1998) und Blatt 23 Hadres (ROETZEL et al., 2007) liegen die Bohrungen innerhalb der pannonen Hollabrunn-Mistelbach-Formation bzw. im Falle der Bohrungen für die Anschlussstelle Niederrußbach bereits in der Laa-Formation (Karpatium, Abb. 2.2.2., Abb. 2.2.4.).

Bei der Hollabrunn-Mistelbach-Formation handelt es sich größtenteils um fluviatile Schotter und Sande, welche fast geschlossen vom Ausgang der Wachau bei Krems in durchschnittlicher Breite von 7 km über Hohenwarth, Ziersdorf, Hollabrunn, nördlich der Leiser Berge über die Waschbergzone, Richtung Mistelbach entlang der Zaya-Furche bis zum Steinbergbruch im Wiener Becken ziehen (vgl. Abb. 2.2.1.). Abschnittsweise werden Sedimentmächtigkeiten von 50 m erreicht. Als ehemalige Rinnenfüllung bilden die Sedimente heute oft bewaldete Höhenrücken und stellen so ein Beispiel einer Reliefumkehr dar, wobei die älteren und weicheren Sedimente abseits der Rinnen erodiert sind. Sie stellen sich in Folge oft als braun verfärbte, sehr gut gerundete, quarzdominierte Kiese in Wechsellagerung mit kiesigen Sanden dar (WESSELY, 2006).

Unterlagert wird die Hollabrunn-Mistelbach-Formation von der brackisch-marinen Ziersdorf-Formation des Sarmatiums, in deren hangenden Bereichen sich vor allem kiesige bzw. kalkige Sande finden, die liegenden Bereiche werden durch z.T. feinsandige, kalkige Tone und Silte dominiert (ROETZEL et al., 1998, 2007).

Darunter folgen die Ablagerungen des Badeniums, auf den Kartenblättern 22 und 23 vertreten v.a. durch die Grund-Formation. Bei diesen marinen Sedimenten überwiegen stark verwühlte, mergeligtonige Schluffe mit mächtigen Sandeinschaltungen (ROETZEL, 2002).

Die Sedimente des Karpatiums werden im Bereich der Bohrpunkte durch die Laa-Formation vertreten. Diese reichen von der Diendorfer Störung im W bis zur Waschbergzone im E. Während im W neben den marinen Schluffen und Mergeln auch Kiese und Sande abgelagert wurden, nehmen diese Richtung E ab. Während Sturmereignissen wurden im südlichen Abschnitt der Laa-Fm. Sandpakete abgelagert (ROETZEL, 2002).

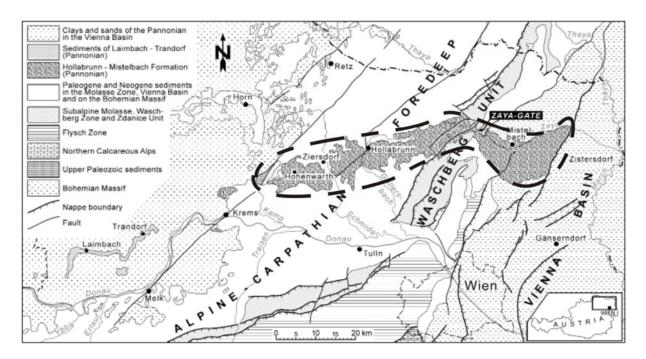


Abb. 2.2.1.: Erstreckung der Hollabrunn-Mistelbach-Formation (schwarz durchbrochene Linie), aus: NEHYBA & ROETZEL, 2004).

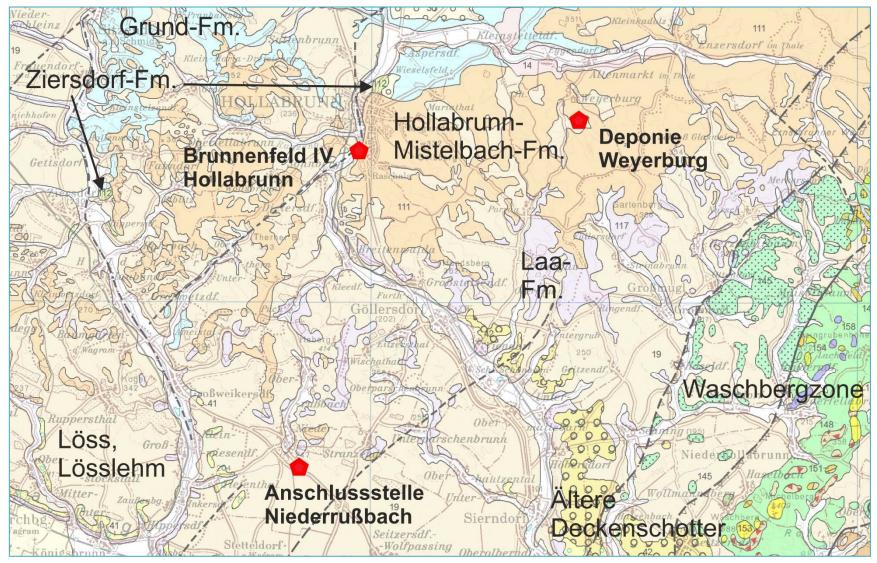


Abb. 2.2.2.: Lage der Bohrpunkte des Brunnenfeldes IV Hollabrunn, der Deponie Weyerburg und der Anschlussstelle Niederrußbach auf der geologischen Karte von Niederösterreich (SCHNABEL et al., 2002).

2.2.1. Aufnahme von drei Kernbohrungen im Brunnenfeld IV Hollabrunn (ÖK 22)

Im März 2014 wurden im Auftrag der Stadtgemeinde Hollabrunn drei Kernbohrungen zur Schutzgebietsausweisung im Brunnenfeld IV durchgeführt. Auf Initiative von M. Gmeindl (Technische Geologie Niederbacher) war es R. Roetzel und G. Posch-Trözmüller möglich, diese Bohrungen im Juni 2014 aufzunehmen und zu beproben.

Die Bohrungen liegen im sog. Brunnenfeld IV im Süden von Hollabrunn (Abb. 2.2.3., Tab. 2.2.1.). Im Vorjahr wurden bereits von R. Roetzel und H. Gebhardt Bohrungen im Brunnenfeld II aufgenommen, welches im NE von Hollabrunn situiert ist (POSCH-TRÖZMÜLLER & PERESSON et al., 2014).

Aus Tab. 2.2.1. sind die Koordinaten der Kernbohrungen ersichtlich. Abb. 2.2.4. zeigt die Lage der Bohrpunkte auf der geologischen Karte von Hollabrunn (ÖK 22, ROETZEL et al., 1998).

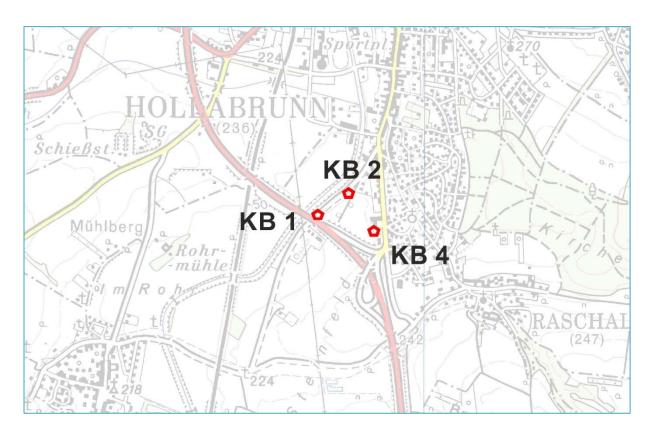


Abb. 2.2.3.: Lage der Kernbohrungen im Brunnenfeld IV.

Tab. 2.2.1.: Koordinaten der Bohrungen im Brunnenfeld Hollabrunn.

	RW_M34	HW_M34
KB 1	730918,4	379101,1
KB 2	731102,1	379230,2
KB 4	731266,1	379003,1

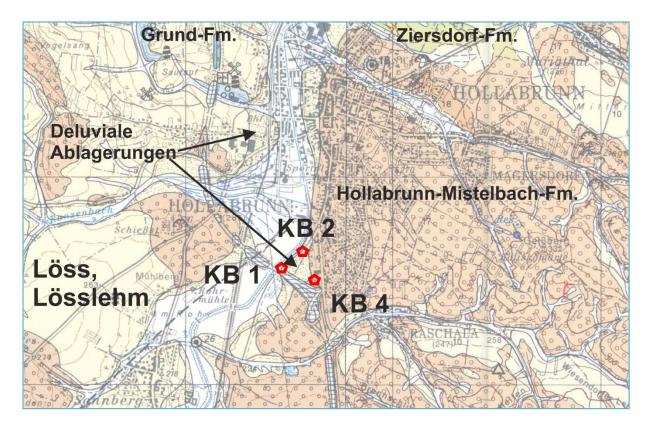


Abb. 2.2.4.: Lage der Kernbohrungen auf der geologischen Karte von Hollabrunn (ÖK 22, ROETZEL et al., 1998). Rechts ist ein Teil der geologischen Karte von Hadres (ÖK 23, ROETZEL et al., 2007) hinterlegt.

Beschreibung der Bohrungen

Die Bohrungen KB 1 und KB 2 liegen in den Alluvionen des Göllersbaches, während sich die Bohrung KB 4 am Rand zum Hollabrunner Schotter befindet. In KB 1 und KB 2 gehört daher der obere Teil den Terrassensedimenten des Göllersbaches an, die darunter folgenden Feinsedimente sind vermutlich Anteile der Ziersdorf-Fm. (Sarmatium). In der Bohrung KB 4 sind in den oberen Teilen solifluidale Sedimente zu sehen, die von Hollabrunner Schotter oder solifluidal umgelagerten Kiesen aus diesem Schichtglied unterlagert werden. Darunter folgen wieder wahrscheinlich sarmatische Ablagerungen (Ziersdorf-Fm.).

Bemerkenswert ist, dass in allen drei Bohrungen im unteren Teil karbonatreiche Kiese in die pelitische Schichtfolge eingeschaltet sind. Dies konnte auch in den Bohrungen VS 2 und VS 3 im Brunnenfeld II bei der Hofmühle beobachtet werden (siehe Vorjahresbericht; ROETZEL & GEBHARDT, in: POSCHTRÖZMÜLLER & PERESSON et al., 2014). Während in KB 2 und KB 4 die Karbonatkiese in 16,9-20,8 m bzw. 18,25-23,8 m Tiefe liegen, wurden sie in KB 1 in 11,0-14,7 m Tiefe angetroffen. Dies hängt wahrscheinlich mit Abschiebungen an einer im Göllersbachtal verlaufenden Störungszone zusammen, die auch in KB 1 in 15,6-16,0 m Tiefe dokumentiert werden konnte.

KB 1 - 2014 Brunnenfeld IV Hollabrunn

In Tab. 2.2.2. ist das Bohrprofil der 20 m tiefen Kernbohrung dargestellt. Es zeigt die Sedimente des Göllersbaches in den hangenden Metern der Bohrung, darunter folgen vorwiegend Schluffe bis Tone, aber auch Sande und Kiese, die möglicherweise als Ziersdorf- Formation (Sarmatium) anzusprechen sind. Abb. 2.2.5. bis 2.2.7. liefert die Fotodokumentation der Bohrkerne.

Tab. 2.2.2.: Bohrprofil von KB 1.

	KB 1-2014 Brunnenfeld 4 Steinfeldgasse Hollabrunn										
Tiefe	Beschreibung	Interpretation									
0-0,6 m	Boden: Schluff, tonig, mittelbraun, durchwurzelt										
0,6-2,1 m	Schluff, tonig, graubraun, mit kleinen rostroten Flecken, stark kalkhältig, plastisch, weich bis halbfest, durchwurzelt	Hochflutsedimente des Göllersbaches									
2,1-2,9 m	Schluff, sandig-tonig, schwach kalkhältig, schwarzbraun, mit Kieslage in 2,3 m Tiefe (?Verunreinigung durch Bohren), mit kleinen Quarz-Kiesen bis 1 cm Dm., glimmerhältig, mit rötlichbraunen Flecken	Hochflutsedimente des Göllersbaches									
2,9-3,0 m	Schluff, tonig, kiesig, Kies matrixgestützt, grau	Hochflutsedimente des Göllersbaches									
3,0-3,4 m	Mittelsand-Feinsand, schluffig, schwach kiesig, gelbgrau	Terrassensedimente des Göllersbaches									
3,4-7,9 m	Kies, sandig, leicht schluffig, bis 4,0 m gelbgrau-gelbbraun, darunter: gelbbraun, kalkhältig; Kies hpts. Feinkies-Mittelkies, grobkiesig, Matrix: Mittelsand-Grobsand, feinsandig-siltig, Kies gut bis sehr gut gerundet, auch plattige Komponenten, sehr viel Quarz, dazu Karbonate, Mergelstein, kein Kristallin; von 6,0 - 7,0 m deutlich gröber mit Grobkies-Mittelkies, sandig und Komponenten bis 10 cm Dm., wechselweise treten Abschnitte mit vorwiegend Sand und vorwiegend Kies auf, auch der Kalkgehalt der schluffig-sandigen Matrix variiert	Terrassenschotter des Göllersbaches, umge- lagerte Hollabrunn- Mistelbach-Fm.									
7,9-10,0 m	Schluff, tonig, bläulich grau, mit kleinen schwarzen Pflanzen- resten (Einsprenglinge) und Holzresten, besonders in 8,3 und 8,7 m Tiefe, stark kalkhältig	?Ziersdorf-Fm. (Sar- matium)									
10,0-10,5 m	Schluff-Ton, plastisch, bläulich grau, mit Pflanzenresten, kalk- hältig, mit kleinen Kristallisationen von Pyrit oder Markasit an Kluftflächen in 10,4 m Tiefe	?Ziersdorf-Fm. (Sar- matium)									
10,5-11,0 m	Feinsand bis Mittelsand, grobsandig, braungrau, leicht kiesig (<1 cm Durchmesser), stark kalkhältig	?Ziersdorf-Fm. (Sar- matium)									
11,0-14,7 m	Kies, sandig, grau bis rostbraun (rostbraun: 14,3-14,7 m), Kies hpts. Mittelkies-Feinkies, gut-sehr gut sortiert, 1-3 cm Dm., selten bis 5 cm, kein Quarz, fast ausschließlich Karbonate, grau	?Ziersdorf-Fm. (Sar- matium) - Karbonat- kiese									
14,7-15,0 m	Feinsand, mittelsandig, schluffig, gelbbraun, kalkhältig	?Ziersdorf-Fm. (Sar- matium)									
15,0-15,6 m	Feinsand-Schluff, bindig, gelbbraun-graubraun mit rostroten Schlieren, kalkhältig	?Ziersdorf-Fm. (Sar- matium)									
15,6-16,0 m	Kern zweigeteilt durch steile Störung, ein Teil Feinsand - Schluff, graubraun wie im Hangenden, ein Teil Schluff, feinsan- dig, gelbgrau, kalkhältig, zeigt schichtige Strukturen parallel zur Störung	Störungszone									
16,0-20,0 m (ET)	Schluff-Ton bis Schluff, tonig (Ton- und Schluffgehalt variiert), dunkelgrau, tw. grau-bräunlich, kalkhältig, tw. mit Pflanzenresten und Holzresten bis 2 cm, Konsistenz variiert (fest und hart/weich), tw. mit sehr kleinen Molluskensplittern	?Ziersdorf-Fm. (Sar- matium)									

Abb. 2.2.5.: KB 1: 0-8 m.

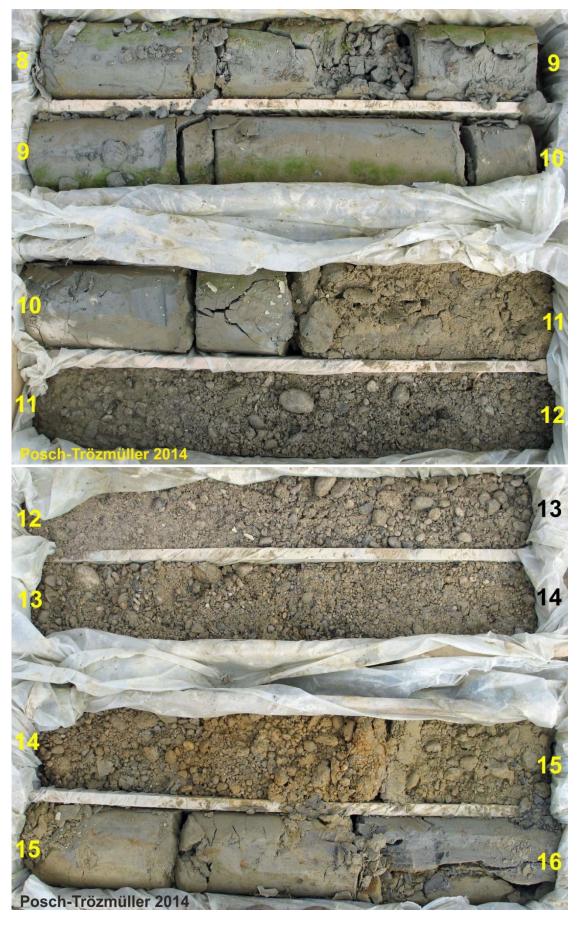


Abb. 2.2.6.: KB 1: 8-16 m.

Abb. 2.2.7.: KB 1: 16-20 m.

KB 2 - 2014 Brunnenfeld IV Hollabrunn

Die Bohrung KB 2 wurde bis 23 m abgeteuft. Bis 10 m Tiefe waren vorwiegend Kiese und Sande des Göllersbaches zu sehen, darunter folgten Kiese, Sande und Schluffe des Neogens. Eine Mikrofossilanalyse in 11,3 m lässt eine Einstufung in die Ziersdorf-Formation (Sarmatium) zu, eine weitere Analyse im Liegendsten der Bohrung (22,3 m) ist bezüglich ihrer Einstufung nicht ganz geklärt. Diese Probe zeigt in ihrem Mikrofossilinhalt einen terrigenen Einfluss an. Eine Einstufung in die Ziersdorf-Formation ist möglich, da diese auch terrestrische Einflüsse zeigt.

Das Bohrprofil ist in Tab. 2.2.3. dargestellt, Abb. 2.2.8. bis 2.2.10. liefern die Fotodokumentation der Bohrkerne.

Tab. 2.2.3.: Bohrprofil der Kernbohrung KB 2.

	KB 2-2014 Brunnenfeld 4 Steinfeldgasse H	olla	brunn	
Tiefe	Beschreibung		Interpretation	Proben
0-0,45 m	Boden: Schluff, sandig-kiesig, mittelbraun, Kies bis 5 cm Dm.		Mutterboden	
0,45-3,3 m	Kies, sandig, gelbbraun, kalkhältig, Feinkies, mittelkiesig (meist 1-2 cm, selten bis 4 cm Dm.) und Mittelsand-Feinsand, grobsandig, Kies gut gerundet-kantengerundet, htps. Quarz, etwas Karbonate		Terrassensedimente des Göllersbaches	
3,3-3,45 m	Schluff, sandig, braun, bindig, geschichtet, schwächer kalkhältig		Hochflutsedimente des Göllersbaches	
3,45-5,45 m	Mittelsand, feinsandig, gelbbraun, vereinzelt kiesig und schluffig, kalkhältig		Terrassensedimente des Göllersbaches	
5,45-7,35 m	Kies-Sand, gelbbraun-rötlichbraun, 5,45-5,65 m: schwarzbraun (Mn-Ausfällungen), kalkhältig; Feinkies, mittelkiesig und Grobsand, mittelsandig, schluffig, Kies kantengerundet-gerundet, 0,5-1 cm Dm., ab 6,40 m bis 3 cm Dm., hpts. Quarz, dazu Karbonate		Terrassensedimente des Göllersbaches	
7,35-10,75 m	Kies, sandig, gelbgrau-gelbbraun, 9,4-10,75 m gelblichbraun, kalkhältig, Grobkies-Mittelkies, Matrix Mittelsand-Feinsand, Kies 2-10 cm Dm., gut gerundet, Quarz und sehr viele Karbonate (große Komponenten)		Terrassensedimente des Göllersbaches	
10,75-14,55 m	Schluff, tonig, ab 14,45 m etwas feinsandig, bläulichgrau, kalkhältig, bindig, viele schwarze Pflanzenreste und größere Holzreste (12,3 m, 12,5 m, 13,2 m, 13,8 m, 14,1 m, 14,5 m) bis 10 cm Dm.		?Ziersdorf-Fm. (Sar- matium)	11,3-11,4 m und 13,8 m
14,55-15,2 m	Feinsand-Schluff, grau, kalkhältig, meist nicht bindig; wird nach unten gröber (fining upward)		?Ziersdorf-Fm. (Sar- matium)	
15,2-16,9 m	Feinsand- Mittelsand, schluffig, nach unten Übergang in Grobsand, mittelsandig, grau, kalkhältig	upward	?Ziersdorf-Fm. (Sar- matium)	
16,9-20,8 m	Kies, sandig, grau, kalkhältig, Kies hpts. Mittelkies-Feinkies (1-3 cm Dm., selten bis 6 cm), hpts. Karbonate, Matrix Grobsand-Mittelsand, feinsandig-schluffig, 17,0-20,8 m: wenig Feinanteil (Grobsand bis Kies)	fining	?Ziersdorf-Fm. (Sar- matium)	18,5 m
20,8-23,0 m (ET)	Ton, schluffig, dunkelgrau-mittelgrau, bindig, schmierig, hart, kalkhältig, mit schwarzen Schlieren (kleine Pflanzenreste)		?Ziersdorf-Fm. (Sar- matium)	22,3-22,4 m

Abb. 2.2.8.: KB 2: 0-8 m.

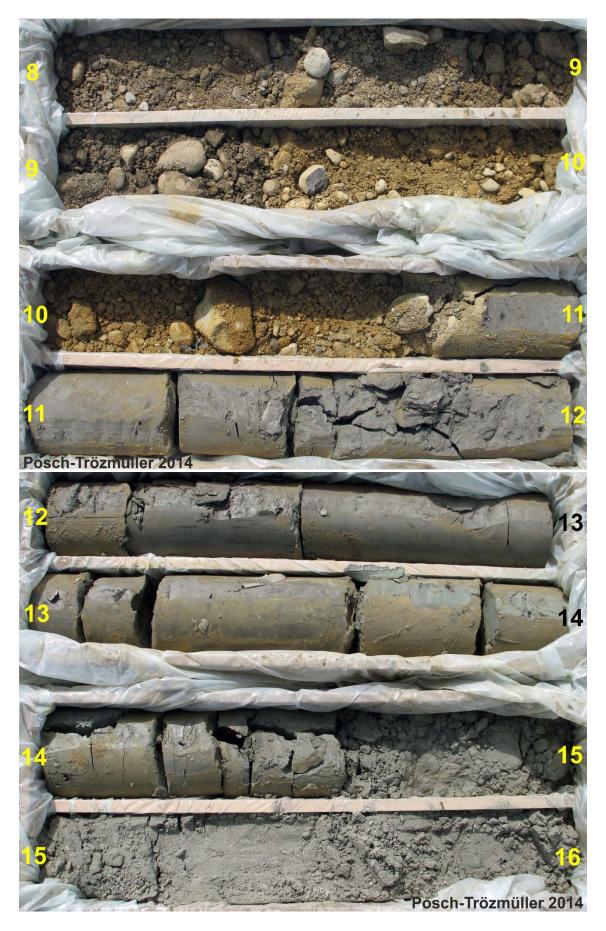


Abb. 2.2.9.: KB 2: 8-16 m.

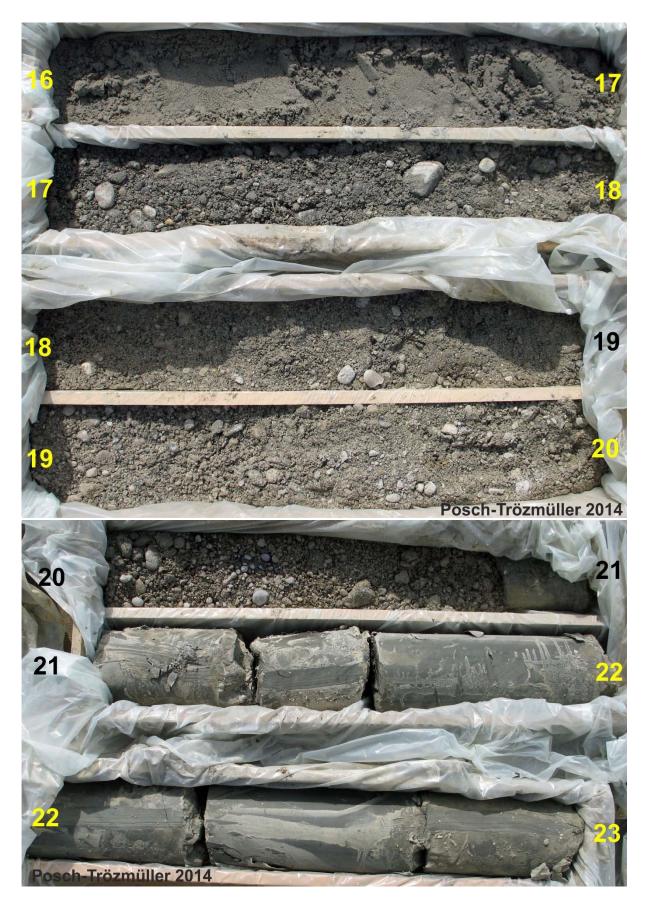


Abb. 2.2.10.: KB 2: 16-23 m.

KB 4 - 2014 Brunnenfeld IV Hollabrunn

Die Kernbohrung KB 4 wurde bis 26 m Tiefe gebohrt. Die Überlagerung wird hier durch solifluidale Sedimente gebildet, die bis etwa 3,6 m Tiefe reichen. Möglicherweise ist der kiesige Sand von 3,6 bis 4 m Tiefe der Hollabrunn-Mistelbach-Fm. zuzurechnen. Im Liegenden folgen Sedimente, die wahrscheinlich der Ziersdorf-Fm. (Sarmatium) angehören. Eine Analyse auf Mikrofossilien im Liegendsten der Probe bestätigt diese Möglichkeit.

Das Bohrprofil ist in Tab. 2.2.4. dargestellt, Abb. 2.2.11. bis 2.2.14. liefern die Fotodokumentation der Bohrkerne.

Tab. 2.2.4.: Bohrprofil von KB 4:

KB 4-2014 Brunnenfeld 4 Steinfeldgasse Hollabrunn Tiefe Beschreibung Brober										
Tiefe	Beschreibung	Interpretation	Proben							
0-0,45 m	Boden: Schluff, tonig, etwas kiesig, dunkelbraun, wenig kalkhältig	Mutterboden								
0,45-1,0 m	Kies, schluffig, dunkelbraun, kalkhältig	solifluidale Sedi- mente (?)								
1,0-1,1 m	Schluff-Feinsand, feinkiesig, beige-braun, kalkhältig	solifluidale Sedi- mente (?)								
1,1-1,45 m	Kies, sandig, schluffig, kalkhältig, gelbbraun, Kies: 1-3 cm Dm., selten bis 5 cm, Quarz, Karbonate, gut gerundet	solifluidale Sedi- mente (?)								
1,45-2,25 m	Schluff, tonig, bindig, hellgrau-braun, stark kalkhältig, von 1,55-1,6 m feinsandige Lage, geschichtet, bei 2,25 m Kies (1-2 cm Dm.) im Schluff (?Verunreinigung durch Bohren?)	solifluidale Sedi- mente (?)								
2,25-3,6 m	Schluff - Feinsand, tw. schwach feinkiesig (v.a. 2,6-3,3 m), im Liegenden stärker feinsandig, graubraun-braungrau, mit rostbraunen Schlieren, schwach kalkhältig bis kalkfrei	solifluidale Sedi- mente (?)								
3,6-4,0 m	Mittelsand-Grobsand, kiesig, schluffig, schlecht sortiert, gelbbraun, rötlichbraun bis grau, Kies bis 5 cm Dm., v.a. Quarz und etwas Karbonate	solifluidale Sedi- mente oder ?Hol- labrunn-Mistel- bach-Fm.								
4,0-4,85 m	Ton - Schluff, rotbraun-gelbgrau, gelborange fleckig, schwach kalkhältig, fest, bindig, mit schwarzen Pflanzenresten	?Ziersdorf-Fm. (Sarmatium)								
4,85-5,85 m	Feinsandig, schluffig, mittelsandig, graubraun-graubraun, 4,85-5,0 m: rostrot-gelb, vereinzelt kleine Kiese (?)	?Ziersdorf-Fm. (Sarmatium)								
5,85-13,4 m	Schluff, teilweise etwas tonig, fein geschichtet, hellgraubraun, mit rostroten Schlieren, bindig, leicht kalkhältig, mit dünnen sandigen Lagen (Feinsand-Schluff), mächtigere sandige Lagen: 10,35-10,45 m; 10,8-11,0 m; 11,45-11,55 m; mit harten ?limonitischen Ausfällungen im Schluff, limonitische, 1 cm mächtige Lage in 13,2 m Tiefe, von 13,3-13,4 m vermehrt schwarze Schlieren (?Pflanzenreste)	?Ziersdorf-Fm. (Sarmatium)	6,2-6,3 m und 12,3- 12,4 m							
13,4-13,65 m	Schluff - Feinsand, gelbgrau, stark kalkhältig	?Ziersdorf-Fm. (Sarmatium)								
13,65-15,55 m	Grobsand, mittelsandig, kalkhältig; 13,65-14,0 m: grau mit wenig Feinkies, 14,0-15,0 m: dunkelgrau, 15,0-15,55 m: graubraun	?Ziersdorf-Fm. (Sarmatium)								
15,55-16,8 m	Mittelsand, feinsandig, schluffig, kalkhältig, gelbbraun-braun- grau, vereinzelt mittelkiesig-feinkiesig; 15,55-15,7 m: stärker schluffig	?Ziersdorf-Fm. (Sarmatium)								
16,8-17,15 m	Schluff - Feinsand, gelbgrau-graubraun, bindig	?Ziersdorf-Fm. (Sarmatium)								
17,15-17,6 m	Grobsand-Feinkies, gelbgrau, kalkhältig, Kies: Quarz, Karbonate, bis 2 cm Dm., gut gerundet	?Ziersdorf-Fm. (Sarmatium)								
17,6-18,25 m	Schluff, tonig, braungrau, bindig, weich, kalkhältig	?Ziersdorf-Fm. (Sarmatium)								
18,25-23,8 m	Kies, sandig, bis 20,0 m: braun, darunter grau; Kies fast ausschließlich Karbonate, 0,5 - 2 cm Dm., vereinzelt bis 10 cm Dm., gut gerundet, v.a. im Bereich von Feinkies stark kalkhältig	?Ziersdorf-Fm. (Sarmatium) - Kar- bonatkiese								
23,8-26,0 m (ET)	Ton-Schluff, blaugrau-mittelgrau, viele schwarzen Pflanzen- und Holzreste (tw. groß), fest, bindig, stark kalkhältig	?Ziersdorf-Fm. (Sarmatium)	24,4 m							
	I .	J	1							

Abb. 2.2.11.: KB 4: 0-8 m.

Abb. 2.2.12.: KB 4: 8-16 m.

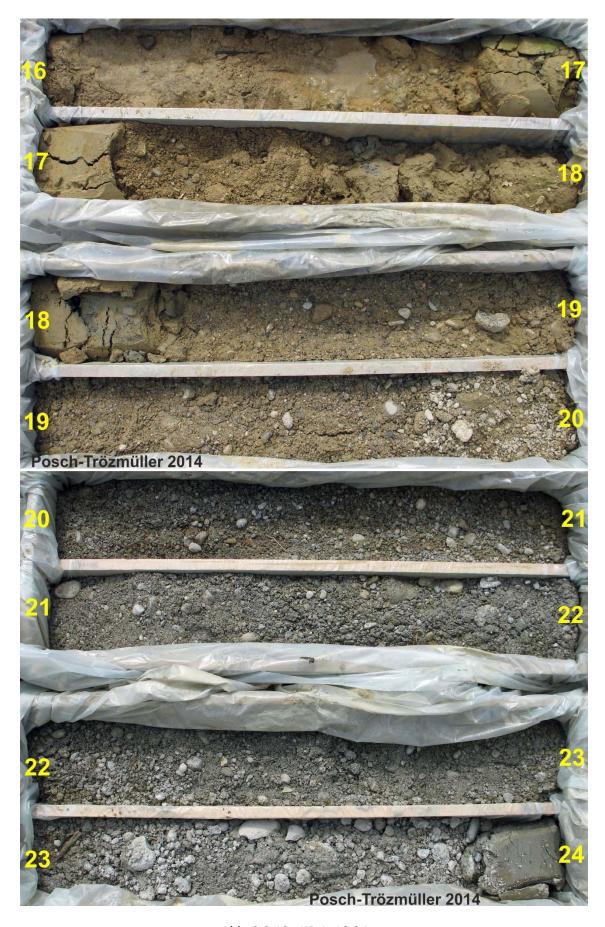


Abb. 2.2.13.: KB 4: 16-24 m.

Abb. 2.2.14.: KB 4: 24-26 m.

Proben und Analysen

Insgesamt wurden sieben Proben aus den Bohrkernen der Kernbohrungen entnommen, davon vier aus der Bohrung KB 2 und drei Proben aus KB 4. Alle Proben wurden gesamt-, tonmineralogisch und granulometrisch untersucht. Außerdem wurden drei Proben mikropaläontologisch analysiert. Eine Probenliste findet sich in Tab. 2.2.5.

Mikropaläontologische Analysen

(H. Gebhardt)

KB 2, 11,3-11,4 m

Diverse Planktonforaminiferenarten, Ostrakoden, tw. schwarz gefärbt Lagerungsverhältnisse -> Ziersdorf-Fm. möglich

KB 2, 22,3-22,4 m

Larvalschalen von Mollusken und Ostrakoden, Süß-, Brackwasserostracoden -> terrestrischer Einfluss in Ziersdorf-Fm.?

KB 4, 24,4 m

Molluskenbruch, *?llyocypris* sp., *Hemicyprideis* sp., *Ammonia beccarii* -> Ziersdorf-Fm. möglich

Tab. 2.2.5.: Probenliste der Kernbohrungen im Brunnenfeld IV Hollabrunn mit Angabe der durchgeführten Analysen.

	Probenliste Hollabrunn Brunnenfeld									
Probe	Beschreibung	Analysen								
KB 2										
11,3-11,4 m	Schluff, grau (hell-mittelgrau) mit vielen schwarzen Pflanzenresten und größeren Holzresten, kalkhältig, bindig	Mineralogie, Granulometrie								
13,8 m	Schluff, grau (hell-mittelgrau) mit vielen schwarzen Pflanzenresten und größeren Holzresten, kalkhältig, bindig	Mineralogie, Granulometrie								
18,5 m	Karbonatkies	Mineralogie, Granulometrie								
22,3-22,4 m	Ton, grau, bindig, schmierig, hart, kalkhältig, mit schwarzen Schlieren (Pflanzenreste)	Mineralogie, Granulometrie								
KB 4										
6,2-6,3 m	Schluff, +/- tonig (teilweise), fein geschichtet, hellgraubraun, mit rostroten Schlieren, bindig, leicht kalkhältig, mit dünnen sandigen Lagen	Mineralogie, Granulometrie								
12,3-12,4 m	Schluff, +/- tonig (teilweise), fein geschichtet, hellgraubraun, mit rostroten Schlieren, bindig, leicht kalkhältig, mit dünnen sandigen Lagen	Mineralogie, Granulometrie								
24,4 m	Ton, grau, mit schwarzen Pflanzenresten (tw. groß), fest, bindig, stark kalkhältig	Mineralogie, Granulometrie								

Mineralogische Untersuchungen

Im März 2014 wurden drei Kernbohrungen im Brunnenfeld 4 in Hollabrunn lithologisch aufgenommen und beprobt. Die stratigraphische Einstufung der Proben in das Neogen (Sarmatium) basiert sowohl auf der geologischen Karte von SCHNABEL et al. (2002) als auch auf mikropaläontologischen Untersuchungen, die an der Geologischen Bundesanstalt durchgeführt wurden. Für mineralogische und korngrößenmäßige Analysen wurden 7 Proben aus 2 Bohrungen ausgewählt.

Gesamtmineralogische Analysen (Abb. 2.2.15.)

Die sieben bearbeiteten Proben umfassen stratigraphisch ausschließlich Sedimente der sarmatischen Ziersdorf-Formation, deren Ablagerungsraum im brackisch bis seichtmarinen, gezeitenbeeinflussten Milieu liegt. Die beiden Kernbohrungen KB 2 (4 Proben) und KB 4 (3 Proben) werden getrennt besprochen.

Die gesamtmineralogische Zusammensetzung der Bohrung KB 2 spiegelt im Wesentlichen die stark schwankende Korngrößenzusammensetzung wider. So zeigen die, nach der Klassifizierung von MÜL-LER (1961) und FÜCHTBAUER (1959) bezeichneten Silttone (Proben bei 13,8 m und 22,3 m) Schichtsilikatgehalte zwischen 50 bis 62 Gew. %. Der Quarzanteil liegt bei diesen Sedimenten knapp unter 20 Gew. %. Bei den beiden grobkörnigeren Proben, ein Sandkies (18,5 m) und ein Sandsilt (11,3 m), dominieren die Quarzgehalte mit Maximalwerten bis zu 50 Gew. %. Die Schichtsilkatanteile treten deutlich zurück und erreichen maximal 20 Gew. %. Der Gesamtfeldspatgehalt liegt immer unter 10 Gew. %. Sämtliche Proben sind karbonathältig mit Anteilen zwischen 16 bis 37 Gew. %, wobei in den grobkörnigen Sedimenten Dolomit markant überwiegt.

In den beiden hangenden Proben konnte Pyrit nachgewiesen werden, ein Hinweis auf reduzierende Bedingungen im Ablagerungsmilieu.

Korngrößenmäßig sind die Sedimente sehr unterschiedlich ausgebildet (Tab. 2.2.6., Abb. 2.2.17. bis 2.2.19.). Die beiden nach der Nomenklatur von MÜLLER (1961) und FÜCHTBAUER (1959) bezeichneten Silttone aus einer Tiefe von 13,8 m und 22,3 m weisen ihr Korngrößenmaximum im Tonanteil auf, mit variablen Siltgehalten, wobei der Feinsiltanteil dominiert. In der Probe bei 11,3 m, ein toniger Sandsilt, überwiegen die Grobsilt- und Feinsandanteile. Die grobkörnigste Probe, ein Sandkies, tritt bei 18,5 m auf. Sand- und Tonanteil fehlen praktisch weitgehend, Mittel-Feinkies und Grobsand sind am stärksten vertreten. Generell zeichnen sich alle Proben durch extrem schlechte Sortierung aus. Die variable granulometrische Zusammensetzung der Sedimente kann im gezeitenbeeinflussten Ablagerungsraum durch rasch wechselnde Strömungsverhältnisse bedingt sein.

Die gesamtmineralogische Zusammensetzung der Bohrung KB 4 zeigt sehr einheitliche Spektren mit einem Vorherrschen an Schichtsilikatanteilen (maximal 53 Gew. %) gegenüber Quarz mit maximal 25 Gew. %. Die Gesamtfeldspatgehalte weisen einen Mittelwert von 5 Gew. % auf. In allen Proben wurde Karbonat nachgewiesen, das mit Prozentwerten zwischen 21 bis 31 Gew. % variiert, wobei Dolomit immer überwiegt.

Pyrit konnte als akzessorische Komponente in der Probe KB4 (24,4 m) bestimmt werden.

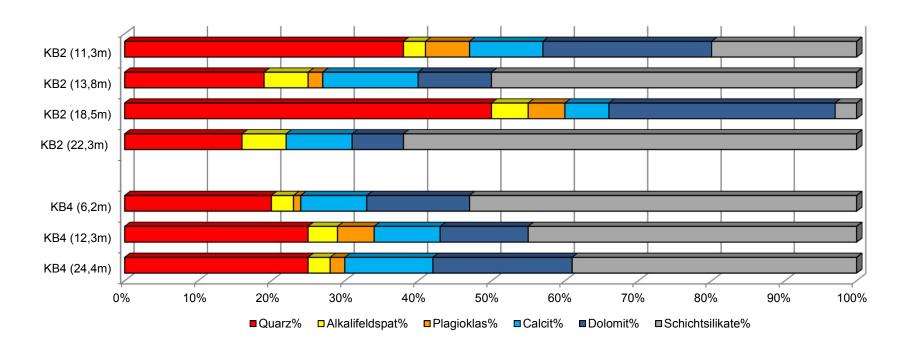
Granulometrisch zeigen sämtliche Proben sehr homogenen Kornaufbau. Im Diagramm nach MÜLLER (1961) und FÜCHTBAUER (1959) sind die Sedimente in den Feldern Siltton und Tonsilt zu finden. Innerhalb der Silte sind vor allem Mittel- und Feinsilt dominant vertreten. Die Sortierung ist einheitlich extrem schlecht.

Die tonmineralogischen Analysen wurden an der Fraktion <2μm durchgeführt (Abb. 2.2.16.).

Generell lässt das Gesamtbild der röntgenographischen Phasenanalyse auf gute Kristallinität der Tonminerale schließen. Die Basisreflexe der Minerale sind zumeist sehr schmal und zeigen starke Intensitäten.

Die *Tonmineralzusammensetzung der Bohrung KB 2* wird in allen Analysen von quellfähigen Dreischichtsilikaten (Smektit) dominiert. Zweitstärkste Mineralgruppe sind Illit/Hellglimmer, gefolgt von Kaolinit und Chlorit. Vermiculit und Biotit treten nur in der Probe KB2 (22,3m) auf.

Die Bohrung KB4 zeigt ebenfalls in allen Proben Vorherrschaft der quellfähigen Smektitgruppe, gefolgt von Illit/Hellglimmer, Kaolinit und Chlorit. Neben Vermiculit, der nur in der obersten Probe relativ hohe Anteile mit 12 Gew. % erreicht, sind Biotite ebenfalls in allen Proben vertreten.


Anhand der gesamt-und tonmineralogischen Untersuchungen lässt sich erkennen, dass Verwitterungsprozesse keine bedeutende Rolle gespielt haben. Der Karbonatgehalt ist durchgehend hoch, Vermiculite sind nur sehr untergeordnet im Spektrum vertreten bzw. fehlen gänzlich. In der Fraktion <2µm dominieren ausnahmslos in beiden Bohrungen die detritären Tonminerale in Form klassisch niedrig geladener Smektite und Illit/Hellglimmern. Korngrößenmäßig zeigen die Proben der Bohrung KB2 sehr große Variabilität im Kornaufbau.

Geochemische Untersuchungen

Alle Proben wurden an der Fachabteilung Geochemie der Geologischen Bundesanstalt auf Haupt- und Spurenelemente untersucht (Tab. 2.2.7.). Die grobkörnigeren Sedimente (siehe Probe KB2, 18,5m) zeigen eine Vormacht an SiO₂, die aus den hohen Gehalten ihrer Silikatbestandteile resultieren. Die Al₂O₃-Gehalte spiegeln im Wesentlichen den Tonmineralgehalt wider und zeigen entsprechend den röntgenographischen Analysen relativ einheitliche Werte. Die K₂O-Anteile sind sowohl für die Hellglimmeranteile als auch für die Kalifeldspatgehalte verantwortlich. Mittels des Na₂O-Gehaltes können die Albitanteile ermittelt werden. Die hohen Gehalte von CaO, MgO und CO₂ stehen im Einklang mit den durchgehend hohen Karbonatgehalten der Sedimente.

Hollabrunn - Brunnenfeld 4 (ÖK 22)

GESAMTMINE	GESAMTMINERALOGISCHE ZUSAMMENSETZUNG						
Probenummer	Quarz%	Alkalifeldspat%	Plagioklas%	Calcit%	Dolomit%	Schichtsilikate%	Lithologie /Stratigraphie
KB2 (11,3m)	38	3	6	10	23	20	Sand, tonig, schluffig (Ziersdorf-Formation, Sarmatium)
KB2 (13,8m)	19	6	2	13	10	50	Schluff, tonig, sandig (Ziersdorf-Formation, Sarmatium)
KB2 (18,5m)	50	5	5	6	31	3	Kies, sandig (Ziersdorf-Formation, Sarmatium)
KB2 (22,3m)	16	6	0	9	7	62	Schluff, tonig, sandig (Ziersdorf-Formation, Sarmatium); Biotit
KB4 (6,2m)	20	3	1	9	14	53	Schluff, tonig, sandig (Ziersdorf Fm., Sarmatium); Biotit
KB4 (12,3m)	25	4	5	9	12	45	Schluff, tonig, sandig (Ziersdorf Fm., Sarmatium); Biotit
KB4 (24,4m)	25	3	2	12	19	39	Schluff, tonig, sandig (Ziersdorf Fm., Sarmatium); Biotit

Hollabrunn - Brunnenfeld 4 (ÖK 22)

TONMINERAL	OGISCHE ZUSAMMI	ENSETZUNG				
Probenummer	Smektit % (hoch/niedriggel.)	Illit-Glimmer%	Kaolinit%	Chlorit%	Vermiculit%	Lithologie /Stratigraphie
KB2 (11,3m)	63	22	7	8	0	Sand, tonig, schluffig (Ziersdorf-Formation, Sarmatium); Pyrit
KB2 (13,8m)	68	20	9	8	0	Schluff, tonig, sandig (Ziersdorf-Formation, Sarmatium);Pyrit
KB2 (22,3m)	48	30	9	8	5	Schluff, tonig, sandig (Ziersdorf-Formation, Sarmatium); Biotit; Py
KB4 (6,2m)	50	26	8	4	12	Schluff, tonig, sandig (Ziersdorf Fm., Sarmatium); Biotit
KB4 (12,3m)	59	25	9	4	3	Schluff, tonig, sandig (Ziersdorf Fm., Sarmatium); Biotit
KB4 (24,4m)	62	19	12	7	0	Schluff, tonig, sandig (Ziersdorf Fm., Sarmatium); Biotit, Pyrit
	0% 10	% 20%	30%	40%	50% 6	50% 70% 80% 90% 100%
KB2 (11,3	3m)					
KB2 (13,8	Bm)					
KB2 (22,3	m)					
	-					
KB4 (6,2	2m)					
KB4 (12,3	3m)		·	·		
KB4 (24,4	4m)					
	- /	■Smektit % ((hoch/niedriggel	.) □Illit-Glir	nmer% □Kaolir	nit% ■Chlorit% ■Vermiculit%

Hollabrunn Brunnenfeld 4 (ÖK 22)

Müller, G. (1959) & Füchtbauer, H. (1961)											Win	Winkler, H.G.F. (1					
	Gewichtsprozent																
Probe	Benennung						Kies			Sand			Silt				
	Sand-Silt-Ton <i>Kies-Sand-Silt</i>					Gkies	Mkies	Fkies	Gsand	Msand	Fsand	Gsilt	Msilt	Fsilt	Ton < 2 µm	2-20 µm	> 20 µm
		Kies	Sand	Silt	Ton												
KB2 (11,3m)	toniger Sandsilt	0,6	31,8	49,9	17,7			0,6	0,2	2,5	29,1	24,2	14,8	11,0	17,7	25,8	56,5
KB2 (13,8m)	Siltton	4,0	2,2	45,4	48,4		1,7	2,3	0,7	0,4	1,0	5,9	14,4	25,1	48,4	39,5	12,1
KB2 (18,5m)	Sandkies	53,8	43,2	2,6	0,4	9,7	23,2	21,0	26,2	14,5	2,5	1,0	1,0	0,6	0,4	1,6	98,0
KB2 (22,3m)	Siltton	0,0	0,2	32,1	67,7				0,04	0,1	0,1	1,4	7,1	23,6	67,7	30,7	1,6
KB4 (6,2m)	Siltton	0,0	2,0	38,2	59,8				0,1	0,3	1,6	5,1	12,3	20,8	59,8	33,1	7,1
KB4 (12,3m)	Tonsilt	0,0	3,8	53,0	43,2				0,2	0,4	3,2	9,6	21,9	21,5	43,2	43,4	13,4
KB4 (24,4m)	Tonsilt	1,9	2,2	63,7	32,1			1,9	1,0	0,7	0,6	11,8	32,0	19,9	32,1	51,9	16,0

Probe	Statistische Parameter									
		Momentverfahren			Folk, R.L. & Ward, W. (1957)				k-Werte (m/s)	
	Sortierung	Arithmet.	Standard-	Schiefe	Arithmet.	Standard-	Schiefe	U	K-vverte (III/S)	
		Mittelwert	Abweichung		Mittelwert	Abweichung			Beyer	Bialas
KB2 (11,3m)	extrem schlecht sortiert	6,09	3,35	1,01	5,80	3,13	0,52	86,81	2,10E-09	4,20E-09
KB2 (13,8m)	extrem schlecht sortiert	9,12	3,93	-0,78	9,42	3,80	0,11	74,47	1,30E-11	1,20E-11
KB2 (18,5m)	sehr schlecht sortiert	-1,20	2,52	1,00	-1,43	2,29	-0,01	10,78	1,10E-03	1,20E-03
KB2 (22,3m)	extrem schlecht sortiert	10,70	2,73	0,00	10,65	2,86	0,29	45,31	6,00E-12	2,40E-12
KB4 (6,2m)	extrem schlecht sortiert	10,43	3,44	-0,08	10,40	3,63	0,22	103,88	2,30E-12	1,20E-12
KB4 (12,3m)	extrem schlecht sortiert	9,03	3,29	0,27	8,98	3,33	0,26	81,8	2,20E-11	2,70E-11
KB4 (24,4m)	extrem schlecht sortiert	8,33	3,66	0,23	8,35	3,32	0,44	131,10	2,60E-11	1,10E-10

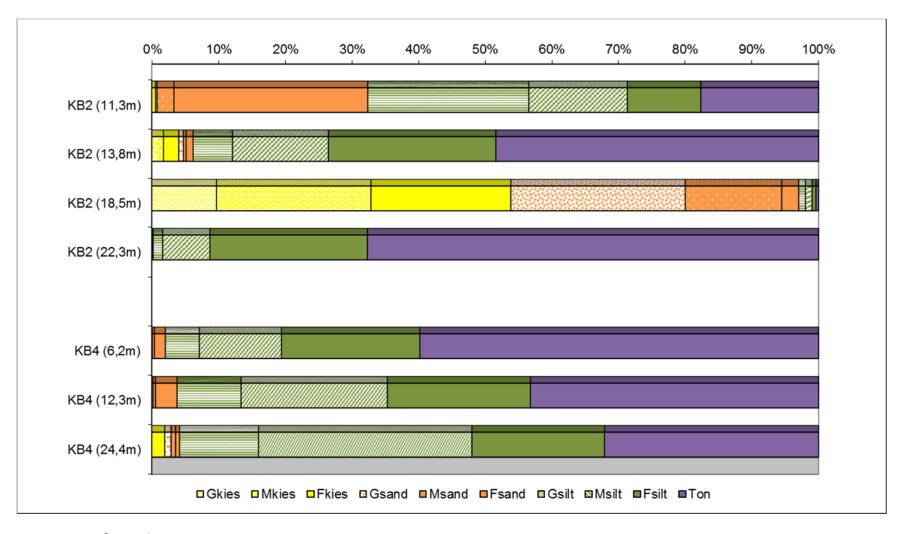


Abb. 2.2.17.: Korngrößenanalyse: Diagramm.

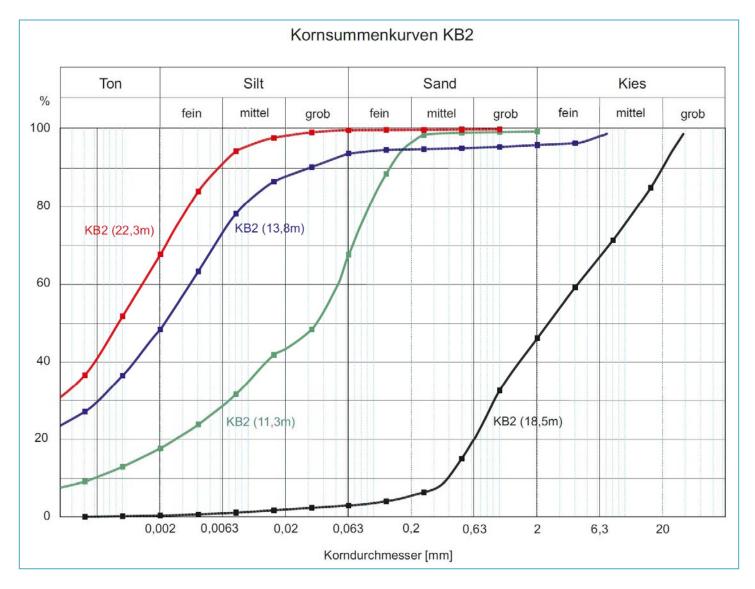


Abb. 2.2.18.: Kornsummenkurven der Proben von KB 2 Brunnenfeld IV Hollabrunn.

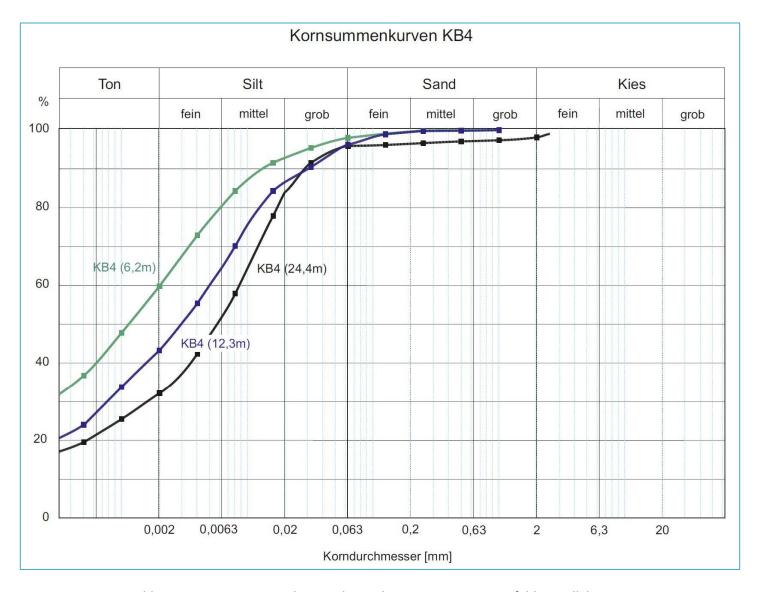


Abb. 2.2.19.: Kornsummenkurven der Proben von KB 4 Brunnenfeld IV Hollabrunn.

Tab. 2.2.7.a.: Ergebnisse der geochemischen Analysen der Kernbohrungen Hollabrunn.

	GCH-2014-054-	GCH-2014-054-	GCH-2014-054-	GCH-2014-054-
GCH-2014-054	001	002	003	004
Bezeichnung	KB2 (11,3- 11,4m) Brun- nenfeld 4 Hol- labrunn	KB2 (13,8m) Brunnenfeld 4 Hollabrunn	KB2 (18,5m) Brunnenfeld 4 Hollabrunn	KB2 (22,3- 22,4m) Brun- nenfeld 4 Hol- labrunn
SiO ₂ (%)	48,0	42,0	54,0	46,0
TiO ₂ (%)	0,5	0,7	0,1	0,8
Al ₂ O ₃ (%)	8,9	14,3	2,7	16,5
FeO (%)	2,3	5,1	0,4	5,2
MnO (%)	0,04	0,07	0,01	0,08
MgO (%)	3,6	3,4	5,1	3,2
CaO (%)	17,6	13,5	19,6	9,0
Na_2O (%)	0,3	0,1	< 0,1	0,05
K_2O (%)	1,4	2,36	0,75	2,91
P_2O_5 (%)	0,03	0,07	< 0,005	0,05
SO ₃ (%)	0,9	3,2	0,1	0,3
H ₂ O ^{110° C} (%)	0,8	2,8	0,1	3,5
$H_2O+(\%)$	< 0,1	< 0,1	< 0,1	3,4
CO2 (%)	15,80	11,85	16,69	8,85
Summe	100,3	99,6	99,6	99,8
	T	T	T	T
As (ppm)	2	11	< 1	6
Ba (ppm)	249	307	250	325
Cd (ppm)	< 1	< 1	< 1	< 1
Ce (ppm)	46	60	12	67
Co (ppm) Cr (ppm)	10 119	26 137	< 1 41	30 153
Cr (ppm) Cs (ppm)	5	9	3	133
Cu (ppm)	17	33	8	40
La (ppm)	25	30	12	34
Nb (ppm)	11	15	4	16
Nd (ppm)	24	27	14	29
Ni (ppm)	32	71	< 1	106
Pb (ppm)	20	27	17	32
Pr (ppm)	6	7	3	8
Rb (ppm)	83	144	48	190
Sr (ppm)	145	147	120	158
V (ppm)	85	154	35	171
Y (ppm)	23	29	2	28
Zn (ppm)	57	100	18	130
Zr (ppm)	242	134	41	113
Summe (ppm)	1203	1466	630	1650
Summe (%)	0,12	0,15	0,06	0,17
Gesamtsumme (%)	100,4	99,7	99,6	99,9

Tab. 2.2.7.b.: Ergebnisse der geochemischen Analysen der Kernbohrungen Hollabrunn.

G GYY •044 054	GCH-2014-054-	GCH-2014-054-	GCH-2014-054-
GCH-2014-054	005	006	007
Bezeichnung	KB4 (6,2-6,3m) Brunnenfeld 4 Hollabrunn	KB4 (12,3- 12,4m) Brun- nenfeld 4 Hol- labrunn	KB4 (24,4m) Brunnenfeld 4 Hollabrunn
SiO ₂ (%)	41,0	45,0	38,0
TiO ₂ (%)	0,7	0,8	0,7
Al ₂ O ₃ (%)	15,0	14,3	12,3
FeO (%)	6,1	4,7	4,5
MnO (%)	0,09	0,03	0,05
MgO (%)	4,3	3,3	3,9
CaO (%)	11,5	12,3	16,3
Na ₂ O (%)	0,1	0,1	0,2
K ₂ O (%)	2,53	2,5	1,9
P ₂ O ₅ (%)	0,07	0,04	0,08
SO ₃ (%)	0,1	0,04	4,5
H ₂ O ^{110° C} (%)	3,1	2,510	1,78
H ₂ O+ (%)	4,4	3,7	< 0,1
CO2 (%)	10,22	10,68	15,41
Summe	99,1	100,0	99,6
		Т	Г
As (ppm)	15	7	6
Ba (ppm)	297	290	272
Cd (ppm)	< 1	< 1	< 1
Ce (ppm)	63	68	58
Co (ppm)	33	26	23
Cr (ppm)	153	182	138 8
Cs (ppm)	13 35	10 29	27
Cu (ppm) La (ppm)	31	33	28
Nb (ppm)	16	15	15
Nd (ppm)	27	29	26
Ni (ppm)	96	86	62
Pb (ppm)	29	28	24
Pr (ppm)	7	8	8
Rb (ppm)	170	143	110
Sr (ppm)	148	145	146
V (ppm)	153	140	125
Y (ppm)	27	30	26
Zn (ppm)	117	93	87
Zr (ppm)	131	209	173
Summe (ppm)	1560	1574	1361
Summe (%)	0,16	0,16	0,14
Gesamtsumme (%)	99,3	100,2	99,8

2.2.2. Aufnahme von 3 Kernbohrungen zur Standortuntersuchung für die Bodenaushubdeponie Weyerburg (ÖK 23)

Auf Initiative von Dr. Joachim Schweigl wurden am 3. Juni 2014 drei Kernbohrungen aufgenommen, die zur Standortuntersuchung der Eignung einer ehemaligen Kiesgrube als Bodenaushubdeponie abgeteuft wurden. DI Wagesreiter (Hollabrunn) stellte dankenswerter Weise den Lageplan zur Verfügung.

Bei dem Standort handelt es sich um eine ehemalige Kiesgrube, die in der Abbaudatenbank der Geologischen Bundesanstalt unter der Nummer 023/044 zu finden ist. Wie aus Abb. 2.2.20. ersichtlich wurden die Kernbohrungen außerhalb der Kiesgrube um diese herum abgeteuft. In Tab. 2.2.8. sind die Koordinaten der Bohrpunkte angeführt.

In Abb. 2.2.21. ist die Lage der Bohrungen auf der geologischen Karte von Hadres (ROETZEL et al., 2007) dargestellt.

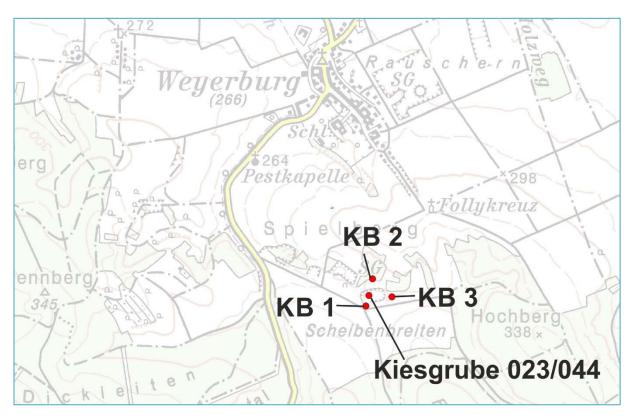


Abb. 2.2.20.: Lage der ehemaligen Kiesgrube und der Kernbohrungen südlich von Weyerburg.

Tab. 2.2.8.: Koordinaten der Kernbohrungen Weyerburg

	RW_M34	HW_M34
KB 1	739366,458	380234,962
KB 2	739400,998	380377,542
KB 3	739503,357	380282,17

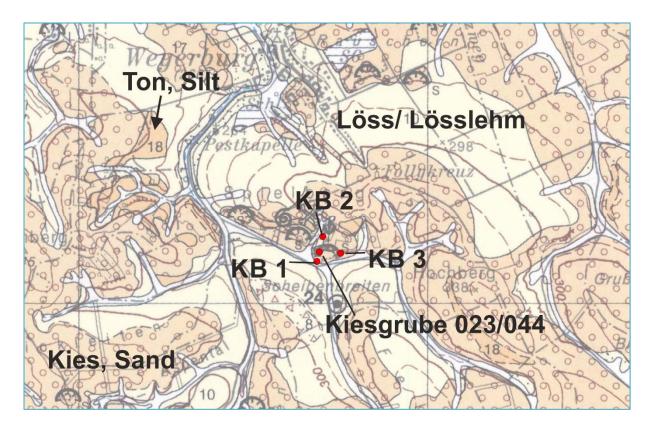


Abb. 2.2.21.: Lage der Kernbohrungen Weyerburg auf der geologischen Karte von Hadres (ÖK 23, RO-ETZEL et al., 2007). Die braunen Signaturen bezeichnen die pannone Hollabrunn-Mistelbach-Fm.

Beschreibung der Bohrungen

KB 1 - Weyerburg

Die Kernbohrung KB 1 wurde an der Einfahrt zur Kiesgrube, die im S derselben liegt, bis in 25 m Tiefe abgeteuft (Abb. 2.2.22. und 2.2.23.).

Aus dem Bohrprofil (Tab. 2.2.9.) ist ersichtlich, dass unter etwa 10 cm Mutterboden ein Meter schokoladenbrauner, schwach feinkiesiger Schluff liegt. Darunter folgte Löss bis 3,3 m Tiefe, unterlagert durch solifluidalen Lehm bis 6,3 m Tiefe.

Ab 6,3 m Tiefe wurden Kiese, Sande, Schluffe und Tone der pannonen Hollabrunn-Mistelbach-Formation erbohrt, im Liegenden der Bohrung, von 19,35 m bis 25 m Tiefe lagen Schluffe-Tone der Ziersdorf-Formation. Diese enthielten Molluskenschalenreste und Pflanzenreste, außerdem wurde die stratigraphische Einstufung in das Sarmatium durch eine mikropaläontologische Analyse bestätigt.

Abb. 2.2.24. bis 2.2.27. zeigen die Fotodokumentation der Bohrkerne.

Abb. 2.2.22.: Lage der Bohrung KB 1 an der Zufahrt zur Kiesgrube im S derselben.

Abb. 2.2.23.: Blick von KB 1 Richtung N in die stark verwachsene Kiesgrube.

Tab. 2.2.9.: Bohrprofil der Kernbohrung KB 1 Weyerburg (Analysen: M=Mineralogie, G=Granulometrie, Ch=Geochemie, MPal=Mikropaläontologie).

	KB-1 Weyerburg	T	T	Amal:	
Tiefe	Beschreibung	Interpretation	Proben	Analysen	
0-0,1 m	Boden	Mutterboden			
0,1-1,1 m	Schluff, schwach feinkiesig (Quarz, <1 cm, nur vereinzelt bis 3 cm), braun (schokobraun), kalkhältig				
1,1-3,3 m	Schluff, feinsandig, gelbbraun (trocken), stark kalkhältig, tw. Pseudomycelien (2,7-3,0 m)	Löss	2,7-2,8 m	M, G, Ch	
3,3-4,65 m	Schluff, tonig, mittelbraun, vereinzelt mit Grobsand - Feinkies, kalkhältig: 3,3-4,0 m; kalkfrei: 4,0-4,65 m	solifluidaler Lehm			
4,65-6,3 m	Schluff, tonig, leicht grobsandig-feinkiesig, gelbbraun bis gelbgrau, gelborange fleckig, untere 10 cm: röt- lich-gelb, stark kalkhältig	solifluidaler Lehm			
6,3-10,4 m	Kies-Sand (Feinkies-Mittelkies, Grobsand-Mittelsand), gelbgrau-gelbbraun, kalkhältig, Kies v.a. 1-4 cm Dm., vereinzelt bis 6 cm, gut gerundet, Komponenten: Quarz, Karbonate, Kristallin, bei 6,9-7,0 m Kalkausfällungshorizont (weiß, bröckelig)	Hollabrunn- Mistelbach- Fm.			
10,4-11,4 m	Sand-Kies (Grobsand, Feinkies, mittelkiesig), gelbgrau, mit Schlufflagen oder -klasten, Kies: 0,5 - 2 cm Dm., gut gerundet	Hollabrunn- Mistelbach- Fm.			
11,4-11,9 m	Grobsand, kiesig, gut sortiert, gelbgrau-gelbbraun, Kies bis 3 cm Dm.	Hollabrunn- Mistelbach- Fm.			
11,9-12,0 m	Schluff, tonig, grüngrau, mit rostgelben Schlieren, etwas kalkhältig	Hollabrunn- Mistelbach- Fm.			
12,0-12,2 m	Grobsand-Feinkies, gelbgrau, Schlufflagen	Hollabrunn- Mistelbach- Fm.			
12,2-13,0 m	Ton-Schluff, grünlichgrau, gelborange fleckig, klebrig, kalkhältig, 12,7-13,0 m: mit Konkretionen bis 3 cm Dm., Bivalvenreste	Hollabrunn- Mistelbach- Fm.	12,5-12,6 m	M, G, Ch	
13,0-14,5 m	Schluff, feinsandig, gelbgrau-hellgrau, tw. rostige Schlieren, kalkhältig, vereinzelt verhärtete Lagen	Hollabrunn- Mistelbach- Fm.			
14,5-14,75 m	Sand-Kies (Grobsand-Mittelsand, feinsandig-schluffig, feinkiesig), gelbbraun-gelborange, kalkhältig, Kieskomponenten bis 2 cm Dm.	Hollabrunn- Mistelbach- Fm.			
14,75-15,0 m	Kies-Sand (Feinkies, mittelkiesig, sandig), konkretio- när verhärtete Sandstein- und Konglomeratlagen	Hollabrunn- Mistelbach- Fm.			
15,0-16,55 m	Kies-Sand bis Sand-Kies (Feinkies), gelbgrau-gelborange, tw. rostrot gefleckt, mit Sandsteinlagen (Verhärtungen), kalkhältig, 16,0-16,55 stärker kiesig, bis 3 cm Dm.	Hollabrunn- Mistelbach- Fm.			
16,55-16,65 m	Ton-Schluff, etwas feinkiesig, grüngrau, rostbraune Schlieren, kalkhältig,	Hollabrunn- Mistelbach- Fm.			
16,65-17,0 m	Kies-Sand bis Sand-Kies wie 15,0 - 16,55 m mit Schluff-Tonlagen, gelbgrau-gelborange, kalkhältig	Hollabrunn- Mistelbach- Fm.			
17,0-19,25 m	Kies-Sand (Feinkies, mittelkiesig, sandig-schluffig, einzelne Komponenten bis 5 cm), kalkhältig, vereinzelt Sandsteinverhärtungen; Kies: bunt zusammengesetzt, viel Karbonat, Quarz	Hollabrunn- Mistelbach- Fm.			
19,25-19,35 m	Schluff, tonig, stark kiesig, gelborange	? Hollabrunn- Mistelbach- Fm.			
19,35-25,0 m (ET)	Schluff-Ton, bindiger Kern, kalkhältig; 19,35-22,0 m: gelbbraun-gelbgrau mit schwarzen Pflanzenresten, 20,6-20,8 m: massive schwarze ?Pflanzenreste oder ?Mangankonkretionen, 22,0-25,0 m: grau-blaugrau mit Molluskenresten; 23,8-23,9 m: Abdruck eine Bivalve mit Schalenrest, 23,9-24,15 m: feinsandig-schluffig	Ziersdorf-Fm. (Sarmatium)	20,4-20,5 m; 23,8- 23,9 m; 24,8-24,9 m	20,4-20,5: M, G, Ch; 24,8-24,9 m: MPal, M, G, Ch,	

Abb. 2.2.24.: KB 1: 0-8 m.

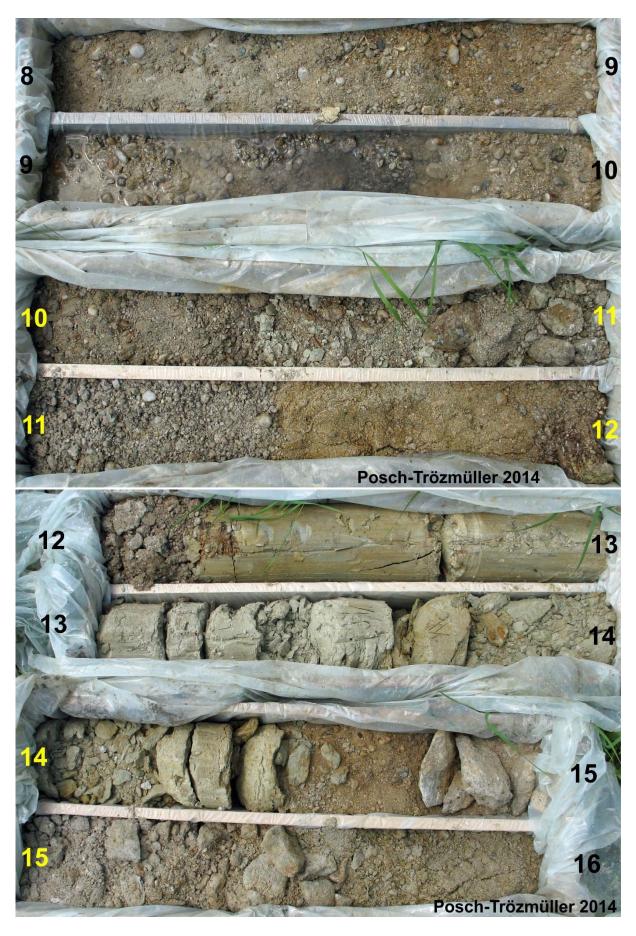


Abb. 2.2.25.: KB 1: 8-16 m.

Abb. 2.2.26.: KB 1 16-20 m.

Abb. 2.2.27.: KB 1: 20-25 m (ET).

KB 2 - Weyerburg

KB 2 wurde etwa 50 m nördlich der Kiesgrube abgeteuft (Abb. 2.2.28. und 2.2.29.).

Das Bohrprofil in Tab. 2.2.10. zeigt, dass quartäre Sedimente bis 7 m Tiefe hinabreichen. Unter einer Bodenbildung von 30 cm Mächtigkeit wurde zunächst Lehm bis 2 m Tiefe aufgeschlossen, darunter trat Löss bis 4,5 m Tiefe zutage. Es folgten vorwiegend Schluffe, die von 6 m bis 6,4 m aufgrund ihrer Farbe als Paläoboden bezeichnet wurden.

Unter den quartären Ablagerungen wurden mindestens 20 m Sande und sandige Kiese der Hollabrunn-Mistelbach-Formation erbohrt, im Liegendsten der Bohrung wurden von 34,4 bis 37,4 m Tone und Schluffe der Ziersdorf-Formation (Sarmatium) mit Pflanzenresten und Bivalvensplittern aufgeschlossen. Die stratigraphische Einstufung derselben wurde durch eine mikropaläontologische Analyse bestätigt.

Die Fotodokumentation der Bohrkerne ist in Abb. 2.2.30. bis 2.2.34. dargestellt.

Abb. 2.2.28.: Lage der Bohrung KB 2.

Abb. 2.2.29.: Blick von der Bohrung KB 2 Richtung S, die Bäume im Bildhintergrund stehen am Rande der Kiesgrube.

Tab. 2.2.10.: Bohrprofil der Kernbohrung KB 2 Weyerburg (Analysen: M=Mineralogie, G=Granulometrie, Ch=Geochemie, Mal=Mikropaläontologie).

KB-2 Weyerburg Tiefe Beschreibung Interpretation Proben Ar											
	<u> </u>	Interpretation	Proben	Analysen							
0-0,3 m 0,3-2,0 m	Boden, mittelbraun Schluff, tonig-sandig, leicht feinkiesig, braun, von 1,3 – 2,0 m stärker tonig, fest, bindig, kalkfrei	Lehm									
2,0-4,5 m	Löss: Schluff, feinsandig, gelbbraun-grau, sehr stark kalkhältig, tw. mit Pseudomycelien, tw. weiße Kalküberzüge; 2-2,7 m: tonig	Löss	2,3-2,4 m	M, G, Ch							
4,5-5,0 m	Schluff, etwas feinsandig, gelbbraun, kalkhältig, tw. leicht verfestigt	Quartär									
5,0-5,25 m	Feinsand, schluffig, rötlichbraun-gelborange, kalkhältig	Quartär									
5,25-5,3 m	Ton, schluffig, grünlichgrau, kalkhältig	Quartär									
5,3-5,8 m	Schluff, tonig, etwas feinkiesig, kalkhältig, gelbbraun-mittelbraun	Quartär									
5,8-6,0 m	Schluff, feinsandig, gelbbraun, kalkhältig, ähnlich Löss	Quartär									
6,0-6,4 m	Schluff, tonig, mittelbraun-rötlichbraun, kalkhältig	?Paläoboden									
6,4-6,7 m	Schluff-Ton, gelbbraun-grau, rostig gefleckt, kalkhältig	Quartär									
6,7-7,0 m	Schluff, tonig, feinsandig, feinkiesig, gelbbraun, kalkhältig, in den untersten 10 cm gröbere Kiese bis 3 cm	Quartär									
7,0-7,7 m	Feinsand, graubraun-rostig gefleckt, kalkhältig, Schlufflagen	Hollabrunn-Mis- telbach-Fm.									
7,7-7,9 m	Mittelsand – Grobsand, feinkiesig, gelbgrau-gelbbraun, kalkhältig	Hollabrunn-Mis- telbach-Fm.									
7,9-8,0 m	Schluff, feinsandig, gelbgrau, kalkhältig	Hollabrunn-Mis- telbach-Fm.									
8,0-19,5 m	Kies-Sand, gelbgrau-gelbbraun, tw. gelborange, kalkhältig, v.a. Mittelkies, feinkiesig, grobsandig-mittelsandig, Kies v.a. 2 – 5 cm, vereinzelt bis 10 cm, Quarz, Karbonate, Hornstein, 12,8-13,0 m und 18,3-18,5 m: stark tonig bzw. Tonlage oder –klasten im Kies, 18,5-19,0 m: rostrot	Hollabrunn-Mis- telbach-Fm.									
19,5-20,1 m	Schluff, tw. feinsandig, z.T. Feinsand, siltig, gelbgrau-graubraun, kalk- hältig	Hollabrunn-Mis- telbach-Fm.									
20,1-21,2 m	Kies-Sand, v.a. Feinkies <1 cm, Matrix: Mittel- bis Grobsand, gelb-braun-grau, kalkhältig	Hollabrunn-Mis- telbach-Fm.									
21,2-22,0 m	Grobsand-Mittelsand, feinkiesig, gelbgrau-gelbbraun, kalkhältig	Hollabrunn-Mis- telbach-Fm.									
22,0-24,6 m	Kies-Sand, mittelsandig-grobsandig, gelbbraun-braungrau, tw. rötlich; kalkhältig, Kieskomponenten gut gerundet, v.a. <2 cm, einzeln bis 5 cm, bei 24,0-24,3 m: Gerölle (Quarz) bis 10 cm Dm.	Hollabrunn-Mis- telbach-Fm.									
24,6-25,0 m	Mittelsand-Grobsand, graubraun-gelbbraun, kalkhältig	Hollabrunn-Mis- telbach-Fm.									
25,0-25,8 m	Grobsand-Mittelsand, feinkiesig, gelbbraun, kalkhältig	Hollabrunn-Mis- telbach-Fm.									
25,8-25,9 m	Grobkies (>10 cm, ?Quarzsandstein) in sandiger Matrix	Hollabrunn-Mis- telbach-Fm.									
25,9-26,1 m	Schluff, tonig, hellgrau, kalkhältig	Hollabrunn-Mis- telbach-Fm.									
26,1-28,9 m	Kies-Sand (Feinkies, Grobsand), stark schluffig, gelbgrau, kalkhältig, schlecht sortiert, Sandsteinlagen bei 26,6-26,7 m und 28,5-28,8 m	? Hollabrunn-Mis- telbach-Fm.									
28,9-29,3 m	Schluff-Sand, feinkiesig, schlecht sortiert, leicht verfestigt, gelbgraubraun, kalkhältig	? Hollabrunn-Mis- telbach-Fm.									
29,3-34,4 m	Schluff-Sand, stark kiesig, wechselnd schluffig, sehr schlecht sortiert, tw. unterschiedlich stark verfestigt, hellgraubraun-gelbgrau; Grobanteil v.a. Grobsand bis Feinkies, tw. gröbere Kiese bis 7 cm Dm. (bes. ab 31,0 m), kalkhältig	? Hollabrunn-Mis- telbach-Fm.									
34,4-37,4 m (ET)	Ton-Schluff, kalkhältig, fest; bis 35,45 m: olivbraun-grüngrau, darunter: dunkelgrau-blaugrau, mit Pflanzenresten (schwarze Stängel und kleine Einsprenglinge), Bivalvensplitter	Ziersdorf Fm. (Sar- matium)	35,8-35,9 m; 37,2- 37,3 m	35,8-35,9 m: M, G, Ch; 37,2- 37,3 m: Mpal							

Abb. 2.2.30.: KB 2: 0-8 m.

Abb. 2.2.31.: KB 2: 8-16 m.

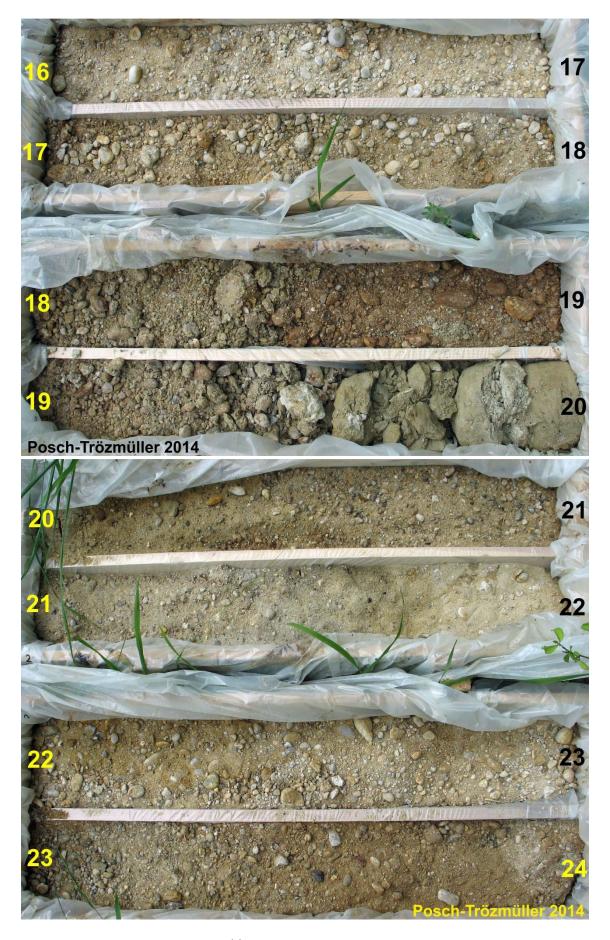


Abb. 2.2.32.: KB 2: 16-24 m.

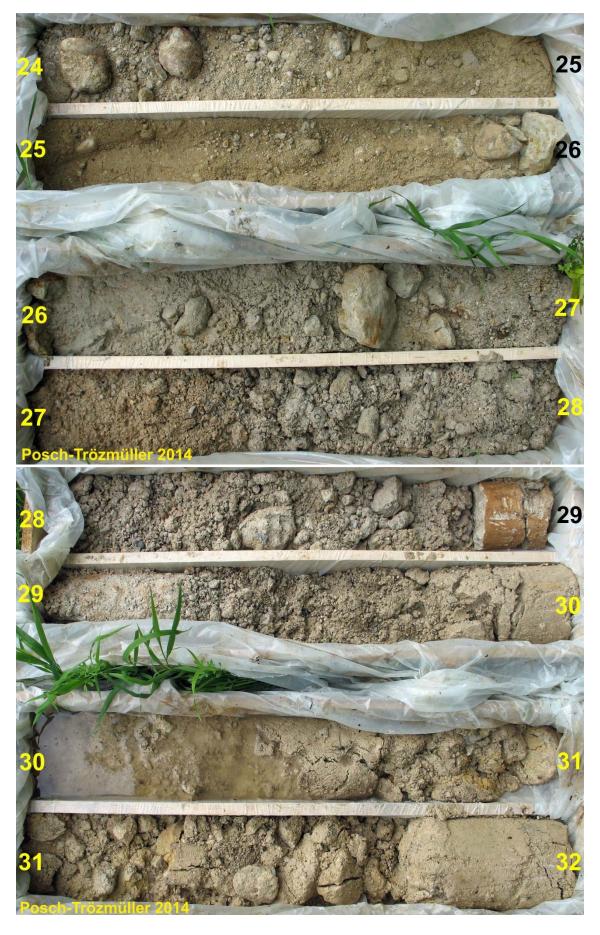


Abb. 2.2.33.: KB 2: 24-32 m.

Abb. 2.2.34.: KB 2: 32-37,4 m (ET).

KB 3 - Weyerburg

Die Bohrung KB 3 wurde etwa 30 m östlich der Kiesgrube bis in 28 m Tiefe abgeteuft (Abb. 2.2.35. und 2.2.36.).

Das Bohrprofil (Tab. 2.2.11.) zeigt unter 40 cm Boden zunächst quartäre Sande und Feinkiese, darunter bis in 1,6 m Tiefe schluffig-feinkiesige Tone. Von 1,6 m bis 2,1 m Tiefe wurde Löss erbohrt.

Ab 2,1 m bis 25,15 m wurden Kiessande, aber auch Schluffe und Tone, sowie eine Lage aus "Sandstein" (aufgebohrt) der Hollabrunn-Mistelbach-Formation (Pannonium) aufgeschlossen. Die liegendsten Meter der Bohrung (25,15 - 28 m) wurden von gelbbraunen, festen, stark kalkhältigen Schluffen eingenommen, die vermutlich analog KB 1 und KB 2 der Ziersdorf-Formation (Sarmatium) zuzurechnen sind.

Proben wurden von KB 3 nicht genommen. Die Fotodokumentation der Bohrung KB 3 ist in den Abb. 2.2.37. bis 2.2.40. zu finden.

Abb. 2.2.35.: Lage der Bohrung KB 3, Blickrichtung NE.

Abb. 2.2.36.: Lage der Bohrung KB 3.

Tab. 2.2.11.: Bohrprofil der Kernbohrung KB 3 Weyerburg.

	KB-3 Weyerburg									
Tiefe	Beschreibung	Interpretation								
0-0,4 m	Boden: Sand, kiesig, mittelbraun	Mutterboden								
0,4-1,1 m	Sand-Kies (Feinkies), graubraun-gelbbraun, im oberen Teil (0,4-0,7 m) kalkfrei, darunter kalkhältig	Quartär								
1,1-1,6 m	Ton, schluffig, kiesig-feinsandig, grünlichgrau, kalkhältig	Quartär								
1,6-2,1 m	Schluff, feinsandig, kiesig, gelbbraun, kalkhältig	solifluidal um- gelagerter Löss								
2,1-2,6 m	Kies-Sand in schluffig-sandiger Matrix, graubraun-gelbbraun, Kies bis 3 cm Dm.	Hollabrunn- Mistelbach-Fm.								
2,6-11,45 m	Kies-Sand; Kies in sandiger Matrix, teils schluffig; gelbgraugelbbraun, kalkhältig, bei 4,0-4,2 m, 4,3-4,4 m und 10,7-10.95 m Einschaltungen von Ton bzw. Kies mit toniger Matrix (grüngrau), Kiese: Mittelkies-Feinkies bis 3 cm Dm., vereinzelt bis 10 cm, Farbe der Kiese variiert (grau, hellgrau, rötlich; 9,0-9,7 m: rötlich), Komponenten v.a. Quarze und Karbonate, gut gerundet, 11,1-11,45 m: rostroter toniger Grobsand bis Feinkies mit Tonklasten	Hollabrunn- Mistelbach-Fm.								
11,45-11,6 m	Ton, schluffig, grüngrau, plastisch, kalkfrei	Hollabrunn- Mistelbach-Fm.								
11,6-11,7 m	Ton, kiesig, grau, Kies matrixgestützt	Hollabrunn- Mistelbach-Fm.								
11,7-12,0 m	Mittelsand, schluffig, graubraun-gelbbraun	Hollabrunn- Mistelbach-Fm.								
12,0-13,3 m	Grobsand, mittelsandig-feinsandig, schwach feinkiesig, gelb- braun-grau, kalkhältig	Hollabrunn- Mistelbach-Fm.								
13,3-19,25 m	Kies-Sand, gelbgrau-braungrau (Kies in grobsandig-mittelsandiger, tw. schluffig-toniger Matrix, htps. Mittelkies-Feinkies bis 3 cm Dm., selten bis 5 cm), Tonlagen bei 15,25-15,4 m (Kies in toniger Matrix), 18,2-18,3 m (Ton, hellgrau, darin rostbrauner Ton/?Tongeröll; sehr stark kalkhältig)	Hollabrunn- Mistelbach-Fm.								
19,25-19,50 m	Sandstein (Grobsand-Mittelsand, kiesig), gelbgrau	Hollabrunn- Mistelbach-Fm.								
19,5-21,4 m	Kies-Sand (Feinkies, mittelkiesig, grobsandig-schluffige Mat- rix), gelbgrau	Hollabrunn- Mistelbach-Fm.								
21,4-21,6 m	Ton, schluffig, grünlichgrau, kalkhältig	Hollabrunn- Mistelbach-Fm.								
21,6-24,55 m	Kies-Sand, grobsandig - schluffige Matrix, graubraun, (Mittelkies-Grobkies, meist 3-5 cm Dm., v.a. 23,0-23,7 m vermehrt gröbere Komponenten (bis >10 cm)	Hollabrunn- Mistelbach-Fm.								
24,55-25,15 m	Schluff, tonig, stark feinkiesig, graubraun-gelbbraun, sehr fester Kern, 25,15 m: rostrote, sehr feste Konkretion	Hollabrunn- Mistelbach-Fm.								
25,15-28,0 m (ET)	Schluff, tonig, fest, stark kalkhältig; 25,15-26,6 m: gelbbraun, darunter: blaugrau	Ziersdorf-Fm. (Sarmatium)								

Abb. 2.2.37.: KB 3: 0-8 m.

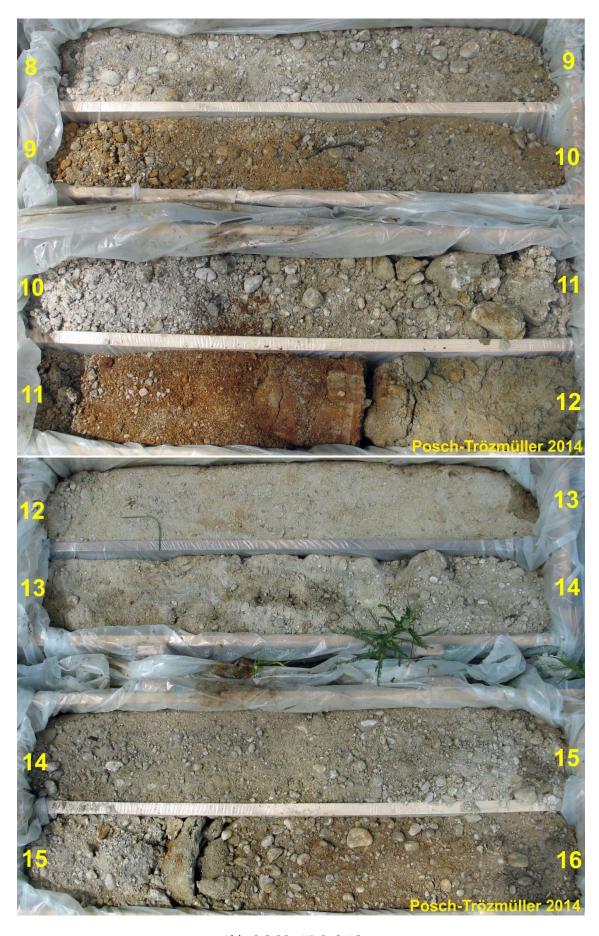


Abb. 2.2.38.: KB 3: 8-16 m.

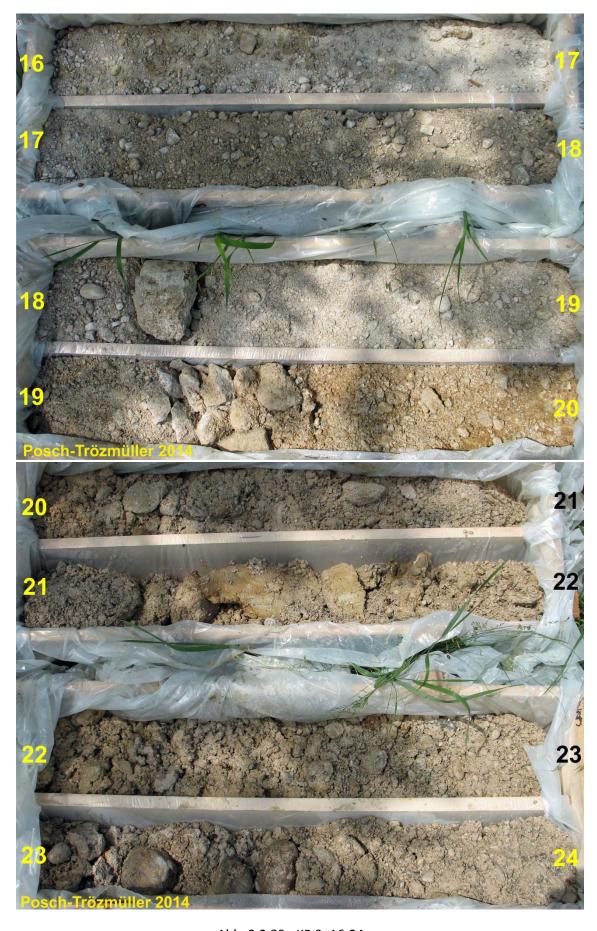


Abb. 2.2.39.: KB 3: 16-24 m.

Abb. 2.2.40.: KB 3: 24-28 m.

Proben und Analysen

Insgesamt wurden 8 Proben genommen, davon 5 aus der Kernbohrung KB 1 und 3 aus der Kernbohrung KB 2. KB 3 wurde nicht beprobt. Davon wurden 6 Proben für Analysen der Gesamt- und Tonmineralogie, der Granulometrie und der Geochemie ausgewählt, außerdem wurden 2 Proben mikropaläontologisch untersucht. In Tab. 2.2.12. sind alle Proben und die durchgeführten Analysen dargestellt.

Tab. 2.2.12.: Probenliste der Kernbohrungen Weyerburg.

	Probenliste Bohrungen Deponie Weyerburg									
Probe	Beschreibung	Analysen								
KB 1										
2,7-2,8 m	Schluff, feinsandig, gelbbraun (trocken), stark kalkhältig, tw. Pseudomycelien (2,7-3,0 m)	Mineralogie, Granulometrie, Geochemie								
12,5-12,6 m	Ton-Schluff, grünlichgrau, gelborange fleckig, klebrig, kalkhältig, 12,7-13,0 m: mit Konkretionen bis 3 cm Durchmesser, Bivalvenreste	Mineralogie, Granulometrie, Geochemie								
20,4-20,5 m	Schluff-Ton, bindiger Kern, kalkhältig; 19,35-22,0 m: gelbbraun-gelbgrau mit schwarzen Pflanzenresten	Mineralogie, Granulometrie, Geochemie								
23,8-23,9 m	Schluff-Ton, bindiger Kern, kalkhältig; 22,0-25,0 m: grau-blaugrau mit Molluskenresten; 23,8-23,9 m: Abdruck eine Bivalve mit Schalenrest									
24,8-24,9 m	Schluff-Ton, bindiger Kern, kalkhältig; 22,0-25,0 m: grau-blaugrau mit Mollusken- resten	Mineralogie, Granulometrie, Geochemie, Mikropaläontologie								
KB 2										
2,3-2,4 m	Löss: Schluff, feinsandig, gelbbraun-grau, sehr stark kalkhältig, tw. mit Pseudomycelien, tw. weiße Kalküberzüge; 2-2,7 m: tonig	Mineralogie, Granulometrie, Geochemie								
35,8-35,9 m	Ton-Schluff, kalkhältig, fest; bis 35,45 m: olivbraun-grüngrau, darunter: dunkel-grau-blaugrau, mit Pflanzenresten (schwarze Stängel und kleine Einsprenglinge), Bivalvensplitter	Mineralogie, Granulometrie, Geochemie								
37,2-37,3 m	Ton-Schluff, kalkhältig, fest; bis 35,45 m: olivbraun-grüngrau, darunter: dunkel-grau-blaugrau, mit Pflanzenresten (schwarze Stängel und kleine Einsprenglinge), Bivalvensplitter	Mikropaläontologie								
KB 3	keine Proben									

Mikropaläontologische Analysen (H. Gebhardt)

Zwei Proben, je eine aus KB 1 und KB 2 wurden mikropaläontologisch untersucht. Beide Proben, jeweils aus dem Liegendsten der Bohrungen bestätigten eine Einstufung in das Sarmatium.

KB1, 24,8 - 24,9 m

Ammonia beccarii, Augignyna perlucida, Anomalinoides cf. dividens, evtl. Globigerina praebulloides -> Ziersdorf Fm (Sarmatium)

mit umgelagerten *Bulimina* cf. *schischkinskayae*, *Quadrimorphina* petrolei, *Protelphidium* cf. *roemeri*, *Cassigerinella* globulosa, Globigerina cf. ottnangiesis (Eggenburgium bis Karpatium), Ostrakoden (hauptsächlich Larvalschalen)

KB2, 37,2 - 37,3 m

Ammonia beccarii, Anomalinoides dividens, Elphidium cf. incertum, Nonion bogdanoviczi -> Ziersdorf Fm (Sarmatium)
Ostrakoden (hauptsächlich Larvalschalen), Muschelbruch

Mineralogische Untersuchungen

Im März 2014 wurden drei Kernbohrungen in Weyerburg lithologisch aufgenommen und beprobt. Die stratigraphische Einstufung der Proben in das Quartär (Deckschichten) und Neogen (Sarmatium und Pannonium) basiert auf der geologischen Karte von SCHNABEL et al. (2002). Zusätzlich wurden mikropaläontologische Untersuchungen an der Geologischen Bundesanstalt durchgeführt. Für mineralogische und korngrößenmäßige Analysen wurden sechs Proben aus 2 Bohrungen ausgewählt.

Gesamtmineralogische Analysen (Abb. 2.2.41.)

Die sechs bearbeiteten Proben aus zwei Kernbohrungen (KB 1 und KB 2) umfassen stratigraphisch Sedimente des Quartärs (Löss) und Neogen (Pannonium und Sarmatium). Die beiden Bohrungen KB 1 (4 Proben) und KB 2 (2 Proben) werden getrennt besprochen.

Die gesamtmineralogische Zusammensetzung der Bohrung KB 1 spiegelt im Wesentlichen die Variationen in der Korngrößenzusammensetzung unabhängig von der stratigraphischen Einstufung über Deckschichten bis zu neogenen Ablagerungen wider. Die Probe aus einer Tiefe von 2,7 m verkörpert die quartäre Deckschicht mit einer Vormacht an Quarz (48 Gew. %) gegenüber den Schichtsilikatanteilen (27 Gew. %). Hervorzuheben gegenüber den neogenen Schichten sind die deutlich höheren Feldspatgehalte mit 16 Gew. %, wobei Albit überwiegt. Der Gesamtkarbonatgehalt liegt bei 9 Gew. %. Akzessorisch treten Hornblende und Goethit im Spektrum auf. Die Hollabrunn-Mistelbach Formation, repräsentiert durch die Probe bei 12,5 m zeigt ein relativ ausgewogenes Verhältnis zwischen Quarz und Schichtsilikaten, das um 35 Gew. % erreicht. Die Karbonatgehalte, zu gleichen Teilen (13 Gew. %) von Calcit und Dolomit, sind markant höher als bei der überlagernden Deckschicht. Der Gesamtfeldspatgehalt mit 6 Gew. % ist deutlich niedriger, außerdem überwiegt Alkalifeldspat. Die beiden Proben aus der Ziersdorf-Formation (20,4 m und 24,8 m) sind aufgrund des unterschiedlichen Kornaufbaues durch

stark schwankende Anteile an Quarz und Schichtsilikaten gekennzeichnet. Die Gesamtfeldspatgehalte liegen bei 7 Gew. %, der Karbonatgehalt variiert zwischen 22 und 29 Gew. % mit einer dominanten Dolomitkomponente. In geringen Prozentsätzen treten Hornblende und Goethit auf.

In der *Bohrung KB 2* sind die quartären Lösse (2,3 m) *gesamtmineralogisch* ebenfalls durch deutlich höhere Quarzanteile (35 Gew. %) vertreten, im Gegensatz zur Probe aus der Ziersdorf-Formation (35,8 m) mit 19 Gew. %. Der Karbonatgehalt beider Proben ist gleich hoch mit 21 Gew. %, wobei innerhalb des Neogens wieder Dolomit überwiegt.

Korngrößenmäßig zeigen die Quartärproben beider Bohrungen ein für Lösse typisches Korngrößenmaximum im Siltbereich mit knapp 65 Gew. %. Innerhalb der Siltfraktion dominieren Grob- und Mittelsiltanteile. Die Sand- und Tonverteilungen variieren mit einem leichten Überhang im Tonanteil. Nach der Klassifizierung von MÜLLER (1961) und FÜCHTBAUER (1959) werden die Sedimente als tonig-sandige Silte bezeichnet. Die neogenen Schichtglieder unterliegen größeren Schwankungen in der Korngrößenzusammensetzung, sind aber generell feinkörniger aufgebaut. Es dominieren abwechselnd Silt- oder Tonfraktionen. Nach MÜLLER (1961) und FÜCHTBAUER (1959) liegen sie in den Feldern Siltton bzw. Tonsilt (Tab. 2.2.13., Abb. 2.2.43., 2.2.44.).

Die tonmineralogischen Analysen wurden an der Fraktion <2μm durchgeführt (Abb. 2.2.42.).

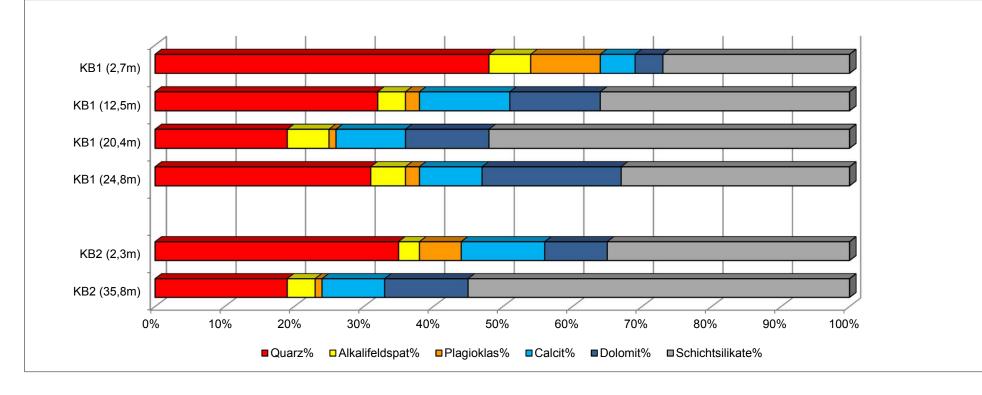
Generell lässt das Gesamtbild der röntgenographischen Phasenanalyse auf gute Kristallinität der Tonminerale schließen. Die Basisreflexe der Minerale sind zumeist schmal mit guten Intensitäten. Bei den quartären Deckschichten ist eine leichte Verbreiterung der Peaks zu erkennen.

Anhand der *Tonmineralzusammensetzung der Bohrung KB 1* lässt sich eine eindeutige Unterscheidung zwischen quartären und neogenen Proben durchführen. Innerhalb des Lösses herrscht ein relativ ausgewogenes Verhältnis zwischen den beiden Hauptmineralen Smektit und Illit/ Hellglimmer mit 28 Gew. %. Kaolinit und Chlorit sind mit 20 bzw. 15 Gew. % vertreten, Vermiculit erreicht 10 Gew. %. Neben Muskovit konnte auch Biotit im Spektrum nachgewiesen werden.

Die neogenen Sedimente sowohl der Hollabrunn-Mistelbach-Formation als auch der Ziersdorf-Formation werden in allen Analysen von quellfähigen Dreischichtsilikaten (Smektit) dominiert. Zweitstärkste Mineralgruppe sind Illit/ Hellglimmer, gefolgt von Kaolinit und Chlorit. Vermiculit und Biotit treten weitgehend zurück im Spektrum.

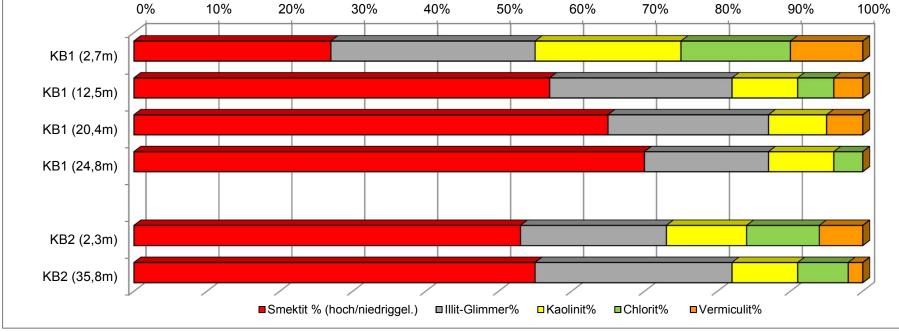
In der Bohrung KB 2 sind tonmineralogisch kaum Unterschiede zwischen Quartär- und Neogensedimenten zu erkennen. In beiden Proben findet sich eine Vorherrschaft der quellfähigen Smektitgruppe, gefolgt von Illit/ Hellglimmer, Kaolinit und Chlorit. Neben Vermiculit sind Biotite ebenfalls in allen Proben vertreten.

Mittels der gesamt- und tonmineralogischen Ergebnisse können umfangreiche Verwitterungsbildungen in Form von Tonmineralneu- und Umbildungen weitgehend ausgeschlossen werden. Sämtliche Proben sind karbonathältig, ebenso sind Vermiculite nur sehr untergeordnet im Spektrum vertreten und hochgeladene Smektite, typische Verwitterungsprodukte, fehlen gänzlich. In der Fraktion <2μm


dominieren weitgehend in beiden Bohrungen klassisch niedrig geladene Smektite und Illit/ Hellglimmer. Korngrößenmäßig zeigen die neogenen Proben aufgrund ihrer wechselnden Ablagerungsbedingungen größere Schwankungen im Kornaufbau.

Geochemische Untersuchungen

Alle Proben wurden an der Fachabteilung Geochemie der Geologischen Bundesanstalt auf Haupt- und Spurenelemente untersucht (Tab. 2.2.14.). Sehr deutlich zu erkennen ist vor allem in der Bohrung KB 1 der abnehmende SiO₂ – Gehalt vom Hangenden ins Liegende der Bohrung, der die abnehmenden Quarzgehalte abbildet. An den Gehalten von CaO, MgO und CO₂ sind die Karbonatgehalte der Proben abzulesen. Mittels der Al₂O₃-Gehalte werden die Tonmineralanteile verrechnet. Die K₂O-Anteile sind sowohl für die Hellglimmeranteile als auch für die Kalifeldspatgehalte verantwortlich. Die Albitanteile werden im Wesentlichen durch Na₂O-Gehalte repräsentiert.


KERNBOHRUNGEN WEYERBURG (ÖK 23)

GESAMTMINERALOGISCHE ZUSAMMENSETZUNG							
Probenummer	Quarz%	Alkalifeldspat%	Plagioklas%	Calcit%	Dolomit%	Schichtsilikate%	Lithologie /Stratigraphie
KB1 (2,7m)	48	6	10	5	4	27	Schluff, Sand (Löss, Quartär) Hornblende, Biotit, Goethit
KB1 (12,5m)	32	4	2	13	13	36	Ton, Schluff (Hollabrunn-Mistelbach Fm., Pannonium) Biotit
KB1 (20,4m)	19	6	1	10	12	52	Schluff, Ton (Ziersdorf-Fm., Sarmatium) Spuren Goethit
KB1 (24,8m)	31	5	2	9	20	33	Schluff, Ton (Ziersdorf-Fm., Sarmatium) Hornblende
KB2 (2,3m)	35	3	6	12	9	35	Schluff, Sand (Löss, Quartär) Biotit, Goethit
KB2 (35,8m)	19	4	1	9	12	55	Schluff, Ton (Ziersdorf- Fm., Sarmatium) Biotit

KERNBOHRUNGEN WEYERBURG (ÖK 23)

TONMINERALO	OGISCHE ZUSAMME	NSETZUNG				
Probenummer	Smektit % (hoch/niedriggel.)	Illit-Glimmer%	Kaolinit%	Chlorit%	Vermiculit%	Lithologie /Stratigraphie
KB1 (2,7m)	27	28	20	15	10	Schluff, Sand (Löss, Quartär) Hornblende, Biotit, Goethit
KB1 (12,5m)	57	25	9	5	4	Ton, Schluff (Hollabrunn-Mistelbach Fm., Pannonium) Biotit
KB1 (20,4m)	65	22	8	0	5	Schluff, Ton (Ziersdorf-Fm., Sarmatium) Spuren Goethit
KB1 (24,8m)	70	17	9	4	0	Schluff, Ton (Ziersdorf-Fm., Sarmatium) Hornblende
KB2 (2,3m)	53	20	11	10	6	Schluff, Sand (Löss, Quartär) Biotit, Goethit
KB2 (35,8m)	55	27	9	7	2	Schluff, Ton (Ziersdorf- Fm., Sarmatium) Biotit
	20/ 10/	2/ 202/	000/	400/	E00/ 00	200/ 200/ 200/

Kernbohrungen Weyerburg (ÖK 23)

	Müller, G. (1959) & Füchtbauer, H. (1961)												Win	(1954)			
	Benennung		Gewichtsprozent														
Probe	Deficilitation					Kies			Sand			Silt					
	Sand-Silt-Ton					Gkies	Mkies	Fkies	Gsand	Msand	Fsand	Gsilt	Msilt	Fsilt	Ton < 2 µm	2-20 μm	> 20 µm
		Kies	Sand	Silt	Ton												
KB1 (2,7m)	tonig-sandiger Silt	0,0	17,5	64,2	18,3				0,8	8,4	8,2	33,2	20,7	10,4	18,3	31,1	50,6
KB1 (12,5m)	Tonsilt	0,5	6,9	55,8	36,8			0,5	0,5	1,3	5,1	23,4	19,6	12,8	36,8	32,4	30,8
KB1 (20,4m)	Siltton	0,6	0,6	46,4	52,4			0,6	0,04	0,1	0,4	7,7	16,7	22,0	52,4	38,7	8,9
KB1 (24,8m)	Tonsilt	0,0	4,6	66,6	28,8					0,002	4,6	29,6	21,8	15,2	28,8	37,0	34,2
KB2 (2,3m)	tonig-sandiger Silt	0,4	12,6	62,5	24,6			0,4	2,1	5,7	4,8	21,7	25,3	15,4	24,6	40,7	34,7
KB2 (35,8m)	Siltton	0,9	0,5	43,3	55,2			0,9	0,2	0,2	0,1	1,7	16,1	25,5	55,2	41,7	3,1

		Statistische Parameter													
Probe		M	omentverfahre	n	Folk, R	.L. & Ward, W.	(1957)		k Wort	k-Werte (m/s)					
Probe	Sortierung	Arithmet.	Standard-	Schiefe	Arithmet.	Standard-	Schiefe	U	K-Weit	e (III/5)					
	Sortierung	Mittelwert	Abweichung	Scrilere	Mittelwert	Abweichung	Scriiere		Beyer	Bialas					
KB1 (2,7m)	extrem schlecht sortiert	6,26	3,15	0,77	6,23	3,07	0,33	51,26	2,40E-09	3,60E-09					
KB1 (12,5m)	extrem schlecht sortiert	8,16	3,72	0,34	8,09	3,68	0,35	177,93	2,80E-11	4,60E-11					
KB1 (20,4m)	extrem schlecht sortiert	9,95	3,53	0,02	9,94	3,66	0,29	133,28	3,10E-12	2,40E-12					
KB1 (24,8m)	extrem schlecht sortiert	7,55	3,03	0,72	7,37	2,95	0,35	57,3	3,50E-10	4,10E-10					
KB2 (2,3m)	extrem schlecht sortiert	7,11	3,48	0,41	7,08	3,37	0,22	58,19	4,40E-10	8,10E-10					
KB2 (35,8m)	extrem schlecht sortiert	10,14	3,36	-0,13	10,13	3,30	0,36	101,89	3,60E-12	3,00E-12					

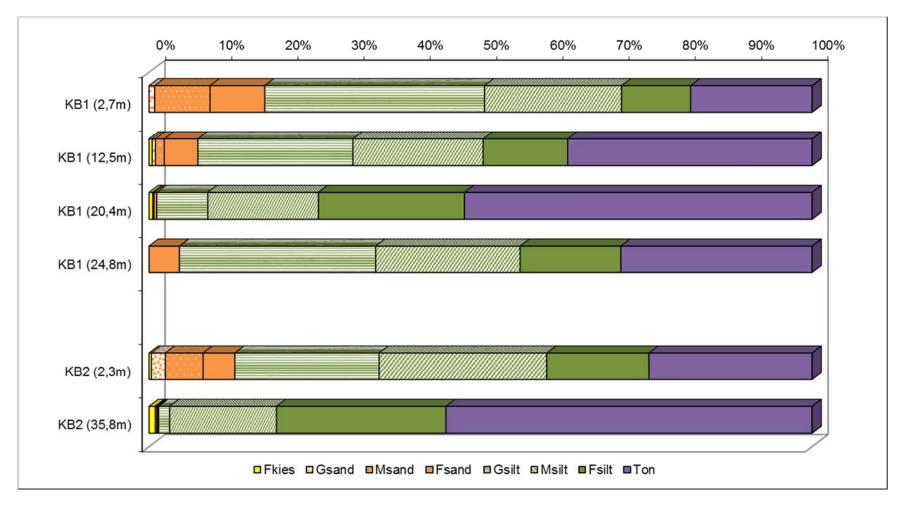


Abb. 2.2.43.: Korngrößen Diagramm.

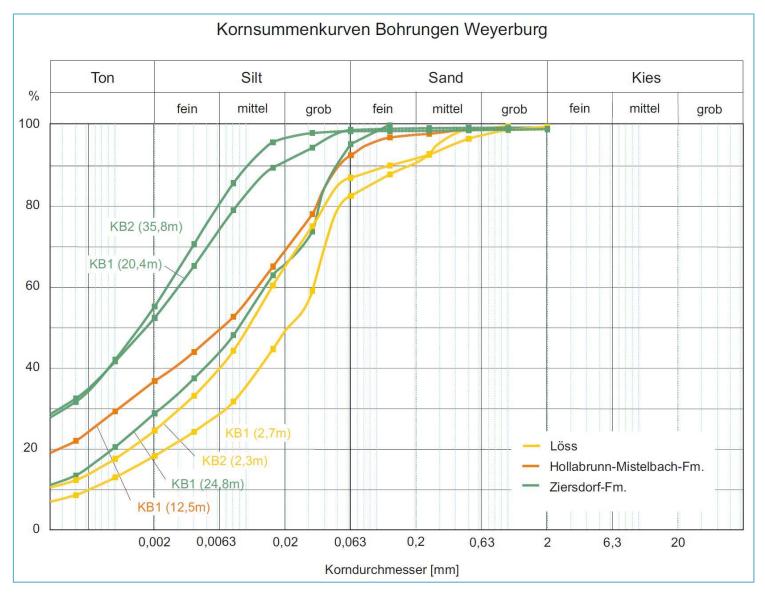


Abb. 2.2.44.: Kornsummenkurven der analysierten Proben der Bohrungen KB 1 und KB 2 Weyerburg.

Tab. 2.2.14.a.: Ergebnis der geochemischen Analysen der Proben von KB 1 Weyerburg.

GCH-2014-053	GCH-2014-053- 001	GCH-2014-053- 002	GCH-2014-053- 003	GCH-2014-053- 004		
Bezeichnung	KB1 (2,7- 2,8m) Weyer- burg	KB1 (12,5- 12,6m) Wey- erburg	KB1 (20,4- 20,5m) Wey- erburg	KB1 (24,8- 24,9m) Wey- erburg		
SiO ₂ (%)	64,0	47,0	44,0	45,0		
TiO ₂ (%)	0,8	0,7	0,8	0,7		
Al ₂ O ₃ (%)	11,8	11,9	15,1	11,5		
FeO (%)	4,0	4,0	5,5	3,2		
MnO (%)	0,09	0,05	0,05	0,05		
MgO (%)	1,6	2,3	3,7	3,5		
CaO (%)	6,5	14,8	11,0	15,4		
Na ₂ O (%)	0,7	0,1	0,11	0,19		
K ₂ O (%)	2,0	2,08	2,62	1,92		
P ₂ O ₅ (%)	0,05	0,05	0,09	0,02		
SO ₃ (%)	0,03	0,02	0,01	0,02		
H ₂ O ^{110° C} (%)	0,9	2,2	3,4	1,1		
H ₂ O+ (%)	2,0	3,3	4,6	2,7		
CO2 (%)	5,07	11,44	9,14	13,88		
Summe	99,4	100,0	100,1	99,2		
As (ppm)	15	2	3	< 1		
Ba (ppm)	395	297	331	265		
Cd (ppm)	< 1	< 1	1	< 1		
Ce (ppm)	81	63	65	58		
Co (ppm)	14	19	27	17		
Cr (ppm)	78	136	152	169		
Cs (ppm)	5	7	12	8		
Cu (ppm)	19	28	37	39		
La (ppm)	40	31	35	29		
Nb (ppm)	16	15	17	15		
Nd (ppm)	35	29	28	27		
Ni (ppm)	29	47	70	55		
Pb (ppm)	25	23	26	28		
Pr (ppm)	9	8 121	7	117		
Rb (ppm) Sr (ppm)	133	121	167 166	117 137		
V (ppm)	87	119	149	111		
Y (ppm)	36	30	27	25		
Zn (ppm)	67	87	114	79		
Zr (ppm)	399	239	145	259		
Summe (ppm)	1579	1424	1577	1443		
Summe (%)	0,16	0,14	0,16	0,14		
Gesamtsumme (%)	99,5	100,1	100,2	99,4		
Gesamtsumme (70)	99,3	100,1	100,2	77,4		

Tab. 2.2.14.b.: Ergebnis der geochemischen Analysen der Proben von KB 2 Weyerburg.

	GCH-2014-053-	GCH-2014-053-
GCH-2014-053	005	006
Bezeichnung	KB2 (2,3- 2,4m) Weyer- burg	KB2 (35,8- 35,9m) Wey- erburg
SiO ₂ (%)	50,0	44,0
TiO ₂ (%)	0,8	0,8
Al ₂ O ₃ (%)	12,2	14,4
FeO (%)	4,6	5,0
MnO (%)	0,09	0,05
MgO (%)	2,3	3,7
CaO (%)	12,7	11,6
Na ₂ O (%)	0,5	0,1
K ₂ O (%)	1,97	2,6
P ₂ O ₅ (%)	0,05	0,06
SO ₃ (%)	0,03	0,38
H ₂ O ^{110° C} (%)	1,5	2,9
		-
$H_2O+(\%)$	2,8	2,9
CO2 (%)	9,78	11,51
Summe	99,3	100,0
As (ppm)	16	12
Ba (ppm)	387	309
Cd (ppm)	< 1	< 1
Ce (ppm)	70	63
Co (ppm)	20	29
Cr (ppm)	103	156
Cs (ppm)	7	12
Cu (ppm)	26	38
La (ppm)	33	31
Nb (ppm)	16	17
Nd (ppm)	30 45	28
Ni (ppm)	25	96 30
Pb (ppm) Pr (ppm)	8	30 7
Rb (ppm)	110	181
Sr (ppm)	144	149
V (ppm)	103	153
Y (ppm)	33	26
Zn (ppm)	80	118
Zr (ppm)	293	128
Summe (ppm)	1548	1583
Summe (%)	0,15	0,16
Gesamtsumme (%)	99,4	100,2

2.2.3. Aufnahme von fünf Kernbohrungen im Bereich der B4, Anschlussstelle Ost Niederrußach (ÖK 39)

Im Dezember 2013 wurden fünf Kernbohrungen zur Baugrunderkundung für eine Anschlussstelle Ost an der B4 bei Niederrußbach durchgeführt (Abb. 2.2.45., Tab. 2.2.15.). Der mit den Arbeiten betraute Geotechniker war DI Dr. St. Blovsky, dank ihm und DI R. Hochstöger (Straßenbauabteilung 1 Hollabrunn, NÖ Landesregierung) war es R. Roetzel und G. Posch-Trözmüller möglich, die Bohrkerne am 18.6.2014 aufzunehmen und zu beproben.

Abb. 2.2.45.: Lage der Kernbohrungen südlich Niederrußbach.

Tab. 2.2.15.: Ungefähre (aus dem Lageplan abgeleitete) Koordinaten der Kernbohrungen Niederrußbach.

BMN	RW_M34	HW_M34
KB1	728888	367203
KB2	728880	367181
KB3	728823	367155
KB4	728859	367134
KB5	728909	367120

Beschreibung der Bohrprofile

Die fünf Kernbohrungen der Anschlussstelle Ost S Niederrußbach liegen sehr knapp beisammen, alle Bohrungen sind nicht weiter als 90 x 75 m voneinander entfernt.

KB 1 und KB 2 wurden jeweils bis in eine Tiefe von 25 m abgeteuft, KB 3 bis KB 5 erreichten nur 10 m Tiefe. KB 1 wurde intensiv beprobt, alle neun Proben wurden analysiert.

KB 1

Das Bohrprofil von KB 1 ist durch relativ mächtige quartäre Ablagerungen charakterisiert. Löss wurde bis in eine Tiefe von 7,8 m erbohrt, darunter folgte ein Paläobodenhorizont. In weiterer Folge wurden bis in eine Tiefe von 21 m Schluffe aufgeschlossen, die teilweise feinsandig, teilweise tonig ausgebildet waren. Auch dabei handelt es sich wahrscheinlich um quartäre Ablagerungen.

Eine mikropaläontologische Analyse in 21,7 m Tiefe von tonigen Schluffen mit reichlich Molluskensplittern lässt die Einstufung in das Quartär mit umgelagerten Formen zu.

Eine weitere mikropaläontologische Analyse in 23,6 m Tiefe stuft die hier erbohrten tonigen Schluffe, ebenfalls durch zahlreiche Molluskensplitter gekennzeichnet, in das Karpatium (Laa-Fm.) ein, die vermutlich bis zur Endteufe der Bohrung in 25 m reicht.

Tab. 2.2.16. gibt das Bohrprofil von KB 1 wider, in Abb. 2.2.46. bis 2.2.49. ist die Fotodokumentation der Bohrkerne zu finden.

Tab. 2.2.16.: Bohrprofil von KB 1 Niederrußbach.

Tiefe	Beschreibung	Interpretation	Proben				
0-0,55 m	Boden: Kies, schluffig-sandig, grau-schwarzgrau	Mutterboden					
0,55-0,8 m	Schluff, feinsandig, kiesig, gelbbraun, Kies: 2-3 cm Dm., Quarz, gut gerundet	Quartär					
0,8-1,0 m	Kies, schluffig-sandig, gelbbraun, Kies bis 10 cm Dm., z.T. verfestigt	Quartär					
1,0-7,8 m	Löss: Schluff, feinsandig - Feinsand, schluffig, gelbbraun, tw. mit Pseudomy- celien, kalkhältig	Löss	2,4-2,5 m; 7,4-7,5 m				
7,8-8,4 m	Schluff, tonig-feinsandig, braun, lehmig, kalkhältig	Paläoboden	8,1-8,2 m				
8,4-8,7 m	Schluff, feinsandig, etwas tonig, hellgraubraun bis weißgrau fleckig, stark kalkhältig	Ca-Horizont von Palä- oboden					
8,7-9,0 m	Schluff, feinsandig, hellgrau, leicht bräunlich, verfestigt, kalkhältig	?Quartär oder ?Neogen					
9,0-12,0 m	Schluff-Feinsand, gelbbraun, kalkhältig, sieht aus wie Löss, scheint aber feiner zu sein als Löss, mehlig, Kornverteilung vermutlich homogener als beim Löss, einzelne aufgebohrte Stücke leicht zerreibbar (gut sortiert)	?Quartär oder ?Neogen	10,4-10,5 m				
12,0-12,75 m	Schluff, tonig, +/- feinsandig, gelbbraun-graubraun, tw. geschichtet im mm- Bereich, kalkhältig	?Quartär oder ?Neogen					
12,75-13,3 m	Schluff-Feinsand, hellgrau-gelbbraun, gut sortiert, kalkhältig	?Quartär oder ?Neogen					
13,3-14,0 m	Schluff, tonig, +/- feinsandig, braungrau, tw. hellgrau-gelbbraun, kalkhältig, 13,7-14,0 m: heller durch hohen Kalkgehalt	?Quartär oder ?Neogen					
14,0-14,3 m	Schluff-Feinsand, hellgrau-gelbbraun, kalkhältig	?Quartär oder ?Neogen					
14,3-21,0 m	Schluff, tonig, +/- feinsandig, graubraun-gelbbraun, kalkhältig, z.T. geschichtet; wechselnd mit Schluff, tonig und feinsandig, tw. dunkler (grau-braun), tw. heller (hellgrau-fast weiß), tw. konkretionäre Horizonte: 14,6-14,7 m; 15,9-16,0 m; 19,8-20,0 m; im dunkleren, tonigen Schluff zumeist kleine schwarze Komponenten, die helleren, feinsandigen Bereiche sind glimmerhältig. 20.8-21.0 m; tonig, mit schwarzen Stängeln/ Schlieren	?Quartär oder ?Neogen	15,5-15,6 m; 19,5-19,6 m				
21,0-21,65 m	Schluff-Feinsand, +/- tonig, graubraun-ocker, mit rostroten Flecken, dünn geschichtet, leicht verfestigt, kalkhältig	?Quartär oder ?Neogen					
21,65-22,0 m	2.0 m Schluff-Feinsand, gelbbraun, kalkhältig, sieht aus wie Löss, scheint aber feiner zu sein als Löss, mehlig, Kornverteilung vermutlich homogener als beim Löss, einzelne aufgebohrte Stücke leicht zerreibbar (gut sortiert) 2.12,75 m Schluff, tonig, +/- feinsandig, gelbbraun-graubraun, tw. geschichtet im mm-Bereich, kalkhältig 3. Schluff-Feinsand, hellgrau-gelbbraun, gut sortiert, kalkhältig 3. Schluff-Feinsand, hellgrau-gelbbraun, gut sortiert, kalkhältig 3. Schluff-Feinsand, hellgrau-gelbbraun, kalkhältig 3. Schluff-Feinsand, hellgrau-gelbbraun, kalkhältig 3. Schluff-Feinsand, hellgrau-gelbbraun, kalkhältig 3. Schluff-Feinsand, hellgrau-gelbbraun, kalkhältig 3. Schluff, tonig, +/- feinsandig, graubraun-gelbbraun, kalkhältig, z.T. geschichtet; wechselnd mit Schluff, tonig und feinsandig, tw. dunkler (grau-braun), tw. heller (hellgrau-fast weiß), tw. konkretionäre Horizonte: 14,6-14,7 m; 15,9-16,0 m; 19,8-20,0 m; im dunkleren, tonigen Schluff zumeist kleine schwarze Komponenten, die helleren, feinsandigen Bereiche sind glimmerhältig, 20,8-21,0 m: tonig, mit schwarzen Stängeln/ Schlieren 3. Schluff-Feinsand, +/- tonig, graubraun-ocker, mit rostroten Flecken, dünn geschichtet, leicht verfestigt, kalkhältig 3. Schluff-Feinsand, +/- tonig, graubraun-ocker, mit rostroten Flecken, dünn geschichtet, leicht verfestigt, kalkhältig 3. Schluff-Feinsand, +/- tonig, hellgrau-gelbbraun, glimmerig, kalkhältig 3. Schluff-Feinsand, +/- tonig, hellgrau-gelbbraun, glimmerig, kalkhältig 3. Schluff-Feinsand, +/- tonig, hellgrau-gelbbraun, glimmerig, kalkhältig 3. Schluff-Fon, gelbgrau, leicht rostrot gefleckt; tonig-bindig, fester Kern, ab 3. Schluff-Ton, gelbgrau, leicht rostrot gefleckt; tonig-bindig, fester Kern, ab 3. Schluff-Fon, gelbgrau, leicht rostrot gefleckt; tonig-bindig, fester Kern, ab						
22,0-22,9 m	Schluff-Feinsand, +/- tonig, hellgrau-gelbbraun, glimmerig, kalkhältig	? Laa-Fm. (Karpatium)					
22,9-23,8 m	Schluff-Ton, gelbgrau, leicht rostrot gefleckt; tonig-bindig, fester Kern, ab Laa-Fm. (Karpatium)						
23,8-25,0 m (ET)	Kies-Sand (Feinkies bis Feinsand), gelbbraun, tw. rostbraun, schwach kalkhältig; Kieskomponenten 1-2,5 cm Dm., gut gerundet, v.a. Quarz, Quarzit, Hornstein (Restschotter)	Laa-Fm. (Karpatium)	24-25 m Sam- melprobe				

Abb. 2.2.46.: KB 1 Niederrußbach: 0-8 m.

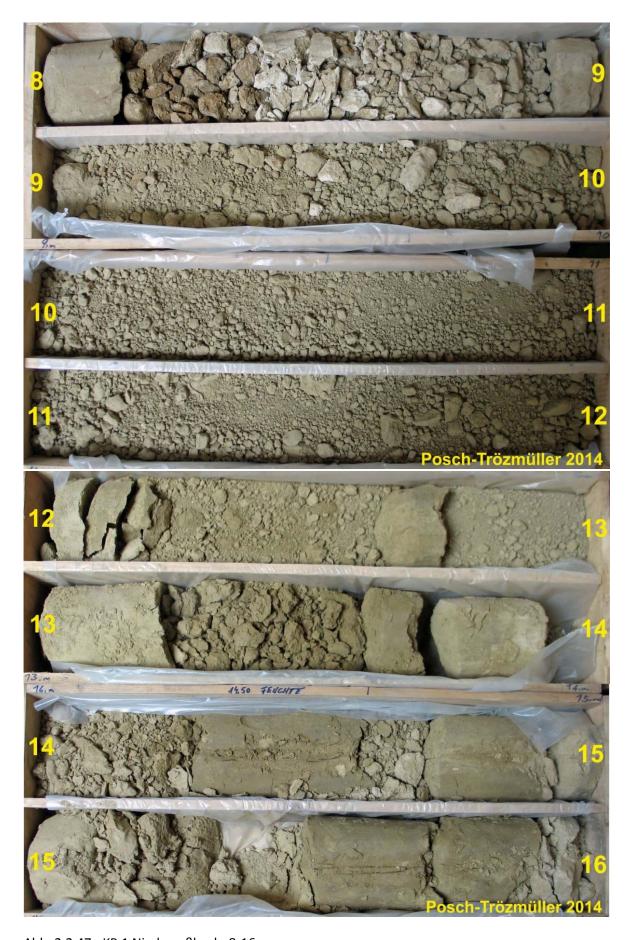


Abb. 2.2.47.: KB 1 Niederrußbach: 8-16 m.

Abb. 2.2.48.: KB 1 Niederrußbach: 16-20 m.

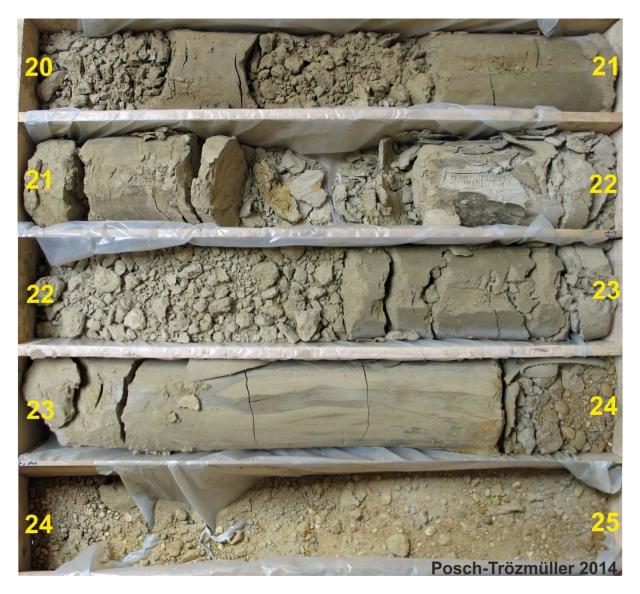


Abb. 2.2.49.: KB 1 Niederrußbach: 20-25 m.

In der Kernbohrung KB 2 wurde bis in eine Tiefe von 6 m Löss erbohrt, darunter folgte eine geringmächtige Lage aus feinsandigen Schluffen mit Kies. Von 6,4 bis 6,5 m war ein reliktischer, rötlichbrauner Paläoboden zu sehen. Bis 20 m Tiefe wurden teils feinsandige, teils tonige Schluffe aufgeschlossen, die wahrscheinlich dem Quartär zugerechnet werden können.

Ab 20,2 m Tiefe waren Tone und Schluffe zu sehen, die wahrscheinlich in das Karpatium (Laa-Fm.) zu stellen sind. Von 22,8 bis zur Endteufe in 25 m wurden Kiessande erbohrt.

Das Bohrprofil ist in Tab. 2.2.17. dargestellt, die Fotodokumentation der Bohrkerne findet sich in Abb. 2.2.50. bis 2.2.53.

Tab. 2.2.17.: Bohrprofil von KB 2 Niederrußbach.

	B4 Anschlussstelle Ost Niederrußbach KB 2	
Tiefe	Beschreibung	Interpretation
0-0,5 m	Boden: Schluff, +/- tonig, mittelbraun	Mutterboden
0,5-6,0 m	Löss: Schluff, feinsandig, kalkhältig, gelbbraun, tw. unterschiedlich gefärbt (z.B. 2,3-2,7 m und 4,5-5,0 m: gelbgrau und feinkörniger), 0,5-2,0 m: mit Pseudomycelien	Löss
6,0-6,4 m	Schluff, feinsandig, leicht kiesig (Kiese bis 3 cm Dm., Quarz, gut gerundet), weißgrau-hellgrau,kalkhältig	Quartär
6,4-6,5 m	Paläoboden (re- liktisch)	
6,5-6,6 m	Schluff, etwas feinsandig, weißgrau, kalkhältig	Ca-Horizont
6,6-7,0 m	Schluff, etwas feinsandig, hellgrau-gelbbraun, fest, geschichtet, kalkhältig	?Quartär oder ?Neogen
7,0-10,2 m	Schluff-Feinsand, gelbbraun-graubraun, kalkhältig, mehlig, sehr homogen in der Korngröße, zerfällt leicht, gut sortiert	?Quartär oder ?Neogen
10,2-17,9 m	?Quartär oder ?Neogen	
17,9-19,3 m	Schluff-Feinsand, gelbbraun-gelbgrau, kalkhältig, tw. mit Kon- kretionen (18,3-18,4 m)	?Quartär oder ?Neogen
19,3-19,6 m	Schluff, tonig, geschichtet, gelbbraun-braungrau, kalkhältig, bindig, kleine Kalkkonkretionen bis 1 cm Dm.	?Quartär oder ?Neogen
19,6-20,2 m	Schluff, feinsandig-tonig, geschichtet, gelbgrau-gelbbraun, kalkhältig, mit Kalkkonkretionen (fest), (19,7-20,0 m: Kern fehlt)	?Quartär oder ?Neogen
20,2-20,4 m	Ton - Schluff, dunkelgrau, kalkhältig, mit rostroten Flecken, gegen Liegend Wechsellagerung mit Schluff-Feinsand, Molluskensplittern (?), Kalkausfällungen, ?verquetscht	? Laa-Fm. (Kar- patium)
20,4-22,45 m	Schluff - Ton bis Schluff, tonig, gelbgrau, tw. rostrot gefleckt, tw. feinsandig, tw. tonig, zahlreiche Molluskensplitter	? Laa-Fm. (Kar- patium)
22,45-22,80 m	Übergang; wie oben, aber stärker sandig	? Laa-Fm. (Kar- patium)
22,80-25,0 m (ET)	Kies - Sand, gelbbraun-rostrot-gelborange, kalkhältig; Matrix: Mittelsand-Feinsand, Kies hpts. Feinkies, 1-4 cm Dm., Quarz dominiert, Quarzit, quarzreiche kristalline Komponenten wie Gneis; tw. Ausfällungskrusten (dunkelrot-violett) auf den Kiesen; 24,2-25,0 m: Vergröberung; Kiesanteil nimmt zu, Farbe wird grau bis graubraun	? Laa-Fm. (Kar- patium)

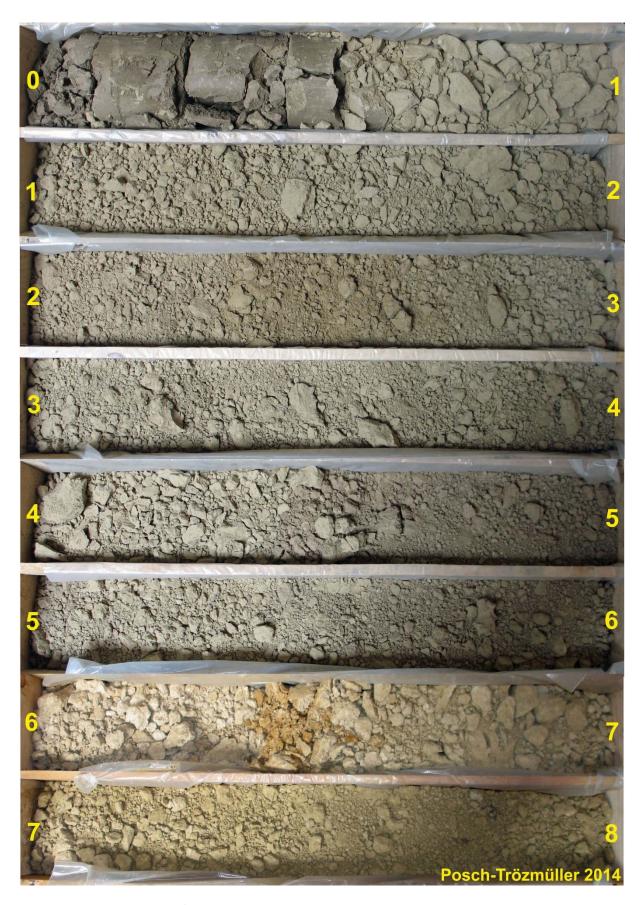


Abb. 2.2.50.: KB 2 Niederrußbach: 0-8 m.

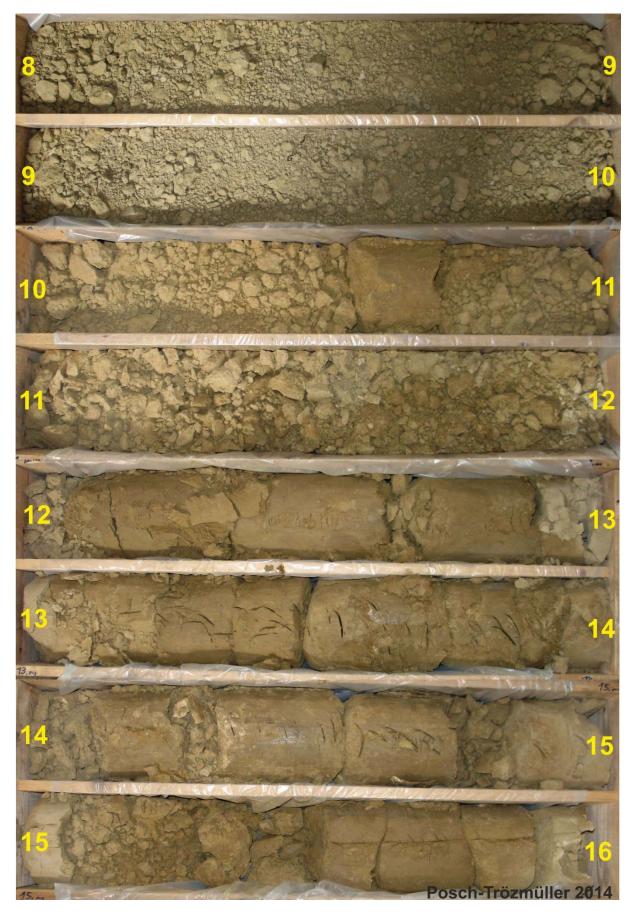


Abb. 2.2.51.: KB 2 Niederrußbach: 8-16 m.



Abb. 2.2.52.: KB 2 Niederrußbach: 16-22 m.

Abb. 2.2.53.: KB 2 Niederrußbach: 22-25 m.

Die Kernbohrung KB 3 wurde bis 10 m abgeteuft. Löss, teilweise mit solifluidalen Lagen war bis 3 m Tiefe sichtbar. Darunter folgten (wahrscheinlich zu Gänze) quartäre Ablagerungen, zunächst Kiessande bis 4 m Tiefe, und darunter feinsandige bis tonige Schluffe.

Tab. 2.2.18. zeigt das Bohrprofil der Bohrung KB 3, in Abb. 2.2.54. und 2.2.55. sind die Bohrkerne fotographisch dokumentiert.

Tab. 2.2.18.: Bohrprofil von KB 3 Niederrußbach.

	B4 Anschlussstelle Ost Niederrußbach KB 3									
Tiefe										
0-0,45 m	Boden: Schluff, etwas tonig, grau-braungrau	Mutterboden								
0,45-2,1 m	Löss: Schluff, etwas feinsandig, gelbbraun, kalkhältig	Löss								
2,1-3,0 m	Schluff, feinsandig, schwach kiesig, einzelne Quarz- kiese bis 3 cm Dm., kalkhältig	Löss mit so- lifluidalen La- gen								
3,0-4,1 m	Kies - Sand, gelbgrau, kalkhältig, Kies: 1-4 cm Dm., gut gerundet-kantengerundet, Quarz, Karbonate, an der Basis Komponenten bis >10 cm	?Quartär oder ?Neogen								
4,1-5,9 m	Feinsand-Schluff, gelbbraun-hellgraubraun, zerfällt sehr leicht, mehlig, gut sortiert, kalkhältig, mit Kalkausfällungen und -konkretionen	?Quartär oder ?Neogen								
5,9-6,0 m	Schluff, tonig, hellgrau, leicht verfestigt, kalkhältig	?Quartär oder ?Neogen								
6,0-6,2 m	Schluff, feinsandig, hellgrau-braun, kalkhältig	?Quartär oder ?Neogen								
6,2-8,7 m	Schluff, tonig, +/- feinsandig, kalkfrei, braungraugelbbraun, z.T. fleckig, mit schwarzen Schlieren (Mn-Ausfällungen? Pflanzenreste?), bis 7,2 m Tiefe mit Konkretionen, kompakter, fester Kern	?Quartär oder ?Neogen								
8,7-10,0 m (ET)	Schluff, feinsandig, hellbraungrau, zerbohrt, kalk- frei	?Quartär oder ?Neogen								

Abb. 2.2.54.: KB 3 Niederrußbach: 0-6 m.

Abb. 2.2.55.: KB 3 Niederrußbach: 6-10 m.

In der 10 m tiefen Kernbohrung KB 4 waren die oberen 4 m durch Löss gekennzeichnet. Darunter folgten tonige bis feinsandige Schluffe, die wahrscheinlich in das Quartär zu stellen sind.

Das Bohrprofil ist in Tab. 2.2.19. dargestellt, die Fotodokumentation der Bohrkerne in Abb. 2.2.56. und 2.2.57.

Tab. 2.2.19.: Bohrprofil von KB 4 Niederrußbach.

	B4 Anschlussstelle Ost Niederrußbach KB 4										
Tiefe	Beschreibung	Interpretation									
0-0,45 m	Boden: Schluff, etwas tonig, grau-braungrau	Mutterboden									
0,45-4,2 m	Löss: Schluff, etwas feinsandig, gelbbraun, kalkhältig	Löss									
4,2-7,5 m	Schluff, tonig, tw. feinsandig, braungrau-gelbbraun, z.T. fleckig, etwas dunkler in stärker tonigen Bereichen, zahlreiche weißgraue Kalkkonkretionen, tw. Konkretionslagen (4,4-4,5 m; 4,6-4,7 m), bis 5,10 m kalkhältig, darunter kalkfrei	?Quartär oder ?Neogen									
7,5-9,9 m	Schluff - Feinsand, gelbbraun bis braungrau, mehlig, zer- fällt leicht, gut sortiert, homogen in Korngröße, kalkfrei, kleine Konkretionen	?Quartär oder ?Neogen									
9,9-10,0 m (ET)	Schluff, feinsandig, tonig, hellgrau-gelbbraun, kalkfrei, leicht verfestigt	?Quartär oder ?Neogen									

Abb. 2.2.56.: KB 4 Niederrußbach: 0-6 m.

Abb. 2.2.57.: KB 4 Niederrußbach: 6-10 m.

Ähnlich wir in KB 4 wurde in KB 5 bis 4 m Tiefe Löss erbohrt. Bis zur Endteufe in 10 m Tiefe folgten unter dem Löss tonige bis sandige Schluffe, die in das Quartär gestellt wurden (Tab. 2.2.20., Abb. 2.2.58. und 2.2.59.).

Tab. 2.2.20.: Bohrprofil von KB 5 Niederrußbach.

	B4 Anschlussstelle Ost Niederrußbach KB 5										
Tiefe	e Beschreibung										
0-0,6 m	Boden: Schluff, etwas tonig, grau-braungrau	Mutterboden									
0,6-4,0 m	Löss: Schluff, etwas feinsandig, gelbbraun, vereinzelt mit kleinen Kiesen (Einzelkörner), kalkhältig	Löss									
4,0-8,7 m	Schluff - Feinsand, gelbbraun-gelbgrau, z.T. geschichtet, mit vielen Kalkkonkretionen bis 5 cm Dm., kalkhältig, löss- artig	?Quartär oder ?Neogen									
8,7-10,0 m (ET)	Schluff, etwas tonig, stärker bindig, etwas feinsandig, gelbbraun-gelbgrau, kalkhältig; 8,7-8,8 m: Schluff, geschichtet, mit kleinen Kalkausfällungen, +/- tonig	?Quartär oder ?Neogen									

Abb. 2.2.58.: KB 5 Niederrußbach: 0-8 m.

Abb. 2.2.59.: KB 5 Niederrußbach: 8-10 m.

Proben und Analysen

Aus den fünf Bohrkernen wurde lediglich die Bohrung KB 1 beprobt, aus dieser wurden dafür neun Proben genommen (Tab. 2.2.16.), die alle gesamt- und tonmineralogisch sowie geochemisch untersucht wurden. Außerdem wurden zwei Proben mikropaläontologisch analysiert.

Mikropaläontologische Analysen (H. Gebhardt)

KB 1, 21,7-21,8 m

Viel Schneckenbruch, selten Süßwasserostracoden (?*Cyprodopsis, Candona*) -> umgelagertes Material, Quartär

KB 1, 23,6-23,7 m

grobes Sediment, Molluskenbruch, wenige Foraminiferen (*Uvigerina graciliformis*) -> Karpatium -> ->Laa-Fm.

Mineralogische Untersuchungen

Im Zuge des Ausbaues der Landesstrasse B4 und der Errichtung einer neuen Anschlussstelle Ost bei Niederrußbach wurden fünf Kernbohrungen dokumentiert und beprobt. Die stratigraphische Einstufung der Proben in das Quartär (Löss) und Neogen (Karpatium) basiert sowohl auf den geologischen Karten 1:200.000 von SCHNABEL et al. (2002) und mikropaläontologischen Untersuchungen, die an der GBA durchgeführt wurden. Für mineralogische und korngrößenmäßige Analysen wurden neun Proben aus einer Bohrungen (KB 1) ausgewählt.

Gesamtmineralogische Analysen (Abb. 2.2.60.)

Die neun bearbeiteten Proben aus der Bohrungen KB 1 setzen sich stratigraphisch aus Sedimenten des Neogen (Karpatium) und Quartär (Löss und Paläoboden) zusammen.

Innerhalb der *quartären Sedimente*, die bis auf eine Ausnahme (KB1; 8,1 m) als Lösse bezeichnet werden können, wurden sieben Proben untersucht. In allen Analysen dominiert Quarz mit einem Medianwert von 38 Gew. % gegenüber den Schichtsilikaten mit einem Median von 25 Gew. %. Die Gesamtfeldspatgehalte nehmen vom Hangenden ins Liegende deutlich zu und erreichen Maximalwerte bis 21 Gew. %. Albit überwiegt in allen Proben. Der Karbonatgehalt unterliegt mit Werten von 13 bis 33 Gew. % größeren Schwankungen, wobei fast immer der Dolomitanteil geringfügig überwiegt. Die Probe KB 1 (8,1 m) verkörpert einen Paläobodenhorizont, der aufgrund der geringsten Karbonatgehalte (5 Gew. %) durch deutlich höhere Verwitterungsvorgänge im Sediment gekennzeichnet ist.

In fast allen Proben liegt Goethit als sekundäres Verwitterungsprodukt vor.

Granulometrisch (Tab. 2.2.21., Abb. 2.2.63.) sind die Quartärproben durch ein Korngrößenmaximum im Siltanteil, wobei die Grobsiltfraktion vorherrschend ist, charakterisiert. Als zweitstärkste Korngröße fungiert die Feinsandkomponente, gefolgt von variierenden Tongehalten. Nach der Nomenklatur von MÜLLER (1961) und FÜCHTBAUER (1959) sind die Sedimente als tonige Silte, tonig-sandige Silte, sandige Silte und tonige Sandsilte zu bezeichnen. Generell entspricht die Korngrößenverteilung denen typischer Lösse.

Die beiden *neogenen Proben* gehören der karpatischen Laa-Formation an. Sie stammen aus Tiefen von 23,6 und 24 m. Die *gesamtmineralogische Zusammensetzung* im Neogenanteil der Bohrung unterliegt aufgrund der variierenden Korngrößenverteilungen großen Schwankungen. In den grobkörnigen Bereichen überwiegt Quarz, bei den feinkörnigen Abschnitten dominieren die Schichtsilikatanteile. Der Gesamtfeldspatgehalt erreicht 16 Gew. %, wobei Alkalifeldspat und Plagioklas zu jeweils gleichen Anteilen vorhanden sind.

Korngrößenmäßig (Tab. 2.2.21., Abb. 2.2.62., 2.2.63.) dominieren Silt- und Sandfraktion das Spektrum. Bei den siltdominierten Proben überwiegt die Grobsiltfraktion, innerhalb der sandreichen Probe überwiegt die Mittelsandfraktion. Die Probe bei 24 m erreicht neben einem hohen Sandanteil auch beträchtliche Anteile an Kieskomponenten. Nach MÜLLER (1961) und FÜCHTBAUER (1959) kommen die Sedimente in die Felder Kiessand und toniger Sandsilt zu liegen.

Sämtliche Proben sind extrem schlecht sortiert.

Die **tonmineralogischen Analysen** wurden an der Fraktion <2 µm durchgeführt (Tab. 2.2.61.).

Generell lässt das Gesamtbild der röntgenographischen Phasenanalyse auf gute Kristallinität der Tonminerale schließen. Die Basisreflexe der Minerale sind schmal und zeigen relativ gute Intensitäten.

Innerhalb der quartären Proben sind Unterschiede im Tonmineralspektrum zu erkennen. Bis in die Tiefe des Paläobodenhorizontes bei 8,1m dominieren Illit/Hellglimmer, gefolgt von klassisch niedrig

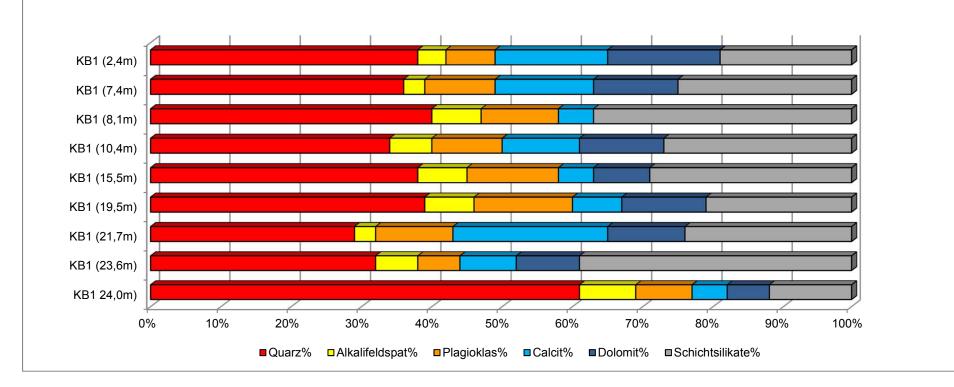
geladenen Smektiten, Kaolinit und Chlorit mit relativ ausgewogenen Anteilen, das Spektrum. Vermiculit tritt mit maximal 10 Gew. % auf. Im Liegenden des Paläobodens überwiegen bis auf eine Ausnahme (KB1; 21,7m) quellfähige Smektite gegenüber Illit/Hellglimmer, Kaolinit und Chlorit. Vermiculit ist nur untergeordnet von Bedeutung.

In fast allen Proben konnte Goethit, ein sekundär gebildetes Eisenoxidmineral, nachgewiesen werden, das auch für die Rotfärbung der Sedimente verantwortlich ist. Ausnahmslos sind Biotite in allen Analysen vertreten. Paragonit konnte bis auf den Paläobodenhorizont in sämtlichen Proben bestimmt werden.

Innerhalb der Laa-Formation zeichnet sich eine Korngrößenbedingte Anreicherung der Tonmineralphasen ab. In der grobkörnigen Probe aus 24 m Tiefe herrscht Illit/Hellglimmer markant gegenüber Chlorit, Smektit und Kaolinit vor. Vermiculit fehlt gänzlich. Die feinkörnigere Probe aus 23,6 m Tiefe ist durch eine deutliche Vormacht von Smektit gegenüber Illit/Hellglimmer, Kaolinit, Chlorit und Vermikulit gekennzeichnet. In allen Proben ist Biotit vorhanden.

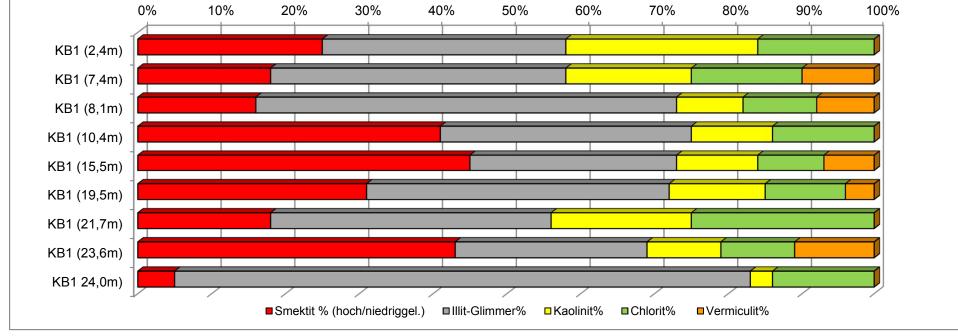
Zusammenfassend können folgende Charakteristika festgestellt werden:

Vergleicht man die Quartärproben gesamtmineralogisch mit den neogenen Proben, so ist das Quartär durch zumeist höhere Karbonatgehalte gekennzeichnet. Eine Ausnahme bildet der Paläobodenhorizont. Generell dominieren in den jungen Sedimenten die Quarzanteile gegenüber den Schichtsilikatgehalten. Tonmineralogisch sind die Unterschiede zwischen Quartär- und Neogenanteilen im Profil nicht so deutlich ausgeprägt. Es dominieren abwechselnd Illit/Hellglimmer oder quellfähige Smektite das Spektrum. Die quartären Sedimente weisen allerdings zumeist höhere Kaolinit- und auch Chloritgehalte auf. Die neogenen Sedimente sind aufgrund der unterschiedlicheren Korngrößenzusammensetzung durch stark variierende Anteile von Quarz- und Schichtsilikaten gekennzeichnet. Der Karbonatgehalt ist deutlich geringer als im Quartär. Tonmineralogisch sind sie ebenfalls inhomogen ausgebildet mit wechselnden Gehalten von Smektit und Illit/Hellglimmer als dominante Tonminerale.


Das Vorhandensein von Biotit und Paragonit im Spektrum wird als Hinweis auf ein kristallines Liefergebiet gesehen.

Geochemische Untersuchungen (G. Hobiger)

Alle Proben wurden an der Fachabteilung Geochemie der Geologischen Bundesanstalt auf Haupt- und Spurenelemente untersucht (Tab. 2.2.22.). Korngrößenmäßig bedingt zeigen die grobkörnigeren Sedimente eine Vormacht an SiO₂, die aus den hohen Gehalten ihrer Silikatbestandteile resultieren. Die Al₂O₃-Gehalte spiegeln im Wesentlichen den Tonmineralgehalt wider und zeigen entsprechend den röntgenographischen Analysen eine Zunahme bei den feinkörnigeren Proben. Die K₂O-Anteile sind sowohl für die Hellglimmeranteile als auch für die Kalifeldspatgehalte verantwortlich. Mittels des Na₂O-Gehaltes können die unterschiedlichen Feldspatgehalte (Albitanteile) ermittelt werden. Die wechselnden Gehalte an CO₂, CaO und MgO sind an die Karbonatminerale Calcit und Dolomit gebunden und korrespondieren ausgezeichnet mit den röntgenographischen Ergebnissen. Bei den Spurenelementen lässt sich Barium und Rubidium sehr gut in Einklang mit den Hellglimmeranteilen und den K₂O-Gehalten bringen.


B4 ANSCHLUSSSTELLE OST NIEDERRUSSBACH (ÖK39)

GESAMTMINE	RALOGIS	CHE ZUSAMMEN	NSETZUNG				
Probenummer	ummer Quarz% Alkalifeldspat% Plagioklas%		Calcit%	Calcit% Dolomit% Schichtsilikate% L		Lithologie /Stratigraphie	
KB1 (2,4m)	38	4	7	16	16	19	Schluff, Sand (Löss, Quartär)
KB1 (7,4m)	36	3	10	14	12	25	Schluff, Sand (Löss, Quartär) Hornblende, Biotit, Goethit
KB1 (8,1m)	40	7	11	5	0	37	Schluff, sandig, tonig (Paläoboden?) Biotit
KB1 (10,4m)	34	6	10	11	12	27	Schluff, Sand (Quartär?/Neogen?) Biotit, Goethit
KB1 (15,5m)	38	7	13	5	8	29	Schluff, Sand (Quartär?/Neogen?) Biotit, Goethit
KB1 (19,5m)	39	7	14	7	12	21	Schluff, Sand (Quartär?/Neogen?) Biotit, Goethit
KB1 (21,7m)	29	3	11	22	11	24	Schluff, Sand (Quartär?/Neogen?) Biotit
KB1 (23,6m)	32	6	6	8	9	39	Schluff, sandig, tonig (Laa Fm., Karpatium) Biotit
KB1 24,0m)	61	8	8	5	6	12	Sand, kiesig (Laa Fm., Karpatium) Biotit, Goethit

B4 ANSCHLUSSSTELLE OST NIEDERRUSSBACH (ÖK39)

TONMINERALO	OGISCHE ZUSAMME	NSETZUNG				
Probenummer	Smektit % (hoch/niedriggel.)	Illit-Glimmer%	Kaolinit%	Chlorit%	Vermiculit%	Lithologie /Stratigraphie
KB1 (2,4m)	25	33	26	16	0	Schluff, Sand (Löss, Quartär) Goethit, Paragonit
KB1 (7,4m)	18	40	17	15	10	Schluff, Sand (Löss, Quartär) Hornblende, Biotit, Goethit, Paragonit
KB1 (8,1m)	16	57	9	10	8	Schluff, sandig, tonig (Paläoboden?) Biotit
KB1 (10,4m)	41	34	11	14	0	Schluff, Sand (Quartär?/Neogen?) Biotit, Goethit, Paragonit
KB1 (15,5m)	45	28	11	9	7	Schluff, Sand (Quartär?/Neogen?) Biotit, Goethit, Paragonit
KB1 (19,5m)	31	41	13	11	4	Schluff, Sand (Quartär?/Neogen?) Biotit, Goethit
KB1 (21,7m)	18	38	19	25	0	Schluff, Sand (Quartär?/Neogen?) Biotit
KB1 (23,6m)	43	26	10	10	11	Schluff, sandig, tonig (Laa Fm., Karpatium) Biotit, Paragonit
KB1 24,0m)	5	78	3	14	0	Sand, kiesig (Laa Fm., Karpatium) Biotit, Goethit

B4 Anschlussstelle Ost Niederrußbach (ÖK 39)

			Müller, G. (1959) & Füchtbauer, H. (1961)											Winkler, H.G.F. (1954)			
	Benennung						(Gewich	tsproze	nt							
Probe	Deficilitation						Kies			Sand			Silt				
	Sand-Silt-Ton					Gkies	Mkies	s Fkies	kies Gsand	sand Msand F	d Fsand	Gsilt	Msilt	Fsilt	Ton		
	Kies-Sand-Silt		1												< 2 µm	2-20 μm	> 20 µm
		Kies	Sand	Silt	Ton												
KB1 (2,4m)	toniger Silt	0,0	9,8	77,9	12,3				0,2	1,3	8,3	45,6	23,7	8,5	12,3	32,2	55,4
KB1 (7,4m)	toniger Sandsilt	1,9	24,4	61,3	12,3		1,5	0,4	1,3	3,6	19,5	37,9	14,2	9,3	12,3	23,5	64,2
KB1 (10,4m)	sandiger Silt	0,0	19,9	73,3	6,8				0,2	0,4	19,4	53,9	13,7	5,7	6,8	19,3	73,9
KB1 (15,5m)	tonig-sandiger Silt	0,0	20,8	63,4	15,8				0,1	0,3	20,4	42,4	12,4	8,6	15,8	21,0	63,1
KB1 (19,5m)	sandiger Silt	0,0	19,4	72,4	8,2				0,003	0,1	19,3	52,3	13,3	6,8	8,2	20,1	71,7
KB1 (21,7m)	tonig-sandiger Silt	0,1	10,8	66,8	22,3			0,1	0,2	0,9	9,6	41,2	15,3	10,3	22,3	25,6	52,1
KB1 (23,6m)	toniger Sandsilt	0,1	29,2	56,4	14,3			0,1	1,6	7,6	20,0	36,3	12,3	7,8	14,3	20,1	65,6
KB1 (24m)	Kiessand	25,3	66,0	7,3	1,3	0,9	11,1	13,3	5,9	37,3	22,9	3,0	2,7	1,6	1,3	4,3	94,4

	Statistische Parameter													
Probe		M	omentverfahre	n	Folk, R	.L. & Ward, W.	(1957)		k Mort	to (m/o)				
Probe	Sortierung	Arithmet.	Standard-	Schiefe	Arithmet.	Standard-	Schiefe	U	K-werr	te (m/s)				
	Sortierung	Mittelwert	Abweichung	Schleie	Mittelwert	Abweichung	Schleie		Beyer	Bialas				
KB1 (2,4m)	extrem schlecht sortiert	6,17	2,68	1,59	5,96	2,26	0,51	25,03	9,40E-09	2,50E-08				
KB1 (7,4m)	extrem schlecht sortiert	5,49	2,99	0,56	5,53	2,55	0,46	35,11	1,10E-08	2,00E-08				
KB1 (10,4m)	sehr schlecht sortiert	5,27	2,07	2,05	5,03	1,67	0,56	12,08	1,10E-07	1,80E-07				
KB1 (15,5m)	extrem schlecht sortiert	6,01	2,84	1,38	5,84	2,62	0,66	54,60	4,20E-09	8,20E-09				
KB1 (19,5m)	sehr schlecht sortiert	5,37	2,10	1,81	5,18	1,81	0,62	17,48	5,50E-08	1,10E-07				
KB1 (21,7m)	extrem schlecht sortiert	6,60	3,01	0,95	6,52	2,82	0,59	60,36	2,00E-09	1,30E-09				
KB1 (23,6m)	extrem schlecht sortiert	5,57	3,22	1,20	5,38	2,99	0,53	62,6	4,70E-09	1,60E-08				
KB1 (24m)	extrem schlecht sortiert	1,21	2,84	0,33	0,87	2,75	-0,31	4,69	5,50E-05	4,20E-05				

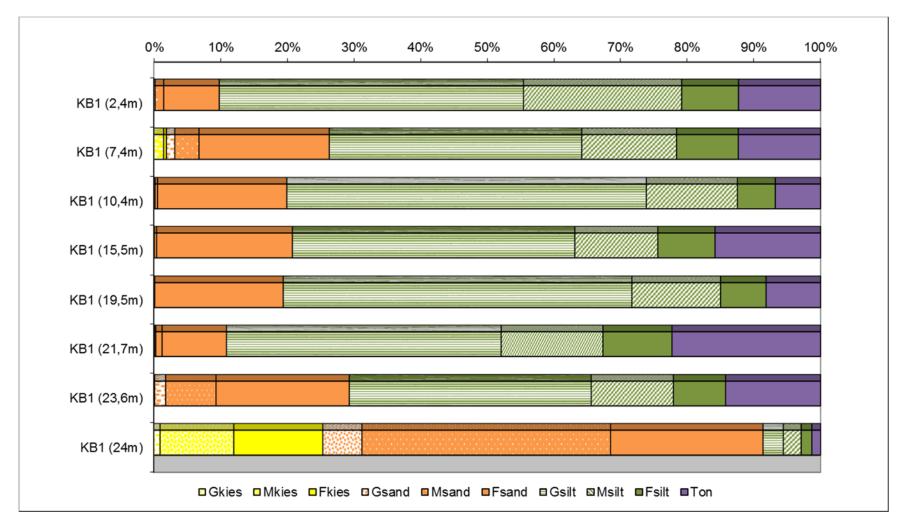


Abb. 2.2.62.: Korngrößen-Diagramm.

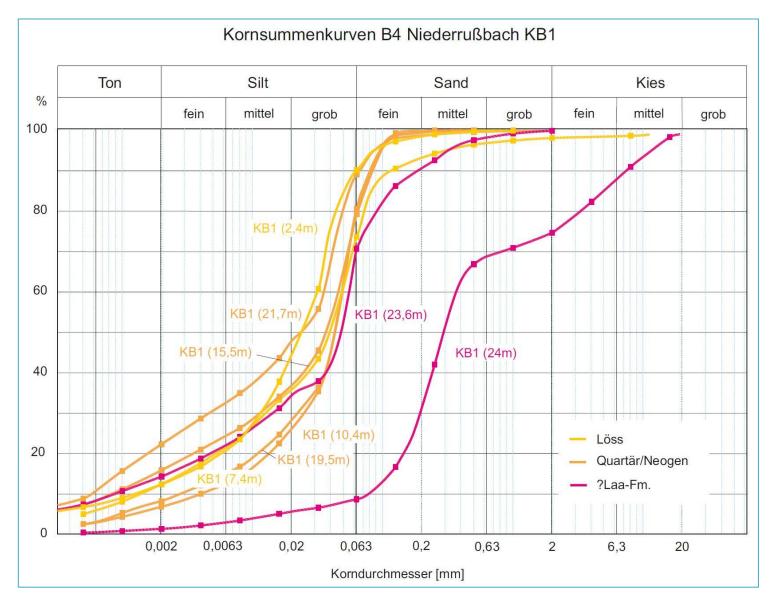


Abb. 2.2.63.: Kornsummenkurven der Proben von KB 1 Niederrußbach.

Tab. 2.2.22.a.: Ergebnisse der geochemischen Analysen KB 1 Niederrußbach.

GCH-2014-52	GCH-2014-052-	GCH-2014-052-	GCH-2014-052-
Bezeichnung	MB1 (2,4-2,5m) Niederruß- bach	002 KB1 (7,4-7,5m) Niederruß- bach	003 KB1 (8,1-8,2m) Niederruß- bach
SiO ₂ (%)	46,0	51,0	65,0
TiO ₂ (%)	0,7	0,7	0,8
Al ₂ O ₃ (%)	9,3	9,9	13,1
FeO (%)	3,5	4,0	4,6
MnO (%)	0,07	0,08	0,08
MgO (%)	3,3	3,2	1,5
CaO (%)	16,5	13,6	4,3
Na ₂ O (%)	0,8	0,9	0,65
K ₂ O (%)	1,4	1,65	2,29
P ₂ O ₅ (%)	0,06	0,05	0,04
SO ₃ (%)	0,04	0,03	0,02
H ₂ O ^{110° C} (%)	0,5	0,5	1,6
H ₂ O+ (%)	1,6	1,5	2,8
CO2 (%)	15,7	12,2	2,9
Summe	99,5	99,3	99,7
	,	,	,
As (ppm)	14	14	23
Ba (ppm)	296	347	432
Cd (ppm)	< 1	< 1	< 1
Ce (ppm)	69	85	78
Co (ppm)	12	14	17
Cr (ppm)	75	74	69
Cs (ppm)	5	5	5
Cu (ppm)	21	21	27
La (ppm)	32	40	38
Nb (ppm)	14 30	16 35	17 34
Nd (ppm) Ni (ppm)	17	18	34
Pb (ppm)	21	22	25
Pr (ppm)	8	10	8
Rb (ppm)	79	86	112
Sr (ppm)	215	199	113
V (ppm)	86	92	95
Y (ppm)	32	38	34
Zn (ppm)	57	67	86
Zr (ppm)	344	464	350
Summe (ppm)	1427	1645	1596
Summe (%)	0,14	0,16	0,16
Gesamtsumme (%)	99,6	99,4	99,8

Tab. 2.2.22.b.: Ergebnisse der geochemischen Analysen KB 1 Niederrußbach.

GCH-2014-52	GCH-2014-052- 004	GCH-2014-052- 005	GCH-2014-052- 006
Bezeichnung	KB1 (10,4- 10,5m) Nieder- rußbach	KB1 (15,5- 15,6m) Nieder- rußbach	KB1 (19,5- 19,6m) Nieder- rußbach
SiO ₂ (%)	52,0	59,0	58,0
TiO ₂ (%)	0,7	0,7	0,7
Al ₂ O ₃ (%)	10,7	12,0	10,7
FeO (%)	3,9	4,2	3,6
MnO (%)	0,07	0,07	0,08
MgO (%)	3,3	2,8	2,9
CaO (%)	12,7	7,5	8,7
Na ₂ O (%)	0,87	0,9	1,1
K ₂ O (%)	1,87	2,11	1,9
$P_2O_5(\%)$	0,08	0,07	0,06
SO ₃ (%)	0,03	0,02	0,02
H ₂ O ^{110° C} (%)	0,4	0,8	0,5
H ₂ O+ (%)	1,7	2,2	1,764
CO2 (%)	11,2	7,4	9,2
Summe	99,6	99,9	99,3
As (ppm)	11	14	14
Ba (ppm)	349	389	369
Cd (ppm)	< 1	< 1	< 1
Ce (ppm)	65	72	66
Co (ppm)	14	15	12
Cr (ppm)	82	60	52
Cs (ppm)	5	5	4
Cu (ppm)	20	23	23
La (ppm)	32	35	33
Nb (ppm)	15	15	14
Nd (ppm)	28	32	30
Ni (ppm)	21	28	20
Pb (ppm) Pr (ppm)	23 7	23 8	22 7
Rb (ppm)	92	102	92
Sr (ppm)	202	161	173
V (ppm)	95	94	83
Y (ppm)	30	31	29
Zn (ppm)	68	75	65
Zr (ppm)	355	336	334
Summe (ppm)	1516	1519	1442
Summe (%)	0,15	0,15	0,14
Samue (70)	00.0	100.1	00.5

100,1

99,5

99,8

Gesamtsumme (%)

Tab. 2.2.22.c.: Ergebnisse der geochemischen Analysen KB 1 Niederrußbach.

GCH-2014-52	GCH-2014-052- 007	GCH-2014-052- 008	GCH-2014-052 009
Bezeichnung	KB1 (21,7- 21,8m) Nieder- rußbach	KB1 (23,6- 23,7m) Nieder- rußbach	KB1 (24-25m) Niederruß- bach
SiO ₂ (%)	45,0	54,8	77,0
TiO ₂ (%)	0,6	0,7	0,3
Al ₂ O ₃ (%)	9,7	13,3	6,3
FeO (%)	3,5	4,9	2,2
MnO (%)	0,07	0,05	0,06
MgO (%)	2,7	2,7	1,0
CaO (%)	18,5	7,6	5,3
Na ₂ O (%)	1,0	0,5	0,7
K ₂ O (%)	1,6	2,4	1,6
P_2O_5 (%)	0,08	0,1	0,0
SO ₃ (%)	0,04	0,02	0,02
H ₂ O ^{110° C} (%)	0,6	1,7	0,1
H ₂ O+ (%)	1,75	3,2	0,6
CO2 (%)	14,6	7,8	4,3
Summe	99,7	99,6	99,5
		,	,
As (ppm)	7	13	16
Ba (ppm)	372	394	314
Cd (ppm)	< 1	< 1	< 1
Ce (ppm)	63	72	28
Co (ppm)	14	20	5
Cr (ppm)	63	93	22
Cs (ppm)	5	7	3
Cu (ppm)	21	30	11
La (ppm)	29	33	20
Nb (ppm)	14	16	7
Nd (ppm)	26	30	21
Ni (ppm)	23	44	5
Pb (ppm)	22	33	19
Pr (ppm)	7	7	3
Rb (ppm)	89	122	67
Sr (ppm)	243	141	105
V (ppm)	95	121	45
Y (ppm)	31	33	10
Zn (ppm)	73	84	35
Zr (ppm)	329	229	100
Summe (ppm)	1525	1521	837
Summe (%)	0,15	0,15	0,08
Cocomtoummo (0/)	00.0	00.8	00.6

99,8

99,6

99,8

Gesamtsumme (%)

2.3. Nördliches Wiener Becken

2.3.1. Bohrkernaufnahmen zur Errichtung zweier Windkraftanlagen im Windpark Zistersdorf Ost (ÖK 25)

I. Wimmer-Frey

Im Zuge einer Baugrunderkundung für zwei Windenergieanlagen im Windpark Zistersdorf Ost wurden von der Firma Baugrund Wien GmbH zwei Kernbohrungen durchgeführt.

Dem Projektleiter DI W. Kalman sei gedankt, dass am 8. und 9. August 2013 bei sengender Hitze die beiden Bohrungen aufgenommen und beprobt werden konnten.

In Abb. 2.3.2. ist die Lage der Bohrpunkte im August 2013 festgehalten, eine weitere Bauphase von Zistersdorf Ost 1 und 2 im Jänner 2014 und schließlich die fertiggestellten Anlagen, fotografiert im März 2015.

Lage

Die Bohrpunkte der beiden Kernbohrungen liegen etwa 4,5 km S bzw. SSE von Zistersdorf im Windpark Zistersdorf Ost (Abb. 2.3.1., Tab. 2.3.1.).

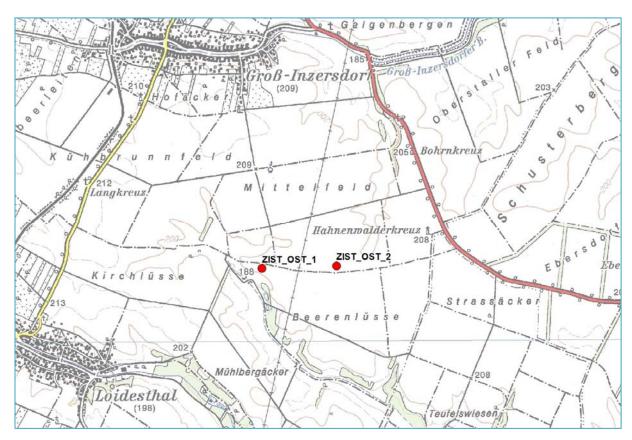


Abb. 2.3.1.: Lage der Bohrpunkte auf der topographischen Karte.

Zistersdorf Ost 1 und 2 zum Zeitpunkt der Probenahme im August 2013, während der Bauphase im Jänner 2014 und im März 2015

Standort Zistersdorf Ost 1

August 2013

Standort Zistersdorf Ost 2

August 2013

Abb. 2.3.2.: Übersicht über die Lage der Kernbohrungen im Windpark Zistersdorf.

Tab. 2.3.1.: Koordinaten der Kernbohrungen Windpark Zistersdorf.

BMN	RW_M34	HW_M34
ZIST_OST_1	782360	374250
ZIST_OST_2	783050	374275

Geologie (nach WESSELY, 2006)

Die Bohrpunkte ZIST_OST_1 und ZIST_OST_2 liegen im nördlichen Wiener Becken, lediglich 5 km östlich des Steinbergbruches.

Das Wiener Becken ist durch Brüche in seichte Randschollen, Eintiefungszonen und Hochzonen gegliedert, wobei die Bruchsysteme unterschiedlich hohe Bewegungsausmaße aufweisen, von wenigen Metern bis zu 8 Kilometern. Das Muster, welches die Brüche im Wiener Becken zeichnen, die für die Absenkung der einzelnen Beckenteile verantwortlich sind, kam durch einen schrägen Zerrmechanismus zustande. Zumeist sind diese Brüche kulissenförmig angeordnet, sie sind meist 50-60° geneigt.

Die Kernbohrungen für den Windpark Zistersdorf Ost liegen auf der Tiefscholle (Zistersdorfer Tief), östlich des Steinbergbruches.

Der ESE-fallende Steinbergbruch begrenzt die Mistelbacher Scholle im E, die entlang dieses Bruches beobachteten Sprunghöhen erreichen bis zu 6.000 m. Zwischen dem Badenium und dem Pannonium erfolgte in diesem Bereich des nördlichen Wiener Beckens eine extreme synsedimentäre Eintiefung, das Zistersdorfer Tief senkte sich auf unter 6.000 m ein. Dies hatte zur Folge, dass sich entlang des Steinbergbruchs durch die synsedimentäre Abschiebung der Tiefscholle die Sedimentmächtigkeiten vom Badenium bis ins Pannonium so verhalten, dass wenige 100 m auf der Hochscholle mehreren 1.000 m auf der Tiefscholle entsprechen. Es wird angenommen, dass entlang des Steinbergbruchs auch eine laterale Verschiebungskomponente wirksam war. Auch ein Abkippen der Tiefscholle zum Bruch, sowie am Bruch angeschleppte Schichten, wurden im Rahmen der Erdölexploration festgestellt.

Sedimentfüllung des nördlichen Wiener Beckens (nach WESSELY, 2006, Abb. 2.3.3.)

Der Schichtumfang der Sedimente des Wiener Beckens reicht vom unteren Miozän bis in die Gegenwart. Entlang der Küsten, sowie an Flussmündungen wurden gröbere Sedimente, im Beckeninneren feine Sedimente abgelagert. In Seichtwasserbereichen, wie sie an Hochzonen innerhalb des Beckens zu finden waren, bildeten sich im Badenium Leithakalke, im Sarmatium teils Lumachellen, und stellenweise Oolithe. In den Tiefzonen wurden sandig-mergelige Sedimente abgelagert.

Das tiefe Miozän ist nur im Bereich von Poysdorf, auf der Poysdorfer Scholle, als Schlier entwickelt. Im Bereich Großkrut, Poysdorf, Reinthal und Mühlberg wurden marine, bunte Mergel des **Eggenburgium** über dem Flyschuntergrund erbohrt. Darauf folgen im oberen **Eggenburgium und Ottnangium** graue, geschichtete bis schiefrige Mergel der Luschitz-Formation, die nur nördlich des Matzener Rückens ausgebildet ist. Südlich desselben wurde auf dem Untergrund die Bockfließ-Formation abgelagert, die mit den *Oncophora*-Schichten parallelisiert und dem Ottnangium zugeordnet wurde.

Im **Karpatium** kam es zu einer Ausdehnung des marinen Beckens, die Laa-Formation, die aus unterschiedlich mächtigen Tonmergeln und Sanden besteht, wurde abgelagert. Südlich des Matzener Rückens folgte diskordant über der Bockfließ-Formation die limnisch-terrestrische Gänserndorf-Formation, die aus grauen und bunten Mergeln mit kalkig zementierten Sandsteineinlagerungen besteht. Die aus grauen bis grünen Mergeln mit mächtigen Sandsteinlagen bestehende limnische Aderklaa-Formation, die ins höhere Karpatium gestellt wird und eine Mächtigkeit von über 1.000 m erreicht, wurde darüber abgelagert. Sie reicht bis weit in das südliche Wiener Becken.

Im Laufe des **Badeniums** erfolgte eine Transgression. Die Sedimente des Badeniums sind in ihren Mächtigkeiten, sowie in ihrer Faziesvielfalt je nach Ablagerungsraum sehr unterschiedlich. Nördlich des Matzener Rückens setzt gleich marine Fazies ein, südlich davon wurde zunächst diskordant auf die Aderklaa-Formation das fluviatile Aderklaaer Konglomerat abgelagert. Danach folgten auch hier marine Ablagerungen. Entlang des Matzener Rückens wurde die limnisch-fluviatile Auersthal-Formation sedimentiert. Zunächst kam es zu einem Wechsel zwischen marinen und Süßwasserlagen. Mit der Sedimentation der Matzener Sande wurde eine einheitlich marine Entwicklung erreicht.

Grauer Tonmergel, "Badener Tegel", stellt das vorherrschende Sediment des Badeniums als Beckenfüllung dar. Von den Mündungen mehrerer Flüsse wurde Sand bis weit in das Wiener Becken transportiert, dabei erreichten die Fächer bis zu mehrere 100 m Sandmächtigkeit. Tiefstände wechselten mit Transgressionen, in Schüttungspausen entstanden Zwischenmergel, auch Corallinaceen konnten in diesen Zeiten wachsen.

An Beckenrändern wurden teilweise Süßwasserkalke in Abfolgen von Tonmergeln, Sanden und Schotter eingelagert. Auch auf der Mistelbacher (Hoch-) Scholle repräsentiert eine "Bunte Fazies" limnische Einflüsse im Badenium. Kalkalpines Material wurde in Form des Hollenburger Konglomerats abgelagert.

Leithakalke stellen die marine Seichtwasserfazies im Badenium dar. Sie finden sich an den Küsten, aber auch in Seichtwasserbereichen des Wiener Beckens, an denen wenig terrigenes Material angeliefert wurde, beispielsweise auf dem Steinberghoch.

Im **Sarmatium** wurden weiterhin mergelig-sandige Sedimente im Beckeninneren, und kalkig-klastische Sedimente an den Beckenrändern abgelagert. Durch die Abschnürung vom Mittelmeer kam es zu einer Umstellung in der Wasserchemie, und damit zu einer Verminderung der Artenvielfalt.

Nach GRILL (1961, 1968) kann das Sarmatium östlich des Steinbergbruches, auf der Tiefscholle, Mächtigkeiten von über 1.500 m erreichen. Es ist vorwiegend aus Sanden, Sandsteinen und Tonmergel mit lokalem Fossilreichtum aufgebaut. Obertags findet man hauptsächlich Obersarmatium bzw. die Zone mit Nonium granosum, örtlich auch die Zone mit Elphidium hauerinum und Untersarmatium mit Elphidium reginum und Rissoen.

Obwohl sich die Sedimentation im Beckeninneren vom Sarmatium ins **Pannonium** unverändert fortsetzte, ist eine scharfe Änderung der Fauna zu beobachten, die auf eine weitere Abnahme des Salzgehaltes aufgrund der gänzlichen Abschnürung von der Paratethys zurückzuführen ist. Weiterhin wurden fluviogene Sedimente in das Becken, in welchem feinkörnige Sedimentation vorherrschte, eingeschüttet, in zyklischen Abständen reichten diese bis ins Beckeninnere hinein.

Nach GRILL (1961, 1968) kann die Mächtigkeit des Pannoniums auf der Tiefscholle östlich des Steinbergbruches über 1.500 m betragen, hier ist an der Oberfläche das limnisch-fluviatile Oberpannonium (Zonen G und H nach PAPP, 1951, 1953) aufgeschlossen.

Während Seespiegeltiefständen im Pannonium entwickelten sich Flußlandschaften ("wetlands"), die durch typische Floren- und Faunenvergesellschaftungen gekennzeichnet sind, die sich von jenen der Seespiegelhochstände unterscheiden. Im nördlichen Wiener Becken erfolgte der Haupteintrag an fluviatilem Material bereits über die Ur-Donau. Sedimente wie die Hollabrunn-Mistelbach-Formation machen deren Verlauf durch Reliefumkehr nachvollziehbar.

Im höheren Unter-Pannonium und Mittel-Pannonium wurden die wetlands durch einen Seespiegelanstieg überflutet, daraufhin bildete sich eine endemische Meeresfauna aus. Unter- und Mittelpannone Sedimente sind vor allem in Randbereichen des Beckens, sowie auf Hochschollen zu finden, beispielsweise auf der Mistelbacher (Hoch-) Scholle als Umrahmung des Steinberghochs.

Im Ober-Pannonium sank der Seespiegel ab, Deltasysteme breiteten sich aus, wiederum begleitet von wetlands, außerdem kam es zu großräumigen Verlandungen. Abgesenkte Beckenteile der Tiefschollen und zentrale Beckenteile wurden großflächig von Ober-Pannonium eingenommen, es erreichte Mächtigkeiten bis zu 600 m. Auf der Mistelbacher Scholle fehlen oberpannone Sedimente weitgehend. Sie bestehen vor allem aus Sanden, Schotter und Konglomeraten, die in einen Süßwassersee mit grauen, blauen, grünen, gelben und roten Mergeln eingeschüttet wurden. In den fluviatilen Sanden ist häufig Kreuzschichtung zu beobachten, sowie mergelige Klasten, die aus unterlagernden Schichten aufgearbeitet wurden. Aufgrund der unterschiedlichen Farben der Mergel wird über der basalen "Lignitischen Serie" eine "Blaue", "Bunte" und "Gelbe Serie" unterschieden.

In einer schmalen Zone östlich des Steinbergbruches tritt die vermutlich **pliozäne** "Bunte Lehmserie" auf, die vor allem an Muldenlagen gebunden ist. Diese bis 100 m mächtige Serie besteht aus terrestrischen Sedimenten, darunter rote, gelbe und grüne Lehme, sowie grobe Quarzschotter und kiesige Sande (KRENMAYR & SCHNABEL, 2002).

Hochgelegene fluviatile Terrassen, die ins **Ober-Pliozän bis ältere Pleistozän** gestellt werden, und oft durch dünne Rotlehmdecken überlagert sind, sind im Weinviertel in unterschiedlichen Höhenlagen zu beobachten (KRENMAYR & SCHNABEL, 2002).

Im **Quartär** wurden entlang der großen Flüsse Schotterterrassen geschüttet. Auf die Terrassen, beziehungsweise auf den neogenen Untergrund wurde Löss abgelagert, der bis zu mehreren Metern Mächtigkeit aufweisen kann.

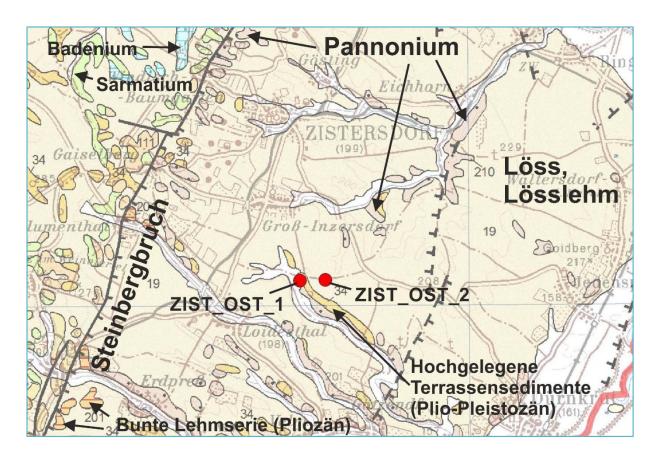


Abb. 2.3.3.: Lage der Bohrpunkte auf der geologischen Karte von Niederösterreich (SCHNABEL et al., 2002).

Beschreibung der Bohrprofile:

Die Kernbohrung **Zistersdorf Ost 1** wurde in etwa 200 m Seehöhe bis zu einer Teufe von 14 m abgeteuft. In Tabelle 2.3.2. ist eine kurze Beschreibung des Profils zu finden, in Abb. 2.3.4. und 2.3.5. ist die Bohrung fotografisch festgehalten.

Aus der Bohrung Zist Ost 1 liegen 17 Proben vor, die im Projektjahr 2013/2014 chemisch, korngrößenmäßig, gesamt- und tonmineralogisch analysiert wurden. Die Ergebnisse sind grafisch und in Tabellenform zusammengestellt (Abb. 2.3.13. bis 2.3.15., Tab. 2.3.4. bis 2.3.6.).

Tab. 2.3.2.: Bohrprofil der Bohrung Zistersdorf Ost 1

	Windpark Zist	ersdorf Ost E	Bohrung 1	
Tiefe	Beschreibung	Stratigraphie	Probenteufe	Probe
0-0,50 m	Bodenhorizont, lehmiger Schluff, dun- kelgrau, mit hellen karbonatischen Ausfällungen durchsetzt, im trockenen Zustand hart und stückelig brechend	Tschernosem – landwirtschaft- lich bearbeitet	25-50 cm	Z_O_1_01
0,50-7,40 m	Schluff, schwach tonig, helles Olivbraun, ungeschichtet, reich mit Pseudomycelien durchsetzt, weiße Karbonatkonkretionen (gehäuft bei 3,10 – 3,35 m) 4,00 – 4,15 m sandiger, mit rostroten Verfärbungen, z.T. mit karbonatischen Ausfällungen. ab 5,90 m toniger Schluff, dünkleres Olivbraun	Löss	80 cm 140 cm 240 cm 320 cm 390 cm 480-490 cm 590 cm 690-710 cm	Z_O_1_02 Z_O_1_03 Z_O_1_04 Z_O_1_05 Z_O_1_06 Z_O_1_07 Z_O_1_07
7,40 - 8,60 m	Karbonatischer Ausfällungshorizont, schluffig-sandig, z. T. kompakt und stü- ckig brechend, weiß bis gelblich braun	Paläoboden/ Rotlehm-hori- zont	790 cm 830-860 cm	Z_O_1_10 Z_O_1_11
8,60 – 11,00 m	Sand, schluffig; schwach bindig; helles Olivbraun; immer wieder kleinere Komponenten von calcitischen Konkretionen	Neogen?	930-960 cm 1030 – 1060 cm	Z_O_1_12 Z_O_1_13
11,00 – 14,00 m	Siltstein, sandig; verfestigt und kompakt; hell olivbraun, partienweise mit rostro- ten Anflügen; Komponten in Fein-Mittelkiesgröße von gerundeten Quarzen und karbonati- schen Konkretionen;	Neogen	1105 cm	Z_O_1_14
	bei 11,50 m Auftreten von Mollusken		1150 cm	Z_O_1_17
	ab 13,20 m deutliche Zunahme des Sandgehaltes, lockeres Gefüge; graubraun und gelbbraun ab 13,70 m 14,00 m (Endteufe)		1235-1250 cm 1340-1360 cm	Z_O_1_15 Z_O_1_16
	14, 00 III (Elialeule)			

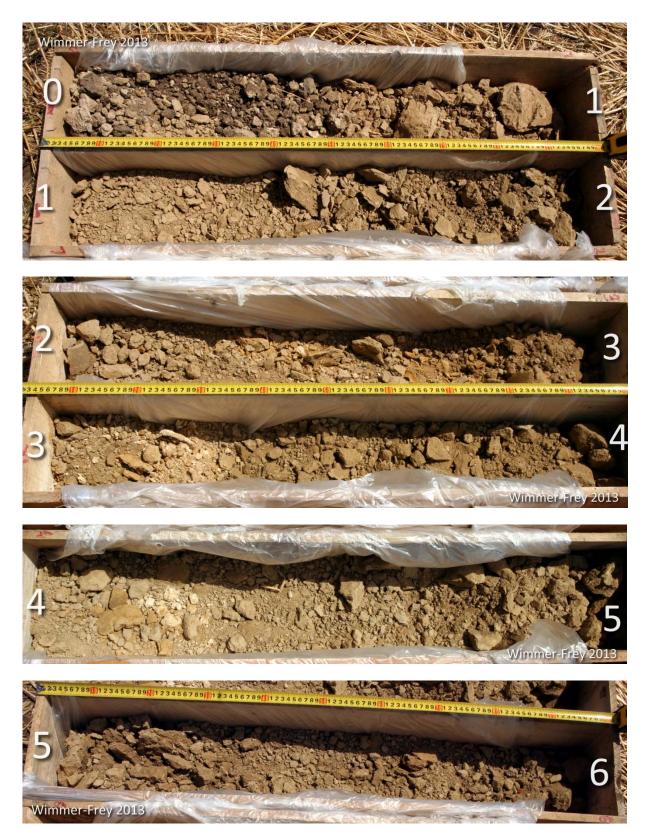
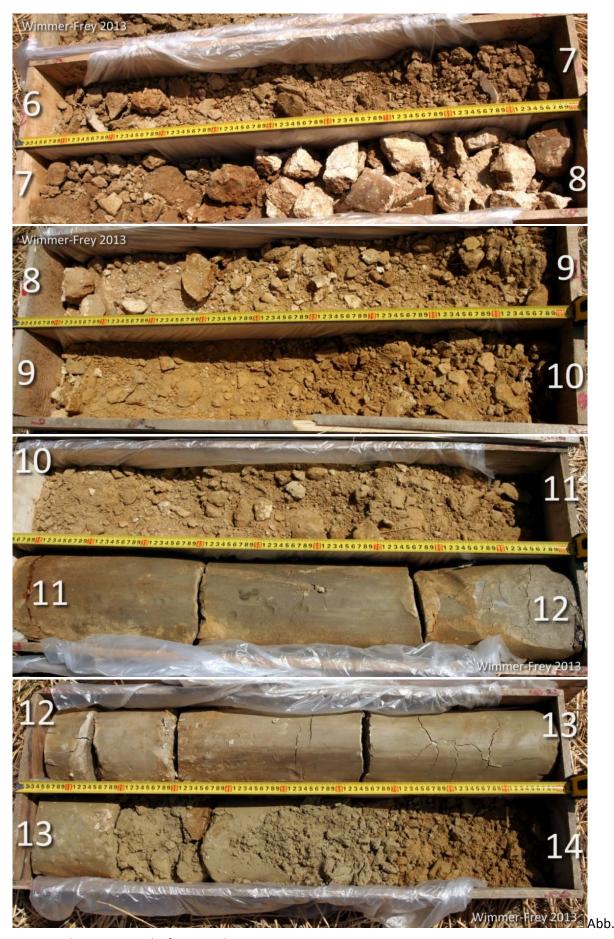



Abb. 2.3.4.: Bohrung Zistersdorf Ost 1: 0 bis 6 m.

2.3.5.: Bohrung Zistersdorf Ost 1: 6 bis 14 m.

Bis 0,50 m Teufe ist ein dunkelgrauer Bodenhorizont (Tschernosem) entwickelt, der durch landwirtschaftliche Bearbeitung stark beeinflußt erscheint.

Die bei 25 – 30 cm genommene Probe weist den Boden nach ÖNORM L 1061 als lehmigen Schluff aus bei praktisch fehlendem Skelettanteil.

Der Boden ist karbonatführend mit etwas über 10 Gew. % an Calcit und unter 5 Gew. % an Dolomit. Quarz, Feldspäte und Schichtsilikate sind qualitativ und quantitativ dem Ausgangssubstrat, den unterlagernden Lössen sehr ähnlich. Ebensowenig sind in der Tonmineralogie Unterschiede zu vermerken.

Ab etwa 50 cm folgt bis zu einer Teufe von 7,40 m eine Abfolge von Löss. Nach der Munsell Soil Color Chart ist die Farbe des feuchten Lösses Hellolivbraun (2.5Y 5/4, light olive brown), die Farbe des trockenen ist Blassgelb (2.5Y 7/4, pale yellow) bis Hellgelbbraun (2.5Y 6/4, light yellowish brown). Der Löss ist ungeschichtet und ist vor allem im hangenden Abschnitt reich mit Pseudomycelien versetzt, die deutlich als feine karbonatische Wurzelkanälchen zu erkennen sind. Karbonatische Konkretionen sind durchgehend vertreten, besonders zwischen 3,10 bis 3,35 m und zwischen 4,00 bis 4,20 m. Ab ca. 6,00 m ist eine Zunahme im Tongehalt zu erkennen. Das Material wird bindiger, die Farbe wird dünkler.

8 Proben:	Z_O_1_02	0,80 m
	Z_O_1_03	1,40 m
	Z_O_1_04	2,40 m
	Z_O_1_05	3,20 m
	Z_O_1_06	3,90 m
	Z_O_1_07	4,80 m – 4,90 m
	Z_O_1_08	5,90 m
	Z_O_1_09	6,90 m – 7,10 m

Korngrößenmäßig handelt es sich nach MÜLLER (1961) & FÜCHTBAUER (1959) durchgehend um tonige Silte. Der Sandanteil liegt konstant zwischen 3 und 5 Gew. % mit einem Median von 4,2 Gew. %. Der Silt ist die dominierende Korngrößenklasse, wie es bei Lössen nicht anders zu erwarten ist. Sein Median beträgt 76,3 Gew. %. Die Grobsiltkomponente ist mit einem Median von 39,1 Gew. %, die am stärksten vertretene Kornklasse und weist gleichzeitig auch die größten Unterschiede im Minimum und Maximum auf. Der Fein- und Mittelsiltanteil gemeinsam ergibt mit 37,4 Gew. % fast denselben Median. Der Tonanteil liegt bei knapp 20 Gew. % und darunter. Werte bis zu 25 Gew. % sind unterhalb des Bodenhorizonts und im liegendsten Abschnitt zu finden.

Gesamtmineralogisch ist ein deutliche, fast kontinuierliche Abnahme im Karbonatgehalt vom Hangenden zum Liegenden festzustellen. Der dolomitische Anteil nimmt von 12 Gew. % auf 4 Gew. % bei 7 m Teufe ab, der calcitische Anteil von 17 Gew. % auf 7 Gew. %.

Während die Abnahme im Dolomit eher den Verwitterungsgrad direkt widerspiegelt, ist beim calcitischen Anteil vielfach auch damit zu rechnen, dass die bei der Verwitterung gelösten primären Calcite sekundär wieder angereichert wurden. Pseudomycelien und Lösskindl lassen schon makroskopisch vermuten, dass der sekundäre Calcitanteil hoch ist, eine Unterscheidung von primärem und sekundärem Calcit auf röntgenographischem Weg ist leider nicht möglich.

Quarz liegt ohne große Schwankungsbreite mit einem Median bei knapp 39 Gew. %. Bei den Feldspäten ist der Albit mit einem Median von 10,8 Gew. % immer stärker vertreten als die Alkalifeldspäte mit

6,8 Gew. %. Die Schichtsilikate sind nur geringen Schwankungen ausgesetzt. Sie liegen zwischen 24 und 29 Gew. % mit einer Ausnahme von über 30 Gew. %. In der Tonfraktion < 2 μ m ist die Smektit-Gruppe neben den Illit/Hellglimmern dominierend. Kaolinite und Chlorite sind mit 16 und 14 Gew. % fast gleich stark vertreten. Vermiculit als typisches Verwitterungstonmineral ist in geringen Prozentsätzen durchgehend nachgewiesen.

Im Liegenden des Löss folgt ein mehr als einen Meter mächtiger karbonatischer Ausfällungshorizont. Das Material ist schluffig – sandig, z. T. kompakt und bricht stückig. Die Farbe reicht von einem hellen Weiß (10YR white) bis zu einem dunklen gelblichen Braun (10YR 4/6).

2 Proben: Z_O_1_10 7,90 m

Z_O_1_11 8,30 m- 8,60 m

Die Probe bei 7,90 m ist ein sandiger Tonsilt mit einem Tonanteil von knapp 30 Gew. %. Die unterlagernde Probe bei 8,30 bis 8,60 m ist ein toniger Sandsilt und damit wesentlich sandreicher und tonärmer.

Die Proben sind karbonatführend. Sie weisen rund 10 Gew. % Calcit auf, die dolomitische Komponente fehlt zur Gänze. Die Schichtsilikatanteile sind hoch und in der $< 2 \mu m$ -Fraktion sind die quellfähigen Dreischichtminerale der Smektit-Gruppe mit weit über 50 Gew. % am stärksten vertreten. Kaolinit und Chlorit liegen jeweils bei etwa 10 Gew. %, die Illit/Hellglimmers bei 20 Gew. %.

Unterhalb dieses auffälligen Horizontes folgen Sande, die schwach bindig sind und ein gelbliches Braun (10YR 5/6 yellowish brown) aufweisen. Sie sind schwach mit Komponenten von karbonatischen Konkretionen durchsetzt.

2 Proben: Z_O_1_12 9,30 m - 9,60 m

Z_O_1_13 10,30 – 10,60 m

Es handelt sich nach MÜLLER (1961) & FÜCHTBAUER (1959) um Sande bis Siltsande mit Sandanteilen über 50 Gew. %. Der Siltanteil ist zwischen 20 und 35 Gew. % gelegen, und die Tonanteile sind dementsprechend niedrig. Kies in Form von Feinkies bewegt sich unter 5 Gew. %.

Mineralogisch sind die beiden Proben ähnlich. Es handelt sich um die karbonatärmsten Horizonte im Profil. Calcit ist jeweils unter 3 Gew. % nachgewiesen und Dolomit nur in Spuren. Die Quarzanteile sind hoch und liegen bei 65 Gew. %. Die Schichtsilikate bewegen sich zwischen 20 und 25 Gew. %, die Feldspäte reichen knapp über 10 Gew. %. In der Fraktion $< 2 \mu m$ dominiert klar die Smektitgruppe. Die Illit/Hellglimmer liegen bei ca. 30 Gew. %, Kaolinite und Chlorite liegen im Bereich zwischen 5 und 15 Gew. %, Vermiculite durchgehend unter 10 Gew. %.

Ab einer Teufe von 11,00 m folgt ein sandiger Siltstein, der stark kompaktiert ist. Er weist eine helle olivbraune Farbe auf (2.5Y 5/3 light olive brown bzw. 5Y 5/3 olive) und zeigt partienweise rostrote Anflüge. Er führt Komponenten von gerundeten Quarzen und karbonatischen Konkretionen in Feinbis Mittelkiesgröße.

Bei 11,50 m ist das Auftreten von Mollusken bemerkenswert. Zu erkennen sind weiße Schalenreste von Bivalven und Gastropoden. Die Bivalvenreste könnten zu einer nicht mehr bestimmbaren Art der Gattung Congeria gehören, die Gastropodenschalen sind nicht näher bestimmbar. Eine Einstufung in das limnisch-fluviatile O-Pannonium ist wahrscheinlich.

Ab 13,20 m nimmt der Sandanteil deutlich zu und bis zur Endteufe von 14,00 m liegt schließlich ein lockerer Sandhorizont vor, der von graubrauner Farbe (2.5Y 5/2 grayish brown) ist.

4 Proben:	Z_O_1_14	11,10 m – 11,15 m
	Z_O_1_17	11,50 m
	Z_O_1_15	12,35 m – 12,50 m
	Z_O_1_16	13,40 m – 13,60 m

Die Siltsteine sind korngrößenmäßig als tonige Siltsande bis Sandsilttone einzustufen. Sie sind durchwegs sehr schlecht sortiert. Bis auf Kies ist jede Kornklasse in fast gleich hohen Anteilen vertreten. Sand bewegt sich zwischen 35 und 40 Gew. %, Silt zwischen 30 und 35 Gew. % und Ton zwischen 15 und 30 Gew. %. Die Kieskomponente mit einem Anteil von 10 Gew. % ist nur bei 11,10 m bemerkenswert und korreliert dort mit sehr niedrigen Anteilen der 2 µm - Fraktion.

Der sandige Horizont ab 13,20 m ist ein siltiger Sand, der fast 80 Gew. % Sandanteil aufweist und dessen Mittelsandkomponente am Aufbau mit mehr als 50 Gew. % beteiligt ist.

Die mineralogische Zusammensetzung der Siltsteine zeigt geringe Prozentsätze von Karbonat. Calcit liegt unter 10 Gew. %, Dolomit läßt sich höchstens in Spuren nachweisen. Im fossilführenden Horizont bei 11,50 m ist der Calcitanteil deutlich höher und wurde mit knapp 25 Gew. % quantifiziert. Der Quarz ist mit Anteilen zwischen knapp 40 und 50 Gew. % vertreten, die Feldspäte mit Anteilen zwischen 10 und 20 Gew. %. Die Schichtsilikate liegen über 20 Gew. %. In der Fraktion < 2 μ m dominieren die quellfähigen Smektite mit Werten zwischen 60 und 65 Gew. % und weisen damit die höchsten Werte im gesamtem Profil auf. Auffällig ist zudem noch der in der 2 μ m-Fraktion fehlende Chlorit. Die Illit/Hellglimmer sind ähnlich hoch wie in den hangenden sandigen Horizonten.

Die mineralogische Zusammensetzung des liegenden Sandes bei Teufe 13,40 -13,60 m ist quarzdominiert. Der Karbonatanteil, die Feldspäte und die Schichtsilikate sind in ähnlich hohen Prozentsätzen vertreten und liegen jeweils zwischen 10 und 20 Gew. %. Tonmineralogisch weist der Sand qualitativ und quantitativ ein ähnliches Spektrum wie die Siltsteine auf.

Tab. 2.3.3.: Bohrprofil der Bohrung Zistersdorf Ost 2.

	Windpark Ziste	ersdorf Ost Boh	rung 2	
Tiefe	Beschreibung	Stratigraphie	Probenteufe	Probe
0-1,20 m	Bodenhorizont, dunkelgrau bei 1,20 m in dunkelbraun übergehend, im trockenen Zustand hart und stückelig brechend	Tschernosem Landwirtschaftlich bearbeitet	50 cm 120 cm	Z_O_2_01 Z_O_2_02
1,20-6,60 m	Schluff, schwach tonig, sehr helles Olivbraun, ungeschichtet, reich mit Pseudomycelien durchsetzt, weiße Karbonatkonkretionen (gehäuft bei 1,50 m, z.T. hart, z.T. mit dem Finger zu zerdrücken), vereinzelt rötliche Verfärbungen und schwarze Mn(?)-Konkretionen	Löss	150 cm 190 cm 250 cm 350 cm 450 cm 550 cm	Z_O_2_03 Z_O_2_04 Z_O_2_05 Z_O_2_06 Z_O_2_07 Z_O_2_08
6,00 - 9,15 m	Schluff, stärker tonig, helles Olivbraun, ab 8,90 m Rotbraun, kompakt, ungeschichtet, bei 6,80 m makroskopisch gut erkenn- bare Lössschnecken	Löss	670-680 cm 750-755 cm 770-775 cm 820 cm 860 – 870 cm	Z_O_2_09 Z_O_2_10 Z_O_2_11 Z_O_2_12 Z_O_2_13
9,15 -11,20 m	Ton, schluffig; hochplastisch dunkles Rotbraun, ungeschichtet, hart verfestigt, ab 10,60 m deutliche Zunahme des Sand- gehaltes, Einschaltungen von gut gerun- deten Kieskomponenten (Quarze) und hellgelben Konkretionen	Rotlehmhorizont	920 cm 970 – 980 cm 1060 cm 1100 – 1105 cm	Z_O_2_14 Z_O_2_15 Z_O_2_16 Z_O_2_17
ab 11,20 m	Sand, gelbbraun, kompakt bis etwa 11,30 m, locker bis 12,00 m 12,00 m (Endteufe)	Neogen	1150 cm	Z_O_2_18

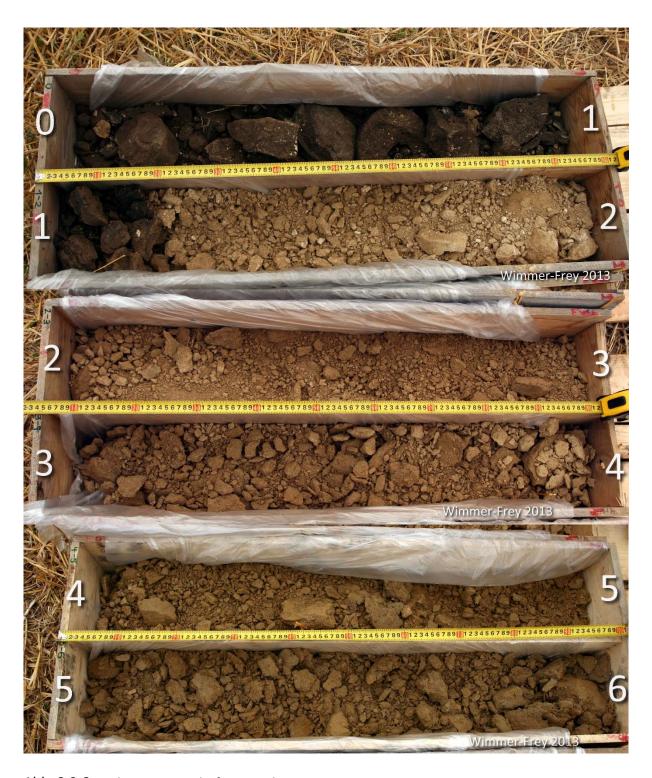


Abb. 2.3.6.: Bohrung Zistersdorf Ost 2: 0 bis 6 m.

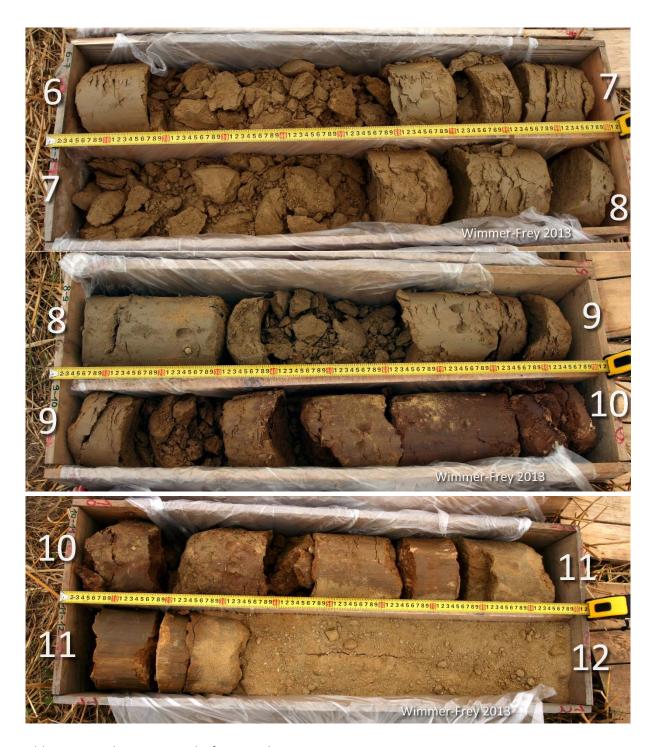


Abb. 2.3.7.: Bohrung Zistersdorf Ost 1: 6 bis 12 m.

Die Kernbohrung **Zistersdorf Ost 2** wurde in etwa 204 m Seehöhe bis zu einer Teufe von 12 m abgeteuft. In Tabelle 2.3.3. ist eine kurze Beschreibung des Profils zu finden, in Abb. 2.3.6. und 2.3.7. ist die Bohrung fotografisch festgehalten.

Aus der Bohrung Zist Ost 2 liegen 18 Proben vor, die im Projektjahr 2013/2014 chemisch, korngrößenmäßig, gesamt- und tonmineralogisch analysiert wurden. Die Ergebnisse sind grafisch und in Tabellenform (Abb. 2.3.16. bis 2.3.18., Tab. 2.3.7. bis 2.3.9.) zusammengestellt.

Bis 1,20 m Teufe ist ein dunkelgrauer, fast schwarzer Bodenhorizont (Tschernosem) entwickelt, der im trockenen Zustand hart und stückig bricht und im feuchten Zustand gut plastisch formbar ist. Er ist gering mit feinem Wurzelmaterial durchwurzelt.

2 Proben: Z_O_2_01 0,50 m Z_O_2_02 1,20 m

Der 120 cm mächtige Bodenhorizont ist mit zwei Proben vertreten. Er weist einen Skelettanteil von weit unter 1 Gew. % auf und ist bodenkundlich laut ÖNORM L 1061 als schluffiger Lehm bzw. lehmiger Schluff einzustufen.

Gesamtmineralogisch sind die beiden Proben ähnlich ausgebildet. Sie sind vollkommen karbonatfrei, die Quarzanteile liegen über 40 Gew. % und die Schichtsilikate jeweils nur knapp darunter. Sowohl Plagioklas als auch Alkalifeldspat sind mit Werten zwischen 5 und 10 Gew. % vertreten.

Tonmineralogisch hingegen sind deutliche Unterschiede zu sehen. Auch unter dem Aspekt, dass die tonmineralogische Quantifizierung von Bodenproben mit großen Fehlern behaftet sein kann, ist die Probe bei 0,50 m aufgrund ihres hohen Illit/Hellglimmer-Anteiles deutlich von der Probe bei 1,20 m zu unterscheiden, bei der die quellfähigen Schichtsilikate der Smektit-Gruppe und die Vermiculite im Vordergrund stehen. Die Schichtladungen der Smektite sind hoch, wie sie bei der Verwitterung von Illit/Hellglimmer und Chlorit entstehen können.

Die schwarzbraune Frabe des Bodenhorizonts ist auf den organischen Kohlenstoffanteil zurückzuführen und in der chemischen Analyse am hohen CO_2 -Gehalt abzulesen. Die karbonatfreie Probe bei 0,50 m weist einen CO_2 -Anteil von 8,8 Gew. % auf, der einem organischen Kohlenstoffanteil von 2,40 Gew. % entspricht.

Der Boden ist als ein AC-Boden entwickelt, bei dem der Humushorizont direkt über dem Ausgangsmaterial, in diesem Falle Löss liegt. Das Ausgangssubstrat Löss ist vollständig entkarbonatisiert, die hochgeladenen Smektite ein Produkt der Verwitterung von Illit/Muskovit und Chlorit. Die scharf abgegrenzte Ackerkrume bei 120 cm spricht zusätzlich für eine starke Beeinflussung und tiefgründige Homogenisierung durch die landwirtschaftliche Bearbeitung.

Im Liegenden folgt ein ca. 8 m mächtiger Löss-Horizont, der im hangenden Abschnitt bis ca. 3,50 m reich mit feinen Pseudomycelien durchsetzt ist und karbonatische Konkretionen führt. Die Konkretionen sind calcitisch, z.T. hart, z.T. bröselig weich und z.T. bis über 1 cm groß.

Die Farbe des Lösses ist im feuchten Zustand Hellolivbraun (2.5Y 5/4, light olive brown), im trockenen Zustand reicht sie von einem blassen Gelb (2.5Y 7/4, pale yellow) zu einem hellen Gelbbraun (2.5Y 6/4, light yellowish brown) nach der Munsell Soil Color Chart.

Ab 5,5 m wird der Löss kompakter und erscheint dadurch etwas tonreicher. Im Bereich von 6,80 m ist das Auftreten von Lössschnecken auffällig. Bei 9,00 m setzt eine Farbänderung zu einem Braun (2.5Y 6/4, brown) ein.

11 Proben:	Z_O_2_03	1,50 m
	Z_O_2_04	1,90 m
	Z_O_2_05	2,50 m
	Z_O_2_06	3,50 m
	Z_O_2_07	4,50 m
	Z_O_2_08	5,50 m
	Z_O_2_09	6,70 - 6,80 m
	Z_O_2_10	7,50 – 7,55 m
	Z_O_2_11	7,70 – 7,75 m
	Z_O_2_12	8,20 m
	Z_O_2_13	8,60 – 8,70 m

Bis zu einer Teufe von 7,50 m liegt nach MÜLLER (1961) & FÜCHTBAUER (1959) eine homogene Abfolge von tonigen Silten vor. Die Siltanteile weisen einen Median von 75 Gew. % auf, die Tonanteile einen von knapp unter 20 Gew. %. Im Sandbereich mit einem Median von 4,2 Gew. % ist fast ausschließlich die Feinsandkomponente vertreten. Unmittelbar im Liegenden des Bodenhorizontes sind knapp 2 Gew. % Komponenten in Kiesgröße nachgewiesen, die als Lösskindel vorliegen und als Karbonatausfällungen sekundär angereichert wurden.

Ab 7,50 m bis 9,00 m werden die Lösse zunehmend toniger. Bei gleichbleibenden Sandanteilen fällt der Median der Siltkomponente unter 70 Gew. % und der Median des Tonanteiles steigt damit auf 26,5 Gew. %.

Die mineralogische Zusammensetzung ist qualitativ gesehen ebenfalls sehr homogen.

Der Karbonatgehalt schwankt zwischen 10 und 25 Gew. %. Im frischen Löss war der Karbonatgehalt vermutlich ziemlich gleichmäßig verteilt. Jetzt zeigt die unterschiedliche Karbonatverteilung den unterschiedlichen Verwitterungsgrad im Profil.

Der calcitische Anteil schwankt zwischen 7 und 13 Gew. %. Er weist bei 1,90 m 13 Gew. % auf, zeigt bei 7,50 m ein Minimum von knapp 7 Gew. % und steigt bei 8,70 m auf über 10 Gew. %. Die dolomitische Komponente hingegen nimmt absolut gesehen gegen das Liegende ab, zeigt bei 3,50 m ein Minimum von 7 Gew. % und ist ab 7,70 m nur noch in geringen Prozentsätzen bzw. in Spuren nachzuweisen. Dolomit ist i.a. wesentlich verwitterungsresistenter als Calcit und auch sekundär nicht wieder anzureichern. Der primäre Calcit (Detritus, Lössschnecken) dagegen wird durch Verwitterung rasch gelöst und ist sekundär in Form von Lösskindln und Pseudomycelien im Liegenden der Verwitterungshorizonte angereichert. Die Minima im Dolomitanteil werden als Anzeiger der höchsten Verwitterungsrate im Profil gesehen. Sie korrelieren gleichzeitig auch mit höheren 2 µm-Anteilen.

Quarz weist über den Profilabschnitt einen Median von 35,7 Gew. % auf, die Schichtsilikate liegen bei einem Median von 30,7 Gew. %. Zwischen 1,50 m und 5,50 m ist Quarz zwischen 35 und 39 Gew. % vertreten, im liegenden Abschnitt bis zu 8,70 m sind seine Werte niedriger und liegen zwischen 32 und 36 Gew. %. Umgekehrt dazu verhalten sich die Schichtsilikate. Sie weisen im hangenden Abschnitt

Werte bis maximal 31 Gew. % auf, im Liegenden nehmen sie zu, was sich auch gut mit der Zunahme im 2 μ m-Anteil deckt. Bei den Feldspäten ist Albit mit einem Median von 10 Gew. % und Alkalifeldspat mit 6 Gew. % vertreten.

In der Fraktion < 2 μ m weist die Smektit-Gruppe einen Median von 45 Gew. % auf, gefolgt von der Hellglimmer/Illit-Gruppe mit 25 Gew.%. Kaolinit und Chlorit liegen jeweils bei 12 Gew. %. Vermiculite treten in allen Proben in geringen Prozentsätzen dazu.

Ab 9,20 m schließt ein kompakter feinsandiger Tonhorizont an, der eine dunkle rotbraune Farbe aufweist (5YR 4/4, reddish brown), hochplastisch ist und keine Grobkomponenten erkennen lässt. Weiche, kalkige Konkretionen treten in Form von weißen Flecken auf. Ab 10,6 m wird der Ton zunehmend sandiger. Er führt lagenweise gut gerundete Komponenten von überwiegend Quarz und etwas Feldspat. Fleckenhaft verteilte, hellgelbe karbonatische Ausfällungen sind zu sehen.

4 Proben:	Z_O_2_14	9,20 m
	Z_O_2_15	9,70 – 9,80 m
	Z_O_2_16	10,60 m
	Z_O_2_17	11,00 – 11,05 m

Die Proben bei 9,20 m und 9,70-9,80 m sind nach MÜLLER (1961) & FÜCHTBAUER (1959) Tonsilte. Ihre 2 μ m-Anteile liegen zwischen 35 und 40 Gew. %. Sie sind somit die tonreichsten des Gesamtprofiles. Die Siltgehalte sind mit rund 55 Gew. % und die Sandanteile mit jeweils 5 Gew. % analysiert. Darunter folgen tonige Siltsande, die bis über 5 Gew. % fein- bis mittelkiesige Komponenten führen

und deren Sandanteil deutlich über 40 Gew. % liegt. Ihr Tonanteil liegt bei jeweils 24 Gew. % und die Siltanteile schwanken zwischen 30 und 35 Gew. %.

Die Proben sind karbonatarm. Die hangenden Tonsilte führen knapp 10 Gew. % Calcit, der liegende sandige Abschnitt unter 5 Gew. %. Dolomit ist in geringen Spuren nachgewiesen. Der Quarzanteil nimmt mit steigendem Sandanteil zu und verhält sich gegenläufig zur Summe der Schichtsilikate. Die Feldspatgruppe ist mit Albit zwischen 5 und 10 Gew. % und Alkalifeldspat < 6 Gew. % vertreten. In der Fraktion < 2 μ m sind die dominierenden Gruppen Illit/Hellglimmer und Smektit, gefolgt von Chlorit und Kaolinit. Vermiculite sind ebenfalls durchgehend nachgewiesen. An Eisenhydroxidphasen ist Goethit – nicht quantifizierbar – nachgewiesen.

Ab 11,20 m folgt schließlich ein kiesfreier Sandhorizont, der bis 11,30 m kompakt ausgebildet ist und bis zur Endteufe von 12,0 m locker vorliegt. Die Farbe ist ein homogenes Hellolivbraun (2.5Y 5/4, light olive brown).

Die Kornverteilung weist den sandigen Horizont, durch eine Probe bei 11,50 m vertreten, als einen siltigen Sand aus. Der Tonanteil liegt unter 3 Gew. % und der Siltanteil liegt zwischen 10 und 15 Gew. %. Mineralogisch dominiert Quarz mit knapp 50 Gew. %. Die Schichtsilikate liegen unter 20 Gew. % und sind durch ein detritäres Spektrum von Muskovit und Chlorit geprägt. Dolomit ist in Spuren nachgewiesen und der calcitische Anteil, der auch hier in sekundär verfestigter Agglomeratform vorliegt, weist einen Wert von 20 Gew. % auf.

Geochemie

Alle Proben der Bohrungen Zistersdorf Ost 1 und 2 wurden auch geochemisch analysiert. Die Hauptund Spurenelemente wurden ermittelt. Insgesamt liegen 35 Analysen vor, zusammengefaßt in den Tab. 2.3.5. und 2.3.6. (ZIST_OST_1), sowie Tab. 2.3.8. und 2.3.9. (ZIST_OST_2).

Die Gehalte der Hauptelemente korrespondieren gut mit den auf röntgenographischem Weg ermittelten und quantifizierten Mineralgehalten. Am Beispiel der Karbonate lassen sich die Zusammenhänge Mineralogie und Geochemie gut zeigen.

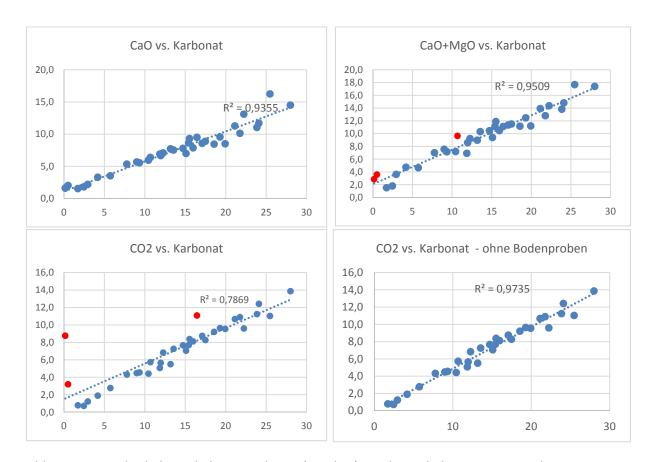


Abb. 2.3.8.: Vergleich der Gehalte an Karbonat (X-Achse) mit den Gehalten an CO₂, CaO bzw. CaO+MgO (Y-Achse). In Rot die Bodenproben.

Die Cao-, MgO- und die CO₂-Werte sind zum größten Teil an die Minerale der Karbonatgruppe Calcit und Dolomit gebunden und weisen hohe positive Korrelationen auf. Bei den CO₂-Werten fallen die Bodenproben aus der Reihe. Ihre hohen Kohlenstoffanteile sind nicht oder nur zum Teil karbonatisch gebunden und liegen als organischer Kohlenstoff vor. Ohne die Bodenproben ist die Korrelation von CO₂ zu den Karbonatanteilen fast perfekt.

Weitere Beispiele guter Korrelationen sind die Al_2O_3 -Werte gegen die Summe der Schichtsilikate und, wenn auch nicht so ausgeprägt, die Korrelation der Glimmerminerale und der Alkalifeldspäte gegen den K_2O -Wert.

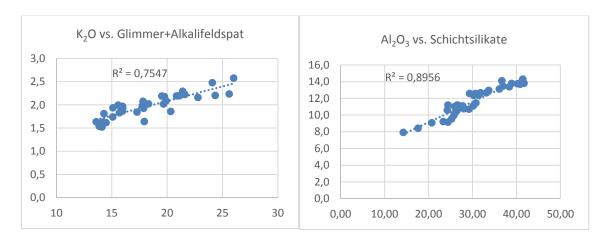


Abb. 2.3.9.: Vergleich der Gehalte an Glimmer+Alkalifeldspat bzw. Schichtsilikate (jeweils X-Achse) mit den Gehalten an K₂O bzw. Al₂O₃ (jeweils Y-Achse).

Von den Spurenelementen sei das Element Zr herausgegriffen, das in erster Linie an das gleichnamige verwitterungsbeständige Schwermineral Zirkon gebunden ist. Zirkon ist im Löss äolisch und in den verlehmten Anteilen verwitterungsbedingt angereichert. Die Werte von Zr liegen zwischen 76 und 497 ppm. Das Minimum ist im neogenen Sand zu finden, das Maximum tritt im Löss auf. Zirkon zeigt eine starke Korngrößenabhängigkeit und ist bevorzugt im Feinsand und Grobsilt zu finden und relativ gut mit diesen beiden Kornklassen korreliert.

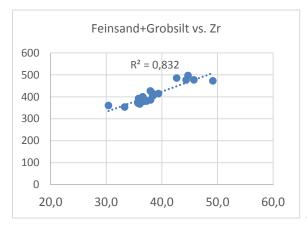


Abb. 2.3.10.: Vergleich von Fsand+Gsilt (X) mit Zr (Y).

Ein weitverbreiteter Index, der Rückschlüsse auf den Grad der Verwitterung zuläßt, ist der "chemical index of alteration" (CIA) nach NESBITT & YOUNG (1984). Dabei werden die bei der Verwitterung mobilen Kationen Na₂O, K₂O und CaO in Verhältnis zu dem bei der Verwitterung immobilen Al₂O₃ gesetzt. Die Oxide werden als Mol % verrechnet. Das an die Karbonate gebundene CaO und MgO wird abgezogen. Je höher der Wert, desto größer die Verwitterungsrate von Feldspat über die unterschiedlichen Tonminerale bis hin zu Kaolinit.

Der CIA-Index wurde für beide Profile errechnet und zeigt Folgendes (Abb. 2.3.11.): Der Bodenhorizont (in Grau) ist in beiden Fällen stark verwittert und weist Werte über 65 auf. Die unterlagernde Lössabfolge (in Gelb) zeigt mit zunehmender Teufe einen Anstieg im CIA-Wert, der nicht ganz kontinuierlich verläuft.

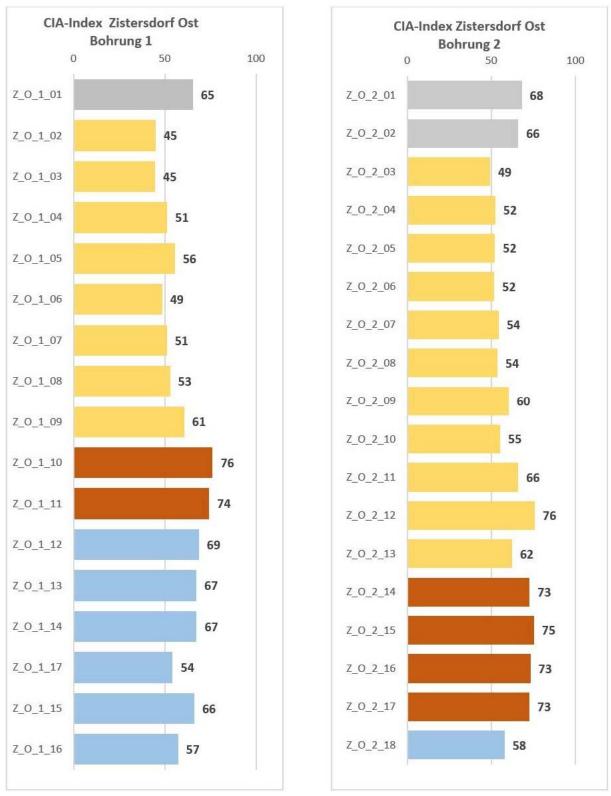


Abb. 2.3.11.: Vergleich der CIA Verwitterungsindizes in den Bohrungen Zistersdorf 1 und 2.

Im Liegenden des Lösses ist in beiden Fällen ein Paläoboden/Rotlehmhorizont (in Rot) aufgeschlossen, der die höchsten Verwitterungsraten und damit die höchsten CIA-Werte (zwischen 73 und 76) aufweist, was sich auch gut mit den höchsten Schichtsilikatwerten und den hohen Anteilen der 2 μ m-Fraktion deckt.

Die im Liegenden anschließenden Sedimente des Neogens (in Blau) haben ein anderes Ausgangsmaterial und sind einer anderen Fazies zugehörig. Sie weisen damit auch andere CIA-Werte als die Lössabfolge auf. Die niedrigsten CIA-Werte sind hier in den Sandhorizonten und im fossilführenden Horizont zu finden.

In der Literatur wird im Zusammenhang mit dem CIA-Wert auch auf die Problematik des an Karbonat gebundenen CaO verwiesen. Bei den vorliegenden, z. T. stark karbonatführenden Proben zeigte sich, dass der rechnerische Abzug von CaO auf Basis der röntgenographisch ermittelten Gew. % von Calcit bzw. Dolomit durchaus eine zufriedenstellende Lösung ist und vernünftige Ergebnisse liefert.

Zusammenfassung

Die beiden Bohrungen wurden auf dem 200 m-Niveau der sogenannten Zistersdorfer Fläche abgeteuft, die von GRILL (1968) als eine überlößte Akkumulationsterrasse beschrieben und mit der Arsenal – Terrasse parallelisiert wird.

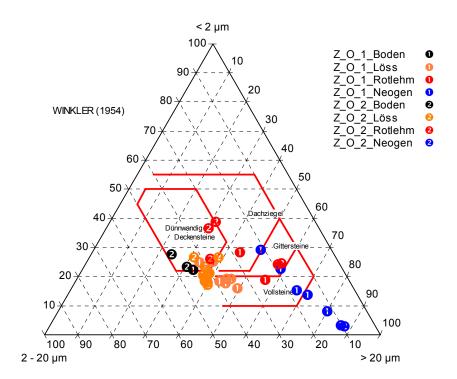
In beiden Bohrprofilen ist unter einem durch landwirtschaftliche Bearbeitung mehr oder weniger stark gestörten Schwarzerdehorizont eine 7 bis 8 m mächtige Lössabfolge anzutreffen, die mit zunehmender Teufe zunehmende Verwitterungserscheinungen zeigt. Die Feldbeobachtungen decken sich gut mit den aus den mineralogischen und korngrößenmäßigen Untersuchungen gewonnenen Ergebnissen. Die relativen Maxima der geochemischen Indizes innerhalb der Lössabfolge sind möglicherweise ein noch genauerer Gradmesser von unterschiedlich stark verlaufende Verwitterungsphasen, die sich mineralogisch und korngrößenmäßig nicht manifestieren konnten.

Im Liegenden des Löss ist in beiden Profilen ein jeweils unterschiedlich mächtig entwickelter Paläoboden/ Rotlehmhorizont aufgeschlossen, der innerhalb beider Profilabfolgen die höchsten Verwitterungsintensitäten und die stärksten Entkalkungen aufweist. Es handelt sich um Sedimente, die durch Eisenhydroxidphasen auffällig rotbraun gefärbt erscheinen, die stark tonig entwickelt sind und unterschiedliche Anteile an gröberen, z.T. gut gerundete (Quarz)-Komponenten führen.

Rotlehme werden von KRENMAYR & SCHNABEL (2002) in der Bunten Lehmserie vermutlich pliozänen Alters beschrieben, die in einer schmalen Zone im Gebiet östlich von Hohenruppersdorf bis gegen Zistersdorf auftritt und aufgrund ihrer Farbe auch als "rote Lehmserie" bekannt ist. Andererseits sind dünne Rotlehmdecken auch auf den hoch gelegenen fluviatilen Terrassen des Ober-Pliozäns bis älteren Pleistozäns zu finden. Festzuhalten ist, dass in keiner der Bohrungen Kiese einer Terrasse anzutreffen waren.

Schließlich wurden im Liegenden der Rotlehme noch Sedimente des Pannoniums angetroffen: Fossilleere Sande in der Bohrung Zistersdorf Ost 2 und ein wesentlich mächtigeres Paket von Siltsteinen bis Sanden in der Bohrung Zistersdorf Ost 1. Hier treten in einer Teufe von 11,5 m Schalenreste von Mollusken auf, die, wenn auch nicht genau bestimmbar, auf die limnisch-fluviatile Fazies des O-Pannoniums verweisen.

Bezug zur Rohstoffgeologie

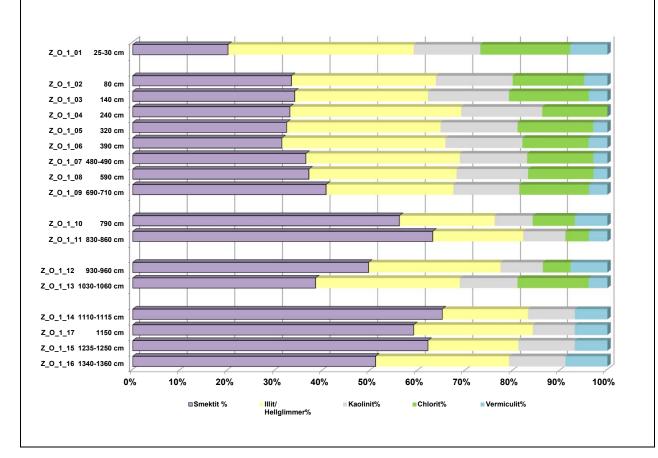

In den Bezirken Mistelbach und Gänserndorf wurde von RAMML (2014) die Geschichte von über 450 Ziegelöfen bzw. Lehmabbaustellen aus historischen Unterlagen rekonstruiert. Die wichtigste Rohstoffgrundlage bildete der Löss. Er wurde gemeinsam mit den unterlagernden Sedimenten des Pannoniums, in den meisten Fällen aber auch ausschließlich alleine als Ziegelrohstoff abgebaut.

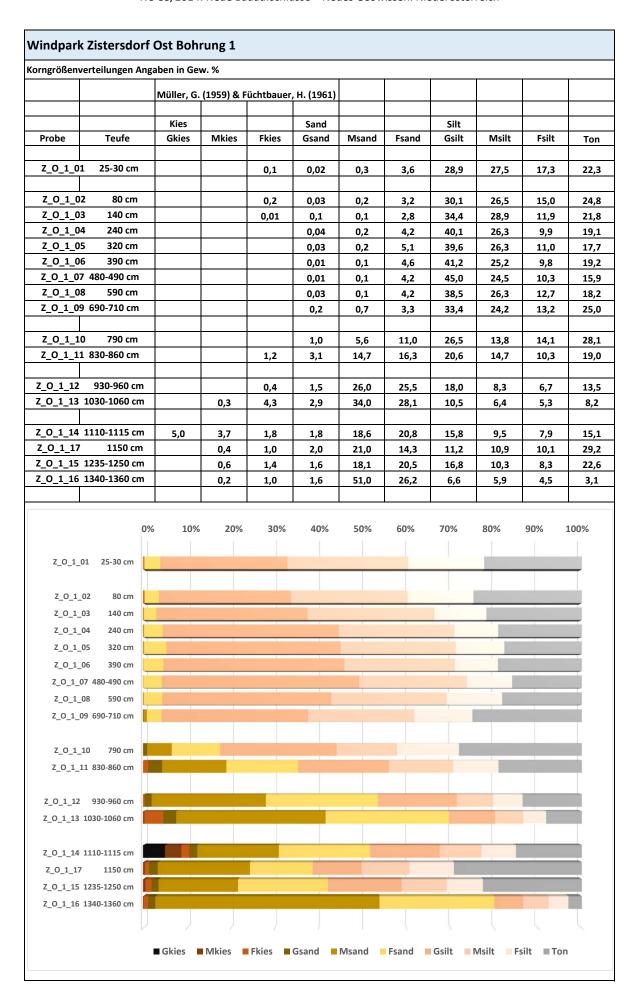
Im unmittelbaren Umfeld der beiden Bohrungen sind von RAMML (2014) eine Reihe von Ziegelöfen dokumentiert. Südlich der Bohrung Zist_Ost_1, keine 500 m entfernt, wurde im 19. Jhdt. ein Ziegelofen betrieben. Die Lage des Standortes ist heute noch an einem kleinen Feuchtbiotop mit Teich zu erkennen. Bereits ab 1900 war der Ziegelofen, dem kein eindeutiges Ziegelzeichen zuzuordnen war, außer Betrieb. RAMMEL (2014) dokumentiert in der Katastralgemeinde Loidesthal drei weitere Ziegelöfen, davon zwei Ringofenanlagen. Der am westlichen Ortsausgang gelegene Ringofen wurde bis 1965 betrieben, sein Schornstein erst Mitte der 1990er Jahre gesprengt und das Gelände als Bauland freigegeben. Die ehemalige Lössabbaukante ist noch gut erkennbar.

Südostlich der Bohrungen werden sechs Ziegelöfen im Gemeindegebiet von Götzendorf beschrieben, nördlich der Bohrungen sind die vier Ziegelöfen von Groß-Inzersdorf zu nennen und im weiteren Umkreis liegen die fünf Ziegelöfen von Zistersdorf und Gösting. Der große Ringofen des Josef und Martin Krammer in Zistersdorf wurde Anfang der 1960er Jahre ruhend gestellt, die beiden Schornsteine erst 2007 abgetragen und der Ringofen wich einer umstrittenen Müllverbrennungsanlage.

Der Löss eignet sich aufgrund seiner günstigen Korngrößenverteilung im Allgemeinen für die Herstellung fast aller Typen von Ziegeln. Im Winkler-Diagramm (WINKLER, 1954) sind sie in den entsprechenden Feldern zu finden (Abb. 2.3.12.). Im Fall der beiden Bohrungen Zist_Ost_1 und Zist_Ost_2 liegen sie aufgrund ihrer Tonanteile, die nicht wesentlich über die 25 Gew. %-Marke reichen, vor allem in den Feldern geeignet für Vollsteine bzw. Gittersteine und im Randbereich von dünnwandiger Hohlware. Die pannonen Anteile, die in den beiden Bohrungen angetroffen wurden, sind für die Herstellung von qualitativ hochwertigen Ziegelprodukten zu sandig entwickelt.

Abb. 2.3.12.: Korngrößenverteilungen im Konzentrationsdreieck nach WINKLER (1954)




Windpark Zistersdorf Ost Bohrung 1 Röntgenographische Phasenanalysen der gesamtmineralogischen Zusammensetzung Alkalif-Schicht-Probenbezeichnung und Teufe Quarz% Plagioklas% Calcit% Dolomit% Lithologie Stratigraphie eldspat% silikate% Z_O_1_01 25-30 cm 37 7 9 12 30 toniger Silt Bodenhorizont Z_O_1_02 33 4 9 17 11 25 toniger Silt Löss 140 cm 9 Z_O_1_03 34 7 12 12 26 toniger Silt 11 toniger Silt Z_O_1_04 240 cm 38 3 10 29 9 Z_O_1_05 320 cm 39 3 11 10 10 26 toniger Silt Z_O_1_06 390 cm 40 5 11 9 10 24 toniger Silt Z_O_1_07 480-490 cm 11 8 toniger Silt 40 8 7 27 Z_O_1_08 590 cm 39 8 13 8 8 24 toniger Silt Z_O_1_09 690-710 cm 37 8 9 7 4 36 toniger Silt Paläoboden/ Z_O_1_10 790 cm 38 5 8 9 1 40 sandiger Tonsilt Rotlehmhorizont Z_O_1_11 830-860 cm 43 6 7 13 0 31 toniger Sandsilt 7 0 Z_O_1_12 930-960 cm 64 3 23 toniger Siltsand Neogen? Z_O_1_13 1030-1060 cm 65 6 6 2 1 21 siltiger Sand Z_O_1_14 1110-1115 cm 1 51 4 13 4 26 toniger Siltsand Neogen Z_O_1_17 1150 cm 38 3 9 24 1 24 Sandsiltton Z_O_1_15 1235-1250 cm 47 6 8 8 2 28 toniger Siltsand 2 Z_O_1_16 1340-1360 cm 57 6 10 10 14 siltiger Sand Z_O_1_01 25-30 cm 80 cm Z_O_1_02 Z_O_1_03 140 cm Z_O_1_04 240 cm Z_O_1_05 320 cm Z_O_1_06 390 cm Z_O_1_07 480-490 cm Z_O_1_08 590 cm Z_O_1_09 690-710 cm Z_O_1_10 790 cm Z_O_1_11 830-860 cm Z_O_1_12 930-960 cm Z_O_1_13 1030-1060 cm Z_O_1_14 1110-1115 cm Z_O_1_17 1150 cm Z_O_1_15 1235-1250 cm Z_O_1_16 1340-1360 cm 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Quarz% □Alkalif-■Plagioklas% Calcit% ■ Dolomit% **■Schicht**eldspat% silikate%

Windpark Zistersdorf Ost Bohrung 1

Röntgenographische Phasenanalysen der tonmineralogischen Zusammensetzung der Fraktion < 2 μm

L								
Probenbezeichnung und Teufe	Smektit %	Illit/ Hellglimmer%	Kaolinit%	Chlorit%	Vermiculit%	< 2 μm Gew.%	Lithologie	Stratigraphie
Z_O_1_01 25-30 cm	20	39	14	19	8	22	toniger Silt	Bodenhorizont
Z_O_1_02 80 cm	33	30	16	15	5	25	toniger Silt	Löss
Z_O_1_03 140 cm	34	28	17	17	4	22	toniger Silt	
Z_O_1_04 240 cm	33	36	17	14	0	19	toniger Silt	
Z_O_1_05 320 cm	32	32	16	16	3	18	toniger Silt	
Z_O_1_06 390 cm	31	34	16	14	4	19	toniger Silt	
Z_O_1_07 480-490 cm	36	32	14	14	3	16	toniger Silt	
Z_O_1_08 590 cm	37	31	15	14	3	18	toniger Silt	
Z_O_1_09 690-710 cm	41	27	14	15	4	25	toniger Silt	
Z_O_1_10 790 cm	56	20	8	9	7	28	sandiger Tonsilt	Paläoboden/
Z_O_1_11 830-860 cm	63	19	9	5	4	19	toniger Sandsilt	Rotlehmhorizont
Z_O_1_12 930-960 cm	50	28	9	6	8	14	toniger Siltsand	Neogen?
Z_O_1_13 1030-1060 cm	38	30	12	15	4	8	siltiger Sand	
Z_O_1_14 1110-1115 cm	65	18	10	0	7	15	toniger Siltsand	Neogen
Z_O_1_17 1150 cm	59	25	9	0	7	29	Sandsiltton	
Z_O_1_15 1235-1250 cm	62	19	12	0	7	23	toniger Siltsand	
Z_O_1_16 1340-1360 cm	51	28	12	0	9	3	siltiger Sand	

Korngrößen	verteilungen Ang	aben in Gew. %						
		Müller, G. (1959) & Füchtbauer, H. (1961)						
							ler, H.G.F.	(1954)
Probe	Teufe	Sand-Silt-Ton	Kies	Sand	Silt	Ton		
						< 2 μm	2-20 μm	> 20 µm
Z_O_1_01	25-30cm	toniger Silt	0,1	3,9	73,8	22,3	44,8	32,9
Z_O_1_02	80cm	toniger Silt	0,2	3,4	71,6	24,8	41,5	33,7
Z_O_1_03	140cm	toniger Silt	0,01	3,0	75,2	21,8	40,7	37,5
Z_O_1_04	240cm	toniger Silt	0,0	4,5	76,4	19,1	36,3	44,6
Z_O_1_05	320cm	toniger Silt	0,0	5,3	77,0	17,7	37,3	45,0
Z_O_1_06	390cm	toniger Silt	0,0	4,6	76,2	19,2	35,0	45,9
Z_O_1_07	480-490cm	toniger Silt	0,0	4,3	79,8	15,9	34,8	49,3
Z_O_1_08	590cm	toniger Silt	0,0	4,4	77,4	18,2	38,9	42,9
Z_O_1_09	690-710cm	toniger Silt	0,0	4,2	70,8	25,0	37,4	37,6
Z_O_1_10	790cm	sandiger Tonsilt	0,0	17,6	54,4	28,1	27,9	44,1
Z_O_1_11	830-860cm	toniger Sandsilt	1,2	34,1	45,6	19,0	25,0	56,0
Z_O_1_12	930-960cm	toniger Siltsand	0,4	53,1	33,0	13,5	15,0	71,5
Z_O_1_13	1030-1060cm	siltiger Sand	4,6	65,1	22,2	8,2	11,7	80,1
Z_O_1_14	1110-1115cm	toniger Siltsand	10,5	41,2	33,2	15,1	17,4	67,6
Z_O_1_17	1150cm	Sandsiltton	1,4	37,2	32,2	29,2	21,0	49,8
Z_O_1_15	1235-1250cm	toniger Siltsand	2,0	40,2	35,3	22,6	18,6	58,9
Z_O_1_16	1340-1360cm	siltiger Sand	1,2	78,8	16,9	3,1	10,4	86,6

			Momentv	erfahren		Folk, R.L. & Ward, W. (1957)			U	k-Werte (ı	m/s)
			Arithmet.	Standard-	Schiefe	Arithmet.	Standard-	Schiefe		Beyer	Bialas
Probe	Sortierung		Mw.	Abw.		Mw.	Abw.				
Z_O_1_01	extrem schlech	t sortiert	7,42	3,12	1,11	7,07	2,87	0,38	54,53	4,30E-10	1,40E-09
Z_O_1_02	extrem schlech	t sortiert	7,44	3,06	0,95	7,19	2,87	0,43	62,74	3,70E-10	8,90E-10
Z_O_1_03	extrem schlech	t sortiert	7,21	3,00	1,17	7,00	2,82	0,50	60,69	5,50E-10	1,30E-09
Z_O_1_04	extrem schlech	t sortiert	7,21	3,70	1,54	6,71	3,21	0,59	192,46	9,00E-11	3,00E-09
Z_O_1_05	extrem schlech	t sortiert	6,96	3,25	1,50	6,59	2,87	0,54	72,62	6,40E-10	4,20E-09
Z_O_1_06	extrem schlech	t sortiert	6,97	3,21	1,39	6,71	2,91	0,58	98,06	3,80E-10	2,90E-09
Z_O_1_07	extrem schlech	t sortiert	6,58	2,73	1,52	6,41	2,41	0,56	32,79	4,00E-09	7,80E-09
Z_O_1_08	extrem schlech	t sortiert	6,84	2,84	1,30	6,67	2,58	0,47	36,54	2,30E-09	3,50E-09
Z_O_1_09	extrem schlech	t sortiert	7,33	3,12	0,94	7,12	2,94	0,46	67,56	4,30E-10	7,10E-10
Z_O_1_10	extrem schlech	t sortiert	7,10	3,70	0,56	6,98	3,62	0,28	174,44	1,70E-10	3,90E-10
Z_O_1_11	extrem schlech	t sortiert	5,87	4,01	0,77	5,54	3,93	0,32	143,67	7,60E-10	3,00E-09
Z_O_1_12	extrem schlech	t sortiert	4,77	3,58	1,23	4,61	3,33	0,50	144,63	5,40E-09	2,80E-08
Z_O_1_13	extrem schlech	t sortiert	3,64	3,37	1,35	3,64	2,98	0,51	64,68	6,20E-08	4,80E-07
Z_O_1_14	extrem schlech	t sortiert	4,37	4,51	0,25	4,67	4,42	0,20	173,78	3,70E-09	1,30E-08
Z_O_1_17	extrem schlech	t sortiert	6,36	4,48	0,39	6,17	4,36	0,24	397,43	1,20E-10	2,30E-10
Z_O_1_15	extrem schlech	t sortiert	5,80	4,23	0,66	5,64	4,12	0,43	344,78	2,70E-10	9,30E-10
Z_O_1_16	sehr schlecht	sortiert	3,02	2,35	1,80	2,85	1,88	0,63	24,73	5,90E-07	6,30E-06

Windpark Zistersdorf Ost Bohrung 1 Chemische Analysen der Hauptelemente (Gew. %) SiO2 TiO2 Al203 FeO MnO MgO CaO Na2O K20 P2O5 H2O110°C H2O+ CO2 SO3 Bezeichnung Summe Z_O_1_01 11,1 4,2 0,08 9,5 0,7 2,0 0,3 11,1 0,05 56,0 0,8 1,6 0,09 1,9 99,4 Z_O_1_02 48,2 0,7 9,5 3,7 0,07 2,9 14,5 0,8 1,63 0,07 1,1 1,7 13,9 0,04 98,8 Z_O_1_03 52,2 0,7 10,0 3,8 0,07 3,1 11,7 0,79 1,81 0,07 1,0 1,7 12,4 0,04 99,4 Z_O_1_04 58,0 0,8 10,7 3,8 0,07 2,7 8,4 0,85 1,97 0,08 1,0 1,8 9,2 0,04 99,6 Z_O_1_05A 58,0 9,5 0,04 99,8 0,8 10,5 3,9 0,08 2,7 8,5 0,9 1,92 0,07 1,1 1,7 Z_O_1_06 56,0 0,8 10,6 3,8 0,07 2,9 9,6 0,8 1,9 0,08 1,0 1,716 9,6 0,04 99,0 Z_O_1_07 59,0 0,8 11,2 4,0 0,09 2,7 7,8 0,9 2,1 0,07 1,1 1,85 7,7 0,04 99,2 Z_O_1_08 58,4 0,8 11,2 3,9 0,08 2,6 7,9 0,9 2,0 0,07 1,1 8,1 0,04 99,0 Z_O_1_09 58,4 0,9 13,1 4,9 0,09 3,3 6,4 2,2 0,08 1,7 5,7 0,04 100,2 Z_O_1_10 60,0 0,8 13,7 5,0 0,05 1,6 5,6 0,5 2,0 0,03 2,5 3,5 4,5 0,02 99,8 Z_O_1_11 62,0 0,8 11,4 4,3 0,05 1,3 7,7 0,6 1,9 0,05 1,8 2,6 5,5 0,02 99,9 Z_O_1_12 79,0 0,6 9,2 2,8 0,04 < 1 1,5 0,7 1,6 0,04 0,9 1,8 0,8 0,02 99,0 Z_O_1_13 9,1 3,3 0,07 < 1 1,8 0,03 1,5 0,7 0,02 99,1 79,0 0,6 0,6 1,6 0,8 Z_O_1_14 73,0 0,6 10,3 2,6 0,04 1,1 3,5 0,6 1,7 0,04 1,3 1,9 2,8 0,02 99,7 Z_O_1_17 52,0 0,5 9,1 3,2 0,07 16,2 0,6 1,6 0,08 1,3 1,9 11,0 0,03 99,2 1,4 Z_O_1_15 67,0 0,7 11,1 3,2 0,04 1,2 5,9 0,6 1,9 0,08 1,7 2,0 4,4 0,02 99,8 Z_O_1_16 73,3 0,4 7,9 1,6 1,5 0,4 0,03 < 1 6,9 1,0 0,04 5,1 0,02 99,1

Tab. 2.3.5.: Chemische Analysen der Hauptelemente WP Zistersdorf, KB 1.

Windpark Zistersdorf Ost Bohrung 2 Chemische Analysen derSpurenelemente (ppm) As Ba Bi Cd Ce Co Cr Cs Cu Ga La Nb Nd Ni Pb Pr Rb Sn Sr Th U Υ Zn Zr Bezeichnung Summe < 1 <1 Z_O_1_01 Z_O_1_02 <1 < 1 < 1 Z_O_1_03 <1 <1 < 1 Z_O_1_04 < 1 Z_O_1_05A <1 < 1 < 1 Z_O_1_06 < 1 <1 Z_O_1_07 <1 < 1 <1 Z_O_1_08 < 1 <1 Z_O_1_09 <1 < 1 <1 Z_O_1_10 <1 < 1 <1 Z_O_1_11 < 1 <1 Z_O_1_12 <1 < 1 < 1 Z_O_1_13 <1 < 1 <1 Z_O_1_14 < 1 <1 Z_O_1_17 <1 < 1 <1 Z_O_1_15 <1 < 1 < 1 Z_O_1_16 <1 < 1 < 1

Tab. 2.3.6.: Chemische Analysen der Spurenelemente WP Zistersdorf, KB 1.

Windpark Zistersdorf Ost Bohrung 2 Röntgenographische Phasenanalysen der gesamtmineralogischen Zusammensetzung Alkalif-Schicht-Probenbezeichnung und Teufe Quarz% Plagioklas% Calcit% Dolomit% Lithologie Stratigraphie eldspat% silikate% Z_O_2_01 8 0 0 50 cm 43 42 Tonsilt Bodenhorizont Z_O_2_02 120 cm 46 7 10 0 0 37 toniger Silt Z_O_2_03 150 cm 38 6 9 12 9 27 toniger Silt Löss Z_O_2_04 190 cm 7 toniger Silt 38 3 13 11 28 Z_O_2_05 250 cm 37 6 9 11 11 26 toniger Silt Z_O_2_06 7 7 350 cm 39 10 9 29 toniger Silt Z_O_2_07 toniger Silt 450 cm 39 4 8 9 8 31 Z_O_2_08 550 cm 35 6 11 8 9 30 toniger Silt Z_O_2_09 670-680 cm 34 4 13 8 7 33 toniger Silt Z_O_2_10 750-55 cm 7 7 11 7 32 toniger Silt 36 2 Z_O_2_11 770-775 cm 35 6 12 10 34 Tonsilt Z_O_2_12 32 10 11 1 38 Tonsilt 820 cm Z_O_2_13 860-870 cm 35 7 12 11 4 31 Tonsilt Paläoboden/ Z_O_2_14 920 cm 0 41 Rotlehmhorizont Z_O_2_15 970-980 cm 38 4 8 9 0 41 Tonsilt Z_O_2_16 3 8 4 1 39 1060 cm 46 toniger Siltsand 3 7 2 Z_O_2_17 1100-1105 cm 50 1 37 toniger Siltsand Z_O_2_18 1150 cm 46 3 11 21 1 18 siltiger Sand Neogen Z_O_2_01 50 cm Z_O_2_02 120 cm Z_O_2_03 150 cm Z O 2 04 190 cm 250 cm Z_O_2_05 Z_O_2_06 350 cm Z_O_2_07 450 cm Z_O_2_08 550 cm Z_O_2_09 670-680 cm Z_O_2_10 750-55 cm Z O 2 11 770-775 cm Z_O_2_12 820 cm Z_O_2_13 860-870 cm Z_O_2_14 920 cm Z_O_2_15 970-980 cm Z O 2 16 1060 cm Z_O_2_17 1100-1105 cm Z_O_2_18 1150 cm 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% □Alkalif-eldspat% Schicht silikate% ■Quarz% ■Plagioklas% ■Calcit% ■Dolomit%

Windpark Zistersdorf Ost Bohrung 2 Röntgenographische Phasenanalysen der tonmineralogischen Zusammensetzung der Fraktion < 2 μm Illit/ < 2 µm Probenbezeichnung und Teufe Smektit % Kaolinit% Chlorit% Vermiculit% Lithologie Stratigraphie Hellglimmer% Gew.% Bodenhorizont Z_O_2_01 50 cm 78 15 0 3 Tonsilt Z_O_2_02 120 cm 37 32 10 12 9 23 toniger Silt Z_O_2_03 150 cm 45 20 14 12 9 18 toniger Silt Löss Z_O_2_04 190 cm 45 19 15 12 9 19 toniger Silt 12 45 15 7 Z_O_2_05 250 cm 20 17 toniger Silt 12 7 Z_O_2_06 350 cm 41 25 15 23 toniger Silt Z_O_2_07 450 cm 49 23 11 12 5 18 toniger Silt 7 Z_O_2_08 550 cm 48 22 11 12 20 toniger Silt Z_O_2_09 670-680 cm 37 32 14 11 6 20 toniger Silt Z_O_2_10 750-55 cm 42 12 12 5 21 29 toniger Silt Z_O_2_11 770-775 cm 36 28 10 19 6 Tonsilt 29 11 15 7 Z_O_2_12 820 cm 38 27 Tonsilt Z_O_2_13 860-870 cm 42 27 11 15 5 27 Tonsilt Paläoboden/ 13 7 Z_O_2_14 920 cm 29 40 11 37 Tonsilt Rotlehmhorizont Z_O_2_15 970-980 cm 28 42 13 12 5 39 Tonsilt 55 19 11 7 24 Z_O_2_16 1060 cm 8 toniger Siltsand 7 toniger Siltsand Z_O_2_17 1100-1105 cm 15 6 6 24 66 Z_O_2_18 1150 cm 22 53 1 24 1 3 siltiger Sand Neogen Z_O_2_01 50 cm Z_O_2_02 120 cm Z_O_2_03 150 cm Z O 2 04 190 cm Z_O_2_05 250 cm Z_O_2_06 350 cm 450 cm Z O 2 07 Z_O_2_08 550 cm Z_O_2_09 670-680 cm Z_O_2_10 750-55 cm Z_O_2_11 770-775 cm Z O 2 12 820 cm Z_O_2_13 860-870 cm Z_O_2_14 Z_O_2_15 970-980 cm Z_O_2_16 1060 cm Z_O_2_17 1100-1105 cm 1150 cm Z O 2 18 20% 100% 0% 10% 30% 40% 50% 60% 70% 80% 90% ■Smektit % ■Kaolinit% Chlorit% ■Vermiculit% Illit/ Hellglimmer%

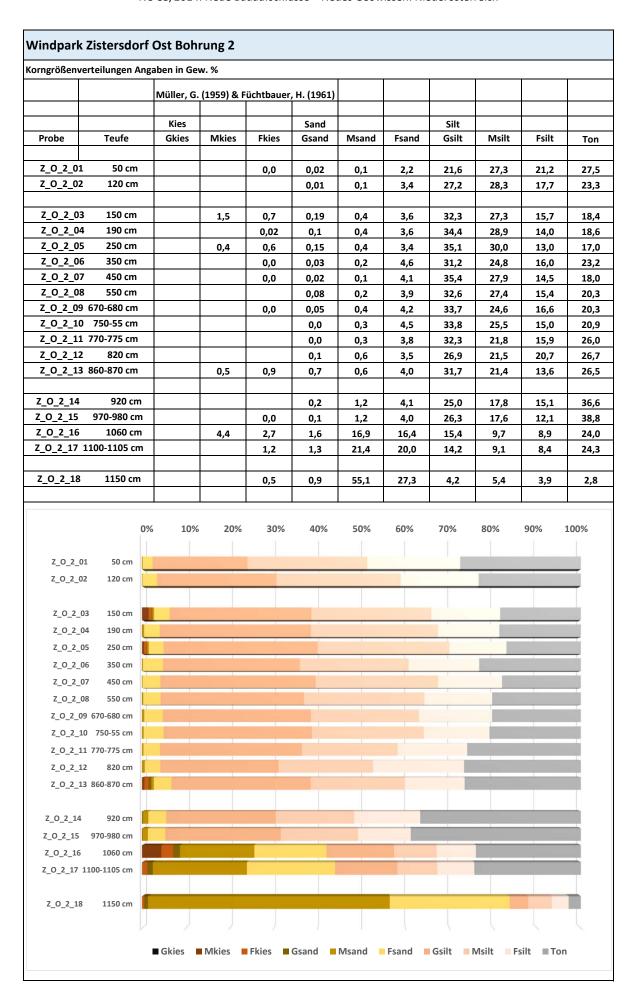


Abb. 2.3.18. Korngrößenverteilung und Diagramm, KB 2.

Korngrößen	verteilungen Ang	aben in Gew. %		ı		1	ı	Π
		Müller, G. (1959) & Füchtbauer, H. (1961)						
						Wink	ler, H.G.F. ((1954)
Probe	Teufe	Sand-Silt-Ton	Kies	Sand	Silt	Ton		
						< 2 μm	2-20 μm	> 20 µm
Z_O_2_01	50cm	Tonsilt	0,0	2,3	70,1	27,5	48,4	24,0
Z_O_2_02	120cm	toniger Silt	0,0	3,5	73,2	23,3	46,0	30,6
Z_O_2_03	150cm	toniger Silt	2,19	4,1	75,3	18,4	43,0	38,6
Z_O_2_04	190cm	toniger Silt	0,0	4,0	77,3	18,6	42,9	38,5
Z_O_2_05	250cm	toniger Silt	1,0	3,9	78,1	17,0	43,0	40,0
Z_O_2_06	350cm	toniger Silt	0,0	4,8	72,0	23,2	40,9	35,9
Z_O_2_07	450cm	toniger Silt	0,0	4,2	77,8	18,0	42,4	39,5
Z_O_2_08	550cm	toniger Silt	0,0	4,2	75,5	20,3	42,9	36,9
Z_O_2_09	670-680cm	toniger Silt	0,0	4,7	75,0	20,3	41,3	38,5
Z_O_2_10	750-755cm	toniger Silt	0,0	4,9	74,2	20,9	40,4	38,7
Z_O_2_11	770-775cm	Tonsilt	0,0	4,1	70,0	26,0	37,7	36,4
Z_O_2_12	820cm	Tonsilt	0,0	4,2	69,2	26,7	42,3	31,0
Z_O_2_13	860-870cm	Tonsilt	1,5	5,2	66,8	26,5	35,1	38,4
Z_O_2_14	920cm	Tonsilt	0,0	5,5	57,8	36,6	32,9	30,5
Z_O_2_15	970-980cm	Tonsilt	0,0	5,3	55,9	38,8	29,6	31,6
Z_O_2_16	1060cm	toniger Siltsand	7,1	34,9	34,0	24,0	18,6	57,4
Z_O_2_17	1100-1105cm	toniger Siltsand	1,2	42,7	31,7	24,3	17,5	58,1
Z_O_2_18	1150cm	siltiger Sand	0,5	83,2	13,5	2,8	9,3	88,0

Statistische	e Parameter										
			Momentv	erfahren		Folk, R.L. & Ward, W. (1957)			U	k-Werte (ı	m/s)
			Arithmet.	Standard-	Schiefe	Arithmet.	Standard-	Schiefe	U	Beyer	Bialas
Probe	Sortierung		Mw.	Abw.		Mw.	Abw.				
Z_O_2_01	extrem schlech	t sortiert	7,89	2,99	0,84	7,58	2,93	0,31	50,69	2,20E-10	5,00E-10
Z_O_2_02	extrem schlech	t sortiert	7,36	2,75	0,89	7,20	2,68	0,33	28,73	1,30E-09	1,00E-09
Z_O_2_03	extrem schlech	t sortiert	6,82	3,16	0,31	6,78	2,63	0,37	30,24	2,30E-09	3,10E-09
Z_O_2_04	extrem schlech	t sortiert	6,93	2,69	1,11	6,81	2,50	0,43	30,84	2,20E-09	3,10E-09
Z_O_2_05	extrem schlech	t sortiert	6,70	2,75	0,71	6,66	2,38	0,41	25,98	3,60E-09	4,90E-09
Z_O_2_06	extrem schlech	t sortiert	7,24	2,86	0,89	7,12	2,74	0,37	38,21	9,90E-10	1,10E-09
Z_O_2_07	extrem schlech	t sortiert	6,95	2,77	1,29	6,73	2,53	0,44	30,42	2,50E-09	3,50E-09
Z_O_2_08	extrem schlech	t sortiert	7,06	2,73	1,03	6,92	2,59	0,39	30,95	1,90E-09	2,10E-09
Z_O_2_09	extrem schlech	t sortiert	7,01	2,74	0,96	6,89	2,58	0,37	30,72	2,20E-09	2,10E-09
Z_O_2_10	extrem schlech	t sortiert	7,11	2,94	1,11	6,91	2,74	0,41	40,17	1,30E-09	1,80E-09
Z_O_2_11	extrem schlech	t sortiert	7,33	2,87	0,80	7,15	2,74	0,36	37,32	1,10E-09	7,90E-10
Z_O_2_12	extrem schlech	t sortiert	7,48	2,82	0,65	7,31	2,72	0,22	25,31	1,40E-09	7,60E-10
Z_O_2_13	extrem schlech	t sortiert	7,27	3,42	0,47	7,17	3,08	0,41	82,40	3,00E-10	5,80E-10
Z_O_2_14	extrem schlech	t sortiert	8,08	3,43	0,47	7,88	3,35	0.26	101,98	7,10E-11	1,40E-10
Z_O_2_15	extrem schlech	t sortiert	8,25	3,60	0,43	8,13	3,57	0.33	174,83	3,20E-11	5,50E-11
Z_O_2_16	extrem schlech	t sortiert	5,58	4,64	0,30	5,61	4,70	0,23	334,29	3,00E-10	6,90E-10
Z_O_2_17	extrem schlech	t sortiert	6,01	4,49	0,75	5,74	4,36	0,48	734,27	8,30E-11	5,30E-10
Z_O_2_18	sehr schlecht	sortiert	2,94	2,25	2,39	2,62	1,60	0,63	20,56	8,40E-07	1,80E-05

Windpark Zistersdorf Ost Bohrung 2 Chemische Analysen der Hauptelemente SiO2 TiO2 Al203 FeO MnO MgO CaO Na2O K20 P205 H2O110°C H2O+ CO2 SO3 Bezeichnung Summe Z_O_2_01 62.0 0.9 13.8 5,0 0.13 1,2 1,6 0.5 2.6 0.10 2.6 0.1 8,8 0.03 99.2 Z_O_2_02 66,0 0,9 14,1 4,8 0,11 1,6 2,0 0,7 2,47 0,10 2,0 1,5 3,2 0,03 99,6 Z_O_2_03 53,0 0,8 11,1 3,9 0,07 2,6 11,3 0,67 1,86 0,07 1,4 1,9 10,7 0,03 99,4 Z_O_2_04 53,0 0,7 10,7 3,8 0,08 2,8 11,0 0,67 1,83 0,07 1,3 1,9 11,2 0,03 99,2 Z_O_2_05 54,0 0,8 11,0 3,8 0,08 2,7 10,1 0,7 1,84 0,07 1,2 1,9 10,9 0,03 99,1 Z_O_2_06 12,6 4,4 2,6 2,3 1,4 100,0 55,0 0,8 0,08 9,3 0,7 0,08 2,354 8,4 0,03 Z_O_2_07 56,0 0,8 12,4 4,3 0,07 2,6 8,9 2,2 0,08 1,3 2,27 8,3 0,03 99,9 Z_O_2_08 55,0 0,8 12,4 4,3 0,07 2,8 8,6 0,8 2,2 0,07 1,4 2,2 8,7 0,03 99,3 Z_O_2_09 58,8 0,8 12,7 4,3 0,09 2,4 7,0 0,8 2,2 0,07 1,4 2,3 7,0 0,03 99,9 Z_O_2_10 57,0 0,8 12,7 4,5 0,08 2,8 7,5 0,8 2,2 1,3 2,3 7,3 0,03 99,3 0,09 Z_O_2_11 58,0 0,8 13,0 4,6 0,09 2,1 7,1 0,8 2,2 0,07 1,6 2,3 6,8 0,03 99,5 Z_O_2_12 59,0 0,8 13,4 4,7 0,09 1,9 6,7 0,7 2,2 0,07 2,1 2,5 5,7 0,03 99,8 Z_O_2_13 55,0 0,8 12,6 4,7 0,11 2,5 8,6 0,7 2,1 0,07 1,7 2,5 7,7 0,02 99,1 Z_O_2_14 60,0 0,9 13,7 5,0 0,10 1,7 5,3 0,5 2,2 0,06 2,3 3,0 4,3 0,02 99,0 Z_O_2_15 59,0 14,3 4,9 0,11 1,9 0,4 2,2 0,06 2,4 0,02 99,3 0,9 5,7 3,0 4,5 Z_O_2_16 66,0 0,7 13,8 5,0 0,10 1,4 3,3 0,4 1,9 0,03 1,8 2,9 1,9 0,01 99,3 Z_O_2_17 1,9 69,0 0,6 13,5 4,5 0,07 1,4 2,2 0,4 2,0 0,03 2,8 1,2 0,01 99,6 Z_O_2_18

Tab. 2.3.8.: Chemische Analysen der Hauptelemente WP Zistersdorf, KB 2.

8,4

2,6

0,04

1,3

13,1

60,0

0,3

1,2

1,5

0,05

0,3

1,1

9,6

0,02

99,4

Windpark Zistersdorf Ost Bohrung 2 Chemische Analysen derSpurenelemente (ppm) Bezeichnung As Ва Bi Cd Ce Co Cr Cs Cu Ga Nb Nd Ni Pb Pr Rb Sn Sr Th Zn Zr La Summe Z O 2 01 <1 <1 Z_O_2_02 < 1 <1 <1 Z_O_2_03 <1 <1 Z_O_2_04 <1 < 1 <1 Z_O_2_05 <1 <1 Z_O_2_06 <1 <1 Z_O_2_07 <1 <1 Z_O_2_08 <1 <1 <1 Z_O_2_09 < 1 <1 Z_O_2_10 < 1 <1 Z_O_2_11 < 1 <1 <1 Z_O_2_12 <1 <1 <1 Z_O_2_13 <1 Z O 2 14 <1 <1 Z O 2 15 <1 <1 Z_O_2_16 <1 <1 Z_O_2_17 <1 <1 <1 <1 <1 <1 Z O 2 18

Tab. 2.3.9.: Chemische Analysen der Spurenelemente WP Zistersdorf, KB 2.

2.4. Südliches Wiener Becken

2.4.1. Aufnahme von vier Kernbohrungen für Windkraftanlagen im Windpark Scharndorf III (ÖK 60)

Zur Beurteilung der Gründungsverhältnisse mehrerer Windkraftanlagen wurden im Windpark Scharndorf bereits in den Jahren 2010/ 2011 Untergrunderkundungen durch das Büro GEOTEST, Institut für Erd- und Grundbau GmbH durchgeführt. Aufgrund von Standortverschiebungen bzw. Abänderung des Typs der Windkraftanlage wurden weitere Untersuchungen notwendig, die von der Fa. BAUGRUND Wien GmbH ab Juli 2013 im Auftrag der Fa. Raiffeisen Windpark Scharndorf GmbH durchgeführt wurden. DI W. Kálmán (BAUGRUND Wien GmbH) machte es möglich, diese 2013 durchgeführten Bohrungen aufzunehmen und zu beproben, wofür ihm herzlich gedankt sei.

Am 13.8.2013 wurden die beiden Bohrungen SD III KB 2 und SD III KB 6 abgeteuft und aufgenommen, die Bohrungen SD III KB 1 und SD III KB 3 wurden erst am 9. und 10.12.2013 durchgeführt. Die Lage dieser Bohrungen geht aus Tab. 2.4.1. und Abb. 2.4.1. hervor.

Tab. 2.4.1.: Koordinaten der Standorte und Bohrungen im Windpark Scharndorf III. Die letzte Zeile gibt die Herkunft der Koordinaten an, wobei die mit GPS bezeichneten Koordinaten selbst eingemessen wurden, die anderen wurden aus von der Fa. Baugrund Wien übermittelten Koordinaten umgerechnet.

	RW_M34	HW_M34	Koordinaten
WEA SD III KB 1	781744,5704	328958,9563	GPS
WEA SD III KB 2	781 969	328 540	umgerechnet
WEA SD III KB 3	782862,8518	328509,341	GPS
WEA SD III KB 6	782 512	327 692	umgerechnet

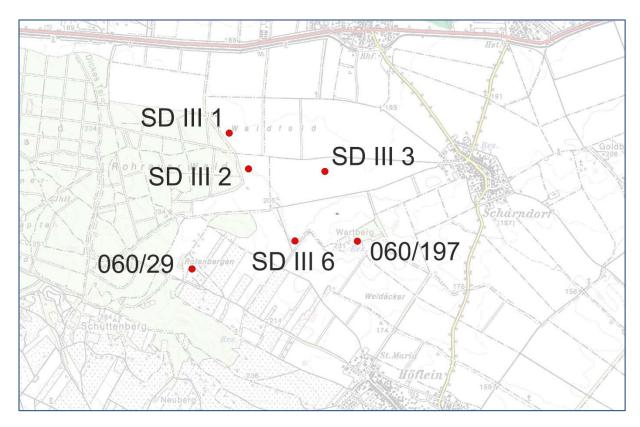


Abb. 2.4.1.: Lage der 2013 durchgeführten Kernbohrungen im Windpark Scharndorf III, sowie zweier ehemaliger Abbaue.

Geologie

Die dokumentierten Bohrungen des Windparks Scharndorf III liegen auf der weiten, ebenen Terrassenfläche der Älteren Deckenschotter (geologische Karte von Niederösterreich; SCHNABEL et al., 2002), beziehungsweise der Schotter der Terrasse N Hochstraßberg (Terrassensockel 45 m über Donau; Günz; geologische Karte von Bruck an der Leitha; FUCHS et al., 1985).

Bedeckt werden die Terrassenkiese von Löss bzw. Lehm.

Unter den quartären Ablagerungen liegen pannone Sedimente des Wiener Beckens. In der Umrandung des Wartberges sind laut FUCHS et al. (1985) "Tonmergel, Sand, Ton, nicht differenziert" der Zonen E-B aufgeschlossen. Im Bereich von Rotenbergen ist "Ton, Sand, lokal Lignit" der Zonen H-F in der Karte eingetragen (Abb. 2.4.2.).

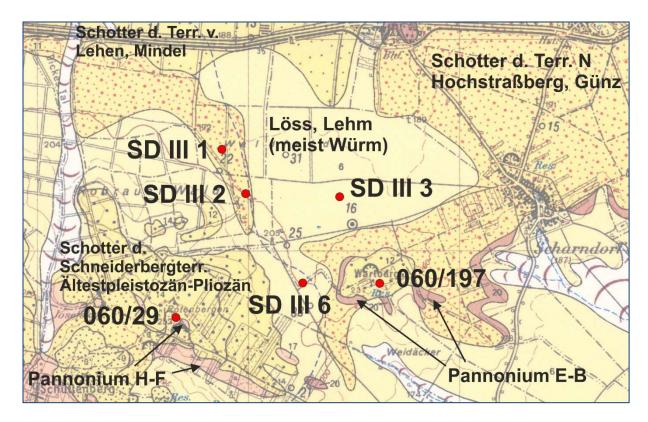


Abb. 2.4.2.: Lage der 2013 durchgeführten Kernbohrungen im Windpark Scharndorf III, sowie zweier ehemaliger Abbaue auf der geologischen Karte von Bruck an der Leitha (Blatt 60, FUCHS et a., 1985).

SD III KB 1

Die Bohrung KB 1 (Abb. 2.4.3.) wurde am 9.12.2013 durchgeführt. Wie auf Abb. 2.4.4. ersichtlich, wurde zunächst der Untergrund bis zu einer Tiefe von 0,8 m abgetragen, bevor die Bohrung eingerichtet wurde. Der so entstandene Aufschluss wurde separat aufgenommen und beprobt.

Unter dem Mutterboden wurde bis in eine Tiefe von 1,8 m unter GOK Löss erbohrt. Darunter folgten im Wesentlichen Kiese in wechselnd sandig/ schluffig/ toniger Matrix.

Der erbohrte Kies war zur Gänze sehr dicht gelagert (freundl. mündl. Mitt. des Bohrmeisters, CPT-Versuche). Die gesamte Bohrung war stark kalkhaltig. Wasser wurde ab 9 m Tiefe angetroffen.

Das Bohrprofil ist in Tab. 2.4.2. dargestellt, Abb. 2.4.6. und 2.4.7. dokumentieren die Bohrkerne fotographisch.

Abb. 2.4.3.: Lage der Bohrung SD III KB 1, Blickrichtung N bis NW.

Abb. 2.4.4.: Bohrung SD III KB 1: Vor Einrichtung des Bohrplatzes wurden 80 cm des Untergrundes ausgehoben.

Tab. 2.4.2.: Bohrprofil von SD III KB 1.

Windpark Scharndorf III SD III KB 1							
Tiefe ab GOK	efe ab GOK Tiefe ab Sohle (Bohrung) Beschreibung rung)		Stratigraphie				
0-0,7 m		Boden, schokobraun bis dunkelbraun, sehr wenig kalkhältig, bei 0,6 m: ein Klast aus Löss (Schluff, ocker, sehr stark kalkhältig)	Boden				
0,7-0,8 m		Schluff, ockerbraun, stark kalkhältig, darin Klasten aus ?Boden	Löss				
	Bohrung						
0,8-1,8 m	0-1,0 m	Schluff, ockerbraun, sehr stark kalkhältig, 0-0,3 m: Klasten aus dunkelbraunem Schluff (Boden), 0,65- 0,75 m: einige Quarz-Kiese bis 7 cm Durchmesser darin, 0,9 m: dunkelbrauner Ton-Klast (Durchmesser 10 cm)	Löss, Schwemmlöss				
1,8-1,95 m	1,0-1,15 m	Kies in tonig-sandiger Matrix, braungrau, Kompo- nenten von sehr gut gerundet bis kantig, Quarz do- miniert, Korngröße v.a. <2 cm					
1,95-2,3 m	1,15-1,3 m	Schluff/ Ton, knetbar, mit Pseudomycelien, braun					
2,3-2,95 m	1,3-2,15 m	Kies in schluffig/ toniger, sandiger Matrix, braun bis braungrau; Kies: schlecht bis gut gerundete Quarze aller Farben, auch reliktische (rote) Komponenten sind zu finden; bei 1,3-1,4 m und 1,9-2,0 m zusam- mengebacken (feinkörniger), dazwischen ist der Kern zerfallen (höherer Sandanteil)					
2,95-3,8 m	2,15-3,0 m	Kies in schluffig-sandiger Matrix, braungrau; Kompo- nenten schlecht bis gut gerundet, v.a. Quarz, Durch- messer <2 cm dominiert, einzeln bis 4 cm					
3,8-4,25 m	3,0-3,45 m	Kies wie oben, Matrix ist schluffig/ tonig und stärker sandig, rostbraun					
4,25-4,8 m	3,45-4,0 m	Kiessand, schokobraun-grau gemischt (an Kiesen kleben oft schokobraune Tone/ Schluffe); Kiese wie oben, Sand: FS bis GS, FK					
4,8-5,3 m	4,0-4,5 m	Kiessand (FS bis FK), Komponenten v.a. <2 cm, einzeln bis 3 cm, grau bis leicht bräunlich					
5,3-5,8 m	4,5-5,0 m	Feinsand, grau bis leicht bräunlich					
5,8-7,0 m	5,0-6,2 m	Feinsand und Feinkies, einzelne längliche Komponenten bis 5 cm, sonst <2 cm; 6,0-6,2 m: stärker schluffig, grau					
7,0-7,8 m	6,2-7,0 m	Schluff, Grobsand, Feinkies, Kies, hellstgrau, Komponenten eher schlecht gerundet, zumeist <1 cm, mehrere <5 cm, einzeln bis 10 cm					
7,8-9,8 m	7,0-9,0 m	Kies (<2 bis 7 cm Durchmesser) in Matrix aus Schluff bis Feinkies (U, FS, MS, GS, FK); graubraun, ab 8 m: heller, mit vielen zerbrochenen Komponenten					
9,8-12,8 m	9,0-12,0 m	Kiessand (Feinsand bis Kies, schluffig, Komponenten bis 3 cm, schlecht gerundet bis gut gerundet, tw. zerschlagene Quarze), grau bis graubraun; nass					

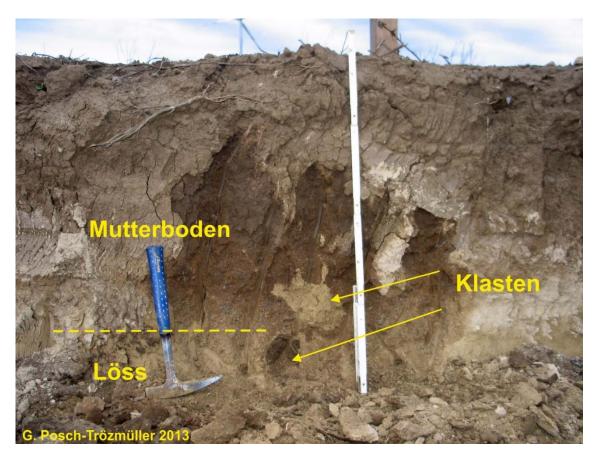


Abb. 2.4.5.: Aufschluss, durch Aushub von 0,8 m Untergrund entstanden: Im Mutterboden sind Klasten aus Löss zu finden, ebenso, wie im darunter liegenden Löss Bodenklasten zu finden sind.

Abb. 2.4.6.: Kernbohrung SD III KB 1: 0-4 m. Die Bohrtiefenangaben beziehen sich nicht auf GOK, um die Tiefe unter GOK zu berechnen, muss jeweils 0,8 m addiert werden (siehe Bohrprofil, Tab. 2.4.2.).

Abb. 2.4.7.: Kernbohrung SD III KB 1: 4-12 m. Die Bohrtiefenangaben beziehen sich nicht auf GOK, um die Tiefe unter GOK zu berechnen, muss jeweils 0,8 m addiert werden (siehe Bohrprofil, Tab. 2.4.2.).

SD III KB 2

Die Bohrung wurde am 13.8.2013 bis in eine Tiefe von 10 m abgeteuft. Unter dem Boden und geringmächtigen Löss wurden Kiese mit wechselnd sandig/ schluffig/ toniger Matrix erbohrt, die zwischen 3,15 und 5,6 m rostrot gefärbt sind. Von 3,7 bis 4,0 m sind diese verfestigt.

Die liegendsten 2,5 m der Bohrung wurden von graubraunen Schluffen eingenommen, darin konnten kleine Molluskensplitter beobachtet werden. Diese liegenden Schluffe wurden dem Pannonium zugerechnet.

Grundwasser wurde in der Bohrung nicht angetroffen (Geotechnischer Bericht Nr. 13-2030-01 vom 27.8.2013, BAUGRUND Wien GmbH). Die gesamte Bohrung war kalkhältig.

Das Bohrprofil ist in Tab. 2.4.3. zu finden, Abb. 2.4.9. bis 2.4.11. liefern eine Fotodokumentation der Bohrkerne.

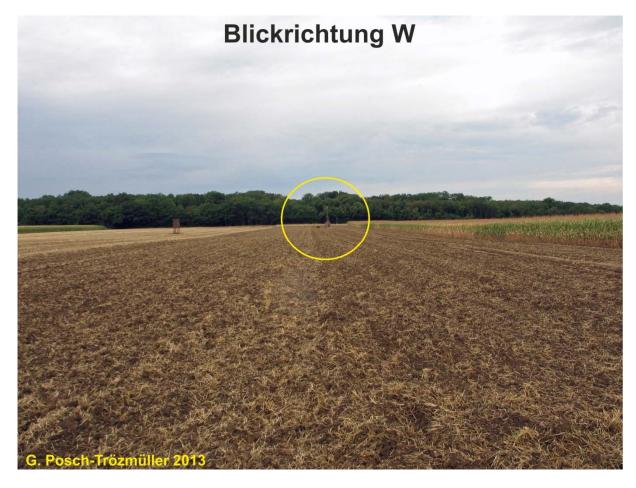


Abb. 2.4.8.: Lage der Bohrung KB 2 (Bildmitte, gelbe Markierung).

Tab. 2.4.3.: Bohrprofil von SD III KB 2.

Windpark	Windpark Scharndorf III – SD III KB 2					
Tiefe	Beschreibung	Stratigraphie				
0-0,55 m	Boden, dunkelbraun	Boden				
0,55-1,7 m	Schluff, hellbraun, tw. mit Pseudomycelien, mit vereinzeltem Kies, ab 1,2 m leicht sandig	Löss/ Schwemmlöss				
1,7-2,0 m	Kies, stark schluffig und sandig, tw. zusammengebacken, hell- braun, tw. rostrot, Kiese gerundet, bis 5 cm Durchmesser					
2,0-3,15 m	Sand, Schluff, Kies, mittelbraun; Kiese v.a. klein (<3 cm)					
3,15-4,0 m	Kies (gröber als oben-bis 10 cm Durchmesser) in toniger, rost-roter Matrix; 3,7-4,0 m: festgebacken					
4,0-5,6 m	Kies in tonig-sandiger Matrix, rot					
5,6-6,0 m	Kies in sandig-schluffiger/toniger Matrix, braun, leicht rötlich					
6,0-7,5 m	Feinsand, Schluff mit Kies, braun, leicht rotbraun; ab 6,5 m: zunehmend grau	?Pannonium				
7,5-9,3 m	Schluff, graubraun, +/- tonig; bei 8,0 und 9,0 m: einzelne Kiese - durch Bohren verschleppt?	Pannonium				
9,3-10,0 m (ET)	Schluff, graubraun, +/- tonig, bindig, mit kleinen Molluskensplittern, nach unten bindiger	Pannonium				
	gesamte Bohrung kalkhältig					

Abb. 2.4.9.: Kernbohrung SD III KB 2: 8 m.

Abb. 2.4.10.: Kernbohrung SD III KB 2: 8-10 m.

Abb. 2.4.11.: Detail von KB 2: 3,7-4,0 m: Kiese in toniger, rostroter Matrix, festgebacken.

SD III KB 3

KB 3 (Abb. 2.4.12.) wurde am 10.12.2013 durchgeführt. Vor Einrichtung der Bohrung wurde der Untergrund bis in eine Tiefe von 0,6 m abgetragen. Der so entstandene Aufschluss wurde separat aufgenommen und beprobt (2.4.13., 2.4.14.).

Unter dem Boden war bis 1,6 m unter GOK Löss aufgeschlossen, darunter folgten Schluffe und Sande mit Kies, erst ab 7,6 m waren Kiessande zu finden. Ab 12,6 m war dieser nass, es kam zu einer Aufspiegelung des Grundwassers auf 11,5 m, was darauf schließen lässt, dass feinkörnige, stauende Sedimente nicht mehr weit waren. Das erbohrte Profil ist dem Quartär zuzurechnen.

Der erbohrte Kies war zur Gänze sehr dicht gelagert (freundl. mündl. Mitt. des Bohrmeisters, CPT-Versuche). Die gesamte Bohrung war stark kalkhaltig. Das Bohrprofil ist in Tab. 2.4.4., die Fotodokumentation der Bohrung ist in Abb. 2.4.15. bis 2.4.17. zu finden.

Abb. 2.4.12.: Lage von SD III KB 3, Blickrichtung S. Im Hintergrund links beginnt bereits der Anstieg zum Wartberg.

Abb. 2.4.13.: Bohrung SD III KB 3: 0,6 m wurden vor Einrichtung der Bohrstelle abgetragen.

Tab. 2.4.4.: Bohrprofil der Kernbohrung SD III KB 3.

Windpark Scharndorf III SD III KB 3								
Tiefe ab GOK	Tiefe ab Sohle (Boh- rung)	Beschreibung	Stratigraphie					
0-0,3 m		Boden	Boden					
0,3-0,5 m		Übergang Boden - Löss	Löss					
0,5-0,6 m		Löss	Löss					
	Bohrung							
0,6-1,1 m	0-0,5 m	Schluff, ockerbraun, stark kalkhältig	Löss					
1,1-1,6 m	0,5-1,0 m	Schluff, ockerbraun, etwas sandig, stark kalkig, mit Kies bis 7 cm Durchmesser	Schwemmlöss					
1,6-1,8 m	1,0-1,2 m	Schluff, sandig, braun bis rostbraun, mit Kies und Kalkausfällungen, kalkig						
1,8-2,3 m	1,2-1,7 m	Schluff und Sand, braun, mit wenig Kies (v.a. <2 cm, bis 3 cm), kalkig						
2,3-2,9 m	1,7-2,3 m	Schluff, braun, fein geschichtet, mit etwas Kies, kalkig						
2,9-3,5 m	2,3-2,9 m	Feinsand, Mittelsand, Feinkies, Kies bis 5- 10 cm Durchmesser, braun, kalkig, schluffig						
3,5-4,0 m	2,9-3,4 m	Feinsand, Mittelsand, Feinkies, Kies; stär- ker rostbraun, kalkfrei, schluffig						
4,0-5,6 m	3,4-5,0 m	Schluff, braun - rostrot gefleckt bzw. fein geschichtet, kalkfrei; 3,4-3,6 m und 4,2 m: mit einzelnen kleinen Kiese darin						
5,6-5,7 m	5,0-5,1 m	wie oben, aber mit Kies (<2 cm Durchmesser), kalkfrei						
5,7-5,8 m	5,1-5,2 m	Schluff, zusammengebacken, mit Kies (<3 cm), schokobraun, kalkfrei						
5,8-7,2 m	5,2-6,6 m	Sand (FS-MS), rötlichbraun, mit kleinen (<2 cm), gut gerundeten Kiesen (v.a. Quarz), kalkig; ab 5,5 m: braun, nicht mehr rötlich, Korngröße der Kiese nimmt zu (bis 5 cm), auch mehr zerschlagene Komponenten und schlecht gerundete; 6,0-6,1 m: Lage aus Schluff, braun, kalkhältig						
7,2-7,6 m	6,6-7,0 m	Feinsand bis Mittelsand, rötlichbraun, 6,9,7,0 m: helle, feste U-FS-Lage, ca. 2 cm mächtig (zerbrochen)						
7,6-12,6 m	7,0-12,0 m	Kiessand; alle Korngrößen von Schluff bis Kies, zunächst braun-rötlich bis 8 m, darun- ter: braungrau; bis 8,0 m: kleinere Kiese dominieren (v.a. <2 cm, nur einzelne bis 5 cm), darunter (8-12 m): einzeln bis 10 cm Durchmesser, v.a. <5 cm						
12,6-14,6 m	12,0-14,0 m	wie oben, aber nass (aufspiegeln bis 11,5 m), stärker feinkiesig/ grobsandig						

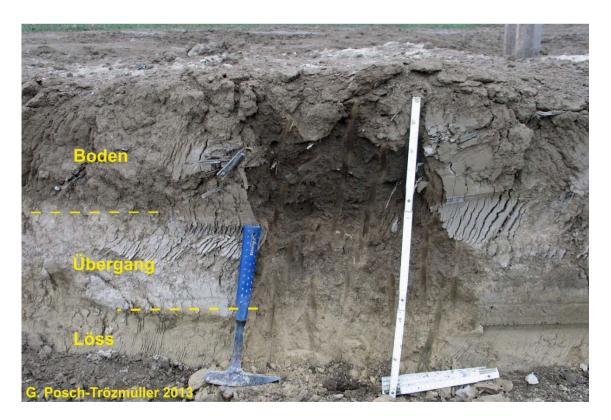


Abb. 2.4.14.: Aufschluss, der durch das Ausheben der oberen 0,6 m vor Einrichtung der Bohrung SD III KB 3 entstanden ist. Unter 0,3 m Boden erfolgte ein Übergang zu Löss.

Abb. 2.4.15.: Kernbohrung SD III KB 3: 0-4m. Die Bohrtiefenangaben beziehen sich nicht auf GOK, um die Tiefe unter GOK zu berechnen, muss jeweils 0,6 m addiert werden (siehe Bohrprofil, Tab. 2.4.4.).

Abb. 2.4.16.: Kernbohrung SD III KB 3: 4-12 m. Die Bohrtiefenangaben beziehen sich nicht auf GOK, um die Tiefe unter GOK zu berechnen, muss jeweils 0,6 m addiert werden (siehe Bohrprofil, Tab. 2.4.4.).

Abb. 2.4.17.: SD III KB 3: 12-14 m. Die Bohrtiefenangaben beziehen sich nicht auf GOK, um die Tiefe unter GOK zu berechnen, muss jeweils 0,6 m addiert werden (siehe Bohrprofil, Tab. 2.4.4.).

SD III KB 6

KB 6 wurde am 13.8.2013 bis in 15 m Tiefe abgeteuft. Abb. 2.4.18. gibt einen Überblick über die Lage der Bohrung, in Tab. 2.4.5. ist das Bohrprofil dargestellt. Die Fotodokumentation der Bohrung ist in Abb. 2.4.19. bis 2.4.32. zu finden.

Unter dem Mutterboden wurde bis 1 m Tiefe Lösslehm und Löss erbohrt. Darunter folgten Schluffe, Sande und untergeordnet Kiese bis 6 m Tiefe, die dem Quartär zugeordnet wurden. Der unterste Meter (5-6 m Tiefe) war rot gefärbt.

Auffällig sind jedoch Molluskensplitter im rötlichen Kiessand zwischen 4,6 und 5,15 m Tiefe (Abb. 2.4.23.) und im braunen Kiessand von 5,15 bis 6,0 m. Auffällig ist in diesem Zusammenhang auch das Tonmineralspektrum der Probe in 4,1-4,2 m Tiefe, welches doch den Analysen der tiefer gelegenen Proben des Pannoniums ähnelt (Abb. 2.4.34.). In den Analysen der Gesamtmineralogie und der Geochemie ist dies jedoch nicht zu beobachten.

Eine Bivalvenschale wurde bereits in 1,8 m Tiefe gefunden (Abb. 2.4.22.). Von der Möglichkeit der Einschwemmung abgesehen, ist es auch nicht auszuschließen, dass hier lediglich eine dünne Lössbedeckung über pannonen Sedimenten liegt und das gesamte Bohrprofil ab 1,2 m ins Pannonium zu stellen ist.

Verglichen mit den anderen Bohrungen der Umgebung scheinen trotzdem die rötlichen Kiessande die liegendsten Anteile des Quartär (bzw. Pliozän) zu repräsentieren.

Ab 6 m bis zur Endtiefe in 15 m waren feinkörnige Sedimente zu finden, wobei graubrauner Schluff dominierte. Dieser Abschnitt der Bohrung wurde mit Sicherheit dem Pannonium zugerechnet.

Grundwasser wurde bei 13,4 m angetroffen (Geotechnischer Bericht Nr. 13-2030-01 vom 27.8.2013, BAUGRUND Wien GmbH). Die gesamte Bohrung war kalkhaltig.

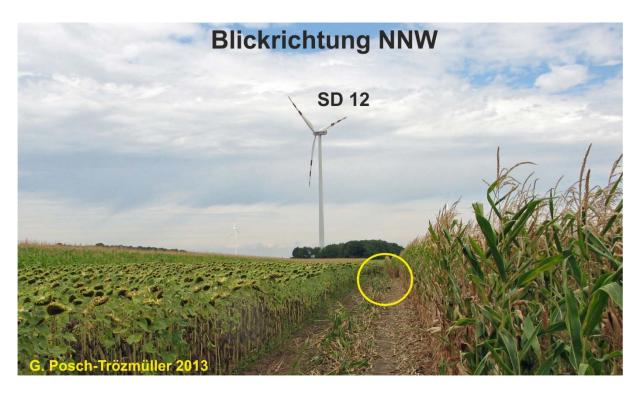


Abb. 2.4.18.: Lage der Bohrung KB 6 (gelbe Markierung), Blickrichtung N.

Tab. 2.4.5.: Bohrprofil der Bohrung SD III KB 6.

	Windpark Scharndorf III - SDIII KB 6	
Tiefe	Beschreibung	Stratigraphie
0-0,2 m	Boden, dunkelbraun, verwurzelt	5 1
0,2-1,0 m	Schluff, bis 0,5 m: dunkelbraun und wenig kalkhältig, darunter hell- braun, stark kalkhältig	Lösslehm, Löss
1,0-1,2 m	Feinsand, schluffig, mit Kies bis 6 cm Durchmesser	
1,2-2,0 m	Schluff, feinsandig, mit einzelnen Kiesen und kleinen, weichen Kalkausfällungen, hellbraun; bei 1,8 m: 1 Schalenbruchstück von ?Cardium	
2,0-3,0 m	Schluff, feinsandig, hell- bis mittelbraun; wie oben, aber ohne Kies und etwas bindiger	
3,0-3,2 m	schokobraune bindige Lage aus Schluff/ Ton mit einzelnen Kiesen (Quarz, bis 2 cm)	
3,2-4,3 m	Schluff, rot-graubraun gefleckt/ geschichtet, mit kleinen Kalkausfällungen; 3,9-4,0 m: große, harte Kalkausfällungen, 4,0-4,3 m: bindig (Kern)	
4,3-4,6 m	Schluff und Kies, graubraun/ rötlich	
4,6-5,15 m	Feinsand-Grobsand, Kies (bis 10 cm), tonig, graubraun-rötlich, mit Molluskensplittern (auch ?Cardium)	
5,15-6,0 m	Sand (v.a. FS-MS), rötlich (bis braungrau), mit Kies (feiner, weniger als oben), +/- leicht tonig, mit Molluskensplittern	
6,0-7,7 m	Schluff, braungrau, leicht rötlich gefleckt, wahrscheinlich geschichtet, wird nach unten bindiger	Pannonium
7,7-11,3 m	Schluff/ Ton; bindiger Kern, mit Finger eindrückbar, fein geschichtet (mm-Bereich): grau-rostrot, tw. feine Feinsand-Lagen darin, Lagen/ Nester aus festen, zerbrochenen Kalkkonkretionen (9,7 -9,8 m; 10,0 m; 10,2 m), selten schwarze Beläge (Pflanzenreste? Mn-Ausfällungen?)	
11,3-12,4 m	Schluff, grau, tw. fein geschichtet, zumeist keine Schichtung zu sehen, leicht fs und ab 11,8 m: wenige, kl. Molluskensplitter, leicht glimmerig	
12,4-12,5 m	Schluff, tonig, graubraun/ rötlich	
12,5-12,9 m	Schluff, Feinsand, grau	
12,9-13,0 m	Schluff/ Ton, feinsandig, graubraun/ rötlich	
13,0-13,5 m	Schluff, Feinsand, +/- tonig, nass, graubraun	
13,5-13,65 m	Schluff/ Ton, grau, mit dünner Lage aus festen Kalkkonkretionen	
13,65-15,0 m (ET)	Wechsellagerung aus Feinsand, Schluff und Schluff/ Ton, grau/ graubraun/ rötlich-gelb geschichtet, einzelne Lagen mit Kalkkonkretionen (14,0-14,1 m; 14,4 m), tw. dunkle Beläge (14,15 m)	

Abb. 2.4.19.: Kernbohrung SD III KB 6: 0-8 m.

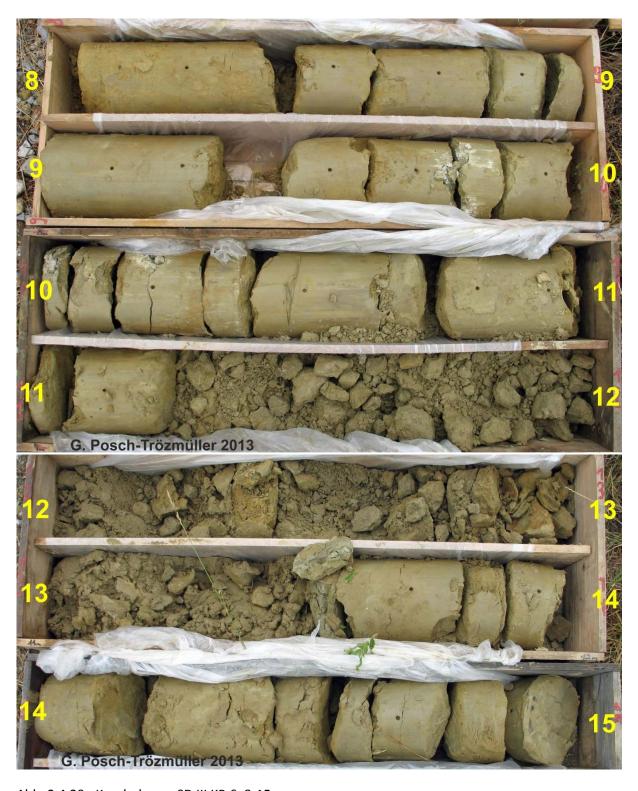


Abb. 2.4.20.: Kernbohrung SD III KB 6: 8-15 m.

Abb. 2.4.21.: Detail von KB 6: 1,5 m Tiefe: Feinsandiger Schluff mit Kies.

Abb. 2.4.22.: Detail von KB 6: 1,8 m Tiefe: Feinsandiger Schluff mit einem Bruchstück von ?Cardium.

Abb. 2.4.23.: Detail von KB 6: Schalenbruchstück von ?Cardium bei 4,7 m in Kies mit FS-GS, tonig.

Abb. 2.4.24.: Detail von KB 6: 3,0-3,2 m Tiefe: Schokobraune, bindige Lage aus Schluff/ Ton mit vereinzelten, bis 2 cm großen Quarzkiesen.

Abb. 2.4.25.: Detail von KB 6: Schichtung in 8,4 m Tiefe.

Abb. 2.4.26.: Detail von KB 6: Feste Kalkkonkretionen in 9,7 m Tiefe.

Abb. 2.4.27.: Detail von KB 6: Feste Kalkkonkretionen in 10,0-10,3 m Tiefe.

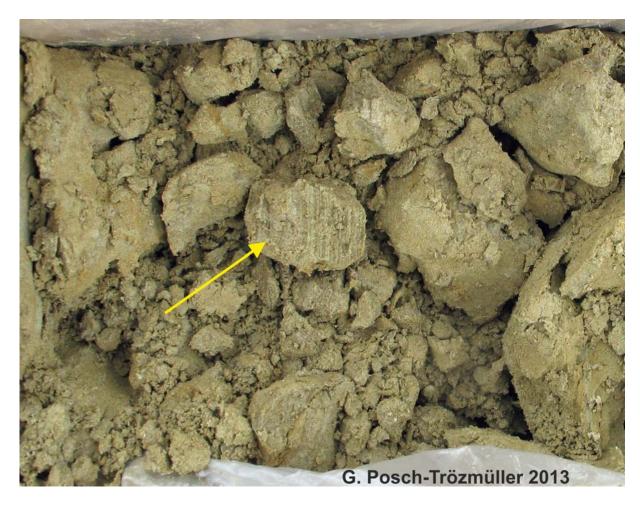


Abb. 2.4.28.: Detail von KB 6: Schichtung in 11,45 m Tiefe.

Abb. 2.4.29.: Detail von KB 6: Dünne Lage aus Kalkkonkretionen in 13,5 m Tiefe.

Abb. 2.4.30.: Detail von KB 6: Schichtung und dunkle Beläge in 14,15 m Tiefe.

Abb. 2.4.31.: Detail von KB 6: Schichtung in 14,6-14,8 m Tiefe.

Abb. 2.4.32.: Detail von KB 6: 14,8-15,0 m (ET) Tiefe: brauner, sandiger Schluff (links), grauer Schluff/Ton (rechts).

Proben und Analysen

Aus den insgesamt 26 Proben des Windparks Scharndorf wurden 12 Proben für Analysen der Gesamtmineralogie, der Tonmineralogie, der Granulometrie und der Geochemie ausgewählt. Tab. 2.4.6. gibt einen Überblick über die vorhandenen Proben und die durchgeführten Analysen.

Tab. 2.4.6.: Probenliste der Kernbohrungen des Windparks Scharndorf III mit Angabe der durchgeführten Analysen (M: Mineralogie, G: Granulometrie, Ch: Geochemie).

Probenliste Windpark Scharndorf III							
Tiefe unter GOK	Bohrtiefe	Beschreibung	Analysen				
KB 1							
0,4-0,5 m		Boden					
0,7-0,8 m		Löss	M, G, Ch				
	Bohrung						
1,1 m	0,3 m	Löss					
2,7-2,8 m	1,9-2,0 m	Kies in schluffig/ toniger, sandiger Matrix, braun bis braungrau; 1,9-2,0 m zusammengebacken (fein- körniger)	M, G, Ch				
5,4-5,8 m	4,5-5,0 m	Feinsand, grau bis leicht bräunlich					
7,5-7,6 m	6,7-6,8 m	Schluff, Grobsand, Feinkies, Kies, hellstgrau					
KB 2							
0,8-0,9 m	0,8-0,9 m	Löss	M, G, Ch				
2,8 m	2,8 m	Kies in tonig-sandiger Matrix, braun-rot	M, G, Ch (Matrix)				
9,8-9,9 m	9,8-9,9 m	Schluff, graubraun, +/- tonig, bindig, mit Mollus- kensplittern	M, G, Ch				
KB 3							
1,0-1,1 m	0,4-0,5 m	Löss	M, G, Ch				
2,5-2,6 m	1,9-2,0 m	Schluff, braun, fein geschichtet, mit etwas Kies, kalkig	M, G, Ch				
4,4-4,5 m	3,8-3,9 m	Schluff, braun - rostrot gefleckt bzw. fein geschichtet, kalkfrei	M, G, Ch				
5,3-5,4 m	4,5-4,6 m	Schluff, braun - rostrot gefleckt bzw. fein geschichtet, kalkfrei					
5,9-6,0 m	5,1-5,2 m	Schluff, zusammengebacken, mit Kies (<3 cm), schokobraun, kalkfrei					
6,3-6,4 m	5,5-6,0 m	Sand (FS-MS), rötlichbraun, mit kleinen (<2 cm), gut gerundeten Kiesen (v.a. Quarz), kalkig; ab 5,5 m: braun					
KB 6							
0,8-0,9 m	0,8-0,9 m	Löss	M, G, Ch				
1,5-1,9 m	1,5-1,9 m	Schluff, feinsandig, mit Kies					
1,8 m	1,8 m	Schalenbruchstück von ?Cardium					
2,5-2,7 m	2,5-2,7 m	Schluff, feinsandig, hell- bis mittelbraun					
4,1-4,2 m	4,1-4,2 m	Schluff, rot-graubraun gefleckt	M, G, Ch				
4,65 m	4,65 m	Molluskensplitter					
5,5-5,9 m	5,5-5,9 m	Sand (FS-MS), Kies, rot, leicht tonig					
7,2-7,4 m	7,2-7,4 m	Schluff, hellbraun	M, G, Ch				
9,4-9,5 m	9,4-9,5 m	Schluff					
13,6-13,65 m	13,6-13,65 m	Schluff					
14,85-14,95 m	14,85-14,95 m	Schluff, geschichtet, mit dünnen FS-Bestegen auf Schichtflächen	M, G, Ch				

Mineralogische Untersuchungen

Für die geplante Errichtung des Windparks Scharndorf im südlichen Wiener Becken wurden zur Vorerkundung 4 Kernbohrungen abgeteuft, die alle vor Ort lithologisch aufgenommen und ausgewählte Profilabschnitte auch beprobt wurden. Die stratigraphische Einstufung der Proben in das Quartär (Löss) und Neogen (Pannonium) basiert sowohl auf den geologischen Karten 1:200.000 von SCHNABEL et al. (2002) und der geologischen Karte 1:50.000 Blatt 60 von FUCHS et al. (1985), als auch auf Arbeiten von WESSELY (2006). Für mineralogische und korngrößenmäßige Analysen wurden 12 Proben aus vier Bohrungen ausgewählt.

Gesamtmineralogische Analysen (Abb. 2.4.33.)

Die 12 bearbeiteten Proben aus vier unterschiedlichen Bohrungen (KB1, KB2, KB3 und KB6) setzen sich stratigraphisch aus Sedimenten des Neogen (Pannonium) und Quartär (Lösse und Kiese) zusammen.

Die vier Kernbohrungen werden getrennt voneinander besprochen.

Innerhalb der *Bohrung KB2* wurden drei Sedimentproben, zwei aus quartären Sedimenten und eine aus neogenen Schichten untersucht. Am deutlichsten unterscheidet sich die hangendste Probe KB2 (0,8 m), ein Löss bzw. Schwemmlöss, aufgrund ihres hohen Gesamtkarbonatgehaltes von 40 Gew. % von den übrigen Analysen. Der Quarzanteil mit 32 Gew. % überwiegt deutlich über dem Schichtsilikatgehalt von 14 Gew. %. Innerhalb der Schichtsilikate dominieren die Glimmeranteile in der Gesamtprobe gegenüber Chlorit, Kaolinit und Smektit. Bei den Feldpäten herrscht eindeutig Plagioklas mit 10 Gew. % gegenüber Alkalifeldspat mit 4 Gew. % vor. Hervorzuheben ist auch das Vorkommen von Hornblende im Spektrum. Die Proben KB2 (2,8 m), ebenfalls Quartär, und die pannone Probe KB2 (9,8 m) weisen ± gleich hohe Schichtsilikatanteile mit knapp über 40 Gew. % auf. Bemerkenswert sind bei beiden die hohen Anteile an Smektit/Vermiculit – Phasen im Gesamtspektrum. Geringfügige Unterschiede sind im Karbonatgehalt anzutreffen, wobei die quartäre Probe Karbonat-frei ist, die neogene Probe 10 Gew. % Karbonatanteil aufweist. Der höchste Quarzanteil wurde in der quartären Kiesprobe angetroffen, welches im Wesentlichen die Korngrößenzusammensetzung widerspiegelt. Die Feldspatgehalte schwanken zwischen 10 und 15 Gew. %.

Aus der *Bohrung KB1* wurden zwei Proben aus den hangendsten quartären Schichten analysiert. Die Probe KB1 (0,7 m) unterscheidet sich aufgrund des hohen Karbonatgehaltes von 38 Gew. % von der Probe KB1 (2,7 m) mit 12 Gew. % Karbonatanteilen. Die Feldspatgehalte liegen bei unter 15 Gew. %. Der unterschiedliche Quarzgehalt spiegelt im Wesentlichen die Korngröße wider.

Sämtliche bearbeitete Proben der *Bohrung KB3* bis in eine Tiefe von knapp 5 m dürften aus quartären Sedimenten stammen. Die hohen Quarzgehalte der Proben mit bis zu 44 Gew. % stehen im Einklang mit der Korngrößenverteilung. Die Gesamtfeldspatgehalte liegen unter 20 Gew. %, Albite dominieren immer das Spektrum. Der Karbonatgehalt unterliegt großen Schwankungen mit Maximalwerten von 43 Gew. % im Hangenden bei 1,0 m bis zur vollständigen Karbonatfreiheit in der tiefsten Probe bei 4,4 m.

Innerhalb der *Bohrung KB6* sind die Unterschiede zwischen quartären und neogenen Sedimenten in der Gesamtmineralogie wesentlich prägnanter ausgebildet. Bei den quartären Proben KB6 (0,8 m) und KB6 (4,1 m) überwiegen die Quarzgehalte mit maximal 37 Gew. % über die Schichtsilikatanteile mit Maximalwerten von 26 Gew. %. Zudem weisen die Proben deutlich höhere Gesamtkarbonatgehalte

mit knapp 35 Gew. % auf, wobei Calcit über Dolomit dominiert. Die Feldspatgehalte liegen knapp über 10 Gew. %.

Die beiden pannonen Proben KB6 (7,2 m) und KB6 (14,85 m) sind deutlich feinkörniger ausgebildet, was durch eine Dominanz der Schichtsilikate mit 46 Gew. % gegenüber Quarzanteilen von maximal 28 Gew. % zum Ausdruck kommt. Die Karbonatgehalte sind markant geringer und liegen unter 15 Gew. %, es besteht im Gegensatz zum Quartär ein leichter Überhang beim Dolomit. Die Feldspatgehalte sind schwach erhöht mit maximal 17 Gew. % im Vergleich zu den quartären Proben.

Die **Korngrößenverteilungen** (Tab. 2.4.7., 2.4.8., Abb. 2.4.35.) der überwiegend quartären und untergeordnet auch pannonen Sedimente unterliegen großen Schwankungen im Kornaufbau. Das Korngrößenmaximum liegt überwiegend in der Siltfraktion, wobei der Grobsiltanteil am stärksten repräsentiert ist. Vereinzelt weisen die Sedimente höhere Kies- und Sandanteile auf. Nach der Nomenklatur von MÜLLER (1961) und FÜCHTBAUER (1959) sind sie als tonig-sandige Silte, kiesige Sandsilte, tonige Sandsilte und tonige Silte zu bezeichnen.

Sämtliche Proben sind extrem schlecht sortiert.

Die tonmineralogischen Analysen wurden an der Fraktion <2μm durchgeführt (Tab. 2.4.34.).

Generell lässt das Gesamtbild der röntgenographischen Phasenanalyse auf gute Kristallinität der Tonminerale schließen. Die Basisreflexe der Minerale sind zumeist schmal und zeigen relativ gute Intensitäten. Die hangenden quartären Proben unterscheiden sich durch etwas geringere Intensitäten und auch verbreiterte Basisreflexe.

Qualitativ sind keine Unterschiede in der Tonmineralzusammensetzung zwischen quartären und pannonen Sedimenten zu erkennen. Sämtliche Proben sind durch ein buntes Spektrum gekennzeichnet. Die Abweichungen treten in der quantitativen Zusammensetzung der Tonminerale hervor.

Die vier Bohrungen werden getrennt besprochen.

In der *Bohrung KB2* ist der Unterschied zwischen quartären und pannonen Sedimenten nicht so klar ausgeprägt wie in der Bohrung KB6.

Die quartären Proben der Bohrung KB2 (0,8 m) und (2,8 m) weisen als markanteste Abweichung deutlich höhere Kaolinit und Chloritgehalte auf. Die quantitative Zusammensetzung der quellfähigen Smektite, der Illit-Glimmergruppe und vermiculitischer Phasen schwankt beträchtlich zwischen den einzelnen Proben, sodass keine Trends innerhalb der stratigraphischen Einheiten festgestellt werden konnten.

In allen Proben konnte Goethit, ein sekundär gebildetes Eisenoxidmineral, nachgewiesen werden, das auch für die Rotfärbung der Sedimente verantwortlich ist.

Aus der *Bohrung KB1* wurden zwei Proben (KB1 0,7 m und 2,7 m) aus den hangendsten quartären Schichten analysiert. Tonmineralogisch dominieren die Illit/Hellglimmer und Chlorite das Spektrum.

Die quellfähigen Smektite erreichen Maximalwerte von 14 Gew. % und spielen nur eine untergeordnete Rolle in der Zusammensetzung. Kaolinit erreicht in der obersten Probe sehr hohe Anteile von 18 Gew. %. Vermiculit konnte nicht nachgewiesen werden.

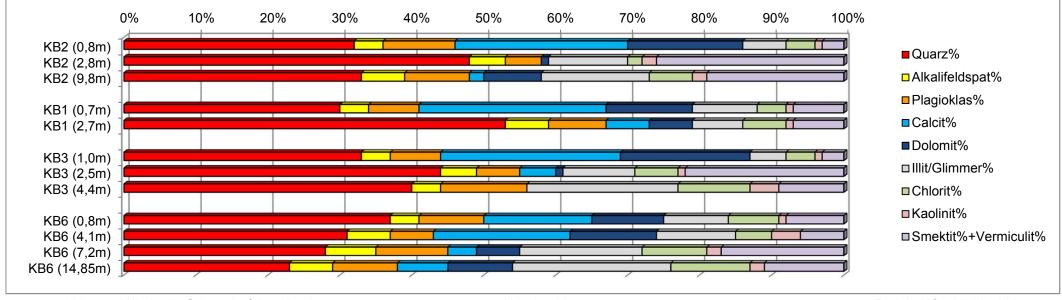
Innerhalb der *Bohrung KB3* wurden drei Proben ausgewählt. Charakteristisch für fast alle Proben ist die Illit-Hellglimmer Vormacht gegenüber den klassisch niedrig geladenen Smektiten. Kaolinit und Chloritgehalte sind vor allem in den beiden hangendsten Proben erhöht. Vermiculite sind mit bedeutenden Anteilen von bis zu 14 Gew. % in zwei Proben vertreten.

Bei der *Bohrung KB6* lassen sich Unterschiede im Tonmineralspektrum zwischen quartären und pannonen Ablagerungen erkennen.

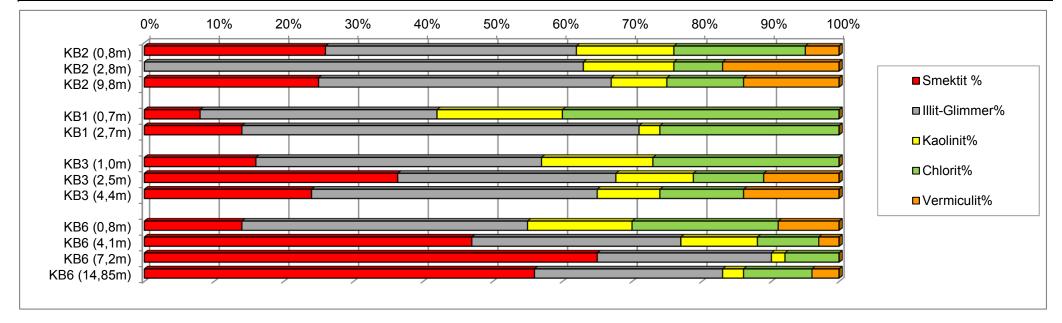
Bei den pannonen Proben KB6 (7,2 m) und KB6 (14,85 m) dominieren klassische niedriggeladene Smektite mit bis zu 65 Gew. % das Spektrum gegenüber Illit-Glimmermineralen mit Werten um 25 Gew. %. Kaolinit und Chlorit sind nur in Spuren vorhanden, Chlorit erreicht maximal 10 Gew. %. Im Gegensatz dazu weisen die quartären Proben deutlich höhere Kaolinitgehalte (bis 15 Gew. %) und Chloritanteile bis 21 Gew. % auf.

Zusammenfassend können folgende Charakteristika festgestellt werden:

Die quartären Lössproben sind in der Gesamtmineralogie durch die höchsten Karbonatgehalte gekennzeichnet. Die höheren Quarzanteile und geringeren Schichtsilikatgehalte spiegeln die gröbere Korngrößenzusammensetzung wider. Tonmineralogisch dominieren die detritären Tonminerale wie die Illit-Glimmergruppe, Chlorit und Kaolinit.


Die pannonen Sedimente sind eindeutig feinkörniger ausgebildet, es herrschen die Schichtsilikate vor. Ebenso augenfällig ist der wesentlich geringere Karbonatgehalt, ein Phänomen das mit der Aussüßung des Ablagerungsraums, dem Pannonsee, im Einklang steht.

Bei den Tonmineralen dominieren abwechselnd quellfähigen Smektite oder die Illit-Glimmergruppe. Kaolinit und Chlorit verlieren an Bedeutung im Tonmineralspektrum. Sämtliche Proben lassen aufgrund des Vorhandenseins von Vermiculitphasen im Tonmineralspektrum Verwitterungsvorgänge im Sediment erkennen.


Geochemische Untersuchungen

Alle Proben wurden an der Fachabteilung Geochemie der Geologischen Bundesanstalt auf Haupt- und Spurenelemente untersucht (Tab. 2.4.9.). Die grobkörnigeren Sedimente zeigen eine Vormacht an SiO₂, die aus den hohen Gehalten ihrer Silikatbestandteile resultieren. Die Al₂O₃-Gehalte spiegeln im Wesentlichen den Tonmineralgehalt wider und zeigen entsprechend den röntgenographischen Analysen eine Zunahme bei den feinkörnigeren Neogenproben. Die K₂O-Anteile sind sowohl für die Hellglimmeranteile als auch für die Kalifeldspatgehalte verantwortlich. Mittels des Na₂O-Gehaltes können die unterschiedlichen Feldspatgehalte (Albitanteile) ermittelt werden. Die wechselnden Gehalte an CaO und MgO sind an die Karbonatminerale Calcit und Dolomit gebunden und korrespondieren ausgezeichnet mit den röntgenographischen Ergebnissen. Bei den Spurenelementen lässt sich Barium und Rubidium sehr gut in Einklang mit den Hellglimmeranteilen und den K₂O-Gehalten bringen.

GESAMTMINE	RALOGISC	CHE ZUSAMMENS	SETZUNG							
									Smektit% +Vermicul	
Probenummer	Quarz%	Alkalifeldspat%			Dolomit%	Illit/Glimmer%	Chlorit%	Kaolinit%		Lithologie /Stratigraphie
KB2 (0,8m)	32	4	10	24	16	6	4	1	3	Schluff, kiesig (Schwemmlöss, Quartär)
KB2 (2,8m)	48	5	5	0	1	11	2	2	26	Sand, Schluff, Kies (Quartär)
KB2 (9,8m)	33	6	9	2	8	15	6	2	19	Schluff, graubraun (Pannonium)
KB1 (0,7m)	30	4	7	26	12	9	4	1	7	Schluff (Löss, Quartär)
KB1 (2,7m)	53	6	8	6	6	7	6	1	7	Feinsand (Quartär?)
KB3 (1,0m)	33	4	7	25	18	5	4	1	3	Schluff (Löss, Quartär)
KB3 (2,5m)	44	5	6	5	1	10	6	1	22	Feinsand (Quartär?)
KB3 (4,4m)	40	4	12	0	0	21	10	4	9	Schluff, rostrot (Quartär?)
KB6 (0,8m)	37	4	9	15	10	9	7	1	8	Schluff (Löss, Quartär)
KB6 (4,1m)	31	6	6	19	12	11	5	4	6	Schluff, Kalkausfällungen (Löss,Quartär)
KB6 (7,2m)	28	7	10	4	6	17	9	2	17	Schluff, braungrau (Pannonium)
KB6 (14,85m)	23	6	9	7	9	22	11	2	11	Schluff, Sand, Ton, grau (Pannonium)

TONMINERALOGISCHE ZUSAMMENSETZUNG								
Probenummer	Smektit %	Illit-Glimmer%	Kaolinit%	Chlorit%	Vermiculit%	Goethit	Biotit	Lithologie /Stratigraphie
KB2 (0,8m)	26	36	14	19	5	Spuren	ja	Schluff, kiesig (Schwemmlöss, Quartär) Hornblende
KB2 (2,8m)	0	63	13	7	17	ja	nein	Sand, Schluff, Kies (Quartär)
KB2 (9,8m)	25	42	8	11	14	ja	nein	Schluff, graubraun (Pannonium)
KB1 (0,7m)	8	34	18	40	0	ja	nein	Schluff (Löss, Quartär)
KB1 (2,7m)	14	57	3	26	0	nein	nein	Feinsand (Quartär?)
KB3 (1,0m)	16	41	16	27	0	nein	nein	Schluff (Löss, Quartär)
KB3 (2,5m)	36	31	11	10	11	ja	nein	Feinsand (Quartär?)
KB3 (4,4m)	24	41	9	12	14	ja	nein	Schluff, rostrot (Quartär?)
			_			_		
KB6 (0,8m)	14	41	15	21	9	ja	ja	Schluff (Löss, Quartär) Hydrobiotit
KB6 (4,1m)	47	30	11	9	3	ja	ja	Schluff, Kalkausfällungen (Löss, Quartär) Mixed-Layer
KB6 (7,2m)	65	25	2	8	0	ja	nein	Schluff, braungrau (Pannonium) Hydrobiotit
KB6 (14,85m)	56	27	3	10	4	nein	ja	Schluff, Sand, Ton, grau (Pannonium)

KORNGRÖSSENUNTERSUCHUNGEN

	Müller (1961) & Füchtbauer (1959)														V	Vinkler (19	54)
Probe	Benennung					Gewichtsprozent											
Probe	Sand-Silt-Ton						Kies			Sand			Silt		Ton	2-20 µm	> 20 µm
	Kies-Sand-Silt					Gkies	Mkies	Fkies	Gsand	Msand	Fsand	Gsilt	Msilt	Fsilt	< 2 µm		
		Kies	Sand	Silt	Ton												
KB1 (0,7m)	tonig-sandiger Silt	0,0	15,5	67,9	16,6				0,2	1,9	13,4	35,0	18,2	14,7	16,6	32,9	50,5
KB1 (2,7m)	kiesiger Sandsilt	24,4	32,6	28,5	14,4		10,7	13,7	4,7	11,4	16,5	10,3	8,3	9,9	14,4	18,2	67,4
KB2 (0,8m)	toniger Sandsilt	0,3	33,0	55,2	11,5			0,3	0,8	5,6	26,6	31,1	12,4	11,7	11,5	24,1	64,4
KB2 (2,8m)	sandiger Siltkies	54,7	17,3	18,2	9,8	4,0	28,9	21,7	4,2	5,6	7,5	7,7	5,3	5,2	9,8	10,5	79,7
KB2 (9,8m)	tonig-sandiger Silt	0,1	10,2	68,6	21,1			0,1	0,2	0,5	9,5	36,2	18,8	13,6	21,1	32,4	46,5
KB3 (1,0m)	toniger Sandsilt	0,04	29,9	58,5	11,5			0,04	0,6	3,9	25,5	36,4	12,9	9,2	11,5	22,0	66,4
KB3 (2,5m)	toniger Sandsilt	3,6	30,9	40,5	25,0			3,6	4,7	12,4	13,8	18,7	12,0	9,8	25,0	21,8	53,2
KB3 (4,4m)	sandiger Tonsilt	0,04	14,3	59,8	25,9			0,04	0,2	1,6	12,6	27,8	16,7	15,3	25,9	32,0	42,1
KB6 (0,8m)	tonig-sandiger Silt	0,0	11,0	73,0	16,0				0,1	1,2	9,8	35,7	23,6	13,6	16,0	37,3	46,7
KB6 (4,1m)	tonig-sandiger Silt	0,5	12,4	67,2	19,9			0,5	1,0	0,9	10,5	33,3	19,9	14,0	19,9	33,9	46,3
KB6 (7,2m)	tonig-sandiger Silt	0,0	22,4	58,7	18,8				0,04	0,2	22,2	25,7	18,6	14,5	18,8	33,1	48,1
KB6 (14,85m)	toniger Silt	0,03	7,1	74,2	18,6			0,03	0,1	0,2	6,9	23,5	31,1	19,6	18,6	50,8	30,6

KORNGRÖSSENUNTERSUCHUNGEN

	Statistische Parameter											
Probe		M	omentverfahre	n	Folk, F	R.L. & Ward, W. ((1957)		k Wor	te (m/s)		
Probe	Sortierung	Arithmet.	Standard-	Schiefe	Arithmet.	Standard-	Schiefe	U	K-vver	te (III/S)		
		Mittelwert	Abweichung	Scriiere	Mittelwert	Abweichung	Schleie		Beier	Bialas		
KB1 (0,7m)	extrem schlecht sortiert	6,43	2,95	1,10	6,22	2,72	0,42	36,01	5,30E-09	4,20E-09		
KB1 (2,7m)	extrem schlecht sortiert	3,62	4,90	0,39	3,22	5,10	0,09	209,76	5,90E-09	1,10E-08		
KB2 (0,8m)	extrem schlecht sortiert	5,42	2,76	0,97	5,33	2,55	0,43	32,85	1,70E-08	1,60E-08		
KB2 (2,8m)	extrem schlecht sortiert	1,01	5,11	0,94	0,66	4,88	0,68	2489,92	2,60E-08	3,40E-07		
KB2 (9,8m)	extrem schlecht sortiert	6,77	2,96	0,91	6,65	2,79	0,45	51,78	1,80E-09	1,70E-09		
KB3 (1,0m)	extrem schlecht sortiert	5,52	2,84	1,37	5,35	2,51	0,47	31,92	1,50E-08	2,60E-08		
KB3 (2,5m)	extrem schlecht sortiert	6,23	4,60	0,51	5,98	4,70	0,29	469,84	6,60E-11	4,10E-10		
KB3 (4,4m)	extrem schlecht sortiert	7,16	3,38	0,75	6,96	3,25	0,33	97,53	3,40E-10	6,60E-10		
KB6 (0,8m)	extrem schlecht sortiert	6,49	2,69	1,08	6,36	2,48	0,39	28,67	5,10E-09	5,40E-09		
KB6 (4,1m)	extrem schlecht sortiert	6,73	3,22	0,84	6,59	2,95	0,42	59,79		2,30E-09		
KB6 (7,2m)	extrem schlecht sortiert	6,60	3,12	1,08	6,40	2,93	0,37	63,28		2,90E-09		
KB6 (14,85m)	sehr schlecht sortiert	7,09	2,59	0,91	6,89	2,49	0,22	18,28	3,70E-09	2,90E-09		

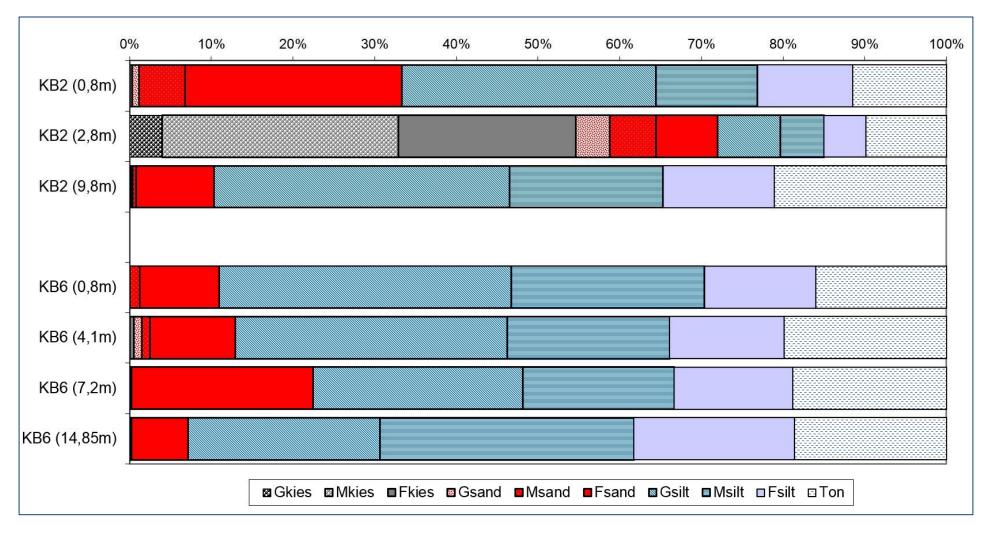


Abb. 2.4.35.: Korngrößen – Diagramm.

Tab. 2.4.9.a.: Geochemische Analysen der Proben aus dem Windpark Scharndorf III.

	Scharn-	Scharn-	Scharn-	Scharn-
GCH-2014-002	dorf	dorf	dorf	dorf
Bezeichnung	KB2 0,8m	KB2 2,8m	KB2 9,8m	KB6 0,8m
SiO ₂ (%)	44,0	69,0	60,0	51,0
TiO ₂ (%)	0,5	0,8	0,8	0,7
Al ₂ O ₃ (%)	6,0	14,5	13,6	9,9
FeO (%)	2,6	4,9	5,1	4,3
MnO (%)	0,0	0,1	0,1	0,1
MgO (%)	3,2	1,5	3,2	3,1
CaO (%)	20,5	0,9	4,2	12,2
Na ₂ O (%)	0,4	0,6	1,0	0,6
K ₂ O (%)	1,2	2,3	2,8	2,0
P_2O_5 (%)	0,0	0,0	0,1	0,1
SO ₃ (%)	0,1	0,1	0,1	0,1
H ₂ O ^{110° C} (%)	0,3	1,4	1,0	0,8
H2O+ (%)	1,3	3,2	2,7	1,3
CO2 (%)	19,4	0,6	4,9	13,2
As (ppm)	5	31	23	16
Ba (ppm)	222	393	482	352
Cd (ppm)	< 1	< 1	< 1	< 1
Ce (ppm)	50	66	79	75
Co (ppm)	7	16	19	17
Cr (ppm)	76	78	76	72
Cs (ppm)	4	7	7	5
Cu (ppm)	17	25 32	26	23
La (ppm)	24 10	15	39 17	36 15
Nb (ppm) Nd (ppm)	20	25	34	30
Ni (ppm)	9	37	44	27
Pb (ppm)	16	26	26	22
Pr (ppm)	7	7	10	9
Rb (ppm)	58	107	124	91
Sr (ppm)	200	82	130	150
Th (ppm)	6	6	9	8
U (ppm)	< 1	< 1	< 1	< 1
V (ppm)	66	91	99	97
Y (ppm)	22	21	32	35
Zn (ppm)	43	69	93	66
Zr (ppm)	274	294	285	346
Summe (ppm)	1236	1541	1772	1617
Summe (%)	0,12	0,15	0,18	0,16
Gesamtsumme (%)	99,7	100,0	99,7	99,5
(' * /			, .	,

Tab. 2.4.9.b.: Geochemische Analysen der Proben aus dem Windpark Scharndorf III.

	Calcama	Calcarre	
GCH-2014-002	Scharn- dorf	Scharn- dorf	Scharndorf
GCH-2014-002			KB6
Bezeichnung	KB6 4,1m	KB6 7,2m	14,85m
SiO ₂ (%)	47,0	56,0	50,4
TiO ₂ (%)	0,7	0,9	0,9
Al ₂ O ₃ (%)	9,8	13,9	14,8
FeO (%)	4,2	6,5	5,6
MnO (%)	0,1	0,1	0,1
MgO (%)	3,3	3,6	4,8
CaO (%)	14,9	5,0	6,8
Na ₂ O (%)	0,6	0,9	0,7
K ₂ O (%)	2,0	3,1	3,2
P ₂ O ₅ (%)	0,1	0,1	0,1
SO ₃ (%)	0,1	0,1	0,1
H ₂ O ^{110° C} (%)	0,8	1,0	1,3
H2O+ (%)	2,2	3,0	3,2
CO2 (%)	14,2	5,7	7,4
As (ppm)	5	17	17
Ba (ppm)	336	499	578
Cd (ppm)	< 1	< 1	< 1
Ce (ppm)	65	82	77
Co (ppm)	16	25	24
Cr (ppm)	76	106	115
Cs (ppm)	5	8	9
Cu (ppm)	26	29	37
La (ppm)	31	38	38
Nb (ppm)	14	18	19
Nd (ppm)	26	33	34
Ni (ppm)	25	42	51
Pb (ppm)	21	26	33
Pr (ppm)	7	9	9
Rb (ppm)	91	134	154
Sr (ppm)	169	128	154
Th (ppm)	6	8	9
U (ppm)	< 1	< 1	< 1
V (ppm)	97	125	144
Y (ppm)	28	32	32
Zn (ppm)	70	103	119
Zr (ppm)	291	280	223
Summe (ppm)	1518	2104	2002
Summe (%)	0,15	0,21	0,20
Gesamtsumme	100.0	100 0	00 5
(%)	100,0	100,0	99,5

Dokumentation zweier ehemaliger Kiesgruben in der Umgebung

Die Bezeichnungen der Kiesgruben beziehen sich auf die Abbaudatenbank der Geologischen Bundesanstalt. Bezüglich der Lage siehe Abb. 2.4.1.

060/029

Die Größe der Grube wurde auf dem Laserscan vermessen, die W-Wand misst 217 m Länge, die S-Wand 209 m, die NE-Wand beträgt 243 m, die E-Wand ist 90 m lang.

Das bestimmende Element der Grube ist die W-Wand, diese ist geschätzt bis zu 10 m hoch (Abb. 2.4.36., 2.4.38.).

Der Abbau ist durch seine erhöhte Lage, sowie seine auffällige rote westliche Abbauwand aus nordöstlicher Richtung bereits von weitem sichtbar. Auffällig ist, dass es kaum Überlagerung durch Löss gibt, zumeist ist direkt unter dem bis 30 cm mächtigen Mutterboden bereits der rote Kiessand aufgeschlossen. Die wenigen Bereiche, in denen zwischen dem Boden und dem Kiessand geringmächtige Lösslagen entwickelt sind, wurden und werden offenbar intensiv durch Vögel (Bruthöhlen) genutzt (Abb. 2.4.37.).

In der W-Wand sind keilförmige Kryoturbationen sichtbar, die geschätzt maximal 1,5 m unter GOK in den Kiessand eingreifen.

Bei den Kiesen ist Quarz dominant (Abb. 2.4.39.), untergeordnet treten auch kristalline Gesteine (dunkle Schiefer, Gneise) auf. Die beobachteten Korngrößen der Kiese betragen maximal 15 cm im Durchmesser, die meisten Komponenten weisen Durchmesser von weniger als 5 cm auf. Die Rundung ist zumeist sehr gut bis gut, die Kiese sind nicht verkrustet/ verkittet.

Die Matrix der Kiese besteht aus tonig/ schluffigem Sand.

Abb. 2.4.36.: Kiesgrube 060/029, Blickrichtung etwa W bis SW. In der geologischen Karte ist die Lokalität mit "Rotenbergen" bezeichnet, die aufgeschlossene rote (W-) Wand lässt dies plausibel erscheinen.

Abb. 2.4.37.: Löcher im Löss/ Lösslehm, welche von Vögeln als Bruthöhlen genutzt werden in der NE-Wand der Kiesgrube.

Abb. 2.4.38.: Kryoturbationen in den oberen 1,5 m der W-Wand der Kiesgrube.

Abb. 2.4.39.: Halde unterhalb der westlichen Kiesgrubenwand.

060/197

Die ehemalige Kiesgrube am Wartberg (2.4.40.) ist größtenteils verwachsen, der N-Teil wird außerdem als Grünschnitt-Deponie verwendet. Die Größe der Grube beträgt etwa 80 x 40 m, die Abbauwand ist maximal 4 m hoch (Abb. 2.4.41.).

An einigen wenigen Stellen kann man erkennen, dass unter dem Mutterboden gleich der Kiessand aufgeschlossen ist, es gibt keine Überlagerung durch Löss.

Abb. 2.4.40.: Blick auf den Wartberg von W (Bildmitte), im Hintergrund links ist der Hundsheimer Berg zu sehen.

Abb. 2.4.41.: Blick in die völlig verwachsene ehemalige Kiesgrube am Wartberg.

2.5. Dokumentation des Rohrgrabens der EVN Gasleitung West 4 – Westschiene zwischen Kapelln und Amstetten (ÖK 38, 53, 54, 55, 56)

St. Ćorić

Am 20. November 2014 wurde die Erdgas-Hochdruck-Leitung "West 4 – Westschiene" eröffnet. Diese 150 m lange Pipeline reicht von Auersthal im Osten bis Amstetten im Westen, wo sie in das bestehende Netz einbindet. Sie läuft auf weiten Strecken parallel zur bestehenden West 2 – Leitung und dient vor allem der Erhöhung der Versorgungssicherheit im westlichen Niederösterreich (https://www.evn.at). Der Baubeginn durch die EVN erfolgte im Juni 2011, bereits ab März 2011 wurden Erkundungsmaßnahmen vorgenommen.

Die 150 m lange Trasse wurde in 3 Abschnitten bzw. Baulosen erbaut (Abb. 2.5.1.), wobei das Baulos A von Ost nach West den Abschnitt Auersthal bis Tulln/ Langenschönbichl (ÖK 39, 40, 41, 42) umfasst und eine Länge von 59 km aufweist. Mit 69 km der längste Abschnitt, besteht Baulos B aus der Strecke Langenschönbichl - Petzenkirchen/ Holzing (ÖK 38, 39, 54, 55, 56). Der westlichste Teil, Baulos C, hat eine Länge von 21 km und reicht von Petzenkirchen/ Holzing bis Amstetten (ÖK 53, 54).

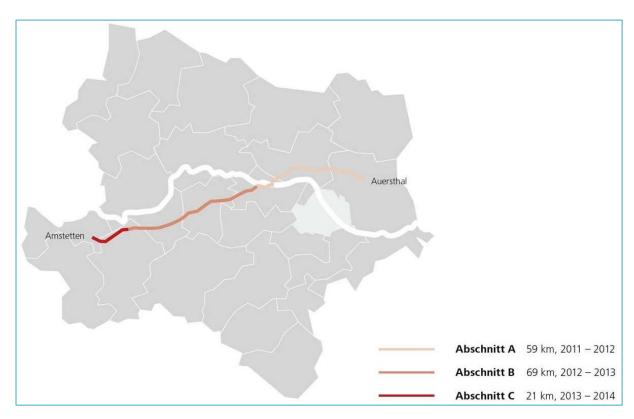


Abb. 2.5.1.: Übersicht über die Gliederung der Gasleitung West 4 - Westschiene in die drei Baulose A, B, C (Pressemeldung der EVN vom 20.11.2014, https://www.evn.at/EVN-AT/files/b2/b25839ab-7902-4d76-a4fb-33d271488bc6.jpg, zuletzt abgerufen am 25.2.2015).

Seit März 2011 wurden sämtliche Erkundungsmaßnahmen wie Probeschürfe und Bohrungen, aber ganz besonders auch der Bau des Rohrgrabens selbst von Mitarbeitern der Geologischen Bundesanstalt genutzt, um die kurzfristig entstandenen Aufschlüsse zu dokumentieren und zu beproben.

Einzelne Abschnitte des **Bauloses A** wurden während der Errichtung des Rohrgrabens von G. Posch-Trözmüller, St. Ćorić, H. Gebhardt, R. Roetzel und A. Gruber dokumentiert, die besonders detaillierten Aufnahmen zwischen Wiesen und dem Wagram E Goldgeben im Maßstab 1:10.000 von R. Roetzel und St. Ćorić wurden von B. Atzenhofer als schematischer Profilschnitt mit Hilfe von GIS dargestellt.

Im Zuge der Vorerkundungen für das **Baulos B** wurden von St. Ćorić und R. Roetzel insgesamt 50 Probeschürfe dokumentiert und beprobt. Weiters wurden im Bereich von Baulos B an den Querungen der Trasse mit größeren Wasserläufen Kernbohrungen abgeteuft. Von E nach W sind dies: Drei Bohrungen an der Traisen, zwei Bohrungen an der Pielach, und vier Bohrungen an der Erlauf, welche alle in der zweiten Jahreshälfte 2012 von G. Posch-Trözmüller, R. Roetzel und St. Ćorić aufgenommen wurden.

Von einer Reihe von Proben wurden Analysen der Gesamt- und Tonmineralogie (M. Peresson), der Granulometrie (J. Rabeder) und der Geochemie (G. Hobiger) durchgeführt.

Die Ergebnisse dieser Aufnahmen wurden in den Baustellenberichten seit dem Jahr 2011 dokumentiert (POSCH-TRÖZMÜLLER & PERESSON, 2011, 2012, 2013). Außerdem wurden im Rahmen der Arbeitstagung der Geologischen Bundesanstalt 2013 "Geologie der Kartenblätter 55 Ober-Grafendorf und 56 St. Pölten" vom 23.-27. September in Melk zwei Poster mit Beiträgen im Tagungsband zu Baustellendokumentationen präsentiert, wobei das Poster mit dem Titel "Neue Bauaufschlüsse – Neues Geowissen: Niederösterreich: Baustellendokumentation auf den Kartenblättern 55 Ober-Grafendorf und 56 St. Pölten" (POSCH-TRÖZMÜLLER, PERESSON, LIPIARSKI, ĆORIĆ, 2013) neben anderen Baulosen auf den entsprechenden Kartenblättern die Dokumentation der Westschiene kurz zusammenfasst. Genauer präsentiert wurde die Baudokumentation der Westschiene in dem Poster "Baudokumentation entlang der EVN-Gaspipeline "West 4-Westschiene" auf den Kartenblättern 38 Krems an der Donau, 55 Ober-Grafendorf und 56 St. Pölten" (POSCH-TRÖZMÜLLER, ĆORIĆ, ROETZEL, PERESSON, 2013).

Von Sommer 2012 bis Jänner 2014 wurde von St. Ćorić während der Errichtung des Rohrgrabens die geologische Situation von Baulos B und Baulos C von Kapelln (ÖK 38) bis Amstetten nahezu lückenlos im Maßstab 1:2.000 aufgenommen, die im Folgenden präsentiert wird. Als Kartiergrundlage wurden die Lagepläne der EVN Netz GmbH im Maßstab 1:2.000 verwendet. Auf den Plänen ist die Geologie immer an der N-Flanke der Künette dargestellt. In Abschnitten, in denen eine direkte Aufnahme der N-Flanke nicht möglich war, wurde die S-Flanke aufgenommen, für die Darstellung aber auf die N-Flanke projiziert. Außerdem wurden Fotos sowie Detaillegenden direkt auf den Plänen dargestellt. Eine Übersicht über diese Pläne ist in Abb. 2.5.3. bis 2.5.7. dargestellt. Die Pläne selbst liegen in digitaler Form auf einer CD dem Bericht bei, Abb. 2.5.8. gibt ein Beispiel für die detaillierte Aufnahme.

Geologische Einführung

Die Trasse von Baulos B und C liegt südlich der Donau. Vom Tullnerfeld an verläuft sie nördlich der Flyschzone zur Gänze im Bereich der Molassezone mit deren quartären Überlagerungen. Zwischen St. Pölten und Ybbs wird außerdem die kristalline Unterlagerung der Molasse, der moldanubische Thaya-Batholith, angeschnitten (Abb. 2.5.2.).

Im Folgenden werden die relevanten Formationen (Legendeneinträge) beschrieben, die im Zuge des Auffahrens der Künette angeschnitten wurden.

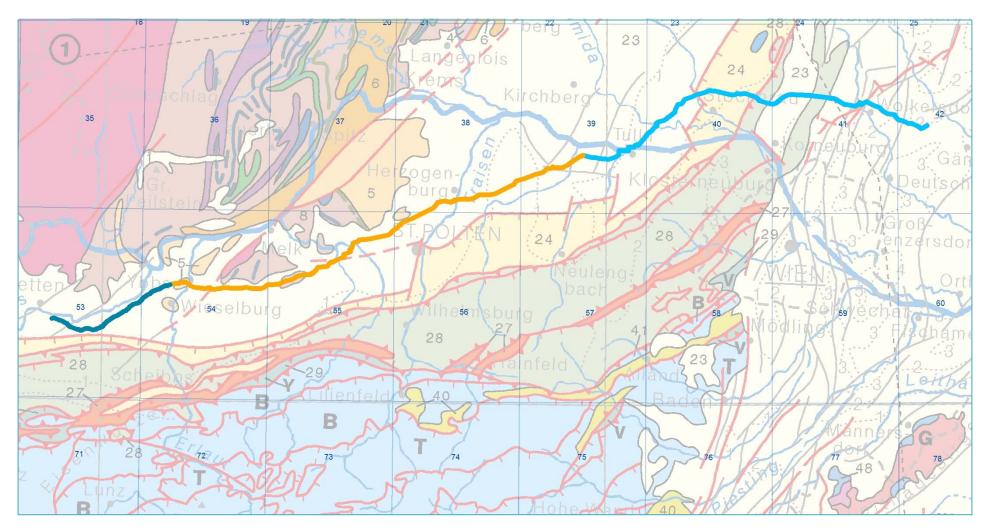


Abb. 2.5.2.: Verlauf der Trasse auf der geologischen Karte von Österreich 1:1.5.000.000 (Ausschnitt, verkleinert; Quelle: Rocky Austria 2002 (KRENMAYR, HOFMANN (Hg., 2002).

Quartäre Sedimente

Anthropogene Ablagerungen: Anthropogene Ablagerungen wurden beispielsweise im Bereich von Straßen eingetragen.

Lehm, dunkel (Auelehm): Dunkle, meist siltig-tonige Auelehme traten meist als jüngste Ablagerungen auf, teilweise als Bildungen über Löss oder Terrassenkiesen. Im Bereich von St. Leonhard am Forst (ÖK 54, Plan 562) wurden diese auch im Liegenden von Löss und Lösslehm beobachtet, hier enthielten sie Pflanzenreste.

Ton, Schluff, Sand, Kies (Alluvium): Alluviale Bildungen aus Ton, Schluff, Sand und Kies waren entlang der Trasse häufig aufgeschlossen, besonders an Querungen von Bächen.

Ton, Schluff, Sand (Anmoor): Anmoorige Ablagerungen traten meist nur in geringen Mächtigkeiten auf, zumeist waren sie leicht sandig ausgeprägt und enthielten verkohlte Holzreste (Äste, Stämme).

Bodenbildung (dunkelbrauner Lehm): Bodenbildungen traten zumeist im Zusammenhang mit Löss in Form von Paläoböden auf.

Quartäre Rinne (Lehm, Löss, Sandstein): Quartäre Rinnen mit einer Füllung aus Lehm, Löss oder Sandstein (aus der Traisen-Fm.) waren gelegentlich zu beobachten. Zumeist reichte ihre Tiefenerstreckung nicht über die Sohle der Künette hinaus.

Schotter der Terrasse: Hier wurden Terrassenschotter zusammengefasst, die noch nicht zugeordnet werden konnten.

Schotter der Niederterrasse (Traisen): Niederterrassenschotter der Traisen waren westlich der Querung der Trasse mit der Traisen aufgeschlossen. Gebildet werden diese aus fluviatilen Kiesen und Sanden der Würmeiszeit.

Schotter der Hochterrasse (Traisen): Westlich der Traisenquerung waren über wenige Meter Hochterrassenablagerungen in der Künette zu sehen, überlagert von solifluidalen Ablagerungen und Löss. Gebildet werden Ablagerungen der Hochterrasse aus fluviatilen Kiesen und Sanden der Risseiszeit, zumeist finden sich würmzeitliche Lösse oder Lösslehme als Überlagerung. Auch ist eine deutlich stärkere Verwitterung gegenüber der Niederterrasse zu erwarten.

Deckenschotter: Die fluviatilen Kiese und Sande der älteren Eiszeiten (Günz und Mindel) wurden hier zusammengefasst. Sie zeichnen sich vor allem durch tiefergründige und stärkere Verwitterung aus, weiters ist meist eine mächtige Deckschicht aus Lösslehm und Löss entwickelt.

Ton, siltig bis feinsandig, braun, Lehm, Lösslehm, solifluidal umgelagert: Unter diesem Legendenpunkt wurden verschiedene Tone und Lehme zusammengefasst, insbesondere Lösslehm, aber auch polygenetische Sedimente, sowie solifluidal umgelagerte Lehme, Lösslehme und Tone.

Ton, siltig bis feinsandig, grau, Lehm: Hierbei handelt es sich vermutlich um stark verwitterten Schlier.

Silt, tonig, gelblich, kalkhaltig; Löss: Auf nahezu allen Detailplänen der Trasse findet sich Löss als Überlagerung. Dieser ist meist gelbbraun, tw. feinsandig ausgebildet, stark kalkhaltig und beinhaltet teilweise viele Lössschnecken und Kalkkonkretionen (Lösskindel).

Lehm: Als "Lehm" wurden genetisch nicht näher definierbare Decklehme bezeichnet, die nicht solifluidal beeinflusst wurden.

Schotterlage, Gerölle aus Kristallin: Lagen aus kristallinen Geröllen wurden im Besonderen NW von St. Pölten durch die Künette aufgeschlossen. Hier verläuft die Trasse knapp südlich des Dunkelsteiner Waldes.

Ablagerungen der Molassezone

Badenium

Hollenburg-Karlstetten-Formation (unteres Badenium): Mergel und Schotter der Hollenburg-Karlstetten-Fm. wurden in der Künette nördlich von St. Pölten (ÖK 38, Plan 544) angetroffen. Diese werden als submarine Deltaschüttungen eines Vorläufers der Traisen interpretiert (ROETZEL, 2002).

Ottnangium

Traisen-Formation (vormals Oncophora-Schichten), oberes Ottnangium

Im Jahr 2013 wurden die niederösterreichischen *Oncophora*-Schichten von den oberösterreichischen und bayerischen *Oncophora*-Schichten abgetrennt und als Traisen-Formation neu definiert (GEB-HARDT et al., 2013).

Innerhalb der Traisen-Fm. wird nach der Art ihrer Ausbildung unterschieden zwischen:

- Traisen-Fm., dominierend sandig,
- Traisen-Fm., dominierend tonig,
- Traisen-Fm., sandig/tonig; mit Konkretionen,
- Traisen-Fm., sandig/ tonig; mit Tonklasten.

Die Ablagerung der Traisen-Fm. erfolgte zwischen St. Pölten und Tulln im höheren Ottnang auf die Ablagerung des *Robulus*-Schliers (tieferes Ottnang). Sie erreicht eine große Mächtigkeit und besteht aus gelblichgrauen, geschichteten, glimmerigen Sanden und Schluffen mit Lagen kalkarmer Tonmergel. Gelegentlich enthält sie Ligniteinschaltungen und Pflanzenreste. Die Sande sind z.T. sandsteinartig verhärtet, auch Kieseinschaltungen sind untergeordnet vertreten. Benannt wurden die *Oncophora*-Schichten ursprünglich nach der Muschel *Oncophora* bzw. *Rzehakia*, einer kleinen Brackwassermuschel, die in Flussdeltas lebte. Ansonsten sind sie relativ fossilarm. Die Traisen-Fm. wurde teilweise in seichten, brackisch-limnischen Verhältnissen abgelagert, im Trogbereich ist allerdings ein tiefes, vollmarines Bildungsmilieu anzunehmen, welches Turbidite mit unvollständiger Bouma-Zyklizität hervorbrachte. Trübeströme und Eingleitungen aus seichten Bereichen dürften wegen der herannahenden Schubmasse des Orogens eine große Rolle gespielt haben. Die Anlieferung des Materials wird von Osten her angenommen. Aus Bohrkernen sind intensive Wechsellagerungen von feinkörnigen Sandsteinen und schluffigen laminierten Tonsteinen, graded bedding, Parallellamination und convolute bedding bekannt (WESSELY, 2006, SCHNABEL et al., 2002).

Robulus-Schlier (Mergel, Silt, Sand; Sandstein), unteres Ottnangium: Es wird zwischen dem Verwitterungbereich des *Robulus-Schlier* (stark verwittert) und *Robulus-Schlier* (weniger stark bis unverwittert) unterschieden.

Im Zuge der von W nach NE fortschreitenden Ottnangtransgression im Molassetrog wird zwischen Enns und Erlauf Eggenburgium abgelagert, östlich der Erlauf setzt die Ablagerung des *Robulus*-Schlier im Unteren Ottnangium ein. Westlich der Traisen werden im höheren Ottnangium "*Oncophora*-Schichten" (Traisen-Fm.) sedimentiert (WESSELY, 2006). Der *Robulus*-Schlier wird westlich von Mank mit dem Haller Schlier (Eggenburgium) als Sandstreifenschlier zusammengefasst. Es handelt sich beim *Robulus*-

Schlier um graue, teilweise sandige, gebankte bis geschichtete Schluffe bis Tonmergel, die im tiefen Sublittoral gebildet wurden (ROETZEL, 2002).

Prinzersdorf-Formation (Sand, fein-/ mittelkörnig), unteres Ottnangium: Die "Prinzersdorfer Sande" bestehen aus glimmerreichen Fein- bis Mittelsanden, die in enger Wechsellagerung mit dem *Robulus*-Schlier stehen. Sie stellen eine submarine Rinnen- und Gezeitenfazies innerhalb des *Robulus*-Schliers dar (ROETZEL, 2002). In der Künette wurden sie NE bis N von Prinzersdorf angetroffen (ÖK 55, Plan 549, 550, 551). Hier trat neben Fein- bis Mittelsand auch selten Grobsand auf. Oft wurden Bioturbationen beobachtet. Die Sande zeigten selten ebene Schichtung, zumeist war Schrägschichtung zu sehen. Hin und wieder traten geringmächtige (10 cm) Lagen aus Mergel auf.

Silt, tonig; braun/ grau; stark verwitterter Schlier, Schichtung erkennbar; unteres Ottnangium?: Unter diesem Eintrag wurden Ablagerungen SE Neumarkt an der Ybbs (ÖK 54, Plan 568) bezeichnet, die nicht genau zugeordnet werden konnten, möglicherweise handelt es sich hier um *Robulus*-Schlier.

Egerium

Älterer Schlier (dunkler Tonmergel), oberes Egerium: Im Hangenden der Linz-Melk-Fm., und ebenfalls damit lateral verzahnt, tritt Älterer Schlier auf. Dabei handelt es sich um braune bis schwarzbraune, meist geschichtete tonige Schluffe und sandige Tonsteine und –schiefer, die am Schelf im Bereich der mittleren Sublittoralzone abgelagert wurden. Der Ältere Schlier repräsentiert den Beginn der Trogfazies der Molassezone (ROETZEL, 2002, WESSELY, 2006). Oft konnten Fischschuppen darin beobachtet werden.

Glaukonitsandstein; Sandstein-Ton-Wechsellagerung (Egerium): Zwischen dem Älteren Schlier und dem *Robulus-*Schlier wurde auf zwei Plänen (ÖK 54, 55, Plan 556, 560) durch die Künette Glaukonitsandstein aufgeschlossen. Dieser präsentierte sich als grün-gelbliche Wechsellagerung von Sandstein und Ton, wobei überwiegend Sandstein zu beobachten war. Das Vorkommen auf Plan 560 zeigte Tektonisierung.

Linz-Melk-Formation (Sand, fein-/ mittelkörnig), Kiscellium-Egerium: Die Linz-Melk-Fm. bzw. die "Linzer/ Melker Sande" sind quarzreiche, karbonatfreie und meist fossilleere Fein- bis Grobsande, die oft direkt auf dem kristallinen Grundgebirge liegen oder auch über der Pielach-Fm. abgelagert wurden (ROETZEL, 2002; vgl. auch Kapitel 2.1.1. Neue Aufschlüsse durch die Verbreiterung der A1 (Westautobahn) Abschnitt Ybbs-Pöchlarn; dieser Band).

Konglomerate mit gut gerundeten Kristallingeröllen (Basalkonglomerate der Linz-Melk-Formation): Auf dem Plan Nr. 558 waren über eine längere Strecke (über 150 m) bis zu 2 m mächtige Basalkonglomerate der Linz-Melk-Fm. aufgeschlossen. Diese bestehen aus eher locker gelagerten, gut gerundeten Kristallingeröllen in einer sandigen Matrix (vgl. auch Kapitel 2.1.1. Neue Aufschlüsse durch die Verbreiterung der A1 (Westautobahn) Abschnitt Ybbs-Pöchlarn; dieser Band).

Kristallin der Böhmischen Masse, Graunulit, Paragneis: Die Künette verläuft im Wesentlichen südlich des Kristallins der Böhmischen Masse, stellenweise wurde dieses jedoch angeschnitten. Im Wesentlichen handelte es sich dabei um Paragneis (Plan. 556, 557, 558) und um Moldanubischen Granulit (Plan 547, 565, 566), einen granitfaziellen mylonitischen Orthogneis (vgl. auch Kapitel 2.1.1. Neue Aufschlüsse durch die Verbreiterung der A1 (Westautobahn) Abschnitt Ybbs-Pöchlarn; dieser Band).

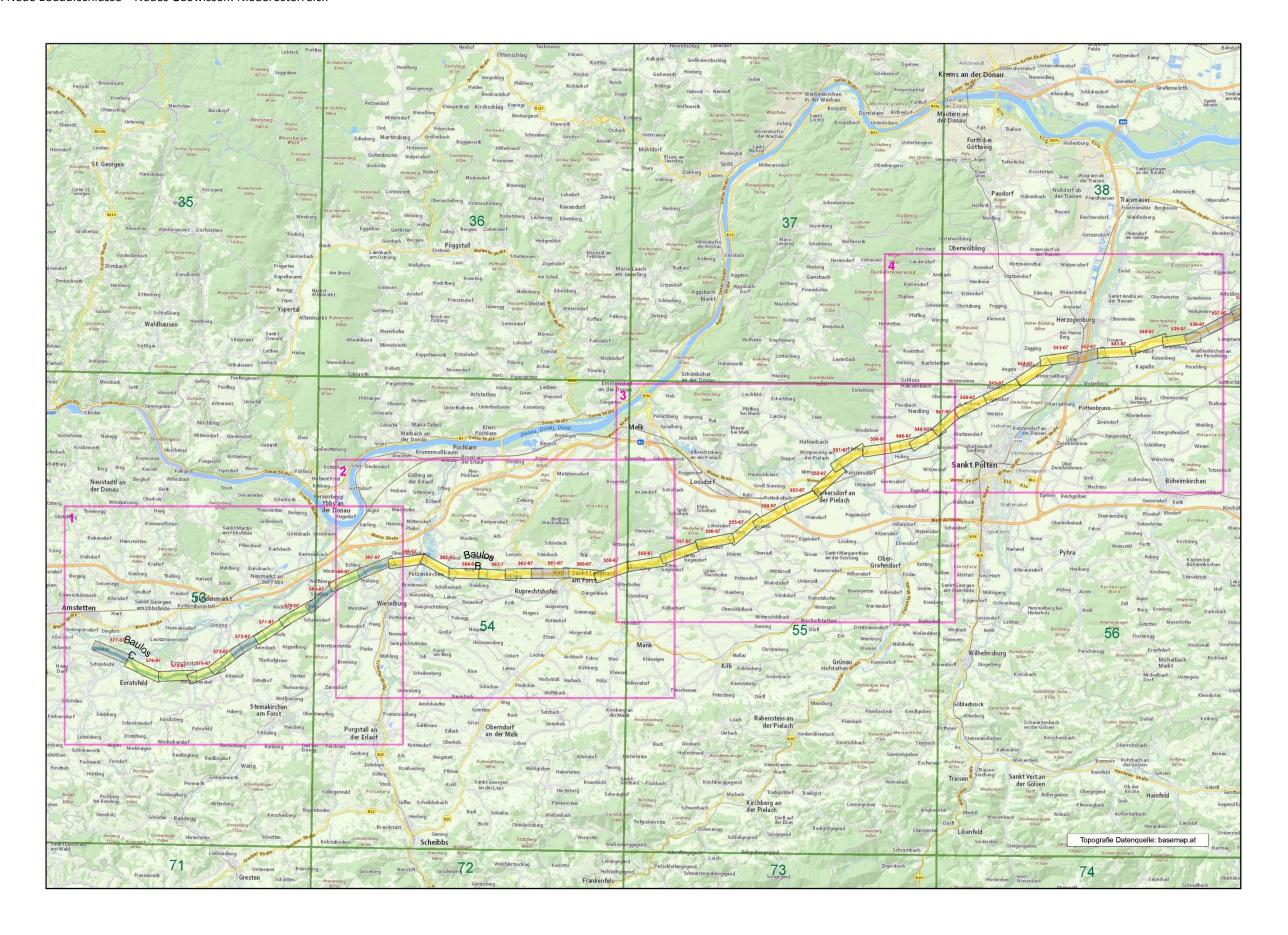


Abb. 2.5.3.: Übersicht über die aufgenommenen Detailpläne: Gesamtansicht.

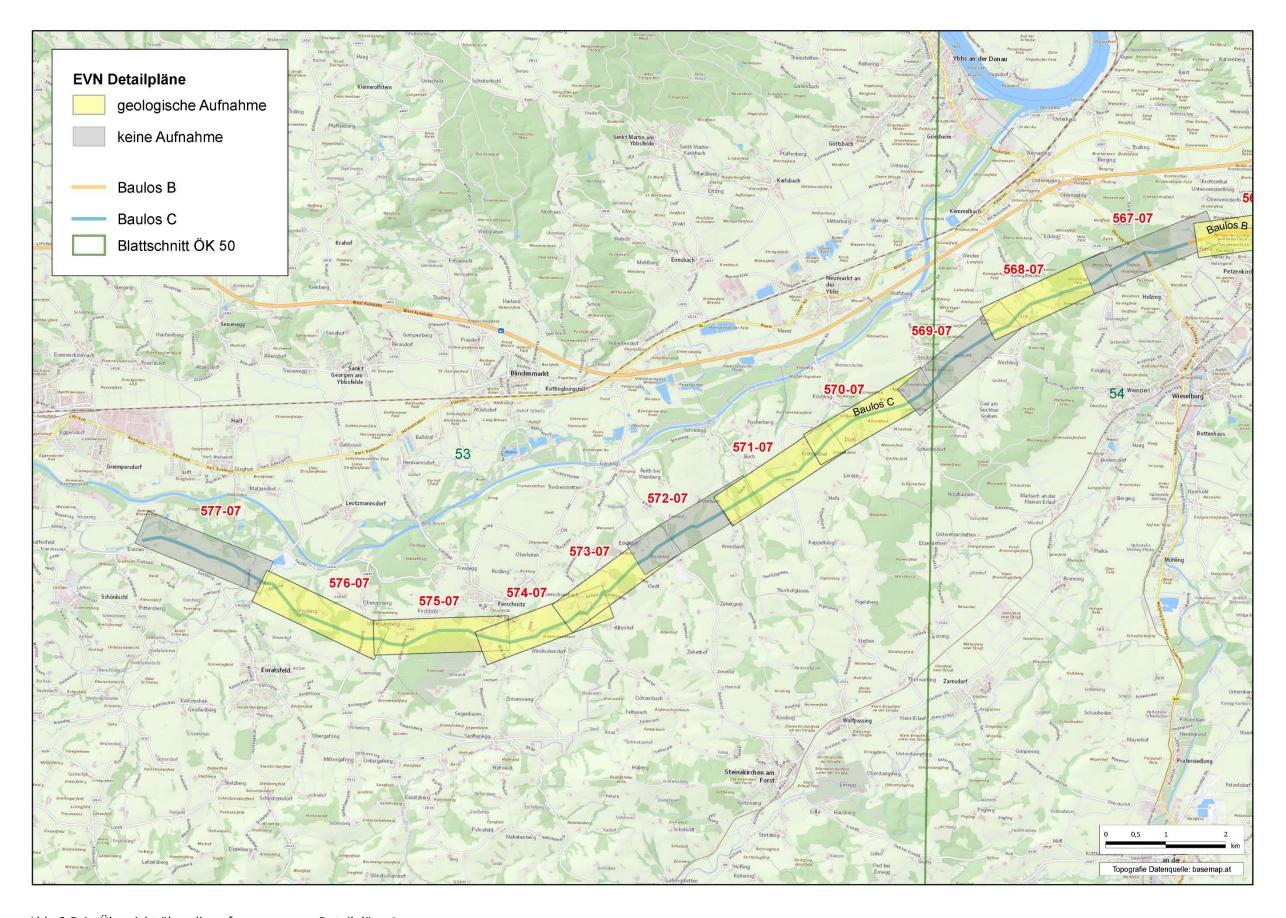


Abb. 2.5.4.: Übersicht über die aufgenommenen Detailpläne 1.

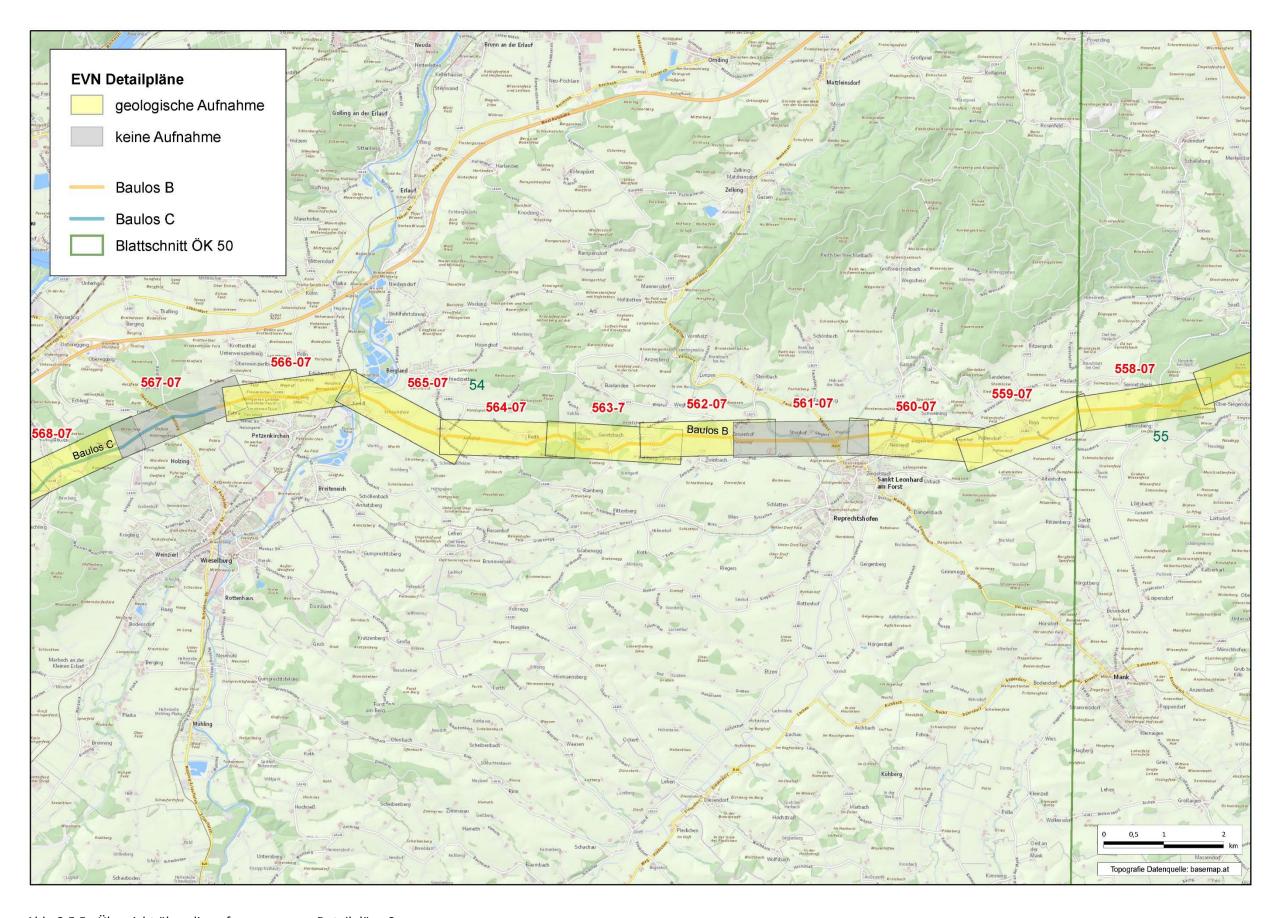


Abb. 2.5.5.: Übersicht über die aufgenommenen Detailpläne 2.

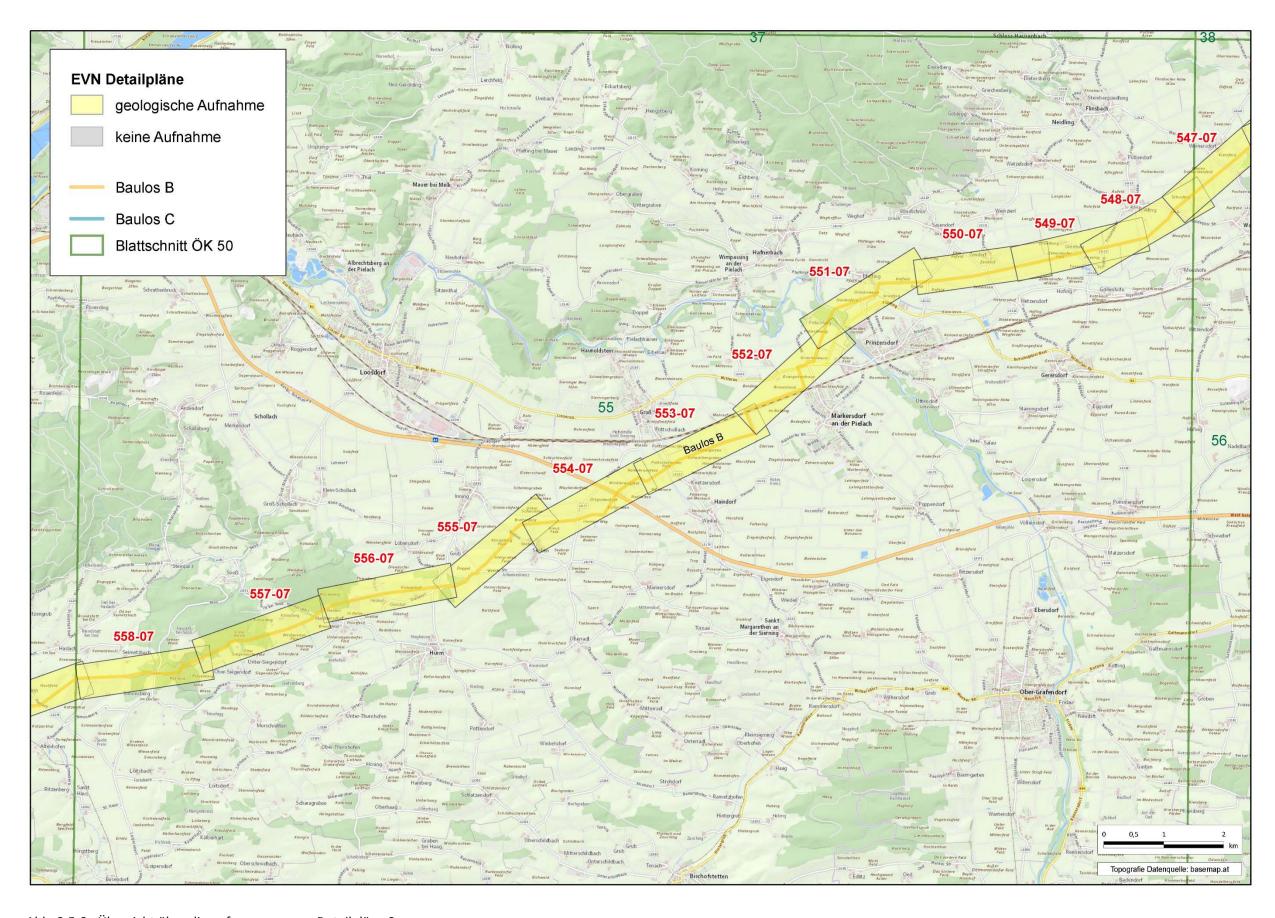


Abb. 2.5.6.: Übersicht über die aufgenommenen Detailpläne 3.

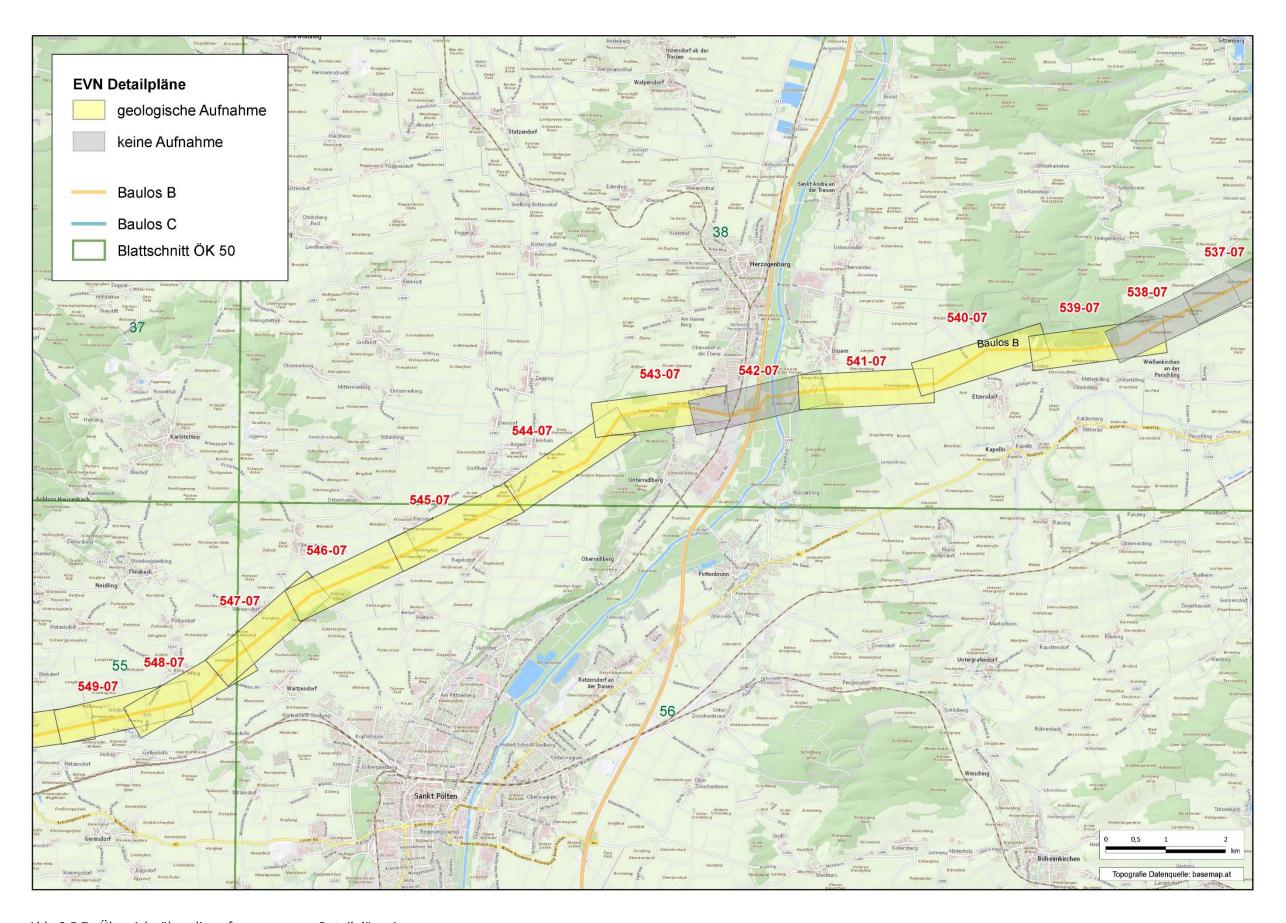


Abb. 2.5.7.: Übersicht über die aufgenommenen Detailpläne 4.

Legende zur geologischen Detailaufnahme der Künette der Gasfernleitung West 4 Westschiene

Die in Klammern gesetzten Nummern stellen die Nummern der Detailpläne dar, auf welchen der jeweilige Legendeneintrag zu finden ist.

Probe(544, 548, 550, 551, 554, 555, 556, 559, 560, 563, 564, 566, 570, 571, 573, 575, 576)

(550, 551, 563)

000, 001, 000, 010, 011, 010, 010,

Verkohlte Pflanzenreste (550, 551, 552, 553, 562, 563, 575)

Slump (551)

Div. Bioturbationen

Makrofossilien (563, 565, 566, 570)

Quartäre Sedimente

Anthropogene (544) Aufschüttung

Lehm, dunkel (Aulehm) (540, 562, 571, 576)

Ton, Schluff, (545, 546, 547, 548, 549, 550, 551, 552, 553, 554, Sand, Kies (Alluvium) 555, 556, 557, 560, 563, 566, 568, 573, 575, 576)

Ton, Schluff, Sand (Anmoor) (552, 553, 554, 575)

Bodenbildung (dunkelbrauner Lehm) (539, 543, 544)

quartäre Rinne (Lehm, Löß, Sandstein) (539, 554, 555, 564)

Schotter der Terrasse (552, 553, 559, 560, 576)

Schotter der Niederterrasse (Traisen) (543)

Molasse

Badenium

Hollenburg-Karlstetten-Formation; unteres Badenium (544)

Ottnangium

Traisen-Formation (*Oncophora*-Schichten) (539, 540, 541, 543, 544) dominierend sandig (Fein- bis Grobsand); oberes Ottnangium

Traisen-Formation (*Oncophora*-Schichten) dominierend tonig; oberes Ottnangium (539, 541, 543, 544)

Traisen-Formation (*Oncophora*-Schichten) mit Konkretionen; oberes Ottnangium

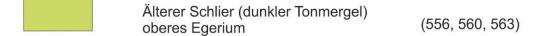
(539, 541, 543)

Traisen-Formation (*Oncophora*-Schichten) mit Tonklasten; oberes Ottnangium

(541, 543)

Robulus-Schlier, Verwitterungsbereich (Mergel, Silt, Sand) unteres Ottnangium (547, 548, 554, 555, 556, 559, 560, 571, 573, 575, 576)

Robulus-Schlier (Mergel, Silt, Sandstein,) (547, 548, 554, 555, 556, 559, unteres Ottnangium 566, 560, 570, 571, 573, 576)



Prinzersdorf-Formation (Sand, fein/mittelkörnig) (549, 550, 551) unteres Ottnangium

Silt, tonig; braun/grau; (568) stark verwitterter Schlier; Schichtung erkennbar; unteres Ottnangium?

Egerium

Glaukonitsandstein/Ton Wechsellagerung (Egerium) (560, 556)

Linz-Melk-Formation (Sand, fein/mittelkörnig)
Kiscellium - Egerium (556, 558, 562, 563, 564, 565, 566)

Konglomerate mit gut gerundeten Kristallingeröllen (Basalkonglomerate der Linz-Melk-Formation) (558, 565)

Grundgebirge

Kristallin der Böhmischen Masse; Granulit, Paragneis

(547, 556, 557, 558, 565, 566)

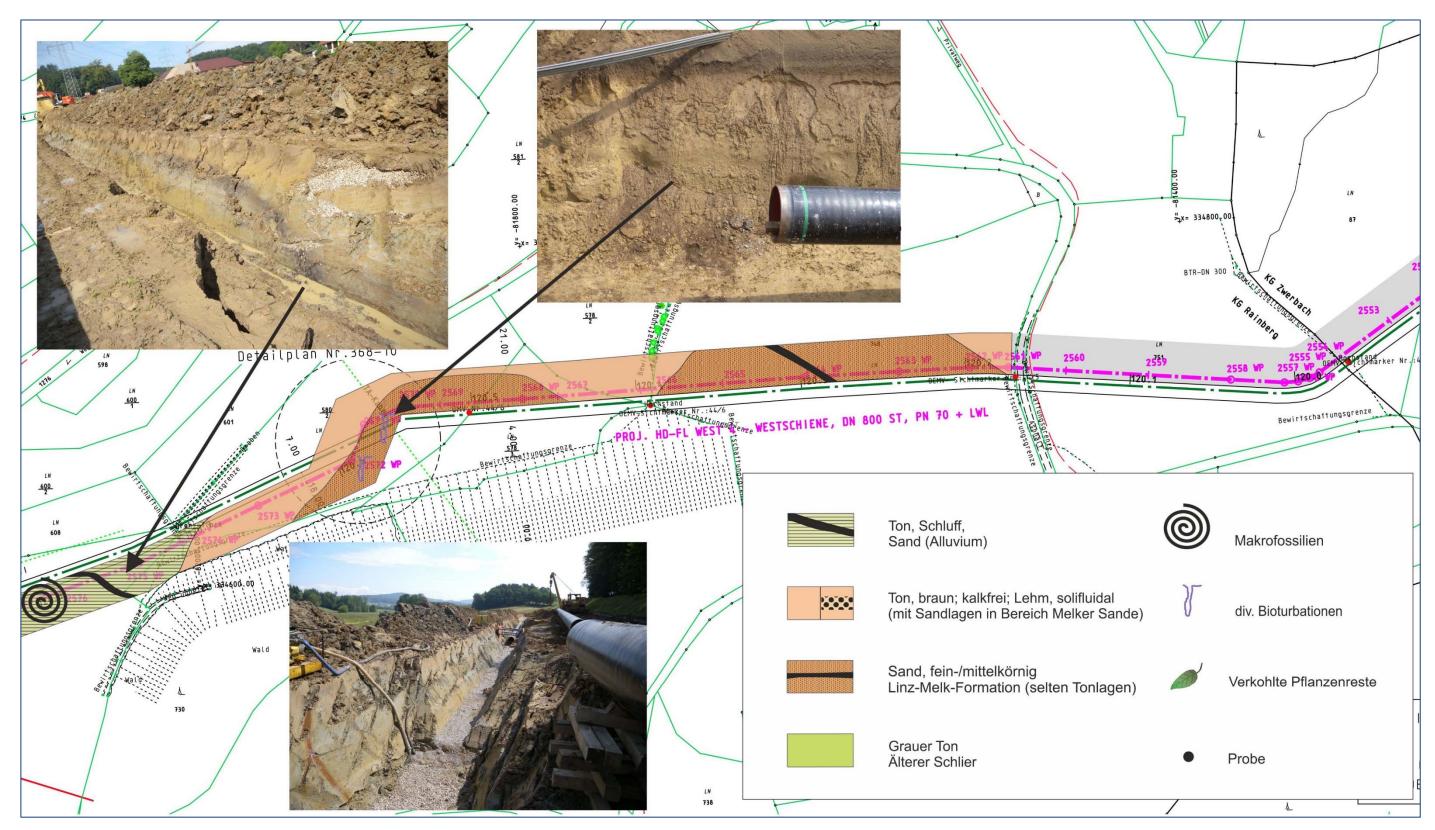


Abb. 2.5.8.: Beispiel für die detaillierte Aufnahme der Künette: Ausschnitt aus dem Detailplan NR. 563 (ÖK 54, ENE Ruprechtshofen).

3. LABORMETHODIK

Mineralogische Untersuchungen (M. Peresson)

Gesamtmineralbestand

Die Proben wurden getrocknet und in einer Scheibenschwingmühle zu Analysenfeinheit vermahlen. Um die für die Auswertung der RDA-Diagramme notwendigen texturfreien Präparate zu erhalten, wurde das sog. "Back-loading" Verfahren angewandt. Anschließend wurden die Proben einer röntgenographischen Phasenanalyse mit folgenden Messbedingungen unterzogen:

Messbedingungen im Bereich von 3°2 Theta bis 70°2 Theta

Röntgendiffraktometer PANalytical X'Pert Pro Powder

Goniometer PW3050/60 (Theta/Theta)

Cu-Kα-Keramikröhre

PIXel-Detektor

Continiuos scans, Schrittweite 0.013°

40kV, 40mA

Messzeit 10 sec/Schritt

Zur qualitativen Bestimmung der Mineralphasen wurden die Röntgenbeugungsreflexe mit der zugehörigen Auswertesoftware X'Pert Highscore von PanAlytical bearbeitet und identifiziert. Die quantitative Auswertung der einzelnen Minerale erfolgte mittels Fundamentalparameter-Rietveldsoftware Auto-Quan (Fa. Seifert; Version 2.70). Dabei wird eine Röntgenbeugungsaufnahme unter Verwendung geeigneter Kristallstrukturmodelle analysiert.

Tonmineralanalyse an der Fraktion <2μm

Zur Herstellung von Texturpräparaten sind ca. 10–30 g Probenmaterial notwendig. Für die Bestimmung des Tonmineralbestandes wird die Fraktion <2 μm, die durch Abzentrifugieren gewonnen wird, herangezogen. Es wurden pro Probe zwei streng texturierte Präparate angefertigt, die durch Einlagerungen organischer Verbindungen (Dimethylsulfoxid, Äthylenglykol, Glyzerin) Quell- und Kontraktionsversuchen unterzogen wurden. Durch diese Behandlung können im Vergleich mit dem Originalzustand der Probe die unterschiedlichen Schichtabstände der Tonminerale qualitativ identifiziert und zugeordnet werden. Es wurde jeweils der Bereich von 2° 2 Theta bis 50° 2 Theta abgefahren (vgl. BROWN & BRINDLEY, 1984; MOORE & REYNOLDS, 1989; THOREZ, 1976). Die semiquantitative Auswertung der Proben erfolgte nach der Methode von SCHULTZ (1964).

NC-83/2014: Neue Bauaufschlüsse – Neues Geowissen: Niederösterreich

Korngrößenanalyse (J. Rabeder)

Die Korngrößenverteilung der bearbeiteten Proben wurde durch Kombination von Nasssiebung der

Fraktion >32µm und automatischer Sedimentationsanalyse der Fraktion <32µm mittels "Sedigraph III

Plus" der Firma Micromeritics ermittelt.

Nasssiebung der Fraktion >32μm

Jeweils 100g der getrockneten Probe wurden mit Wasserstoffperoxyd vorbehandelt, um eine Oxida-

tion der organischen Bestandteile und eine gute Dispergierung der Probe zu erreichen. Nach Abklingen

der Reaktion wurde die Probe mit einem Siebsatz bestehend aus 2mm, 1mm, 500μm, 250μm, 125μm, 63μm und 32μm nass gesiebt. Die Grobfraktionen wurden bei 105°C getrocknet und in Gewichtspro-

zent der Einwaage angegeben.

Sedimentationsanalyse der Fraktion <32μm

Der Anteil der Fraktion <32µm wurde im Wasserbad eingedickt, davon ein repräsentativer Teil ent-

nommen, mit 0,5% Calgon versetzt, im Ultraschallbad dispergiert und im Sedigraph mittels Röntgenstrahl nach dem Stoke'schen Gesetz analysiert. Aus der Kornsummenkurve des Sedigraphes und den

Siebdaten wurde die Kornverteilung der Gesamtprobe ermittelt.

Geochemische Untersuchungen (G. Hobiger)

Analysenmethoden von festen Proben in der FA Geochemie

Probenvorbereitung

Die Proben wurden mit dem Backenbrecher zerkleinert, danach gesplittet und mit einer Scheiben-

schwingmühle (Achatmühle) analysefein (Korngröße < 60 μm) gemahlen.

Analyse

Aus den luftgetrockneten analysenfeinen Proben wurden der Trocknungs- und der Glühverlust bei 110

°C bzw. 1050°C gravimetrisch bestimmt.

Folgende Haupt- und Spurenparameter wurden mittels energiedispersiven Röntgenfluoreszenzanlage

Epsilon5 der Fa. Panalytical (RFA) analysiert:

Hauptparameter: SiO₂, TiO₂, Al₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅

Spuren: As, Ba, Cd, Co, Cr, Cs, Cu, Nb, Ni, Pb, Rb, Sr, V, Y, Zn, Zr

Dazu wurden 4 g der analysenfeinen Proben mit 0,9 g Wachs (MERCK, Hoechst Wachs C Mikropulver)

in einer Kugelmühle (Retsch MM200) vermengt und in einem SPECAC Presswerkzeug tablettiert.

304

Der Gesamtkohlenstoff und Gesamtschwefel werden mittels eines C/S-Analysators LECO CS-200 (Fa. Leco) bestimmt.

Aus den gemessenen Parametern wurde der H₂O+ - Gehalt rechnerisch ermittelt.

Die Qualitätssicherung und Auswertung der Messungen erfolgte mit zertifizierten Standards und Mehrfachmessungen der einzelnen Proben.

Stratigraphische Untersuchungen (St. Ćorić)

Für nannostratigraphische Untersuchungen wird das Sediment für kurze Zeit im Ultraschallbad behandelt, danach wird ein Präparat für die Untersuchung unter dem Lichtmikroskop (Vergrößerung 1000x) angefertigt.

4. LITERATUR

- BAUGRUND Wien GmbH (2013): Geotechnischer Bericht über die Baugrunderkundung für drei Windkraftanlagen im Windpark Scharndorf III. Unveröff. Bericht Nr. 13-2030-01 vom 27.8.2013, Wien.
- BROWN, G. & BRINDLEY, W. (1984): X-ray diffraction procedures für clay mineral identification.- In:Crystal structures of clay minerals and their x-ray identification.- Mineral Society of London.
- FUCHS, W., GRILL, R. (Bearb.), MATURA, A. & VASICEK, W. (1984): Geologische Karte der Republik Österreich 1:50.000, Blatt 38 Krems. Geol. B.-A., 1 Bl., Wien.
- FÜCHTBAUER, H. (1959): Zur Nomenklatur der Sedimentgesteine. Erdöl und Kohle, 12/8, S. 605–613, Hamburg.
- FUCHS, W. & HERRMANN, P. m. Beitr. v. GRILL, R. (1985): Geologische Karte der Republik Österreich 1:50.000, Blatt 60 Bruck an der Leitha. Geol. B.-A., 1 Bl., Wien.
- GEBHARDT, H., ĆORIĆ, St., KRENMAYR, H.G., STEININGER, H., SCHWEIGL, J. (2013): Neudefinition von lithostratigraphischen Einheiten des oberen Ottnangium (Untermiozän) in der alpin-karpatischen Vortiefe Niederösterreichs: Pixendorf-Gruppe, Traisen-Formation und Dietersdorf-Formation. Jb. Geol. B.-A., 153, Heft 1-4, S. 15-32, Wien.
- GRILL, R. (1961): Geologische Karte des nordöstlichen Weinviertels, 1:75.000. –Geol. B.-A., Wien.
- GRILL, R. (1968): Erläuterungen zur Geologischen Karte des nordöstlichen Weinviertels und zu Blatt Gänserndorf. Flyschausläufer, Waschbergzone mit angrenzenden Teilen der flachlagernden Molasse, Korneuburger Becken, Inneralpines Wiener Becken nördlich der Donau. -155 S., 2 Taf., 4 Tab., 9 Abb., Geol. B.-A., Wien.
- KRENMAYR, H.G. & SCHNABEL, W. (2002): Quartar Ober-Pliozan (T1). In: SCHNABEL et al. (2002). Legende und kurze Erläuterung.
- KRENMAYR, H.G. & HOFMANN, Th, (Hg.) (2002): Rocky Austria. Eine bunte Erdgeschichte von Österreich. 2. Aufl. Geologische Bundesanstalt Wien.
- MOORE, D. M. & REYNOLDS, R. C. Jr. (1989): X-ray diffraction and their identification and analysis of clay minerals. 332 S., Oxford Univ. Press.
- MÜLLER, G. (1961): Das Sand-Silt-Ton-Verhältnis in rezenten marinen Sedimenten. N. JB. Min; MH, S. 148–163, Stuttgart.

- NEHYBA, S. & ROETZEL, R. (2004): The Hollabrunn Mistelbach-Formation (Upper Miocene, Pannonian) in the Alpine-Carpathian Foredeep and the Vienna Basin in Lower Austria An example of a Coarse-grained Fluvial System.- Jb. Geol. Bundesanst., 144/2, 191-221, 21 figs., 4 tabs., Wien.
- NESBITT, H. W. & YOUNG, G. M. (1984): Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, p.1523 1534.
- PAPP, A. (1951): Das Pannon des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft in Wien, 39-41 (1946-1948), 99-193, Wien.
- PAPP, A. (1953): Die Molluskenfauna des Pannon im Wiener Becken. Mitt. Geol. Ges. Wien, 44, 1951, Wien.
- POSCH-TRÖZMÜLLER, G.; PERESSON, M.; LIPIARSKI, P.; ĆORIĆ, St. (2013): Neue Bauaufschlüsse Neues Geowissen: Niederösterreich: Baustellendokumentation auf den Kartenblättern 55 Ober-Grafendorf und 56 St. Pölten. In: Arbeitstagung 2013 der Geologischen Bundesanstalt "Geologie der Kartenblätter 55 Ober-Grafendorf und 56 St. Pölten", Melk 23.-27. September 2013: Wolfgang Schnabel zum 75. Geburtstag gewidmet, S. 117-123, Wien.
- POSCH-TRÖZMÜLLER, G.; ĆORIĆ, St.; ROETZEL, R.; PERESSON, M. (2013): Baudokumentation entlang der EVN-Gaspipeline "West 4-Westschiene" auf den Kartenblättern 38 Krems an der Donau, 55 Ober-Grafendorf und 56 St. Pölten. In: Arbeitstagung 2013 der Geologischen Bundesanstalt "Geologie der Kartenblätter 55 Ober-Grafendorf und 56 St. Pölten", Melk 23.-27. September 2013: Wolfgang Schnabel zum 75. Geburtstag gewidmet, S. 114-116, Wien.
- RAMML, C.F. (2014): Ziegelöfen und Lehmabbaue der politischen Bezirke Mistelbach und Gänserndorf (Niederösterreich): Geschichte und Geologie Archiv für Lagerstättenforschung, 27, 384 S., Wien.
- ROETZEL, R. (1998): Geologische Karte der Republik Österreich 1:50.000, Blatt 22 Hollabrunn. Geol. B.-A., Wien.
- ROETZEL, R., BATIK, P., CICHA, I., HAVLICEK, P., HOLASEK, O., NOVAK, Z., PALENSKY, P., RUDOLSKY, J., RUZICKA, M., STRANIK, Z., SVABENICKA, L. & VUJTA, M. (1998) m. Beitr. v. HOFMANN, Th. & HELLERSCHMIDT-ALBER, J.: Geologische Karte der Republik Österreich 1:50.000, Blatt 22 Hollabrunn. Geol. B.-A., 1 Bl., Wien.
- ROETZEL, R., MANDIC, O. & STEININGER, F.F. (1999): Lithostratigraphie und Chronostratigraphie der Tertiären Sedimente im westlichen Weinviertel und angrenzenden Waldviertel. In: ROETZEL (Red.): Arbeitstagung 1999 Retz Hollabrunn, Retz 3.–7. Mai 1999, Geol. B.-A., S. 38–54, 3 Abb., 1 Beil., Wien.

- ROETZEL, R. (2002): Molasse (T2-T5). In: SCHNABEL et al. (2002). Legende und kurze Erläuterung.
- ROETZEL, R. (2007): Geologische Karte der Republik Österreich 1:50.000, Blatt 23 Hadres Geol. B.-A., Wien.
- ROETZEL, R. (2009): Erläuterungen zu Blatt 23 Hadres. Geol. B.-A., Wien.
- ROETZEL, R. (2009): Manuskript Kartierung ÖK 21 Horn (unpubliziert).
- SCHARBERT, S. (2002): Kristallin der Böhmischen Masse (T33-T38). In: SCHNABEL et al. (2002): Legende und kurze Erläuterung.
- SCHNABEL, W. (Koord.) und reg. Mitarb. Fuchs, G., Matura, A., Bryda, G., Egger, J., Krenmayer, H.G., Mandl, G.W., Nowotny, A., Roetzel, R., Schnabel, W. & Scharbert, S. (2002): Geologische Karte von Niederösterreich 1:200.000 mit Legende und Kurzerläuterung. Geol. B.-A. Land Niederösterreich, 3 Bl., Wien.
- SCHNABEL, W., KRENMAYR, H.G., LINNER, M. (2012): Geologische Karte der Republik Österreich 1:50.000, Blatt 55 Ober-Grafendorf. Geol. B.-A., Wien.
- SCHULTZ, L. G. (1964): Quantitative interpretation of mineralogical composition from x-ray and che-mical data for Pierra Shale.- U.S. Geol.Surv. Prof.Pap. 391-C, Washington.
- THOREZ, J. (1976): Practical identification of clay minerals. A handbook for teachers and students in clay mineralogy. 90 S., Lelotte, Dison.
- WESSELY, G. mit Beitr. v. DRAXLER, I., GANGL, P., GOTTSCHLING, P., HEINRICH, M., HOFMANN, TH., LENHARDT, W., MATURA, A., PAVUZA, R., PERESSON, H. & SAUER, R. (2006): Niederösterreich. Geologie der österreichischen Bundesländer. Geol. Bundesanstalt, 416 S., ill., Wien.
- WINKLER, H.G.F. (1954): Bedeutung der Korngrößenverteilung und des Mineralbestandes von Tonen für die Herstellung grobkeramischer Erzeugnisse. Ber. Dt. Keram. Ges., 31, S.337-343, Bonn.

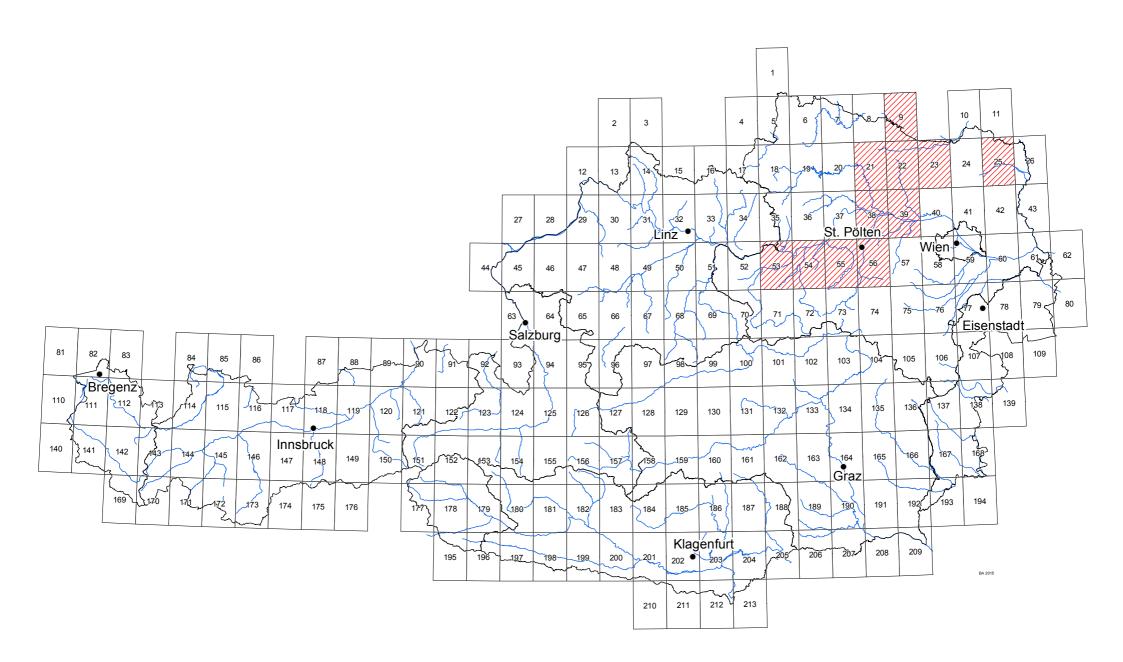
Bisher erstellte Berichte "Großbaustellen Niederösterreich" bzw. "Neues Geowissen"

- HOFMANN, TH.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn mit Schwerpunkten auf umweltrelevante und rohstoffwissenschaftliche Auswertungen und die Aufschlussarbeiten in der niederösterreichischen Molassezone. Unveröff. Bericht, Bund/Bundesländer-Rohstoffprojekt N-C-032/91, Bibl. Geol. B.-A. / Wiss. Archiv, 11 S., 3 Abb., Wien 1992.
- HOFMANN, TH.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn mit Schwerpunkten auf umweltrelevante und rohstoffwissenschaftliche Auswertungen und die Aufschlussarbeiten in der niederösterreichischen Molassezone. Unveröff. Bericht Bund/Bundesländer-Rohstoffprojekt N-C-032/92, Bibl. Geol. B.-A. / Wiss. Archiv, 41 S., 8 Abb., 1 Tab., Wien 1993.
- HOFMANN, TH.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn mit Schwerpunkten auf umweltrelevante und rohstoffwissenschaftliche Auswertungen und die Aufschlussarbeiten in der niederösterreichischen Molassezone. Unveröff. Bericht Bund/Bundesländer-Rohstoffprojekt N-C-032/93, Bibl. Geol. B.-A. / Wiss. Archiv, 39 Bl., 12 Abb., Anh., Wien 1994.
- HOFMANN, TH. & HOMAYOUN, M. M. BEITR. V. HARZHAUSER, M., KRHOVSKY, J., KUFFNER, TH., SCHATTAUER, I., SCHNABEL, W. & SUPPER, R.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn mit Schwerpunkten auf umweltrelevante und rohstoffwissenschaftliche Auswertungen und die Aufschlussarbeiten in der niederösterreichischen Molassezone. Unveröff. Bericht Bund/Bundesländer-Rohstoffprojekt N-C-032/94, Bibl. Geol. B.-A. / Wiss. Archiv, 26 S., 57 Abb., 1 Tab., Anh., Wien 1995.
- HOFMANN, TH. & HOMAYOUN, M.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn mit Schwerpunkten auf umweltrelevante und rohstoffwissenschaftliche Auswertungen und die Aufschlussarbeiten in der niederösterreichischen Molassezone. Unveröff. Bericht Bund/Bundesländer-Rohstoffprojekt N-C-032/95, Bibl. Geol. B.-A. / Wiss. Archiv, 34 Bl., 23 Abb., 12 Tab., Wien 1996.
- HOFMANN, TH.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn mit Schwerpunkten auf umweltrelevante und rohstoffwissenschaftliche Auswertungen und die Aufschlussarbeiten in der niederösterreichischen und oberösterreichischen Molassezone, Großbauvorhaben in Wien mit Schwerpunkt auf geotechnisch-umweltrelevante Grundlagenforschung Flyschzone. Ber. Geol. B.-A., H. 36, Bund/Bundesländerprojekt N-C-032/91-95, O-C-009/91-95 und W-C-016/93-95, 129 S., 34 Abb., 11 Tab., Anh., Wien 1997.

- Homayoun, M. M. Beitr. v. Atzenhofer, B., Hofmann, Th., Klein, P., Krenmayr, H.-G., Krhovsky, J., Massimo, D., Rasser, M. & Slapansky, P.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn und anderen Bauvorhaben mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen und die Aufschlussarbeiten in der niederösterreichischen Molassezone. Unveröff. Bericht, Bund/Bundesländer-Rohstoffprojekt N-C-032/F/97, Bibl. Geol. B.-A. / Wiss. Archiv, 26 Bl., 11 Abb., 3 Tab., Anh., Wien 1998.
- Homayoun, M. M. Beitr. v. Atzenhofer, B., Decker, K., Draxler, I., Egger, H., Massimo, D., Pak, E. & Reitner, H.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn und anderen Bauvorhaben mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen und die Aufschlussarbeiten in den niederösterreichischen Voralpen und in der Molassezone. Unveröff. Bericht, Bund/Bundesländer-Rohstoffprojekt N-C-032/F/98, Bibl. Geol. B.-A. / Wiss. Archiv, 20 Bl., 15 Abb., Anh., Wien 1999.
- HOMAYOUN, M. M. BEITR. V. ATZENHOFER, B., EGGER, H., KLEIN, P., LIPIARSKI, P., MASSIMO, D., REITNER, H. & RUPP, CH.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn und anderen Bauvorhaben mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen und die Aufschlussarbeiten in den niederösterreichischen Voralpen und in der Molassezone. Unveröff. Bericht, Bund/Bundesländer-Rohstoffprojekt N-C-032/F/99, Bibl. Geol. B.-A. / Wiss. Archiv, 32 Bl., 20 Abb., 3 Tab., Anh. (12 S.), Wien 2000.
- Peresson-Homayoun, M. M. Beitr. V. Atzenhofer, B., Heinrich, M., Herrmann, P., Klein, P., Kohlen-Prat, B., Krenmayr, H.G., Lipiarski, P., Massimo, D., Nowotny, A., Reitner, H. & Rupp, Ch.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn und anderen Bauvorhaben mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen und die Aufschlussarbeiten in den niederösterreichischen Voralpen und in der Molassezone. Unveröff. Bericht, Bund/Bundesländer-Rohstoffprojekt N-C-047/00, Bibl. Geol. B.-A. / Wiss. Archiv, 72 Bl., 51 Abb., 1 Tab., Anh. (6 S.), Wien 2001.
- Peresson-Homayoun, M. M. Beitr. v. Atzenhofer, B., Decker, K., Draxler, I., Egger, H., Heinrich, M., Massimo, D., Moshammer, B., Nowotny, A., Roetzel, R., Schedl, A. & Schönlaub, H.P.: Begleitende geowissenschaftliche Dokumentation und Probenahme zum Projekt Neue Bahn und anderen Bauvorhaben mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen und die Aufschlussarbeiten in den niederösterreichischen Voralpen und in der Molassezone. Unveröff. Bericht, Bund/Bundesländer-Rohstoffprojekt N-C-047/01, Bibl. Geol. B.-A. / Wiss. Archiv, 55 Bl., 36 Abb., 1 Tab., Wien 2002.

Peresson-Homayoun, M. M. Beitr. v. Decker, K., Draxler, I., Egger, H., Heinrich, M., Herrmann, P., Klein, P., Kohlenprat, B., Krenmayr, H.-G., Krhovsky, J., Massimo, D., Moshammer, B., Nowotny, A., Pak, E., Peresson, H., Rupp, Ch., Roetzel, R., Schedl, A., Schönlaub, H.P., Schubert, G., Slapansky, P. & Stojaspal, F.: Begleitende geowissenschaftliche Dokumentation und Proben nähme zum Projekt Neue Bahn und anderen Bauvorhaben mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen und die Aufschluss arbeiten in den niederösterreichischen Voralpen und in der Molassezone. – Unveröff. Endbericht Bund/Bundesländer-Rohstoffprojekt N-C-032/1997-99 und N-C-047/2000-02, Bibl. Geol. B.-A. / Wiss. Archiv, 204 Bl., 133 Abb., 7 Tab., Wien 2003.

Peresson-Homayoun, M. M. Beitr. v. Atzenhofer, B., Egger, H., Heinrich, M., Jung, M., Klein, P., Krenmayr, H.-G., Leopold, Ph., Massimo, D., Nowotny, A., Oberhauser, R., Reitner, H., Salzer, F. & Wimmer-Frey, I.: Begleitende geowissenschaftliche Dokumentation und Proben nähme an Bauvorhaben in den niederösterreichischen Voralpen und in der Molassezone mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. – Unveröff. Jahresbericht Bund/Bundesländer-Rohstoffprojekt N-C-057/2003, Bibl. Geol. B.-A. / Wiss. Archiv, 92 Bl., 86 Abb., 8 Tab., Wien 2004.


Peresson-Homayoun, M. M. Beitr. v. Atzenhofer, B., Bernhard, F., Draxler, I., Dumfarth, St., Egger, H., Heinrich, M., Klein, P., Leopold, Ph., Nowotny, A., Pavlik, W., Peresson, H. et al.: Begleitende geowissenschaftliche Dokumentation und Probenahme an Bauvorhaben in den niederösterreichischen Voralpen und in der Molassezone mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. – Unveröff. Jahresbericht Bund/Bundesländer-Rohstoffprojekt N-C-057/2004, Bibl. Geol. B.-A. / Wiss. Archiv, 108 Bl., 97 Abb., 1 Tab., 1 Poster, Wien 2005.

Peresson-Homayoun, M. M. Beitr. v. Ćorić, St., Draxler, I., Gebhardt, H., Goritschnig, Ch., Klein, P., Krenmayr, H.-G., Leithner, W., Mandic, O., Massimo, D., Meller, B., Rabeder, J., Reitner, H., Rockenschaub, M. & Roetzel, R.: Begleitende geowissenschaftliche Dokumentation und Probenahme an Bauvorhaben in den niederösterreichischen Voralpen und in der Molassezone mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. – Unveröff. Jahresbericht Bund/ Bundesländer-Rohstoffprojekt N-C-057/2005, Bibl. Geol. B.-A. / Wiss. Archiv, v+107 Bl., 102 Abb., 1 Tab., Wien 2006.

Peresson-Homayoun, M. M. Beitr. v. Ćorić, St., Draxler, I., Egger, H., Kociu, A., Leithner, W., Massimo, D., Meller, B., Nowotny, A., Peresson, H., Rabeder, J., Reitner, H., Schuster, R. & Wimmer-Frey, I.: Begleitende geowissenschaftliche Dokumentation und Probenahme an Bauvorhaben in den niederösterreichischen Voralpen und in der Molassezone mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. – Unveröff. Jahresbericht Bund/Bundesländer-Rohstoffprojekt N-C-057/2006, Bibl. Geol. B.-A. / Wiss. Archiv, iii+117 Bl., 77 Abb., Anh., Wien 2007.

- Posch-Trözmüller, G. & Peresson, M. M. Beitr. v. Atzenhofer, B., Ćorić, St., Haslinger, E., Kollars, B., Lipiarski, P., Massimo, D., Moshammer, B., Rabeder, J., Reitner, H. & Roetzel, R.: Begleitende geowissenschaftliche Dokumentation und Probenahme an Bauvorhaben in den niederösterreichischen Voralpen und in der Molassezone mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. Unveröff. Jahresbericht Bund/Bundesländer-Rohstoffprojekt N-C-063/2007, Bibl. Geol. B.-A. / Wiss. Archiv, 291 Bl., 379 Abb., 11 Tab., 2 Beil., Wien 2008.
- Posch-Trözmüller, G. & Peresson, M. M. Beitr. v. Atzenhofer, B., Ćorić, St., Egger, J., Haslinger, E., Heinrich, M., Kollars, B., Lipiarski, P., Moshammer, B., Rabeder, J. & Roetzel, R.: Begleitende geowissenschaftliche Dokumentation und Probenahme an Bauvorhaben in den niederösterreichischen Voralpen und in der Molassezone mit Schwerpunkt auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. Unveröff. Jahresbericht Bund/Bundesländer-Rohstoffprojekt N-C-063/2008, Bibl. Geol. B.-A. / Wiss. Archiv, 139 S., 140 Abb., 7 Tab., 5 Taf., 6 Anhänge, Wien, 2009.
- Posch-Trözmüller, G. & Peresson, M. M. Beitr. v. Atzenhofer, B., Ćorić, St., Egger, J., Gesselbauer, W., Heinrich, M., Linner, M., Meller, B., Rabeder, J., Roetzel, R. & Schnabel, W.: Geologische Bearbeitung kurzfristiger Aufschlüsse in Niederösterreich mit Schwerpunkt auf infrastrukturelle Bauten in schlecht aufgeschlossenen Regionen und auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. Unveröff. Jahresbericht Bund/Bundesländer-Rohstoffprojekt N-C-069/2009, Bibl. Geol. B.-A. / Wiss. Archiv, 364 S., 297 Abb., 27 Tab., 2 Taf., 13 Beil., Wien, 2010.
- Posch-Trözmüller, G. & Peresson, M. M. Beitr. v. Atzenhofer, B., Ćorić, St., Gebhardt, H., Heinrich, M., Krenmayr, H.G., Lipiarski, P., Rabeder, J., Roetzel, R., Wessely, G. & Zorn, I.: Geologische Bearbeitung kurzfristiger Aufschlüsse in Niederösterreich mit Schwerpunkt auf infrastrukturelle Bauten in schlecht aufgeschlossenen Regionen und auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. Unveröff. Jahresbericht Bund/Bundesländer-Rohstoffprojekt N-C-069/2010, Bibl. Geol. B.-A. / Wiss. Archiv, 297 Bl., 185 Abb., 35 Tab., 24 Taf., 1 Anhang im Text, Wien, 2011.
- Posch-Trözmüller, G. & Peresson, M. M. Beitr. v. Atzenhofer, B., Ćorić, St., Gebhardt, H., Heinrich, M., Hobiger, G., Lipiarski, P., Peresson, H., Rabeder, J., Roetzel, R., Schuster, R.: Geologische Bearbeitung kurzfristiger Aufschlüsse in Niederösterreich mit Schwerpunkt auf infrastrukturelle Bauten in schlecht aufgeschlossenen Regionen und auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. Unveröff. Jahresendbericht Bund/Bundesländer-Rohstoffprojekt NC-69/2011, Bibl. Geol. B.-A. / Wiss. Archiv, 239 Bl., 224 Abb., 10 Tab., Wien, 2012.
- Posch-Trözmüller, G. & Peresson, M. M. Beitr. v. Atzenhofer, B., Bryda, G., Ćorić, St., Gebhardt, H., Hobiger, G., Linner, M., Rabeder, J., Roetzel, R., Rupp, Ch., Schuster, R. & Zorn, I.: Geologische Bearbeitung kurzfristiger Aufschlüsse in Niederösterreich mit Schwerpunkt auf infrastrukturelle Bauten in schlecht aufgeschlossenen Regionen und auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. Unveröff. Jahresbericht Bund/Bundesländer-Rohstoffprojekt N-C-083/2012, Bibl. Geol. B.-A. / Wiss. Archiv, 507 S., 555 Abb., 51 Tab., Wien, 2013.

Posch-Trözmüller, G. & Peresson, M. M. Beitr. v. Atzenhofer, B., Bryda, G., Ćorić, St., Gebhardt, H., Hobiger, G., Lotter, M., Rabeder, J. & Roetzel, R.: Geologische Bearbeitung kurzfristiger Aufschlüsse in Niederösterreich mit Schwerpunkt auf infrastrukturelle Bauten in schlecht aufgeschlossenen Regionen und auf rohstoffwissenschaftliche, umweltrelevante und grundlagenorientierte Auswertungen. -Unveröff. Jahresbericht Bund/Bundesländer-Rohstoffprojekt N-C-083/2012-2014, Bibl. Geol. B.-A. / Wiss. Archiv, 505 S., 465 Abb., 43 Tab., Wien, 2014.

