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A B S T R A C T   

Rock glaciers (RG) are landforms that occur in high latitudes or elevations and — in their active state — consist 
of a mixture of rock debris and ice. Despite serving as a form of groundwater storage, they are an indicator for the 
occurrence of (former) permafrost and therefore carry significance in the research for the ongoing climate 
change. For these reasons, the past years have shown rising interest in the establishment of RG inventories to 
investigate the extent of permafrost and quantify water storages. Creating these inventories, however, usually 
involves manual, laborious, and subjective mapping of the landforms based on aerial image - and digital 
elevation model analysis. We propose an approach for RG mapping based on supervised machine learning which 
can help to increase the mapping efficiency and permits rapid RG mapping in vast and not yet covered areas. We 
found deep convolutional artificial neural networks (ANN) that are specifically designed for image segmentation 
(U-Net architecture) to be well suited for this classification problem. The general workflow consists of training 
the ANNs with orthophotos and slope maps of digital elevation models as input. The output (RG label-maps) is 
derived from a recently published RG inventory of the Austrian Alps that features 5769 individual RGs and was 
compiled manually by several scientists. To increase the generalization capabilities, we use live data augmen-
tation during training. Based on this inventory, the ANNs have learned the average expert opinion and the RG 
map generated by the ANN can be used to increase the consistency and completeness of already existing RG 
inventories. Moreover, this ANN approach might be valuable for other landform mapping tasks beyond rock 
glaciers (e.g., other mass movements).   

1. Introduction 

Rock glaciers (RG) as one of the most-prominent landforms that 
indicate (former) permafrost conditions were of interest since the early 
1960s starting with Wahrhaftig and Cox (1959). An established defini-
tion is given by Barsch (1996), more recently by Berthling (2011) and 
preliminarily standardized in a current project (2018–2023) of the IPA 
Action Group “Rock glacier inventories and kinematics” (RGIK 2022). 
Active RGs are tongue-shaped or lobate creeping landforms of peren-
nially frozen debris material and move downslope slowly, thereby often 
forming transversal ridges and furrows on their lower part and longi-
tudinal ridges on their upper part (e.g., Berthling (2011). Movement 
may stop due to more gradual terrain, cease of debris-supply or atmo-
spheric warming (ice melt/permafrost thaw) and RGs become inactive. 
Both active and inactive RGs contain permafrost ice and are historically 
summarized as intact RGs (e.g. Barsch 1996). When finally, all 

permafrost ice within the landform completely vanishes, the RG be-
comes relict. Typical features of a relict RG are extensive vegetation 
cover and collapse structures. Nevertheless, a clear distinction between 
relict and intact rock glaciers is not straightforward (e.g., Colucci et al. 
(2019)). A refinement of the rock glacier activity categories was recently 
provided by the IPA Action Group “Rock glacier inventories and kine-
matics” (RGIK 2022). 

RGs may serve as palaeo-climate indicators if found in a relict state 
(e.g., Frauenfelder et al. (2001); Moran et al. (2016)) or may even pose 
potential natural hazards in their intact state as changes in creeping 
velocities or disintegration due to permafrost thawing might trigger rock 
fall or debris flow (e.g., Delaloye et al. (2012); Haeberli et al. (2017)). 
Climate change and its reflection in a change in mountain permafrost 
drew upon rock glacier evolution (Haeberli et al., 1993; Kääb et al., 
2007). In more recent years the attention was drawn on the importance 
of RGs for the hydrology of alpine headwaters as highlighted by e.g., 
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Hayashi (2020); Jones et al. (2018a) and Jones et al. (2019) at a global 
scale. On the one hand, RGs may store water as permafrost ice in intact 
RGs (e.g., Jones et al. (2018b); Winkler et al. (2018); Pruessner et al. 
(2021)) and on the other hand they generally store liquid water as 
groundwater because RGs are considered to be shallow alpine aquifers 
(e.g., Hayashi (2020); Wagner et al. (2020a); Wagner et al. (2021)). 
Thus, regional recognition of these landforms yielding into inventories 
became more and more popular due to available high-resolution digital 
data. A first globally compiled inventory was established by Jones et al. 
(2018a). However, the inventories lack on consistent data quality as 
they are mainly mapped manually (e.g., Guglielmin and Smiraglia 
(1998); Rangecroft et al. (2014); Wagner et al. (2020b)) and therefore 
influenced by the personal experience of the mapping scientist. A recent 
contribution by Brardinoni et al. (2019) showed that, while the front of a 
RG is usually easily identifiable, the upper side of it – where it transitions 
into other morphologies (i.e., the rooting zone) – is ambiguous and 
multiple mappings by different researches would yield different RG 
boundaries. Therefore, existing approaches of manual delineation of 
such landforms are subjective (e.g., Brardinoni et al. (2019)) and very 
often not directly comparable. Furthermore, larger RG inventories 
usually are broken down into smaller areas which are then mapped by 
different operators. Although there are ongoing developments that will 
provide standardized mapping guidelines, individual humans naturally 
apply their own mapping policies which are different from one another 
due to different levels of experience and general cognitive differences 
between human beings. Consequently, human mapping based RG in-
ventories are inherently inconsistent. 

To account for some of the above-mentioned challenges of RG 
mapping we present an RG mapping approach that is based on state-of- 
the-art machine learning (ML) algorithms. Boosted by easy access to 
great computational power and the rise in more easily available high- 
resolution (digital elevation) datasets, the past decade has shown big 
advances in the field of ML based object detection and image segmen-
tation in general (e.g., Krizhevsky et al. (2012)) and also for general 
geomorphological topics: Marmion et al. (2008); Stumpf and Kerle 
(2011); Giaccone et al. (2021). Breaking RG mapping down to a basic 
problem of semantic image segmentation (i.e., pixelwise classification of 
an image and thus segmenting the image into semantically coherent 
parts), we present a supervised ML approach, where we train artificial 
neural networks (ANN) to map RGs based on an existing inventory 
(Wagner et al., 2020b) and thus combine multiple expert opinions in one 
trained algorithm. 

Several authors have already presented similar approaches in the 
context of ML based processing of permafrost related landforms: Deluigi 
et al. (2017) used non-deep ML classifiers (e.g., logistic regression, 
support vector machine) to map areas with permafrost; Kofler et al. 
(2020) also used non-deep ML classifiers to estimate the state of a RG (i. 
e., intact vs. relict); Marcer (2020) used a simple convolutional neural 
network (CNN; i.e., a type of deep ANN) to map RGs in a sliding window 
approach; Robson et al. (2020) also used a CNN to map RGs in an image 
segmentation approach. While Deluigi et al. (2017) and Kofler et al. 
(2020) do not address RG mapping directly, our approach differs 
methodologically from Marcer (2020) and Robson et al. (2020). These 
two approaches both used simple CNNs with either a binary output (i.e., 
RG yes or no) for the whole input image (Marcer 2020) or an image 
segmentation approach without a specialized CNN architecture (Robson 
et al., 2020). 

The overall goal of this study was to develop a framework for RG 
mapping support that is reproducible and universally applicable and not 
biased towards specific altitudes or aspects/orientations of the land-
forms. Therefore, the specific aims of this study are (i) to apply ML based 
image segmentation for identifying and delineating RGs and validate the 
ML capability for this approach; (ii) to provide a trained algorithm that 
might be used on other regions of the world to look for RG suspected 
landforms. The study provides an approach towards consistent RG 
mapping in the sense of applying a “consistent mapping policy to an area 

via one single entity” as opposed to applying multiple different mapping 
policies to an area via multiple human experts. The recently developed 
consistent rock galcier inventory of Austria (Wagner et al. 2020b, 
2020c) was used as the ANN training data set for this study and based on 
that the entire Austrian Alps were scanned by the ANN and further 
compard to the existing inventory. It has to be explicitly mentioned that 
the ANN algorithm used herein is not considered to replace the manual 
delineation by experts but to be a helpful assitance. 

2. Machine learning pipeline 

In ML the process from raw data to final classification or prediction is 
often referred to as a “pipeline” and an overview of this study’s pipelines 
is given in Fig. 1. Within this pipeline two main phases can be separated: 
the training phase and the application phase. The training phase starts 
with selection of suitable raw data consisting of digital elevation models 
(DEM), orthophotos and an associated RG inventory (section 2.1). In a 
second step, the raw data needs to be preprocessed into input and output 
data for an ANN (section 2.2). The ML algorithm (in this case an ANN 
with the U-Net architecture) must be designed (section 2.3) and trained 
on the given dataset (section 2.4). The training phase ends with an 
evaluation of results (section 2.5) and the trained ANN can be used for 
further application. 

In the application phase, new input (DEM data and orthophotos) of 
not yet mapped areas and/or areas with a previously existing RG in-
ventory that needs revision must be collected and preprocessed in the 
same way as in the training phase. The previously trained ANN can then 
be used to generate a probability map that shows areas with potential 
RGs. This RG probability map can then be used as an assistance to 
develop a completely new RG inventory of that area or to revise a pre-
vious RG inventory. The dashed arrow in Fig. 1 that connects the 
“Output and Further Processing” of the application phase to the “Raw 
Data” of the training phase illustrates that the whole ML pipeline can be 
used in multiple cycles to “fine-tune” an already existing RG inventory 
(see also the conclusion and outlook in section 5). 

2.1. Data base 

The used data base consists of digital elevation models (DEM) and 
orthophotos as input and the existing RG inventory of the Austrian Alps 
(Wagner et al. 2020b, 2020c) as output, respectively the source of target 
labels. The DEMs with a ground resolution of 1 × 1 m are based on 
airborne laser scanning data and fully cover the Austrian federal states 
of Vorarlberg, Tyrol, Salzburg, Carinthia, Styria and the alpine, southern 
part of Upper Austria. For this study we used DEMs that were provided 
directly by the federal governments of the above given Federal states of 
Austria. References to DEM data can be found in the data availability 
section at the end of the paper. 

Google Maps satellite images were used as orthophotos and loaded as 
XYZ tiles in the open geographic information system (GIS) QGIS (QGIS. 
org, 2021). Although orthophotos of higher quality and resolution are 
available in Austria, we see Google Maps satellite images as sufficient for 
this study and they also have the benefit of being a globally available 
data source. 

The inventory consists of 5769 RGs covering a total area of around 
303 km2 and includes polygons that delineate the RGs’ geometry as well 
as a set of selected attributes. The inventory is a compilation and 
extended version of several previously published RG inventories (Kel-
lerer-Pirklbauer et al., 2012; Lieb et al.; Krainer and Ribis 2012; Stocker 
and Krainer 2011; Stocker 2012b, 2012a) and is seen as the first 
consistent RG inventory of entire Austria as potential RG suspected 
landforms in other federal states are thought to be rare (Upper Austria) 
or nonexistent (Vienna, Burgenland, Lower Austria). 
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2.2. Dataset preparation 

Supervised ML requires dedicated sets of input and output data for 
the algorithms to be trained on. Input will be denoted as X and output as 
y in the following. As a first step of dataset preparation these X – y pairs 
needed to be derived from the above-described data. We therefore 
placed a 1 × 1 km grid over Austria and each cell with already mapped 
RGs is taken as one sample for the training dataset. After initially 

experimenting with 1 × 1 km cells that are centered on individual RGs, 
we chose a fixed grid as this teaches the algorithm to expect RGs in all 
positions of the sample and not only at its center. In combination with 
the data augmentation techniques that are used during training (see 
section 2.4) we found this approach very promising as it makes the al-
gorithms more robust towards variable positions and orientations of the 
RGs. Fig. 2 gives a visual summary of the described approach for 
deriving X and y. 

Fig. 1. Schematic overview/flow chart of the Machine Learning pipeline for rock glacier mapping as used in this study. RG = rock glacier, DEM = digital elevation 
model, U-Net = artificial neural network of this study. 

Fig. 2. Map view of the process of dataset preparation: (a). a 1 × 1 km grid is placed over Austria; (b). The cells (1 × 1 km) with already mapped rock glaciers are 
selected for ANN training and validation (indicated in blue); (c) slope maps of the 1 m resolution digital elevation model and (d) greyscale orthophotos are saved as 
input for the ANNs and (e) rock glacier label-maps as output/target labels for the training data. 
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Specifically, each element of the ANN input - X - consists of a 512 ×
512 x 2 array. The 512 × 512 pixel size of the arrays was chosen as a 
trade-off between sufficiently high resolution input/output and 
computational effort (higher resolution, longer computational time). 
The two layers/bands/channels of this array can be thought of like a 
multi band image and will be referred to as “channels” in the following. 
The first input channel consists of a slope map representation of the DEM 
and the second input channel of a grayscale orthophoto. Both are 
resampled to the 512 × 512 pixel image size and thus the two input 
channels have an approximate resolution of 2 m. The output consists of a 
label-map which in this case is a binary map showing areas with RGs in 
white (label = 1) and areas without RGs in black (label = 0). Fig. 2 
shows an example of X where the slope map and the greyscale ortho-
photo of the input are shown as well as the corresponding output – y – 
which includes multiple large RGs. 

The slope map of the input was computed with the program QGIS 
based on the above mentioned DEMs. In a slope map each raster cell 
contains information about its slope angle (in degrees) with respect to 
the neighboring cells. We use the derived slope map as an input, as 
several studies in the context of slope morphologies (e.g., Liu et al. 
(2020); Lee et al. (2020)) have shown that the slope inclination is one of 
the most informative parameters for ML algorithms. Furthermore, using 
slope data instead of DEMs with absolute heights enables the ML algo-
rithm to identify RGs at all altitudes simply based on their morpholog-
ical features and there is no risk of the algorithm to become biased 
towards certain predominant heights of the training dataset. For the 
same reason we did not use DEM representations like the slope aspect (i. 
e., the direction into which a slope faces) as the RGs in the training 
dataset are not equally spread across all orientations (Wagner et al., 
2020b) which again would introduce bias in the training. 

As given above, we use grayscale orthophotos for the second channel 
of the input with the idea to give the algorithm additional information 
about the landscape’s surface and vegetation characteristics as they are 
not well represented in the DEM – slope map representation. We only 
used one channel of greyscale orthophoto instead of all three R, G, B 
channels as this is computationally more efficient while still providing 
the necessary surface information. Building on the above-mentioned 
studies that also use supervised ML for classification of different 
morphological features, no tests with various input channels were per-
formed to determine the most informative one. Especially the slope 
maps provide sufficient morphological information to identify RGs and 
the orthophotos provide additional information about the land surface. 

The output – y – is a 512 × 512 binary raster/label-map containing 
the information whether a pixel shows a RG or not. The raster was 
directly derived from the existing RG inventory with the program QGIS 
(Wagner et al. 2020b, 2020c). 

To set up the final training dataset, a split of X and y into two subsets 
is necessary (Raschka and Mirjalili 2019; Chollet 2018). The main subset 
Xtrain and ytrain is then used for training the algorithm and a number of 
random samples is set aside as to be able to objectively validate the 
trained algorithm’s performance: Xval and yval. With the above-described 
approach, we could generate 4522 input-output samples. Since several 
RGs can appear in the same cell, the number of samples is lower than the 
total number of RGs in the inventory (i.e., 5769 (see for example the 
sample of Fig. 2 (c – e) where several RGs appear in identical grid cells). 
Of the 4522 samples, 800 were randomly selected for validation which 
leaves 3722 for training. Using 800 samples for validation was deter-
mined by trial and error in the experimental phase of the study. While 
training ANNs multiple times on different subsets of the data (i.e., 
different splits into training and validation data; also known as “cross 
validation”) we found that a validation dataset size of 800 on the one 
hand yields a representative sample where most RG-morphologies are 
well covered while on the other hand the number of samples for training 
is not too diminished. 

Due to the observation that a peculiar number of false positives is 
associated with several landforms that are not represented in the orig-

inal dataset (e.g., some anthropogenic structures, hills etc. see section 3) 
we added 70 manually selected negative samples with no RGs (i.e., y 
consists of 0 only) to the training data. In summary 3792 samples were 
used for training and 800 for validation, leading to a ratio of ~79%: 21% 
and 4592 samples in total. This ratio of training to validation samples is 
also based on the authors’ experience that a share of 20%–30% test data 
leads to sufficient results, provided that the validation samples are well 
representative for the whole dataset (Erharter et al. 2019, 2021). 

2.3. Artificial neural network 

The chosen ANN architecture is based on the “U-Net” ANN archi-
tecture after (Ronneberger et al., 2015). U-Net is a type of deep con-
volutional ANN (Lecun et al., 1998; Hubel and Wiesel 1963; Krizhevsky 
et al., 2012) with a contracting and expanding path/an encoder and 
decoder part of the ANN. U-Net has shown state of the art performance 
on various image segmentation tasks (Wang et al., 2021; Wu et al., 2021; 
Maxwell et al., 2020) and a graphical representation of our imple-
mentation of the U-Net ANN architecture is given in Fig. 3. 

The U-Net of our implementation consists of five contracting- and 
five expanding blocks. Implementation was done with the Python li-
brary Keras (Chollet, 2015) with a tensorflow-gpu backend (Abadi et al., 
2015). Information on the source code of the used U-Net implementa-
tion is given in the Computer code availability section at the end of the 
paper. 

One contracting block consists of two 2D convolution layers 
(conv2d) with a 3 × 3 kernel size and a stride of 1. Zero padding is 
applied (i.e., setting: padding = “same”, see Keras documentation) and 
rectified linear unit (ReLU) activation functions (eq. (1)) are used 
(Hahnloser et al., 2000). 

f (x)=max(0, x) (1) 

Each conv2d layer is followed by a layer of batch normalization. To 
reduce the input size, a maximum pooling layer with a window size of 2 
× 2 and a stride of 2 × 2 is applied in the end of each contracting block. 
Each contracting block yields two outputs where the residuals of the last 
conv2d layer are passed on to the corresponding expanding block and 
the compressed input after the max pooling is passed down to the next 
contracting block/center of the ANN. In the five contracting blocks, the 
numbers of filters in the conv2d layers are set to 32, 32, 64, 128 and 256. 
Due to the max. pooling the dimensions of the input images are reduced 
by 50% in each block which leads to a size of 32 × 32 pixels after five 
contracting blocks and initial image sizes of 512 × 512. 

Each expanding block receives two inputs, where one is the residual 
of a corresponding contracting block and one is the output of a previous 
expanding block or the ANN’s center. As a first step, the output of the 
previous block is upsampled by two (i.e., the input size is doubled) so 
that the size of the previous block’s output matches the size of the 
incoming residual. Then the residual and the upsampled input are 
concatenated/merged along the third axis and then fed into a stack of 
three conv2D layers each followed by batch normalization (identical 
settings as in the contracting blocks). Going from center to output, the 
number of filters in the conv2d layers of the expanding blocks is 256, 
128, 64, 32 and 32 and the size of the images increases from 32 × 32 to 
512 × 512 pixels. 

The center part of the U-Net consists of two conv2d layers with 512 
filters each, a kernel size of 3 × 3, “same” padding and ReLU activation 
functions. Each conv2d layer of the center is followed by a layer of batch 
normalization. The final result of the U-Net is generated in one last 
conv2d in the end of the ANN with a kernel size of 1 × 1 that applies 
sigmoid activation functions (eq. (2)), thus creating an output that 
ranges from 0 (no RG) to 1 (RG). 

f (x)=
1

1 + e− x (2) 

Inspections of preliminary results during the development phase of 
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this study showed considerable variation in individual ANNs’ output 
with respect to how well different morphologies can be detected. As 
instability is a well-known issue with ANNs (Cunningham et al., 2000; 
Dietterich 2000) we trained 10 individual ANNs with identical U-Net 
architecture to compensate for that. The final result is thus created as an 
unweighted average of all ten individual ANNs, i.e., the arithmetic mean 
of all ten ANN outputs. Visual result inspection showed no significant 
improvement when we used a weighted average based on the individual 
ANNs’ performance. 

2.4. ANN training 

The ten individual ANNs were trained with an “Adam” optimizer 
(Kingma and Ba 2014) with a learning rate of 0.0001 and no learning 
rate – decay. To assess the ANNs’ performance we chose the 
Sørensen–Dice coefficient or also called dice similarity coefficient (DSC; 
(Dice 1945; Sørensen 1948)) as this metric has shown good performance 
for image segmentation tasks before (e.g., Wang et al. (2021); Maxwell 
et al. (2020)). The DSC is computed as follows (eq. (3)) 

DSC =
2|A ∩ B|
|A| + |B|

(3)  

where A and B are two sets of elements and |A| and |B| are their numbers 
of elements. The DSC therefore divides twice the number of elements 
that are common in both sets by the total number of elements. A DSC of 
0 refers to a complete dissimilarity between A and B and a DSC of 1 to 
perfect similarity. We use the DSC not only for general performance 
assessment but also as the loss function for the ANNs by combining the 
standard binary cross entropy with the “dice loss” (i.e., 1 − DSC). 

During training we did not aim for a dedicated number of epochs but 
used an “early stopping” mechanism to abort training once the perfor-
mance did not increase anymore for the test dataset. Specifically, 
training was aborted once 8 consecutive epochs without an increasing 
DSC of the test-dataset were recorded and only the best performing 
models are saved. Fig. 4 shows DSC records for the training- and testing 
datasets of all ANNs. Most ANNs reached their peak performance with 
respect to the test dataset after around 10 epochs and due to the almost 

linearly increasing DSC on the training dataset it can be assumed that 
further training would lead to overfitting. 

As given in section 2.2 we used a grid-based approach to create pairs 
of input and output data as to have the ANNs learn that RGs can appear 
in all parts of the input. To further enhance this effect, we used live data 
augmentation during the training to increase the ANNs’ general 
robustness. Training data augmentation (i.e., distortions of input-output 
pairs of the training data) has shown to successfully improve algorithms’ 
performance as it provides a possibility to artificially increase the 
number of training samples and increase a dataset’s diversity (Shorten 
and Khoshgoftaar 2019). The augmentation process consists of hori-
zontal and vertical flipping of the samples, random zoom ranges be-
tween 100% and 200% magnification of the original size and random ±
90◦, 180◦ and 270◦ rotations of the samples. 

Fig. 3. Graphical representation of the chosen U-Net artificial neural network architecture. ReLU = Rectified linear unit activation function, conv2d = 2D 
convolution layer; X = input, y = ground truth output, ŷ = ANN output. 

Fig. 4. Recorded dice similarity coefficients for the training and test datasets 
during ANN training. 

G.H. Erharter et al.                                                                                                                                                                                                                             



Applied Computing and Geosciences 16 (2022) 100093

6

2.5. Evaluation 

The averaged output of the ANNs is a continuous range of probability 
values between 0 (no RG) and 1 (RG) (see section 2.3). While this alone 
is a valuable information and the direct output is used to detect not yet 
found RGs, it is not well suited for a direct comparison to the existing 
Austrian RG inventory. To perform a direct comparison, a probability 
threshold must be set that allows for a discretization of the output. By 
testing the range of thresholds between 0 and 1 in steps of 0.05, we 
found a value of 0.4 as best suited to discretize the results into 2 classes: 
values ≤ 0.4 = no RG, values > 0.4 = RG. 

The diagram of Fig. 5 shows different thresholds plotted against the 
corresponding DSC and the respective values of true positives, false 
positives, true negatives and false negatives. Lowering the threshold 
goes along with an increasing amount of true and false positives but also 
with a decreasing number of true and false negatives. Raising the 
threshold leads to the opposite trend. A maximum DSC of 0.616 is 
reached at a threshold of 0.4. 

In Fig. 6 an example is given where the RG probabilities of the ANN 
output are shown in a discrete colormap at the example of three RGs in 
the North Tyrolean “Wurmeskar”. It can be seen that a high probability 
threshold of – for example – 0.8 would lead to small RG outlines and thus 
a low amount of true and false positives and at the same time a 
comparably high amount of true and false negatives. A low threshold of 
0.2 would lead to very large RG outlines and thus a high amount of true 
and false positives and a comparably low amount of true and false 
negatives. The numbers within the green outlines show how much 
percent of the area of the RGs according to the Austrian RG inventory 
would have been “properly” detected with the proposed threshold of 
0.4. While inspecting these results, one has to keep in mind that also the 
mapped RG outlines according to the Austrian RG inventory are not the 
one and only truth (Brardinoni et al., 2019) and might be discussed 
themselves. 

3. Results 

3.1. Direct output 

As given in sections 2.2 and 2.3 the direct output of the ANNs consists 
of 1 × 1 km raster images with a resolution of 512 × 512 pixels with 
scalar values ranging from 0 to 1 where 0 indicated “no RG” and 1 “RG”. 
For the sake of convenience and to facilitate further analysis the indi-
vidual raster images were georeferenced in the coordinate system “MGI/ 
Austria Lambert” (EPSG code: 31287) and then merged to 105 larger 
raster images that can be imported with standard GIS software. In Fig. 7, 
selected samples of not identified RGs (false negatives), falsely identified 
RGs (false positives), and correctly identified new RGs (true positives) 
are presented. To access the full RG – probability maps of the ANNs, we 
refer the reader to the raster images that are provided with this paper 
and can be retrieved from the repository given in the appendix at the end 
of this paper. With the probability threshold of 0.4 - as described in the 
previous chapter - a value of 64% of true positives was achieved. It can 
be observed that unrecognized RGs are often ones with an overall small 
area. A more detailed quantitative analysis of the ANNs’ performance is 
given in section 3.2 and section 4.3 and Fig. 11 go into more detail on the 
relationship between RG size and detection rate. 

In the first row of Fig. 7 (a to c), samples of RGs that were not 
detected by the ANNs are shown. In these images additionally percent-
ages of the correctly detected area of the RGs are additionally given to 
better highlight the not detected ones (see next section for more infor-
mation on this quantification). In Fig. 7a, three small RGs were hardly 
detected, but the big RG in the middle of the figure was well detected. 
RGs with generally weakly pronounced morphological features (e.g., 
Fig. 7b) or RGs in areas where the overall morphology has been 
anthropogenically modified (e.g., Fig. 7c) are also features that tend to 
remain undetected. In the case of Fig. 7c, the big RG is not detected due 
to anthropogenic overprint in form of a ski slope, however, parts of the 
front of that RG are still weakly detected and especially the two neigh-
boring RGs to the South are detected. 

In the second row of Fig. 7 (d to f), samples are shown that were 
falsely classified as RGs. One example would be karstic areas (e.g., 
Dachstein area, Fig. 7d) where bare rock occurs to be similar to the 
surface structures of RGs, which is however easily identifiable by ex-
perts. A false positive where a debris covered glacier is incorrectly 
detected as a RG can be found at the southern border of Vorarlberg 
(Fig. 7e). Unlike the karstic area such a morphology may be similar to 
“real” RGs and certain ambiguities will remain. In Fig. 7f, another 
example from southern Vorarlberg is given where a remnant of a lateral 
moraine deposit was detected as a RG on the right continuing at the top 
of Fig. 7f (dark colored landform) which is located next to an actual RG 
according to the current inventory. The moraine is strongly affected by 
erosion yielding into some gullies at the right top of the image. For the 
expert it may be clear that there is a wall structure remaining from the 
former glacier front, and behind this structure a depression is present 
and not a bulky main body as it would be the case for a RG. However, it 
needs to be noted that sometimes RGs may have developed out of 
moraine deposits and the transition is often ambiguous. In addition to 
the shown examples, further obvious false positives can be observed in 
connection to anthropogenic structures like quarries, dams, artificial 
ponds (e.g., in Fig. 7c) or landfills which often resemble the steep and 
curved frontal slope of RGs. 

In the last row of Fig. 7 (g to i) candidates for newly detected RGs are 
given. In Fig. 7g a potential relict RG that developed out of a moraine/ 
glacial deposit is depicted. It is located North of the existing RG 
“Futschölferner Ost” with intNr 60342. In Fig. 7h, a new RG is suggested 
in central East Tyrol in the cirque North of the three RGs with the intNrs 
9589, 9587 and 9588. Furthermore, the ANNs indicate a downslope 
extension of the RG “Ochsenbichl W” (9587) which is also comprehen-
sible from a morphological point of view. In Fig. 7i, yet another down-
slope extension of the already mapped RG “e Schobertoerl” (intNr 7441) 

Fig. 5. Different values of probability thresholds plotted against the percentage 
of: true positives (grey line with triangles), false positives (grey line with 
squares), true negatives (grey line with pluses) and false negatives (grey line 
with bold X). The dice coefficient is given as a black line and the maximum of 
0.616 at the threshold of 0.4 is marked. 
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is proposed which is also well visible in the slope view and the ortho-
photo. As opposed to the original Austrian RG inventory, this study also 
involved the southern part of Upper Austria that borders the Austrian 
Alps. In this area, there are also a few landforms that were detected as 
possible RGs and might need to be added to the inventory in a future 
version. 

3.2. Discretized output 

As given above, the discretized output enables a direct comparison to 
the existing Austrian RG inventory. Treating the existing inventory as 
the ground truth, the intersection of the polygons of the existing in-
ventory with the discretized output enables an analysis of true positive, 
false positive, true negative and false negative detected areas. Fig. 5 
shows how the choice of the probability threshold influences the amount 
of these areas. An example of the test dataset with the different areas 
highlighted is given in Fig. 8. 

With the identified certainty threshold of 0.4 (see section 2.5) we 
were able to extract polygons that discretely delineate potential RGs 
identified by the ANNs (i.e., raster areas with a threshold >0.4). We then 
intersected the polygons of the existing RG inventory with the polygons 
derived from the discretized ANN output. By intersecting these two 
polygon layers, it is possible to determine exactly how many percent of 
each RG’s area has been detected (denoted as A%). To be able to draw 
objective conclusions from this measure, we only analyzed RGs of the 
validation dataset that are fully enclosed within one cell, as to avoid 
possible corner effects. This leaves 538 of the total 800 RGs in the 
validation dataset. Of these 538 RGs, 119 (22%) have an A% between 
0 and 10%, 282 (52%) have an A% of over 70% and 188 (35%) achieve 
an A% of over 90% and are thus almost completely mapped. A more 
detailed representation of this measure as well as an example is given in 
Fig. 9 and an interpretation of these results in section 4.3 where espe-
cially Fig. 11 concerns the detection rate of differently sized RGs. We 
nevertheless want to point out that this result is highly dependent on the 
choice of the previously described probability threshold. Lowering this 
threshold will directly influence A%, respectively the number of detec-
ted RGs. 

4. Discussion 

4.1. Comparison with existing approaches 

In this study we presented a methodology where we use a specialized 
ANN architecture that was originally designed for semantic image 
classification for automatic RG mapping. In comparison to previous, 

similar studies from Robson et al. (2020) and Marcer (2020) which used 
simpler ANN frameworks, we also used a much larger RG inventory to 
train on. The applied U-Net/encoder – decoder type CNN shows state of 
the art performance in image segmentation and overall better results 
than standard CNNs for this task (Badrinarayanan et al., 2015; Ronne-
berger et al., 2015). U-Nets are also increasingly applied on other tasks 
including geoscientific problems (e.g., Samarin et al. (2020); Dirscherl 
et al. (2021); Wu et al. (2021)). As there is a broad consensus in the 
community that U-Nets provide state of the art performance in image 
segmentation over standard CNN implementations, the approaches from 
Marcer (2020) and Robson et al. (2020) were not directly replicated for 
this study. 

As the image-segmentation based approach of this study yields a 
pixelwise RG-probability over the whole mapping area and not a 
delineation of individual RGs, it is not possible to tell how many new 
RGs were actually found. It is furthermore problematic to compare ab-
solute numbers of RGs, since some operators delineate individual RGs 
within bigger clusters of RGs, which always would be detected as one big 
RG cluster by the presented approach. The analysis with the discretized 
output of section 3.2 permits however an assessment of how much area 
was successfully discovered with respect to the testing data. The result 
analysis furthermore showed that the ANN based mapping shows less 
certainty in mapping ambiguous parts of RGs like the rooting zone but 
does well in clearly defined areas like the front and pronounced internal 
lobes which shows the strong relation between the supervised ML al-
gorithm and the human-made labels that it was trained on. 

Considering the used input data of this study in comparison to pre-
vious ones, the higher input data resolution and usage of DEM data in 
the present study helps with this problem and observed difficulties with 
identification of small landscapes are likely to be related to in-
consistencies in the training data. Marcer (2020) used grayscale spot 6 
imagery featuring hindering effects such as snow cover, tree cover or 
excessively shadowed areas and small landforms are therefore 
discarded. 

4.2. Reflection on data processing 

In this study we trained ANNs to automatically map RGs based on 
openly accessible satellite images and digital elevation models. Whereas 
satellite based orthophotos are already almost globally available, pub-
licly available 1 × 1 m DEMs are still rare, and this therefore limits the 
current applicability of the proposed method to countries with available 
high-resolution DEM data (preferably Lidar based and not satellite 
based). A follow-up study would be necessary to determine how lower 
DEM resolutions affect the accuracy of the trained ANNs. For example, 

Fig. 6. Three exemplary RGs of the North Tyrolean “Wurmeskar” (left) and the corresponding ANN-based RG probability map with a discrete colormap and an 
interval of 0.2 (right). It can be seen that a lower threshold would lead to a higher detection rate, but also to more false positives. 
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the average wavelength of furrow-and-ridge structures is around 20–25 
m for the active Murtèl RG in Switzerland; a relatively large and obvious 
rock glacier due to its surface morphology that is representing 
compressive flow (Frehner et al., 2015). Relict RGs and intact ones with 
less pronounced morphology are potentially harder to detect (manually 
and by the ANN) and higher resolution DEMs are likely necessary. In 
general, it can be assumed that large RGs with pronounced morpho-
logical features can still be detected in lower resolution DEMs but not 
reverse. Therefore, a horizontal resolution of presumably 5–10 m is 
going to be necessary at least and the use of coarser DEM data (such as 
the SRTM 90 m DEM Data available for the entire world; e.g., Reuter 
et al. (2007)) is not going to yield applicable results for this data set. 
Further investigations due to the proper resolution of the input data set 

(e.g., DEM) related to the RG size for suitable detectability of these 
landforms are necessary. 

The approach to derive samples from a fixed grid and use data 
augmentation during training was a success, as the output shows no 
directional bias or preferred locations of the found RGs within the 
samples themselves (Fig. 10). 

Especially the observation that detected RGs often span over multi-
ple grid cells shows that the ANNs have learned to consider all parts of 
the RGs and not only well pronounced features like the front of the 
landform. We also see the U-Net ANN architecture well suited for the 
given task, although further architecture and parameter tuning could be 
conducted. 

Converting the continuous output of the ANNs to a discrete one (as 

Fig. 7. Samples of the artificial neural network-based rock glacier map with light yellow colors indicating a high rock glacier probability (= 1) and dark colors 
indicating a low probability (= 0) (same colormap for all images); names and identification number within the Austrian rock glacier inventory (intNr) are given 
below; already mapped rock glaciers of the Austrian inventory are outlined by green lines and the 1 × 1 km grid is shown by black lines. (a) To (c):examples of rock 
glaciers from the test dataset that were not detected; (d) to (f): morphologies that were falsely detected as rock glaciers; (g) to (i): morphologies that are seen as newly 
detected rock glaciers or extensions of already mapped ones. Note the different scales in the sample images. 
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described in section 2.5) enables a direct quantitative comparison to the 
existing RG inventory on the one hand and also the derivation of vec-
torized polygons on the other. As given in sections 2.5 and 3.2 however, 
the choice of the probability threshold that separates RG from non-RG 
pixels is critical and highly influential for the number of false positives 
and false negatives. In this study we found a fitting threshold based on 
the maximum dice coefficient. 

4.3. Training data uncertainty and human bias 

Given a perfect set of training data, it can be assumed that today’s 
state of the art ML algorithms can achieve and even surpass human level 
performance for classification tasks. This has already been shown 
several years ago for with datasets that contain a very low degree of 
uncertainty in themselves, like handwritten number identification 
(Ciresan et al., 2012; He et al., 2015). Consequently, the biggest influ-
ence on the ANN performance is seen in the training data itself. As in 
many studies that use ML to do geological/geomorphological classifi-
cation, the problem arises that during training the data and the labels 
must be treated as the ground truth. It is however well known that 
geological labels – especially if they were assigned by human experts – 
are subject to extensive variability depending on different experiences 
and conditions of the persons who did the mapping/labelling. This is on 
the one hand a topic of discussion in the ML community Xu et al. (2021). 

On the other hand also Wagner et al. (2020b) discuss this for the Aus-
trian RG inventory where the delineation of the individual RGs was done 
by multiple persons with different levels of experience and it is known 
that even experts themselves may disagree on the actual delineation of 
RGs as reported by Brardinoni et al. (2019). Thus, the used training data 
base – in our case the initial Austrian RG inventory - contains a certain 
degree of subjectivity, human errors and consequently inconsistency. 
Particularly the rooting zone delineation is most often done in an 
ambiguous way that is related to the geomorphological problem of the 
loose definition of a rock glacier and especially its rooting zone. The IPA 
Action Group Rock glacier inventories and kinematics is currently trying 
to come up with the necessary standards, define stricter guidelines for 
rock glacier mapping and definition to resolve some of these issues in the 
near future (RGIK 2022). In addition, rock glaciers can also be poly-
morphic landforms with more than one generation of rock glaciers (e.g., 
Frauenfelder and Kääb (2000)). The Austrian RG Inventory assigns 
polymorphic landforms an attribute (LfMorph: m = monomorph; p =
polymorph) and list them as individual features (polygons). The ANN 
might see these individual features as a single one. This might not 
impact a binary RG mapping (i.e., RG yes or no), but could become an 
issue for possible multi-class classifications in future studies. Moreover, 
discrimination of very small RGs with less well pronounced morphol-
ogies is problematic even between experts. As shown in Fig. 7 (g – i) 
there might also be areas where RGs have been overlooked in the initial 

Fig. 8. Discretized sample from the test dataset. From left to right the figure shows: a) The first channel of the respective input sample – i.e., slope view; b) the ground 
truth label-map derived from the Austrian RG inventory; c) label-map based on a weighted average classification of 10 ANN models and discretized with a threshold 
of 0.4; d) intersection of the ground truth with the discretized ANN label-map showing true negatives in black, true positives in green, false positives in orange and 
false negatives in red. 

Fig. 9. (a) Barchart showing how many complete rock glaciers of the validation dataset were detected by the ANNs (538 in total). (b) Example of a rock glacier where 
the originally mapped shape is given in green and the outline of the discretized ANN result in red (A% = 43.7). A hillshade DEM and a colormap that shows the 
rasterized/direct output of the ANNs is given in the background. 

G.H. Erharter et al.                                                                                                                                                                                                                             



Applied Computing and Geosciences 16 (2022) 100093

10

mapping process. We also see the reason for why A% (as defined in the 
previous section) shows an increasing trend with the overall size of the 
RGs (Fig. 11) in human errors and disagreements in expert opinions with 
regard to small RGs. 

It is not the goal of this study to speculate on the numerous reasons 
that might introduce inconsistencies and errors into RG inventories (or 
geological data in general). It can be assumed, however, that these in-
consistencies and errors adversely affect training of ML algorithms to a 
large extent as the algorithm must deal with partially misleading and 
contradictory training data. To alleviate this, we therefore propose that 
multiple cycles of ML training and RG inventory revision of the training 
data set might help to vastly increase an inventory’s quality. The 

proposed ANN integrated in an iterative process of RG inventory 
refinement might contribute to the IPA Action Group goal. 

5. Conclusion and outlook 

In conclusion, it has been shown that the chosen methodology for 
automized RG mapping support generally works and can contribute to 
the increase in consistency of already established RG inventories (see the 
introduction for an explanation how “consistency” is used in the context 
of this study). The increase in consistency of the ANN based approach 
over the human mapping comes from the fact that once the ANN is 
trained it applies a fixed and unalterable mapping policy unless it is 
retrained with more data. In the presented form the proposed ML- 
framework provides a tool that helps to scan mountain ranges/land-
scapes efficiently and consistently for specific landforms based on DEMs 
and orthophotos. 

However, the current ANN output is not directly providing a new RG 
inventory and should therefore not be used to replace manual RG 
delineation and assessment by experts is still necessary. Experts might 
even work with the direct ANN output without applying a threshold to 
derive vectorized polygons as a base for their manual delineation. The 
reason for why the ANN output is not directly useable as a new RG in-
ventory is seen in the quality of the data the ML-framework is trained on. 
Consequently, improving the approach of ANN based RG mapping goes 
along with improving the database on which the ANNs are trained. To 
do so, an iterative approach could be chosen where in a first loop ANNs 
are trained to predict RGs based on a conventionally established RG 
inventory. With that result, the original RG inventory could be revised 
by extending it with newly detected RGs and possibly deleting ones 
which were not detected by the ANNs and where the delineation was 
questionable in the first place. Having done that, the quality and con-
sistency of the inventory should be improved, and one could use the 
revised inventory to retrain a new ML framework which should perform 
better than the initial one. By combining this approach with the work 
presented by e.g., Reinosch et al. (2021) for automated RG classification, 
a big step towards more consistent RG inventories as proposed by the 
IPA is to be expected. With these methods (possibly involving several 
loops of ML-training and inventory-revising) it should be possible to 
reach a state where the performance of the ML framework is sufficiently 
good, and the results can reach or even surpass human level perfor-
mance as there is no limit to the amount of training a ML algorithm can 
go through (as opposed to humans). As given before however, the cur-
rent framework has to be seen as an additional help for the human 
mapper and ML algorithms today still lack the ability to include 
geological context and “out of domain experience” in their processing. 
Only continuous development and simultaneous performance assess-
ment will be able to show if ML based mapping can reach human level 
performance in the future. 

Despite applications to increase the completeness and consistency of 
current RG inventories, the presented ML based way of RG detection can 
be used for basic establishment of new RG inventories in mountain 
ranges that were not yet considered for such an application. The pre-
sented framework was designed in a way that it can be applied for all 
regions where orthophotos and DEMs with a sufficient resolution are 
available. Although the availability of high-resolution DEM data might 
still be an obstacle today, we see this as a problem that decreases with 
ongoing technological progress and digitalization. By using slope maps 
and orthophotos as an input - as opposed to direct DEM data - we 
furthermore designed the framework in a way that it only considers the 
morphological features of the landscape and is independent of regional 
characteristics like slope orientation or absolute elevation. 

Data Availability 

Austrian Rock Glacier Inventory based on: https://doi.org/10. 
1594/PANGAEA.921629 

Fig. 10. Polar plot of the average aspect and (former) flow direction [◦] 
(attribute “aspLfDeg” in the Austrian RG Inventory) against the detected area of 
RGs in percent (18◦ bars). No directional bias can be detected. 

Fig. 11. Scatterplot that shows how the detected area of individual rock gla-
ciers increases with the overall size of the rock glaciers which might be related 
to inconsistencies in the original data with respect to smaller rock glaciers. 
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By the time of this writing the following states of Austria provide 1 £
1 m digital elevation models as openly accessible downloads that can 
be used to reproduce this study (sorted alphabetically):  

• Carinthia, https://www.data.gv.at/katalog/dataset/c4352e0c-f811- 
4c59-bdac-4ba199684fc2;  

• Salzburg, https://www.salzburg.gv.at/api5/datalinq/report/vekto 
rwork@alsdownload@alsdownload;  

• Styria, https://data.steiermark.at/cms/beitrag/11822084/971088 
94/?AppInt_OGD_ID=1211;  

• Tyrol, https://tiris.maps.arcgis.com/apps/webappviewer/index.ht 
ml?id=5e3071044cb44e76843d110baef8b138;  

• Upper Austria: https://www.land-oberoesterreich.gv.at/211787. 
htm;  

• Vienna, https://www.data.gv.at/katalog/dataset/1eda4b16-05e3- 
43c3-b5b0-ef8276df0701; 

The following URL was used to retrieve the XYZ tiles for the Google 
maps satellite images: http://www.google.cn/maps/vt?lyrs=s@ 
189&gl=cn&x={x}&y={y}&z={z} 

Computer code availability 

The source code of the used U-Net implementation for this paper as it 
is described in section 2.3 is available in the following GitHub re-
pository: https://github.com/geograz/ML_RG_mapping. The coding was 
done by the main author (contact details as given in the affiliation 
section of this paper) and it is a modified version of the U-Net model 
presented in the following GitHub Repository: https://github.com/malh 
otraa/carvana-image-masking-challenge that was made for a specific 
Kaggle challenge (https://www.kaggle.com/c/carvana-image-masking- 
challenge/overview/description). The code for this paper was made 
available before submission in August 2021 and the ANN was trained on 
a NVIDA RTX 2080 Ti graphics processing unit. The programming lan-
guage is Python. The code is licensed under the “MIT license” and 
further information is given in the repository. 
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Appendix 

The 105 resulting raster tiles as described in section 3 can be found 
under the following link: 

https://repository.tugraz.at/records/ckkj2-2me08?token=eyJh 
bGciOiJIUzUxMiJ9.eyJpZCI6IjY2NDQ1YWVlLWE3N2ItNDkzOS05ND 

dlLTY0N2MxZWFmZjhhZiIsImRhdGEiOnt9LCJyYW 
5kb20iOiI5NmFmOTgxMGY2OTc2Yzk1MmYwMWI4OGM0ZGZj 
NmUwYyJ9.FqnfeGcBzd15vpl3NrN7qGUq12-l47dNqN5vGs 
QGqgaG2dB5uOqxjgmoy-p98dpHY-Pfb128A6WmuxLxqTkOLw 
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rockglacier (Switzerland). Permafr. Periglac. Process. 26, 57–66. https://doi.org/ 
10.1002/ppp.1831. 

Giaccone, E., Oriani, F., Tonini, M., Lambiel, C., Mariéthoz, G., 2021. Using data-driven 
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