Diagenesebedeingungen und des Ablagerungsraumes. – Abstracts zum 5. Sedimentologenworkshop, Seewalchen.

RASSER, M.W., GAWLICK, H.-J. & STEIGER, T. (2000): Konzept zur formalen lithostratigraphischen Gliederung des kalkalpinen Oberjuras. - Ber. Inst. Geol. Paläont. Karl-Franzens-Univ. Graz. 2: 16-20, Graz.

Paleodepth estimates by transfer equation of benthic foraminiferal range depth distribution: Examples from the Styrian Basin - Results from FWF project P 13743-Bio

Spezzaferri, S.¹, Hohenegger, J.¹, Rögl, F.² & Coric, S.¹

¹Paleontology Institute, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria, ²Natural History Museum, Burgring 7, 1014 Wien Vienna, Austria

Correct estimate of paleobathymetry is essential in paleoceanography and basin analysis to reconstruct uplift and subsidence story of basins and to construct sea-level curves. Therefore, demand for accurate paleobathymetrical techniques has largely increased in the past decades. However, this demand has by no means been satisfied. The most widely used techniques are currently of micropaleontological nature and are based on the depth dependency of benthic foraminifera (e.g. Plankton/Benthos Ratio). However, several problems based on correct interpretation of data and on the concern that these forms may not be isobathyal in time and space, prevented accurate reconstruction of paleobathymetry. Neverthless, individual benthic foraminiferal genera do have distinct broad depth ranges and these ranges can be used as a framework to reconstruct basins paleodepth.

We introduce here a simple method to estimate paleodepths of sediments from deep-sea, continental margins, enclosed basins based on a transfer equation using the geometric mean of the range distribution of benthic foraminifera. The method uses qualitative assemblages data, and therefore, is of immediate and easy application. Due to the log normal depth distribution of most genera and species, the geometric mean allows a better depth approximation. In addition, this method allows identification of reworked and/or redeposited species based on heterogenetic structure.

As case study we have selected two outcropping sections and a borehole from the Austian marine Miocene: Wagna and the Retznei Sections and Perbersdorf 1 drilling located in the Styrian Basin and spanning the transition from the Late Karpatian to the Early Badenian corrsponding to the Latest Burdigalian – Early Langhian. Our paleodepth estimates suggest that sediments at Wagna were deposited in a water depth between 150 to 210 m and at Retznei in a water depth between 160 and 190 m. A shallowing-upward trend is identified in both sections. Paleodepth at Perbesdorf fluctuates between 200 and 300 m at the base and top of the sedimentary sequence. A shallower interval with paleodepth between 180 m and 200 m is identified from 330 m

	2.10	120 C . C . 2 K .	Contract Carl	1-	
ID	Ort/Sites	BMN R	BMN H	Stra. Stufe	Sedimentbecken
1	Gainfam	738379	312317	Badenium	Wr. Neustätter Becken
2	Rödham	443214	338762	Ottnangium	Westliche Molassezone
3	Offnano Schanze	474843	329564	Ottnangium	Westliche Molassezone
4	Eberschwang	465424	330018	Ottoangium	Westliche Molassezone
	Chamaburana	AGE 424	220010	Decessive	Westliche Melephotopo
0	Eberschwang	400424	330010	Fannonium	Westliche Molassezone
6	Deponie Orth	45/440	355072	Ottnangium	Westliche Molassezone
7	Hartberg	499024	344155	Ottnangium	Westliche Molassezone
8	Bad Hall	514688	322234	Eggenburgium	Westliche Molassezone
9	Loderleiten	536468	331387	Ottnangium	Westliche Molassezone
10	Grund	730151	388059	Badenium	Östliche Mo -N-Donau
14	Croßaust	606345	240204	Ollassaium	Ostlishe Me. Trainestal
11	Gibistust	080240	049204	Otthangium	Ostriche MoTraisental
12	Kuffern	699646	353523	Badenium	Ostliche Mo - Iraisental
13	Breitenreich	703630	392155	Egerium	Ostliche Mo -Homer B.
14	Obernholz	706101	375244	Egerium	Östliche MoHomer B.
15	Limberg/Stb.	714015	384715	Eggenburgium	Östliche MoN-Donau
16	Limberg/Bergh	715940	384645	Ottnangium	Östliche Mo -Homer B
17	Engenhura	710295	388114	Eagenhurgium	Östliche Mo, Homer B
17	Eggenourg	70200	200114	Eggenburgium	Östliche MoHomer D.
18	Mailberg	/3/045	392554	Badenium	Ostliche MoN-Donau
19	Laa/Thayal	755915	397564	Karpatium	Ostliche MoN-Donau
20	Nexing	773543	372464	Samatium	Nördliches Wiener B.
21	Obersulz	774761	375662	Pannonium	Nordliches Wiener B.
22	Siebenhirten	764456	386368	Samatium	Nördliches Wiener B
22	Kleinhadereder	769607	300490	Badenium	Nordlichee Wiener P
20	Chaireaba	700027	404409	Gadacium	Numbers Wiener D.
24	Steinebrunn	1/4446	401163	Badenium	Nordliches Wiener B.
25	Maustrenk	778096	381978	Badenium	Nördliches Wiener B.
26	Edelstal	798154	328606	Pannonium	Hainburger Pforte
27	Wolfsthal	798976	332616	Sarmatium	Hainburger Pforte
28	Deutsch-Altenburg	794180	332515	Badenium	Hainburger Pforte
20	Hundshoim	706020	222180	Samalium	Hainburger Plate
20	Commentin	774007	040400	Carriatium	Cialburger Florte
30	Sommerein	//420/	310489	Samatium	Sudburgeniandische Sw
31	Mannersdorf	772138	315649	Sarmatium	Südburgenländische Sw.
32	Mannersdorf	771018	316404	Pannonium	Südburgenländische Sw.
33	Mannersdorf	769672	313809	Samatium	Südburgenländische Sw.
34	Stb. Fenk	760792	300808	Badenium	Südburgenländische Sw.
35	Kummer	772598	295770	Badenium	Südburgenländische Sw
26	Sanda St M	770252	201620	Samatium	Mattemburger Bucht
30	Sanug St. M	7720050	291030	Samalium	Mattersburger Buch
37	Sandg. St. M	112353	291630	Pannonium	Mattersburger Bucht
38	Rohrbach	757690	286670	Badenium	Mattersburger Bucht
39	Sandg. Pinkafeld	735860	348269	Badenium	Oststeirisches Becken
40	Willersdorf	739381	247499	Badenium	Oststeinisches Becken
41	Tongr Pinkafeld	735242	246404	Pannonium	Oststeirisches Becken
17	Paldau/1	710290	100070	Pannonium	Ostatainachas Backan
42	Faluau/ I	710200	1933/3	Cannonium	Osistemsches Decken
43	Bainsch-Kolldon	719820	192210	Samatium	St. Anna/Aigen
44	Waltra	721930	190810	Sarmatium	St. Anna/Aigen
45	Waltra	721110	190005	Pannonium	St. Anna/Aigen
46	Spielfeld	696950	173305	Badenium	Westst. B. /Sausal Sw.
47	Katzengraben	696300	173750	Karpatium	Westst, B. /Sausal Sw
49	Wana	680056	170562	Kamatium	Wester B /Saucal Sur
40	Potzooi/Deefi	600764	177064	Radonium	Wastet D /Parsal Ow.
49	Netznei/Pitolii	090701	1//904	Dauenium	Westst. D. /Sausal SW.
50	vveissenegg	687081	196163	badenium	westst. B. /Sausal Sw.
51	Weissenegg	686206	196563	Badenium	Westst. B. /Sausal Sw.
52	Wetzelsdorf Berg	675731	195289	Badenium	Weststeinsches Becken
53	Wetzelsdorf	675612	193516	Badenium	Weststeinsches Becken
54	Steiflingtal	692130	195758	Badenium	Westst, B. /Sausal Sw
55	Harthern	719794	235916	Samatium	Oststairisches Baskon
55	Mittordomber	740754	200010	Cropte De ID	Ontoloidoches Deckell
00	witterdormbach	718/54	230/95	Gienze Sa./Pa.	Oststeinsches Becken
57	Leobersdorf	/41998	308607	Pannonium	vvr. Neustätter Becken
58	Retznei/Profil-Rosenb.	690761	177964	Badenium	Westst. B. /Sausal Sw.
59	Laa/Thaya/Profil	755760	397799	Karpatium	Östliche MoN-Donau
60	Richardhof/Profil	745543	324318	Pannonium	Wr. Neustätter Becken
61	Mühldorf	637818	178406	Badenium	Lavential
ph	Niederhef (4 aites)	640000	170000	Carmatillar	Lacottal
02	Recentor (4 sites)	042003	1/20/0	Badacin	Lavdrilla
63	Spielberg	559395	233090	Badenium	Fonnsdorler Becken
64	Neusafenau/Hartberg	722775	235400	Pannonium	Oststeinsches Becken
65	Sieglegg	709570	180110	Pannonium	Oststeirisches Becken
66	Eisengraben	714400	200430	Pannonium	Oststeinsches Becken
67	Münzoraben	709650	199110	Pannonium	Oststeinsches Becken
60	Oodt	712514	100540	Danaonium	Ostatoinachas Decker
00	Deterroll	710014	190049	Carriellum	Valatemsches becken
09	retroneil	18/604	330931	Samatium	Nordliches Wiener B.
70	Lobmingbach	662227	214375	Badenium	Weststeinsches Becken
71	Lobmingberg	661337	215849	Badenium	Weststeinsches Becken

Tab. 1: STINGL & SCHOLGER

and 425 m. This shallower interval corresponds to the Karpatian-Badenian transition.

Paläomagnetische Ergebnisse aus dem Teilprojekt Miozäne Geodynamik der Ostalpinen Becken

STINGL, K. & SCHOLGER, R.

Institut für Geophysik, Montanuniversität Leoben, Peter Tunner Str. 27, A-8700 Leoben

Im Zuge des FWF-Forschungsprojektes Miozän der Ostalpen wurden im Rahmen des Teilprojektes Paläomagnetik Aufschlüsse in den Ablagerungen aller größeren neogenen Sedimentbecken beprobt (Tabelle 1.). Schwerpunktsmäßig wurden einige Profile detaillierten magnetostratigraphischen Untersuchungen unterzogen. Die einzelnen Aufschlüsse sollen in Zeitschnitten geordnet zur Darstellung der relativen Rotationsbeträge der Sedimentbecken dienen und zur Erfassung der Geodynamik der miozänen Beckenbildung beitragen.

Vorgestellt werden vorläufige Ergebnisse der magnetostratigraphischen Profile Laa/Thaya (Karpat-Molassezone) und Retznei (Badenium-Steirisches Becken).

Erste Ergebnisse aus der Beprobung der Einzelaufschlüsse zeigen Uhrzeigersinn und Gegenuhrzeigersinn Rotationen in verschiedenen Bereichen der neogenen Becken. Diese relativen Rotationsbeträge verringern sich deutlich an der Grenze Sarmatium-Pannonium.

Für paläogeographische Rekonstruktionen können erste Aussagen über die geographische Breitenlage zur Zeit der Beckenbildungsprozesse gemacht werden.

Sauerstoff-Isotope aus der Plassen-Formation der Nördlichen Kalkalpen: Ein Beitrag zur Rekonstruktion der Klimaentwicklung des Zeitbereichs Oberkimmeridge bis Berrias

STRUCK, U.¹, EBLI, O.¹ & SCHLAGINTWEIT, F.²

¹Institut f. Paläontologie, Richard-Wagner-Str. 10, 80335 München, Germany; ²Lerchenauerstr. 167, 80935 München, Germany

Karbonatische Sedimente stellen ein Gemisch unterschiedlichster biogener und abiogener Komponenten mit einer Grundmasse dar, die unter den verschiedensten physikalischen Bedingungen zur Ablagerung kommen. Besonders biogene Komponenten können durch ihre Fähigkeit Kohlenstoff- oder Sauerstoffisotopen selektiv aufzunehmen bei Isotopen-geochemischen Untersuchungen einen großen Unsicherheitsfaktor darstellen. Zudem müssen diagenetische Prozesse wie Umkristallisation oder selektive Lösung bestimmter Partikel während der Lithifizierung in Betracht gezogen werden.

Um die Auswirkungen all dieser nicht näher abschätzbaren Vorgänge zu minimieren, wurden die Untersuchungen auf einen speziellen Faziestyp der Plassenformation, einen Clypeinen-Biomikrit beschränkt. Diese Wackestones, in denen *Clypeina jurassica* den Hauptbiogenanteil bildet, treten in den tieferen Anteilen der Plassenformation relativ häufig auf, sind durch den Anteil an stratigraphisch verwertbaren Taxa (vor allem Foraminiferen, s. u.) biostratigraphisch zumeist gut datierbar und zeigen mikroskopisch keine Anzeichen stärkerer diagenetischer Beanspruchung.

Unser Untersuchungsmaterial stammt vom Untersberg (U), der Trisselwand (T) bei Altaussee und dem Dietrichshorn (D) bei Unken. Das Alter der Proben kann mit Ober-Kimmeridge (U), (Unter)/Mittel-Tithon (T) und Unter-Berrias (D) angegeben werden.

Unsere Messungen ergaben folgende δ^{18} O-Werte: Unter-Berrias -1.00 bis +0.08

Unter-Berrias	-1,00 bis +0,08
(Unter)/Mittel-Tithon	-5,57 bis -4,51
Ober-Kimmeridge	-3.23 bis -3.13

Diese Werte koinzidieren hervorragend mit der eustatischen Kurve von HAQ et al. (1987). Transgressive Entwicklungen sind durch Expansion ausgedehnter Flachschelfgebiete ausgezeichnet, in denen sich die Wassermassen relativ leicht erwärmen können. Die gemessenen leichtesten Isotope, die das wärmste Klima anzeigen, befinden sich am Transgressionsmaximum des Tithon, während die schwersten in einem Regressionsmaximum des Berrias liegen.

Die berechneten Paläotemperaturen ergeben je nach der verwendeten Formel in einem großen Bereich schwankende Wassertemperaturen für das

Berrias 21,0-26,6 °C (21,0-25,7 °C) [20,4-22,4 °C] Mittel-Tithon 40,1-42,4 °C (40,0 °C) [27,3 °C] Ober-Kimmeridge 34,3-36,7 °C (34,3-34,7 °C) [25,2-25,3 °C] Etwas deutlicher wird das Bild wenn man sich auf eine Formel beschränkt, wie die in runden Klammern dargestellten Werte, die nach Epstein et al. (1953) berechnet wurden. Diese sind jedoch allesamt äußerst unrealistisch!

Zur Erklärung des Befundes lassen sich globale Änderungen der Salinität ausschließen, da der SMOW- Wert (Standard Mean Ocean Water) im untersuchten Zeitbereich konstant ist und 0,9 ¹⁸O beträgt (WALLMANN 2001). Auch lokale Effekte wie Salzaustritt sind nicht wahrscheinlich. Die Isotopensignatur würde zu schwereren Werten, welche kühleres Klima anzeigen, verschoben.

Als bestmögliche Erklärung ziehen wir einen sehr ausgeprägten "vital effect" der Dasycladacee *Clypeina jurassica* in Betracht. Da diese Spezies aber nur eine zeitliche Verbreitung vom Ober-Kimmeridge (*eudoxus*-zone) bis zur Basis des oberen Berrias aufweist, und zudem die Clypeinidae bereits im Miozän ausgestorben sind, liegen uns hierfür verständlicherweise keine gesicherten Daten vor. Eine Berechnung unserer Paläotemperaturen mit den Fraktionierungs-daten für die ebenfalls zu den Grünalgen (Familie Codiaceae) gehörende Gattung *Halimeda* führt uns zu realistischen Ergebnissen (s. o., eckige Klammern). Wir nehmen deshalb ein ähnliches temperaturabhängiges Fraktionierungsverhalten für *C. jurassica* an.

WALLMANN, K. (2001): The geological water cycle and the evolution of marine δ¹⁸O values. - Geochim. Cosmochim. Acta, 65 (15), 2469-2485, New York.

WEFER, G. & BERGER, W.H. (1991): Isotope paleontology: growth and composition of extant calcareous species. - Marine Geology, 100, 207-248, Amsterdam.

Fault Backstripping: eine Methode zur Quantifizierung synsedimentärer Störungen am Beispiel des Wiener Beckens

WAGREICH, M. & SCHMID, H.P.

Institut für Geologie, Universität Wien, Althanstraße 14, A-1090 Wien, Email: michael.wagreich@univie.ac.at

Die Methode des *Backstripping* wird zur Berechnung von Subsidenzkurven und Sedimentationsraten von in einer Bohrung aufgeschlossenen Sedimentpaketen herangezogen. TEN VEEN & KLEINSPEHN (2000) gehen einen Schritt weiter und vergleichen Basement-Subsidenzkurven von Bohrungen, die jeweils auf dem Liegend- und dem Hangendblock einer synsedi-mentären Abschiebung liegen und schließen auf deren Geometrie und Bewegungsrate.

Diesen Ansatz aufgreifend, präsentieren wir eine Methode, die es