Jubiläumse	schrift 20 Jahre Ge Österreich	ologische Zusammenarbeit - Ungarn	A 20 éves magyar-osztrák földtanl együttműködés jubileumi kötete Szerkesztette: Harald Lobitzer & Géza Császár				
Red	laktion: Harald Lob	itzer & Géza Császár					
Teil 1	S. 109-129	Wien, September 1991	1. rész	pp. 109–129	Bécs, 1991. szeptember		
		ISBN 3-90	0312-76-1	_			

Korrelation der oligozänen Schichtfolgen von Ottenthal (Waschbergzone, Niederösterreich) mit der Region Kiscell (Budapest, Nordungarn)

Von Peter Seifert, Roswitha Braunstein & Tamás Báldi*)

Mit 13 Abbildungen und 4 Tafeln

Österreich Ungarn Waschberg2one Oligozân Zentrale Paratethys Allochthone Molassezone Kalknannoplankton Mollusken

Österreichische Karte 1 : 50.000 Blätter 10, 11

Inhalt

	Zusammenfassung	9
	Összefoglalás	9
	Abstract	0
1.	Einleitung	0
2.	Historischer Abriß	1
3.	Geologie der Waschbergzone	1
4.	Profil Ottenthal - Leithen	1
	4.1 lithofazielle Beschreibung	1
	4.2 Kalknanofoseilien 11	4
	4.3 Risstationable	4
6	Nolliekanfauna von Ottenthal	7
φ.	11	÷
	5.1. Waterial und Descriteioung	ó
~	5.2. Alter und Fazies	ă
ю.	Stratigraphische Stellung	8
		.0

Zusammenfassung

Ein oligozäner Aufschluß der Waschbergzone (allochthone Molassezone, Niederösterreich) wurde biostratigraphisch anhand von Kalknannoplankton und der Molluskenfauna mit einigen Bohrungen und Aufschlüssen aus Nordungarn (Budapest und Noszvaj; Unter- und Oberoligozän) verglichen. Sowohl die Biofazies als auch die Lithofazies lassen einen ursprünglichen Zusammenhang der Ablagerungsräume der Menilitschichten der karpatischen Flyschzone über die Waschbergzone bis zum Tard Clay und Kiscell Clay in Ungarn erkennen.

Az ottenthali (alsó-ausztriai Waschberg-zóna) és az észak-magyarországi oligocén összlet korrelációja

Összefoglalás

Egyetlen Waschberg-zónabeli (allochton molassz zóna) feltárás és néhány északmagyarországi (budapesti és noszvaji) fúrás és feltárás oligocén rétegsorának (alsó- és felső-oligocén, Tardi Agyag, Kiscelli Agyag) biosztratigráfiai összehasonlítására került sor mészvázú nannoplankton és molluszkák alapján. Bio- és litofácies szempontjából az ausztriai szelvény a kárpáti flis menilitek és a magyarországi Tardi Agyag és Kiscellí Agyag közötti átmenetnek tekinthető.

^{*)} Dr. PETER SEIFERT, ÖMV-AG, Wien, Gerasdorferstraße 151, A-1210 Wien; Dr. Roswitha BRAUNSTEIN, Universität Wien, Institut für Paläontologie, Universitätsstraße 7/II, A-1010 Wien; Prof. Dr. TAMAS BALDI, Eötvös Loránd University, Departement of Geology, Muzeum Krt. 4/A, H-1088 Budapest, Ungarn.

Correlation of the Oligocene Sequences of Ottenthal (Waschberg Zone, Lower Austria) with the North Hungarian Oligocene

Abstract

An Oligocene outcrop from the Waschberg zone (Allochthonous Molasse zone, Lower Austria) and some outcrops and drillings from the northern part of Hungary (Budapest and Noszvaj; Tard Clay, Kiscell Clay, Lower and Upper Oligocene) were biostratigraphically compared with calcareous nannoplankton and molluscs. The biofacies and the lithofacies of the Austrian section can be regarded as a transition between the Carpathian Flysch menilites and the Tard Clay and Kiscell Clay of Hungary.

1. Einleitung

Die Waschbergzone (GRILL, 1953), eine allochthone Einheit der Molassezone, ist der nordwestliche Ausläufer des alpin-karpatischen Gebirgsystems (Abb. 1). Die ursprüngliche paläogeographische Lage (Abb. 2) wird zwischen der Molassezone im NW und dem Ablagerungsraum der Flyschzone im Süden angenommen (OBERHAUSER, 1980). Die Schichtfolge besteht überwiegend aus einer mächtigen Eggenburg-Ottnang Serie mit einem Oligozänanteil an der Basis. Der beste und mehrmals untersuchte Aufschluß oligozäner Sedimente auf österreichischem Staatsgebiet ist der Aufschluß Ottenthal/Leithen in der nördlichen Waschbergzone, 5 km südlich der Grenze zur ČSFR.

Der Aufschluß liegt SE der Kirche der Ortschaft Ottenthal entlang der Böschung eines Feldweges in Richtung Kleinschweinbarth (ÖK 50, Blatt 10 Wildendürnbach, 48°45'35"/16°34'55"). Die Überschiebungsgrenze der Waschbergzone über die autochthone Molasse verläuft im Westen in ca. 2 km Entfernung in Richtung Pottenbrunn. Nördlich des Zayaflusses geht die Waschbergzone kontinuierlich in die Steinitzer Einheit (Zdaniče unit) über, die sich jenseits der Grenze in Südmähren fortsetzt.

Das Ziel der Arbeit ist es, das Profil Ottenthal mit den gleichalten Typusprofilen der Region Kiscell (Budapest) in Nordungarn biostratigraphisch zu korrelieren. Das Ergebnis wird mit dem paläogeographischen

Abb. 1. Lage des Untersuchungsgebietes.

Abb. 3.

Paläogeographische Entwicklung des Pannonischen Raumes im Oligozän (Unteres Kiscellian).

Modell für die Zentrale Paratethys zur Zeit des Kiscell (NP 21-NP 24, Abb. 3) und Eger (NP 24, NN 2, Abb. 4) verglichen (BALDI, 1986).

Abb. 4.

Paläogeographische Entwicklung des Pannonischen Raumes im Oligozän (Oberes Kiscellian-Egerian).

2. Historischer Abriß

RZEHAK (1881, 1887, 1895, 1922) untersuchte als erster systematisch die Schichtfolgen der Waschbergzone und beschrieb in seinen Arbeiten braune Pausramer Mergel und gelbe Moutniče Kalke als obereozäne Sedimente und stufte die tonig-mergeligen Nemčiče Schichten in das Obereozän bis Unteroligozän ein. Die sogenannten Menilitschichten stellte er in das Unteroligozän, die bunten tonigen Nikolčiče Schichten beschrieb er als oligozäne Tiefwasserablagerungen. ABEL (1903, 1910) erkannte die Pausramer Mergel als Untergruppe der Nemčiče Schichten und beschrieb pteropodenreiche Mergelbänke und Kreidelagen.

JÜTTNER (1938, 1940) beschrieb als erster das Profil Ottenthal als eine

" ... Wechsellagerung von grünlichgrauen, bunten Tonen, dünnblättrig geschieferten Pausramer Mergeln und Menilitschiefern ... " und faßte die bunten Tone und die Pausramer Mergel als "Pausramer Schiefer" zusammen. STRADNER (1962) bearbeitete die Nannoflora und stufte sie in Übereinstimmung mit GRILL (1953, 1968) in das Obereozän bis Unteroligozän ein. Eine weitere Erwähnung der Schichtfolge erfolgte durch STRADNER & SEIFERT (1980), SEIFERT (1980, 1982), PERCH-NIELSEN et al., (1985) und BRAUNSTEIN (1985; 1991, in Vorbereitung).

3. Geologie der Waschbergzone

Die Waschbergzone erstreckt sich im niederösterreichischen Weinviertel von Stockerau gegen NE über Ernstbrunn, Staatz, Falkenstein nach Drasenhofen an der Grenze zur ČSFR. Als eine selbstständige tektonische Einheit des alpin-karpatischen Gebirgssystems ist sie ein Äquivalent der aufgeschuppten Molasse im Westen und trennt die flachlagernde Molasse von der Flyschzone und vom Wiener Becken. Die Waschbergzone stellt eine Aufschuppung jungtertiärer Schichten dar, die Schollen älterer Formationen enthalten. Diese wurden in Oberjura, Oberkreide und Alttertiär an der SE-Flanke des Böhmischen Massivs abgelagert. Die meist nur geringmächtigen Flachwasserablagerungen wurden im Oligozän und Untermiozän in größere Tiefen abgesenkt und von einer mächtigen, sandig-tonigen Schichtfolge bedeckt. Bis ins Karpat wurde der gesamte Schichtstapel von der letzten Phase der alpin-karpatischen Gebirgsbewegung erfaßt und nach NW auf die flachlagernde, ungestörte Molasse aufgeschoben. Gleichzeitig wurden die Decken der Flyschzone von SE auf die Waschbergzone aufgeschoben, sodaß heute ein System verschiedener Decken vorliegt, die einheitlich gegen SE einfallen. Die Mächtigkeit und Verbreitung der oligozänen Schichten nimmt von der Waschbergzone zum Steinitzer-Pausramer Deckensystem in Südmähren deutlich zu. Das oligozäne Sedimentpaket war in der letzten Phase der Gebirgsbildung (Ottnang-UnterKarpat) starker tektonischer Beanspruchung unterworfen, die sich in intensiver Verschuppung und Verfaltung des Schichtstosses auswirkte. Eine vollständige, ungestörte oligozäne Schichtabfolge kann deshalb auf österreichischem Gebiet kaum gefunden werden. Bis jetzt sind zwölf Aufschlüsse im Oligozän zwischen der tschechischen Grenze und dem Zayatal bekannt geworden. Südlich davon sind diese Schichten nur in einigen Tiefbohrungen der ÖMV-AG bis in den Raum von Wien gefunden worden.

4. Profil Ottenthal - Untere Leithen

4.1. Lithofazielle Beschreibung

Die Feldwegböschung verläuft beinahe normal zum Streichen der Schichtfolge. Der Profilschnitt ist 150 m lang; unter der Berücksichtigung des Streichens und Fallens wurde eine wahre Mächtigkeit von 60 m ermittelt (SEIFERT, 1982). Die Schichtfolge ist tektonisch gestört.

Der Liegendanteil der Schichtfolge (0-2 m; Zone NP22) besteht aus einer Wechsellagerung von dunkelbraunem Tonmergel mit dünnen Sandlassen, weissem Diatomit, hellgrauem bis gelbgrauem, verhärtetem Mergel und schwarzgrauem Tonstein mit einzelnen Glaukonitlinsen (Abb. 7). Partienweise ist der braune Tonmergel mm- bis cm- dünn hell bis dunkel laminiert.

Der darauf folgende Profilabschnitt (2,28 m-8,5 m; Zone NP23) ist durch den Wechsel von hell- bis gelbgrauem, plattigem Diatomit, grauweißem Menilit, einer

				_		-			-				
	EPOCHE	STUFE	ZENTRALE PÅRATFTHVS	NP ZONE	CP ZONE	л	LITHOLOGIE	FOSSILINHALT		L	EGENDE		
	UNTER							₩{{\\	TONMERGEL			TONMERGEL	
LIGOZĂN									mittel- schwarzbraun gebändert			TONSTEIN	
											- 4 4 - 4 	TONMERGEL, -STEIN mit GIPS	
									HORNSTEIN DIATOMIT			KALKMERGEL	
								8	KALKMERGEL TONMERGELSTEIN dunkelbraun			DIATOMIT	
						-			KALKMENGEL TONMERGEL geflasert			MENILIT	
		PEL	CELL	22	16c		-	©	۲	TONMERGEL hell-dunkelbraun gebändert		00000 00000 00000	HORNSTEIN
		RUF	KIS					٩	KALKMERGEL	<u>[</u>		TEKTONISCHE FLÄCHE BRUCH, VERWERFUNG	
								•	abwechseind hell-dunkelbraun gebandert DIATOMIT		0	KALKNANNOPLANKTON	
						-	▲	TONMERGELLAGEN HORNSTEIN TONSTEIN		ф	SILIKOFLAGELLATEN		
									DIATOMIT TONSTEIN graubraun schwarzbraun	Ыa	&	FORAMINIFEREN	
				1		35			MENILIT + braun, DIATOMIT TONSTEIN braun		¥	DIATOMEEN	
									MENILIT braun plattig		۵	MOLLUSKEN	
									graubraun Graubraun MENILIT_'grobplattidi		∞	FISCHRESTE	
									TONSTEIN braun				
			ļ			30		ф	TONSTEIN braun		Abb. 5. Profil Ottenthal/Ur	ntere Leithen, Hangender Anteil (Waschbergzone, Nieder-	

monotonen Serie von fossilfreiem, massigem, abwechselnd hell- bis gelbgrauem, ockerfarbenem und violettem Ton ("Bunte Tone"; JÜTTNER, 1938) und schokoladebraunem Tonmergel charakterisiert. Kennzeichnend für diese Schichtfolge sind gelbe Schwefelausblühungen und rostbraune, limonitische Verfärbungen an den Schichtflächen und Klüften.

Der Hangendanteil (8,50–29,50 m; Zone NP24) besteht aus einer Abfolge von monotonem oliv-, violettund hellgrauem, teilweise laminiertem Tonmergel und verhärtetem Tonstein mit mm-dünnen Feinsandlassen. Für diesen Bereich sind Gipskristalle (>2 cm) und Glaukonitlinsen kennzeichnend. In diesem Profilabschnitt dominiert Linsen- und Flaserschichtung über Paralellschichtung.

Eine verkehrte Schichtfolge (29,50-60 m, Zone NP22) liegt auf dem Hangendteil und besteht wiederum aus grauem und schokoladebraunem, laminiertem Tonmergel mit weißem Diatomit, braunen Hornsteinlagen, grauweißem Kalkmergel, rotbraunem Menilitschiefer und Tonstein mit Glaukonitlinsen und Feinsandlassen (Abb. 5).

4.2. Kalknannofossilien

In der untersuchten Schichtfolge von Ottenthal sind die meisten Indexfossilien des Oligozäns der Standard Zonation von MARTINI (1970, 1971) und MARTINI & MÜL-LER (1986) gefunden worden. Die Nannoflora zeichnet sich durch einen guten Erhaltungszustand aus. Es wurden 65 Arten gefunden, die Diversität an Familien, Gattungen und Arten ist relativ hoch. Umlagerungen aus der Oberkreide und dem Paläogen sind selten. Die Kalknannoflora setzt sich aus den Familien Prinsiaceae (Reticulofenestra, Cyclicargolithus, Dictyococcites), Coccolithaceae (Chiasmolithus, Cruciplacolithus, Coccolithus, Ericsonia, Cyclococcolithus, Markalius, Coronocyclus), Helicosphaeraceae (Helicosphaera), Pontosphaeraceae (Pontosphaera), Rhabdosphaeraceae (Rhabdolithus, Rhabdosphaera, Blackites), Sphenolithaceae (Sphenolithus), Calyptrosphaeraceae (Zygrhablithus, Orthozygus, Holodiscolithus, Lanternithus) und Zygodiscaceae (Isthmolithus) zusammen.

4.3. Biostratigraphie

Im Aufschluß Ottenthal/Untere Leithen wurden folgende Zonen nachgewiesen:

Zone NP22

(Helicosphaera reticulata-Zone; Unteroligozan)

Korrelation: Reticulofenestra hillae-Subzone (CP16c), Intervall zwischen LO von Ericsonia formosa zu LO von Reticulofenestra umbilica (OKADA & BUKRY, 1980).

Charakteristisch für die Vergesellschaftung der Zone NP22 sind die Arten Ericsonia subdisticha, Coccolithus pelagicus, Reticulofenestra bisecta, Lanternithus minutus, Zygrhablithus bijugatus, Orthozygus aureus, Helicosphaera compacta und H. bramlettel. Pontosphaeren sind relativ artenreich mit Pontosphaera fibula, P. multipora, P. pulchra, P. latelliptica, P. sigmoidalis, P. pygmaea, P. obliquipons, P. lata und P. desueta vertreten.

Isthmalithus recurvus, eine Art, die in palökologischer Hinsicht höhere Breitengrade und Kaltwasser bevorzugt (SYNDER et al., 1984), zeigt in Zone NP19/20 ein anstelgend vermehrtes Vorhandensein parallel zum Erlöschen der Arten Discoaster barbadiensis und Discoaster sai-

Abb. 7. Profil Ottenthal, Untere Leithen (Liegender Anteil). Legende siehe Abb. 5.

Abb. 8. Erst- und Letztauftreten einiger Zonenleitfossilien des Kalknannoplanktons. Ottenthal, Untere Leithen, Liegender Anteil. panensis. Diese Erscheinung ist in Aufschlüssen im Buda Marl und Tard Clay von Ungarn bis zur oberen CP16b (NAGYMAROSY, 1981, 1983), in Umbrien, Italien (NOCCHI et al., 1986, 1988) zu beobachten. In der Zone NP22 von Ottenthal/Untere Leithen ist das Häufungsmaximum von I. recurvus innerhalb der Vergesellschaftung auf die ehemalige Küstennähe zurückzuführen. Das LAD von I. recurvus (Abb. 6) verläuft gleichzeitig mit dem LAD von Reliculofenestra umbilica, analog dem LAD in italienischen oligozänen Aufschlüssen (MONECHI, 1986, S. 67). Das Vorkommen des Küstenanzeigers Lanternithus minutus, einer Art, dessen Vorkommen mit der Temperaturabnahme des Meeres in Beziehung zu stehen scheint (Nocchi et al., 1988), erlischt an der Zonengrenze NP22/NP23.

In der Zone NP22 treten Reticulatenestra bisecta und Reticulofenestra daviesii massenhaft auf. In guter biostratigraphischer Übereinstimmung mit der Reichweite im Unteroligozan der Steinitzer und Pausramer Einheit (KRHOVSKY, 1979) und im Tard Clay in N-Ungarn, Budapest und Transsylvanien (NAGYMAROSY, 1983b; 1988) ist das relativ häufige Vorkommen von Reticulofenestra lockeri in der Zone NP22. Abweichend von PERCH-NIELSEN (1985b, S.486, Abb, 42; S. 493, Abb, 47) scheint die Entwicklung von Helicosphaera recta bereits im Unteroligozän zu beginnen. Abweichend zu bisher bekannten Ergebnissen von marinen Tiefseesedimenten (PERCH-NIELSEN, 1985b, S. 499) zeigt die Pontosphaera-Gruppe im Oligozan der Waschbergzone eine reiche Entwicklung. Innerhalb der Pontosphaera-Gruppe weisen zygoide Pontosphaera-Arten mit einer Brücke und zwei Zentralöffnungen (P. fibula, P. pulchra, P. oliquipons) im Unteroligozan (NP22) ihr Häufungsmaximum auf. Ab dem Mitteloligozän (NP23) bis ins Oberoligozan dominieren Pontosoha-

era-Arten mit einem geschlossenen Zentralfeld (P. multipora, P. desueta, P. enormis). Intermediate Formen von Pontosphaera enormis und Pontosphaera multipora erschweren die taxonomische Zuordnung. Pontosphaera pygmaea ist in den unteroligozänen Sedimenten der nördlichen Waschbergzone bereits in Zone NP22 vorhanden.

Zone NP23

(Sphenolithus predistentus-Zone; Mitteloligozän)

Korrelation: Sphenolithus predistentus Zone (CP17), Intervall zwischen LO von Reticulofenestra umbilica zu FO von Sphenolithus distentus und Sphenolithus distentus-Zone (CP18), Intervall zwischen FO von Sphenolithus distentus zu FO von Sphenolithus ciperoensis (OKADA & BUKRY, 1980).

Die Kalknannoflora setzt sich vorwiegend aus Reticulofenestra bisecta, Cyclicargolithus floridanus, Reticulofenstra lockeri, R. daviesii, Sphenolithus distentus, S. ciperoensis, Helicosphaera perch-nielseniae, H. recta, Zygrhablithus bijugatus und aus Pontosphaeren zusammen. Diese Zone ist weiters durch ein Massenauftreten von Reticulofenestra ornata mit einer artenarmen Begleitflora mit Pontosphaera fibula und Reticulofenestra bisecta und einem Braarudosphaera bigelowii-Horizont gekennzeichnet.

Zone NP24

(Sphenolithus distentus-Zone; Oberoligozán)

Korrelation: Sphenolithus ciperoensis-Zone (CP19), Subzone Cyclicargolithus floridanus (CP19a), Intervall zwischen FO von Sphenolithus ciperoensis zu LO von Sphenolithus distentus (OKADA & BUKRY, 1980).

Zur typischen Vergesellschaftung zählen Reticulofenestra bisecta, Coccolithus pelagicus, Reticulofenestra daviesii, R. (?) hampdenensis, R. lockeri, Cyclicargolithus floridanus, C. abisectus, Sphenolithus ciperoensis, S. distentus und Zygrhablithus bijugatus. Die Familie der Pontosphaeren sind relativ artenarm durch Pontosphaera enormis, P. pygmaea und P. multipora, die Familie der Helicosphaeren durch Helicosphaera paraliela, H. recta und H. perch-nielseniae relativ häufig vertreten. Auch in dieser Zone sind ein monospezifischer Kalknannofossilhorizont mit Ericsonia sp. und nahezu duospezifische Horizonte mit Cyclicargolithus floridanus und Cyclicargolithus abisectus charakteristisch. Aufgrund tektonischer Störungen konnte eine Grenze zur Zone NP25 nicht erkannt werden.

5. Molluskenfauna von Ottenthal

5.1. Material und Beschreibung

Cardium (? Loxocardium) lipoldi ROLLE, 1858

1858 Cardium lipoldi - ROLLE, S. 25, Taf. 2, Abb. 8-10.
1986 Cardium (? Loxocardium) lipoldi ROLLE - BALDI, S. 70., Taf. 2, Abb. 8-11 (cum syn.)

Von der Lokalität Ottenthal wurden 4 Exemplare untersucht. Obwohl nur Steinkerne mit einigen wenigen Schalenresten vorhanden sind, ist *Cardium lipoldi* gut identifizierbar. Die Exemplare der Lokalität Ottenthal weisen zwischen 50–60 radial verlaufende, abgeflachte Rippen auf (Taf. 4). Die Intercostalfurche ist größer als die Rippe. Das vorhandene Material steht jener der in Ungarn gefundenen Population sehr nahe. Zum Unter-

schied haben die ungarischen Arten jedoch nur 30-36 radiale Rippen.

Cardium serogozikum NOSSOVSKY, 1962 steht entwicklungsmäßig nahe zu *C. lipoldi* und somit auch zu den gefundenen Arten aus Ottenthal. Jedoch unterscheiden sich die Exemplare aus Ottenthal von *C. serogozikum* durch die größere Anzahl von Rippen und durch ihre verschiedenartige Gestalt.

Das Material wird am Institut für Paläontologie, Universität Wien (Nr. 1, 2, 9, 12; Photo von No. 1/a, 1/b) aufbewahrt.

Janschinella melitopolitana Nossovsky, 1962

1986 Janschinella melitopolitana Noss; - BALDI, S. 71, Taf. 2, Abb. 14 (cum syn.)

8 Exemplare (Taf. 4).

Das Material wird am Institut für Paläontologie, Universität Wien (Nr. 4, 13, 6, 11, 5, 10, 7, 3; Photo von Nr. 4) aufbewahrt.

Janschinella sp.

Das eine gefundene Exemplar (Nr. 8) unterscheidet sich von *J. melitopolitana* durch seine kürzere Länge und durch seine leicht variierende Gestalt. *Janschinella* sp. ist zur Zeit keiner anderen Art von *Janschinella zuzuordnen*.

5.2. Alter und Fazies

Das Auftreten und die Vergesellschaftung der Molluskenfauna im Profil Ottenthal (Abb. 8) ist mit Sicherheit mit jener korrelierbar, die in den tieferen Schichten der Tard Clay Formation in Ungarn gefunden wurde. Jener Bereich des Tard Clays wurde magnetostratigraphisch als die reversive Phase im Liegenden der Anomalie 12 datiert und entspricht innerhalb der Nannoplanktonzonierung der obersten Zone NP22 sowie der untersten Zone NP23 (BALDI, 1986, 1989). Die Schichtabfolge in Ottenthal, in der *Cardium lipoldi* und die anderen Taxa der Molluskenvergesellschaftung gefunden wurden, können altersmäßig als unteres Rupel oder – nach der Paratethys Nomenklatur – als unteres Kiscell eingestuft werden. Die Bathymetrie kann mit Hilfe der *C. lipoldi*-Fauna (BALDI, 1989) nicht geschätzt werden; der Salinitätsgrad war im allgemeinen schwankend.

Die Molluskenfazies in Ottenthal kann mit jener des Solenoi-Horizontes in Südrußland, des mittleren Teiles

Lageskizze der Bohrungen Kiscell-1, Budapest H-3 und des Böschungsaufschlusses Noszvaj.

VERGLEICH DER OLIGOZÄNEN TYPUSPROFILE

Korrelation der Profile Ottenthal/Untere Leithen und Budapest/Kiscell.

der Ezerovo Formation der Balkaniden in Bulgarien, der Bizusa-Schichten und unteren Ileanda-Schichten von Transsylvanien und Teilen der Sotzka-Schichten in Slowenien (CIMERMAN in BALDI, 1983, 1986, 1989) korreliert werden. Die Bedeutung der Molluskenfauna von Ottenthal liegt darin, daß sie paläogeographisch bis zu diesem Zeitpunkt die bis jetzt am westlichsten gefundene *Cardium lipoldi*-Vergesellschaftung repräsentiert. Weiters weist die Fauna auch darauf hin, daß der östliche Teil der Alpenvortiefe jenen Teilen der Paratethys zuzuordnen sind, die während des unteren Oligozäns zum ersten Mal vom Tethys-Ozean isoliert wurden.

6. Stratigraphische Stellung

In Ottenthal weist die sedimentologische und biofazielle Entwicklung im unteren Oligozän (NP22) auf vollmarine Bedingungen sowie auf fortschreitende Isolierung der Paratethys vom Tethys-Ozean hin (BALDI, 1980, 1983, 1986, 1989; BALDI et al., 1983). Die Lamination der unteroligozänen Tonmergelfolge beginnt ohne einem lithologischem Wechsel. Die Sedimente sind altersmäßig mit jenen der euxinischen Fazies der unteren Schichtfolge des Tard Clays in Ungarn (BALDI,

1986) ident (Abb. 9, 13). In der laminierten Tonmergelabfolge der Zone NP22 von Ottenthal weist ein Horizont mit Massenauftreten von Spiratella sp. (BALDI, 1983, 1986) auf Kaltwassereinfluß hin. Fortschreitende anoxische Verhältnisse und Süßwassereinfluß sind auf die bereits weitgehend erfolgte Trennung der Paratethys vom Tethys-Ozean zurückzuführen. Die Abtrennung förderte die Entwicklung der für Bioprovinzen der zentralen und östlichen Paratethys charakteristischen endemischen Molluskenfauna mit Cardium lipoldi und Janschinella melitopolitana (BALDI, Ujpesti Rakpart, H-3, (BALDI & NAGYMAROSY, 1977; Abb. 10) und des Böschungsaufschlusses Noszvaj (NAGYMAROSY & VARGA, 1977, Abb. 11) wurde angestrebt. Auf die Lage der ungarischen Lokalitäten verweist Abb. 12. Die für die Korrelation (Abb. 13) herangezogenen Ereignisse waren Horizonte mit folgenden Arten und Vergesellschaftungen:

- 1) Spiratella sp.
- 2) Cardium lipoldi-Vergesellschaftung.
- "blooms" von Reticulofenestra ornata, Pontosphaera fibula, Braarudosphaera bigelowii und von einer nahezu duospezifischen Vergesellschaftung mit Cyclicargolithus floridanus und Cyclicargolithus abisectus.

Es ist bemerkenswert, daß innerhalb der unteroligozänen Sedimentabfolge der Waschbergzone und von Nordungarn sogar die Mächtigkeit der Horizonte und ihr Abstand voneinander übereinstimmen. In Ottenthal weisen die unteroligozähen laminierten Tonmergelabfolgen mit Diatomitlagen auf einen Ablagerungsraum hin, der im Unterschied zu jenem im nördlichen Ungarn (Budapest) weitgehend offenmarinen Einflüssen ausgesetzt war. Daher repräsentiert die Fazies von Ottenthal einen Übergang zwischen den Meniliten der Karpatischen Flyschzone und dem ungarischen Tard Clay.

Die Kalknannoflora besteht in der Sphenolithus predistentus-Zone (Mitteloligozän, NP23) aus artenarmen und nahezu monospezifischen Horizonten von Dictvococcites ornata und Pontosphaera fibula (GHETA et al., 1976) = P. pax (SEIFERT & STRADNER, 1980), die als eine endemische Vergesellschaftung für die zentrale und östliche Paratethys charakteristisch sind (MARTINI & LEBENZON, 1971; GHETA et al., 1976; KRHOVSKY, 1981; NAGYMAROSY et al.,

1988: MÜLLER, 1970 und MÜLLER & BLASCHKE, 1971). Indikatoren für brackisch oligohaline Bedingungen des Binnenmeeres sind vermehrtes Auftreten von fossilen Zysten der Chrysophyten, Archaeomonaden (KRHOVK-SY, 1981, 1985b; BRAUNSTEIN, 1985) und Schwammspikulen, auf schwankende Salinitätsverhältnisse weisen Horizonte mit Braarudosphaera bigelowii (PARKER et al., 1986). Pontosphaera latelliptica und Ericsonia sp.

Die Kalknannoflora der unteren Zone NP24 ist artenarm, Bemerkenswert sind Horizonte mit einer nahezu duospezifischen Flora mit Cyclicargolithus floridanus und Cyclicargolithus abisectus sowie mit intermediaten Formen zwischen C. floridanus und C. abisectus. Ein identes Massenauftreten wurde im oberen Kiscellian von Nordungarn gefunden (NAGYMAROSY, 1989, mündl. Mitt.).

Tafel 1

Fig.	1:	Ericsonia subdisticha (Rотн & Hay) Prins. Ottenthal/Leithen, Probe UL 3, 7800×, REM.
Fig.	2:	Cyclicargolithus floridanus Roтн & Hay. Ottenthal/Leithen, Probe UL 198, 9400×, REM.
Fig.	3:	Pontosphaera pulshra (DEFLANDRE) ROMEINM. Ottenthal/Leithen, Probe UL 151, 3300×, REM.
Fig.	4:	Blackites spinosus (DEFLANDRE & FERT) HAY & TOWE. Ottenthal/Leithen, Probe UL 196, 6000×, REM.
Fig.	5:	Pontosphaera multipora (KAMPTNER) BYBELL. Ottenthal/Leithen, Probe UL 151, 8600×, REM.
Fig.	6:	Isthmolithus recurvus DEFLANDRE. Ottenthal/Leithen, Probe UL 151, 9400×, REM.
Fig.	7:	Cyclicargolithus floridanus Roтн & Hay (Ваикку). Ottenthal/Leithen, Probe UL 111, 8600×, REM.
Fig.	8:	Pontosphaera ct. enormis (Locker) Perch-Nielsen. Ottenthal/Leithen, Probe UL 198, 12000×, REM.
Fig.	. 9:	Retisulofenestra bisecta (HAY, MOHLER & WADE) BUKRY & Ottenthal/Leithen, Probe UL 151, 12000×, REM.
Fig.	10:	Reticulatenestra bisecta (HAY, MOHLER & WADE) BUKRY & Ottenthal/Leithen, Probe UL 151, 9400×, REM.
Fig.	11:	Reticulatenestra daviesii (Haq) Perch-Nielsen.
Fig.	11:	Reticulatenestra daviesii (HAQ) PERCH-NIELSEN. Ottenthal/Leithen, Probe UL 198, 9400×, REM.
Fig.	12:	Rhabdosphaera vitrea DEFLANDRE. Ottenthal/Leithen, Probe UL 198, 12000×, REM.
120		

PERCIVAL.

PERCIVAL.

Tafel 2

- Fig. 1: Orthozygus aureus (STRADNER) BRAMLETTE & WILCOXON. Ottenthal/Leithen, Probe UL 200, 12000×, REM.
- Fig. 2: *Pontosphaera fibula* (GHETA) AUBRY. Ottenthal/Leithen, Probe UL 198, 7200×, REM.
- Fig. 3: Reticuloienestra (?) hampdenensis EDWARDS. Ottenthal/Leithen, Probe UL 200, 8600×, REM.
- Fig. 4: *Ponlasphaera abliquipons* (DEFLANDRE) HAY, MOHLER & WADE. Ottenthal/Leithen, Probe UL 151, 30000×, REM.
- Fig. 5: ? Melosira sp. Ottenthal/Leithen, Probe UL 136, 6600×, REM.
- Fig. 6: *Ponlosphaera pulchra* (DEFLANDRE) ROMEIN. Ottenthal/Leithen, Probe UL 150, 12000×, REM.
- Fig. 7: Coronosycius serratus Hay, Mohler & WADE. Ottenthal/Leithen, Probe UL 161, 12000×, REM.
- Fig. 8: Pontosphaera sigmoidalis Locker. Ottenthal/Leithen, Probe UL 161, 9400×, REM.
- Fig. 9: Distypesecilies califord (PERCH-Nielsen) Bybell,
- Ottenthal/Leithen, Probe UL 22, 9400×, REM. Fig. 10: Dictyococcites callidus (PERCH-NIELSEN) BYBELL.
- Ottenthal/Leithen, Probe UL 198, 9600×, REM. Fig. 11: Reliculolenestra daviesii (HAO) PERCH-NIELSEN.
- Ottenthal/Leithen, Probe UL 21, 7800×, REM.
- Fig. 12: Coccolithus pelagicus (WALLICH) SCHILLER. Ottenthal/Leithen, Probe UL 161, 9400×, REM.

Tafel 3

Fig.	1:	Reticulatenestra sp.	
•		Ottenthal/Leithen, Probe UL 200, 6000×, F	₹EM.

- Fig. 2: Reticulatenstra minuta (ROTH). Ottenthal/Leithen, Probe UL 161, 12000×, REM.
- Fig. 3: Ericsonia subdisticha (Roth & Hay) Roth und Reticulofenestra daviesii (Haq) PERCH-NIELSEN. Ottenthal/Leithen, Probe UL 143, 20000×, REM.
- Fig. 4: Distycococites callidus (PERCH-NIELSEN) BYBELL. Ottenthal/Leithen, Probe UL 143, 6600×, REM.
- Fig. 5: Helicosphaera compacta BRAMLETTE & WILCOXON. Ottenthal/Leithen, Probe UL 143, 6600×, REM.
- Fig. 6: *Holadiscolithus solidus* (DEFLANDRE) ROTH. Ottenthal/Leithen, Probe UL 1, 18000×, REM.
- Fig. 7: *Pontosphaera* sp. Ottenthal/Leithen, Probe UL 200, 12000×, REM.
- Fig. 8: Pontosphaera desueta (MULLER) PERCH-NIELSEN. Ottenthal/Leithen, Probe UL 197, 7500×, REM.
- Fig. 9: *Dictyococcites callidus* (PERCH-NIELSEN) BYBELL. Ottenthal/Leithen, Probe UL 2, 12000×, REM.
- Fig. 10: Sphenolithus moriformis (BRÖNNIMANN & STRADNER) BRAMLETTE & WILCOXON. Ottenthal/Leithen, Probe UL 2, 12000×, REM.
- Fig. 11: Sphenolithus predistentus BRAMLETTE & WILCOXON. Ottenthal/Leithen, Probe UL 1, 12000×, REM.
- Fig. 12: Helicosphaera recia HAQ. Ottenthal/Leithen, Probe UL 1, 6000×, REM.
- Fig. 13: Archaeomonas mangini DEFLANDRE. Ottenthal/Leithen, Probe UL 131, 6600×, REM.

Fig. 1: Cardium ? Loxocardium/lipoldi ROLLE - BALDI.

Ottenthal/Untere Leithen; Material des Institutes für Paläontologie der Universität Wien (Nr. 4, 13, 6, 11, 5, 10, 7, 3; Photo von Nr. 4). Fig. 2: Janschinella melitopolitana Nossovsky - BALDI. Ottenthal/Untere Leithen; Material des Institutes für Paläontologie der Universität Wien (Photo von Nr. 3). Fig. 3: Pontosphaera multipora (KAMPTNER) BYBELL. Ottenthal/Leithen; Probe UL 3, Dunkelstellung, 1000×, LM. Fig. 4: Zygrhabilithus bijugatus (DEFLANDRE) DEFLANDRE. Ottenthal/Leithen; Probe UL 31, Dunkelstellung, 1000×, LM. Fig. 5: Braarudosphaera bigelowii GRAN & BRAARUD) DEFLANDRE. Ottenthal/Leithen; Probe UL 23, Dunkelstellung, 1000×, LM. Fig. 6: Reliculofenstra lockeri MOLLER. Ottenthal/Leithen; Probe UL 13, Dunkelstellung, 1000×, LM. Fig. 7: Litherchaeocystis camaruensis DEFLANDRE. Ottenthal/Leithen; Probe UL 136, 1000×, LM. Fig. 8: Archaeosphaeridium dangeardianum DEFLANORE. Ottenthal/Leithen; Probe UL 138, 1000×, LM. Fig. 9: Rhabdosphaera vitrea DEFLANDRE. Ottenthal/Leithen; Probe UL 150, Dunkelstellung, 1000×, LM. Fig. 10: Reliculolenstra lockeri MOLLER. Ottenthal/Leithen; Probe UL 150, Dunkelstellung, 1000×, LM. Fig. 11: Litheusphaerelle spectabilis DEFLANDRE. Ottenthal/Leithen; Probe UL 130, 1000×, LM. Fig. 12: Archaeomonas striata DEFLANDRE. Ottenthal/Leithen: Probe UL 130, 1000×, LM, Fig. 13: Archaeomonas cf. edwardsii PERCH-NIELSEN. Ottenthal/Leithen; Probe UL 10, 1000×, LM. Fig. 14: Pontosphaera latelliptica BALDI-BEKE. Ottenthal/Leithen; Probe UL 40, Dunkelstellung, 1000×, LM. Fig. 15: Coccolithus pelagicus (WALLICH) SCHILLER). Ottenthal/Leithen; Probe UL 161, Dunkelstellung, 1000×, LM. Fig. 16: Lanternithus minutus STRADNER. Ottenthal/Leithen; Probe UL 166, Dunkelstellung, 1000×, LM. Fig. 17: Sphenolithus pseudoradians BRAMLETTE & WILCOXON. Ottenthal/Leithen; Probe UL 200, Dunkelstellung, Nicols gekreuzt, 1000×, LM. Fig. 18: Reticulolenestra daviesii (HAQ) PERCH-NIELSEN. Ottenthal/Leithen; Probe UL 40, Dunkelstellung, 1000×, LM. Fig. 19: Pontosphaera fibula (GHETA). Ottenthal/Leithen; Probe UL 15, Dunkelstellung, 1000×, LM. Fig. 20: Reticulatenstra umbilica (Levin) MARTINI & RITZKOWSKI. Ottenthal/Leithen; Probe UL 162, Dunkelstellung, 1000×, LM. Fig. 21: Pontosphaera multipora (KAMPTNER) BYBELL. Ottenthal/Leithen; Probe UL 3, Dunkelstellung, 1000×, LM. Fig. 22: Helicosphaera recta (HAQ). Ottenthal/Leithen; Probe UL 38, Dunkelstellung, 1000×, LM. Fig. 23: Cyclicargolithus floridanus ROTH & HAY (BUKRY). Ottenthal/Leithen; Probe UL 70, Dunkelstellung, 1000×, LM. 126

- ABEL, O. (1899): Die Beziehungen des Klippengebietes zwischen Donau und Thaya zum alpin karpatischen Gebirgssystem. – Verh. Geol. R.-A., 1899, S. 374-381, Wien.
- ABEL, O. (1899): Studien im Klippengebiet zwischen Donau und Thaya. 1): Pollau-Schweinbarth (Aufnahmsbericht). – Verh. Geol. R.-A., 284–287, Wien.
- ABEL, O. (1910): Erläuterungen zur geologischen Karte 1:75.000, Blatt Auspitz-Nikolsburg. Geol. R.-A., 45 S., Wien.
- AUBRY, M.-P. (1988): Phylogeny of Cenozoic calcareous nannoplankton genus *Helicosphaera*. – Paleobiology, 14(1), 64–88.
- BALDI, T. (1979): Changes of Mediterranean (?Indopacific) and boreal influences on Hungarian marine mollusc faunas since Kiscellian until Eggenburgian times; the stage Kiscellian. – Ann. Geol. Hell. Hors, Serie 1, Proc. VII. Congr., 39–49, Athen.
- BALDI, T. (1980): A koral paratethys törtenete. (The early history of the Paratethys). – Föld. Közl., 110(3–4), 456–472.
- BALDI, T. (1982): Mid-Tertiary tectonic and paleographic evolution of the Carpathian-East Alpine-Pannonian system. – Osl. vitak (Discussions Palaeontologicae), 28, 79–155, Budapest.
- BALDI, T. (1983): The terminal Eccene and early Oligocene events in Hungary and the separation of an anoxic, cold paratethys. – 8th. Congr. of the Reg. Comm. on Med. Neog. Strat., 1983.
- BALDI, T. (1986): Mid-Tertiary stratigraphy and paleogeographic evolution of Hungary. – Akademiai Kiado. Budapest, pp. 179.
- BALDI, T. (1989): Tethys and Paratethys through Oligocene times. 2 remarks to a comment. – Geologicky Zbornik-Geologica Carpatica, 40, 85–99, Bratislava.
- BALDI, T., BALDI-BEKE, M., HORVATH, M. et al. (1975a): On the radiometric age and the biostratigraphic position of the Kiscell Clay in Hungary. Földt. Közl., **105**(2), 188–192.
- BALDI, T., HORVATH, M., KAZMER, M. et al. (1983): The terminal Eccene event. Field guide to Late Eccene (Priabonian)--early Oligocene (Kiscellian) profiles of Hungary. - Visegrad Meeting 1983.
- BRAUNSTEIN, R.E. (1985): Note on archaeomonads from Ottenthal, Lower Austria, disturbed Molasse, Oligocene. – INA newsletter, 7(2), 59-60.
- GHETA, N., POPESCU, B. & LEU, M. (1976): Dictyococcites ornata MÜLLER, a marker nannoplankton species in the Middle Oligocene. – Rev. Roum. Geol. Geophys. et Geogr., Geologie, Tome 20(1), 143-145, Bukarest.
- GRILL, R.: Aufnahmsberichte in den Verhandlungen der Geologischen Bundesanstalt 1948, 1949, 1952, 1954.
- GRILL, R. (1953): Der Flysch, die Waschbergzone und das Jungtertiär um Ernstbrunn (N.Ö.). – Jb. Geol. B.-A., 96, 65-116, Wien.
- GRILL, R. (1968): Erläuterungen zur Geologischen Karte des nordöstlichen Weinviertels und zu Blatt Gänserndorf. – 155 S., 9 Abb., 2 Taf., 4 Tab., Wien (Geol. B.-A.).
- JOTTNER, K. (1938): Das Nordende des niederösterreichischen Flysch. – Verh. Geol. B.-A., 1938, 91–102, 2 Abb., Wien.
- JÜTTNER, K. (1940): Erläuterungen zur geologischen Karte des unteren Thayalandes. – Mitt. Reichstelle f. Bodenforschung, Zweigstelle Wien, 1, 1-7, Wien.
- KRHOVKSY, J. (1979): Calcareous nannoplankton from the Eocene/Oligocene boundary of some localities of the Pouz-drany and Zdonice units (the west Carpathians, Czechoslovakia). In: POKORTNY, V. (Red.): Paleontologicka konference, Katedra paleontolgie, Praha, 10–11, unora 1977, 75–91, Universita Karlova, Praha.

- KRHOVKSY, J. (1981b): Stratigraphy and Paleoecology of the Menilitic Formation of the Zdanice Unit and the diatomites of the Pouzdrany Unit (the Western Carpathians, Czechoslowakia). – Zemny Plyn a Nafta., 26, 45–62.
- KRHOVKSY, J. (1985): Central Paratethys ecostratigraphic correlations in relation to the Oligocene sea-level changes. – VIIIth Congr. of the Reg. Comm. Mediter. Neog. Strat., Hungarian Geological Survey, 1985 (abstract).
- MARTINI, E. (1970): Standard Paleogene calcareous nannoplankton zonation. – Nature, 226, 560–561, 1 fig., 739–785, pl. 1–4.
- MARTINI, E. (1970b): Standard Tertiary and Quaternary calcareous nannoplankton zonation. - Proc. 2nd Plankton conf., 2 739-785, Roma.
- MARTINI, E. (1971): Standard Tertiary and Quaternary calcareous nannoplankton zonation. – In: FARINACCI, A. (Ed.): Proc. of the II. Plankt. Conf. Roma, 2, 739–785, pl. 1–4, Roma (Edizioni Tecnoscienza).
- MARTINI, E. & LEBENZON, C. (1971): Nannoplankton-Untersuchungen im oberen Tal des Tarcau (Ostkarpaten, Rumänien) und stratigraphische Ergebnisse. – N. Jb. Geol. Paläont. Mh., 9, 552–565. Stuttgart.
- MARTINI, E. & MÜLLER, C. (1986): Current Tertiary and Quaternary calcareous nannoplankton stratigraphy and correlations. – Newsl. Stratigr., 16(2), 99–112, 7 Tab., Berlin, Stuttgart.
- MONECHI, S. (1986): Biostratigraphy of Fuente Caldera Section by means of calcareous nannofossils. – Preprint. Ch. POME-ROL & I. PREMOLI-SILVA (eds.): Terminal Eccene Events, Amsterdam.
- MÜLLER, C. (1970): Nannoplankton-Zonen der Unteren Meeresmolasse Bayerns. – Geologica Bavarica, 63, 107–118, Taf. 1-8, München.
- MÜLLER, C. & BLASCHKE, R. (1971): Coccoliths: Important rockforming elements in bituminous shales of Central Europe. – Sedimentology, **17**.
- NAGYMAROSY, A. (1981): Chrono- and biostratigraphy of the Pannonian Basin: A review based mainly on data from Hungary. – Earth evol. scie. **3–4**, 183–194.
- NAGYMAROSY, A. (1983a): Mono- and duospecific nannofloras in the Early Oligocene sediments of Hungary. Proposal for the E/O Boundary in the Alpine Carpathian-Pannonian System. – Terminal Eccene Events. Budapest.
- NAGYMAROSY, A. (1983b): Calcareous nannofloras at the Eocene-Oligocene boundary in Hungary – Proposal for the Eocene-Oligocene boundary in the Alpine-Carpathian-Pannonian system; definition of the Kiscellian stage. – Visegrad-meeting, 37–51.
- NAGYMAROSY, A. & BALDI-BEKE, M. (1988): The position of the Paleogene Formations of Hungary in the Standard nannoplankton Zonation. – Ann. Univ. Sci. Budapest, Sect. Geol., 28, 1–25.
- Nocchi, M. et al. (1986): The Eccene-Oligocene Boundary in the Umbria pelagic sequences, Itały. – Preprint. Ch. POME-ROL & I. PREMOLI-SILVA (eds.): Terminal Eccene Events, Amsterdam.
- Nocchi, M., Parisi, G., Monaco, P. et al. (1988): Eocene and early Oligocene micropaleontology and paleoenvironments in SE Umbria, Italy. – Palaeogeogr. Paleoclim. Palaeoecol., 67 (1988), 181–244), Amsterdam.
- OBERHAUSER, R. (Wiss. Red., 1980): Der geologische Aufbau Österreichs. – Springer Verl., Wien – New York, 700 Seiten.
- OKADA, H. & BUKRY, D. (1980): Supplementary modification and introduction of code numbers to the "Low-latitude coccolith biostratigraphy zonation" (BUKRY, 1973, 1975). – Mar. Micropaleontol., 5, 321–325.

- PARKER, M.E., CLARK, M. & WISE, S.W. (1986): Calcareous nannofossils of DSDP Sites 558 and 563, North Atlantic Ocean: Biostratigraphy and the distribution of Oligocene braarudosphaerids. – Initial Reports of the Deep Sea Drilling Project, vol. 82, Washington D.C. (U.S. Government Printing Office), 559–589.
- PERCH-NIELSEN, K. (1985b): Cenozoic calcareous nannofossils, 11, 427-554). – In: BOLLI, H., SAUNDERS, J.S. & PERCH-NIEL-SEN, K. (eds.): Plankton Stratigraphy, Cambridge University Press, 1032 pp.
- PERCH-NIELSEN, K., ROGL, F., STRADNER, H. & BRAUNSTEIN, R. (1985): Field guide excursion INA Meeting Vienna. – INA newsletter, 7(2), 105–117.
- RZEHAK, A. (1895): Die "Niemtschitzer Schichten". Verh. naturforsch. Ver. in Brünn, 34, 207–254, Brünn.
- RZEHAK, A. (1922): Das mährische Tertiär. Knihova Stat. Geol. Ust. Cesk. Rep., 3, 1-21, Praze.

- SEIFERT, P. (1980): Das Eozän der Waschbergzone (NÖ.). Unveröff. Diss. Phil. Fak. Univ. Wien, 419 S. (117 Abb., 4 Tab., 4 Taf. (11 Beil., Wien.
- SEIFERT, P. (1982): Sedimentologie und Paläogeographie des Eozäns der Waschbergzone (Niederösterreich). – Mitt. Ges. Geol. Bergbaustud. Österr., 28, 133–176.
- STRADNER, H. (1962): Bericht 1961 über die Aufsammlung von mesozoischen und alttertiären Nannoplanktonmaterialien aus der Waschbergzone (NÖ). – Verh. Geol. B.-A., 1962, 106–107, Wien.
- STRADNER, H. & SEIFERT, P. (1980): Transversopontis pax, ein neues Nannofossil aus dem basalen Oligozan des nördlichen Niederösterreich. – Beitr. Paläont. Österr., 7, 281–291, 2 Abb., 3 Taf., Wien.
- SYNDER, S., MÜLLER, C. & MILLER, K.G. (1984): Eocene-Oligocene boundary: Biostratigraphic recognition and gradual paleooceanographic change at DSDP Site 549). – Geology, 12, 112–115.