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Abstract: In recent decades, data-driven landslide 
susceptibility models (DdLSM), which are based on 
statistical or machine learning approaches, have 
become popular to estimate the relative spatial 
probability of landslide occurrence. The available 
literature is composed of a wealth of published studies 
and that has identified a large variety of challenges 
and innovations in this field. This review presents a 
comprehensive up-to-date overview focusing on the 
topic of DdLSM. This research begins with an 
introduction of the theoretical aspects of DdLSM 
research and is followed by an in-depth bibliometric 
analysis of 2585 publications. This analysis is based 
on the Web of Science, Clarivate Analytics database 
and provides insights into the transient 
characteristics and research trends within published 
spatial landslide assessments. Following the 
bibliometric analysis, a more detailed review of the 
most recent publications from 1985 to 2020 is given. 
A variety of different criteria are explored in detail, 
including research design, study area extent, 

inventory characteristics, classification algorithms, 
predictors utilized, and validation technique 
performed. This section, dealing with a quantitative-
oriented review expands the time-frame of the review 
publication done by Reichenbach et al. in 2018 by also 
accounting for the four years, 2017-2020. The 
originality of this research is acknowledged by 
combining together: (a) a recap of important 
theoretical aspects of DdLSM; (b) a bibliometric 
analysis on the topic; (c) a quantitative-oriented 
review of relevant publications; and (d) a systematic 
summary of the findings, indicating important aspects 
and potential developments related to the DdLSM 
research topic. The results show that DdLSM are used 
within a wide range of applications with study area 
extents ranging from a few kilometers to national and 
even continental scales. In more than 70% of 
publications, a combination of the predictors, slope 
angle, aspect and geology are used. Simple classifiers, 
such as, logistic regression or approaches based on 
frequency ratio are still popular, despite the upcoming 
trend of applying machine learning algorithms. When 
analyzing validation techniques,  
38% of the publications were not clear about the 
validation method used. Within the studies that 
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included validation techniques, the AUROC was the 
most popular validation metric, being used 
accounting for 44% of the studies. Finally, it can be 
concluded that the application of new classification 
techniques is often cited as a main research scope, 
even though the most relevant innovation could also 
lie in tackling data-quality issues and research designs 
adaptations to fit the input data particularities in 
order to improve prediction quality. 
 
Keywords: Review; Landslide susceptibility; 
Statistical models; Machine learning; Bibliometrics 

1    Introduction  

Defined as the downslope movement of soil, rock, 
and/or debris (Cruden and Varnes 1996), landslides 
are an important part of the landscape evolution, 
occurring in hilly landscapes all over the globe. This 
makes landslides one of the most threatening natural 
hazards, causing multiple deaths, damage to 
infrastructure, and substantial economic losses 
(Petley 2012). Therefore, spatially predicting 
landslides is crucial to reduce undesired 
consequences. For this purpose, creating models able 
to estimate where landslides might occur is important 
for spatial planning and directly influences policies, 
especially in mountainous terrain. Predicting where 
(areas or zones) landslides (or a particular landslide 
type) might occur, given local terrain features, is the 
main objective of landslide susceptibility models 
(Brabb 1984; Crozier and Glade 2005; Fell et al. 2008; 
Guzzetti 2005; Guzzetti et al. 1999). 

Different methodologies have been applied to 
spatially assess landslide susceptibility. The main 
methods can be divided into qualitative (known as 
knowledge-driven or heuristic) or quantitative (data-
driven and physically-based) methods (Corominas et 
al. 2014, Shano et al. 2020). Qualitative methods are 
produced based on expert judgment, where values or 
weights are given to predisposing factors according to 
the expert’s understanding of the underlying 
geomorphological processes. Heuristic methods are 
considered subjective since they are based on expert 
opinion about terrain properties able to create (or not) 
instability (Shano et al. 2020). Within the 
quantitative methods, physically-based models often 
refer to spatial infinite slope models that are often 
coupled with geo-hydrological modules, described 
commonly by complex algorithms. These kinds of 

models are able to estimate slope stability as a 
function of soil mechanical and hydrological 
measurements (Soeters and van Westen 1996). 
Physically-based models, therefore, are highly 
dependent on a large amount and detailed input data 
(e.g. geotechnical parameters), often restricting the 
application of these methods to site-specific surveys 
(Cascini 2008; Corominas et al. 2014; Soeters and van 
Westen 1996). Statistically-based and machine 
learning predictive models (here after, referred to as 
Data-driven Landslide Susceptibility Models 
(DdLSM)) use the empirical relationships between the 
observations and its underlying ground features (e.g., 
lithological or land cover layers) (Brenning 2005), 
instead of the complex physical relationships required 
in the physical-based models. 

The selection of the modelling method relies on 
the size of the study area, data availability and quality 
required to perform the investigation (Corominas et al. 
2014), giving clear inter-dependency between the size 
of the study area and data availability (in most cases). 
While site-specific analysis would require more locally 
detailed assessments; analysis covering large areas may 
require the application of data-driven or heuristic 
approaches (Cascini 2008; Cascini et al. 2005; 
Corominas et al. 2014; Fell et al. 2008; Soeters and van 
Westen 1996). Although some recent studies have 
aimed to apply physically based models for larger areas 
(e.g. Rossi et al. (2013); Salciarini et al. (2017); Salvatici 
et al. (2018)), the spatial heterogeneity and variability 
of the required parameters still restrict its application 
to overly large areas (de Lima Neves Seefelder et al. 
2017). The modeling of extensive regions usually is 
conducted using models with less restrictive data 
requirements. Nowadays, due mostly to the relative 
ease of input data requirements, Cascini (2008); 
Kanungo et al. (2009); Van Westen et al. (2008) and 
Corominas et al. (2014) have all noted that, data-driven 
approaches are the most commonly applied techniques 
at a regional scale. 

Past review publications related to DdLSM, 
provide varied overviews and a variety of insights 
(Budimir et al. 2015; Malamud et al. 2014; 
Reichenbach et al. 2018; Steger and Kofler 2019). 
However, due to the recent technological 
developments and changes in the research 
methodology it is worth to regularly review the area of 
research to keep good track of the recent 
developments. In this publication, we start by 
reviewing important theoretical aspects of DdLSM, 
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then presenting a bibliometric analysis of 2585 
research items. After, a quantitative-oriented and 
extensive review of a data-base containing 311 
relevant publications (from 1985 to 2020) is given. 
The final chapter critically summarizes the findings 
and identifies important aspects related to the topic.  

2    Main Aspects of DdLSM 

Based on the uniformitarianism concept 
(Slaymaker 2004) that past knowledge is a key 
element to predict the future, DdLSM are built upon 
the assumption that landslide might happen under 
similar terrain conditions as they have occurred in the 
past. This implies the assumption that physical laws 
are constant over space and time. The environmental 
conditions are also assumed to be steady-state, 
especially when dealing with multi-temporal 
landslides observations. Consequently, the knowledge 
gained from past events and its empirical relations 
with the terrain conditions are used to predict the 
future occurrence of similar events (Brenning 2005). 

The standard process of DdLSM assessments, can 

be usually represented by the following steps: (i) 
acquisition of the landslide inventory, including the 
determination of non-landslide sampling points and 
posterior splitting in test and training samples; (ii) 
identification and acquisition of relevant geo-
environmental ground features (i.e., predictors) 
responsible for interfering on slope stability and 
definition of a modelling unit (i.e., pixels, slope units, 
among others); (iii) selection and application of the 
appropriate classification technique; (iv) quality 
estimation of the modeling performance, and (v) the 
generation of the landslide susceptibility map (Fig. 1). 

2.1 Study site extent and landslide inventory 

Usually, one of the first considerations for a 
DdLSM modeler is the balance between the size of the 
study area and the availability of input data 
(Corominas et al. 2014). As mentioned in many 
studies (e.g. Cascini (2008); Corominas et al. (2014); 
Crozier and Glade (2005); Fell et al. (2008); Soeters 
and van Westen (1996)), every landslide susceptibility 
map should ideally be created considering the 
potential and limitations of the available datasets. 

 
Fig. 1 Standard data-driven (statistical and machine learning) landslide susceptibility modeling process chain. 
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A landslide inventory is the spatial distribution of 
mapped landslides and is often one of the main input 
parameters for DdLSM (Glade 2001; Guzzetti et al. 
2012; Van Westen et al. 2008). A “landslide inventory” 
could also include information such as location, type 
of movement and possibly also the date of occurrence 
(Fell et al. 2008; Guzzetti et al. 2012; Hervás 2013). 
The inventory can be derived from multiple or single 
triggering events and can be multi-temporal (historic) 
or event-based (Galli et al. 2008; Guzzetti 2005; 
Guzzetti et al.  2012; Malamud et al. 2014). Ideally, a 
complete, accurate and unbiased inventory is 
essential to build a robust relationship between the 
landslides and the geo-environmental predictors 
(Steger et al. 2017). Malamud et al. (2014) found that 
event-based inventories are more often used than 
multi-temporal inventories. The spatial DdLSM 
prediction is built under the empirical relationship 
between the response variable (here, the landslides 
observations) and the landslide predictors (cf. section 
2.3 and section 2.4, respectively). 

Landslide inventories can be obtained using a 
wide range of techniques, depending on the purpose, 
the extent of the study site, and the available 
resources (Guzzetti et al. 2012). The most common 
techniques used are, field mapping, remote sensing 
techniques, aerial photos interpretation, incidents 
reports, bibliographic analysis, and semi-automatic 
extraction from high-resolution DTM’s (Guzzetti et al. 
2012, 2006; Harp et al. 2011; Hervás 2013; Malamud 
et al. 2014). However, photo interpretation and field 
mapping are currently the main technique used for 
inventory creation (Malamud et al. 2014). 

For DdLSM purposes, landslides are usually 
represented as points or polygons. The following 
landslide sampling strategies are highlighted in the 
DdLSM literature: (a) multiple points sampled 
throughout the whole landslide body, (b) multiple 
points within the landslide scarp, (c) single-point at 
the scarp centroid, (d) single-point at the landslide 
centroid, and (e) multiple points at the landslide 
vicinity, resembling the original landslide conditions, 
also named seed cells (Fig. 2). Publications dealing 
with the effects of landslide sampling strategies are 
numerous (e.g. Alvioli et al. (2016); Bordoni et al. 
(2020); Conoscenti et al. (2016); Dou et al. (2020); 
Erener and Düzgün (2012); Heckmann et al. (2014); 
Hong et al. (2019); Nefeslioglu et al. (2008a); Poli 
and Sterlacchini (2007); Regmi et al. (2014); Shirzadi 
et al. (2019)). 

When applying DdLSM’s, it is essential to focus 
on one movement type, most commonly classified by 
the Cruden and Varnes (1996); Dikau (1996) or 
Hungr et al. (2013) schemes. Every model should be 
applied separately for each particular landslide type 
(Corominas et al. 2014; Regmi et al. 2014; Zêzere 
2002; Zêzere et al. 2017). Distinct failures typologies 
can be conditioned by distinct terrain conditions. It is 
the responsibility of the modeler to associate the 
specific landslide type to its respective related 
influencing factors. 

2.2 Modelling unit and spatial resolution 

By definition, a modelling unit is a portion of the 
territory with a defined boundary, where the 

Fig. 2 Schematic plot of landslide sampling strategies (figure based on Regmi et al. (2014); Steger (2017). 
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underlying terrain conditions are summarized 
(Carrara et al. 1999), either by a categorical, binary, or 
a continuous variable. The modelling unit should 
represent parts of the terrain with internal 
homogeneity and external (between units) 
heterogeneity (Alvioli et al. 2016). Modelling units for 
DdLSM are usually: (i) pixel; grid cells based or (ii) 
polygon based, like slope units, unique condition 
units and terrain units (Guzzetti 2005; Zêzere et al. 
2017). 

Environmental and geomorphological conditions 
related to landslide occurrence are often represented 
by raster maps, which are defined by a set of 
georeferenced quadrangular grid of pixels. Such 
information can be, for instance, numerical values 
representing slope inclination; categorical values, 
representing a certain land cover type; or binary 
information, representing presence or absence of 
certain features (Guzzetti 2005). Recent advances in 
computer hardware and storage have made it possible 
to run DdLSM using very detailed raster resolutions, 
even for very large areas. The interplay between 
inventory positional accuracy and resolution of the 
input data should be one of the initial concerns (Lima 
et al. 2021). The role of predictors resolution and its 
effects on DdLSM, were assessed in publications like 
Arnone et al. (2016); Claessens (2005); Durić et al. 
(2019); Lee et al. (2004); Palamakumbure et al. 
(2015); Shirzadi et al. (2019). However, defining the 
best resolution is still an ongoing debate (Murillo-
García et al. 2019; Trigila et al. 2015). 

2.3 Landslide susceptibility predictors 

Also frequently called “conditioning”, 
“environmental”, or “predisposing” factors, landslide 
predictors are used to describe typical terrain 
conditions for landslide occurrence. They are the 
terrain geo-environmental features that influence the 
instability of the slope within a study site (Corominas 
et al. 2014; Crozier and Glade 2005; Van Westen et al. 
2008). The selection of a predictor, besides being 
related to data availability at the appropriate scale, 
should also adequately describe the landslide 
occurrence (Crozier and Glade 2005; Salciarini et al. 
2017; Van Westen et al. 2008; Zêzere et al. 2017). The 
inclusion of biased predictors; irrelevant ones; as well 
as the omission of appropriate ones, may significantly 
interfere in the prediction competence of the 
assessment (Steger et al. 2016b). 

Landslide predictors can be subdivided into (i) 
thematic variables (e.g., lithology, and soil type), (ii) 
topographical (e.g., slope angle, curvature, aspect), (iii) 
climatic (e.g., rainfall total, intensity, or duration), (iv) 
hydrological (e.g., topographic wetness index), or (v) 
proximity variables (e.g., distance to rivers or road). 
An extensive overview of these parameters is provided 
by Budimir et al. (2015); Corominas et al. (2014); 
Kanungo et al. (2009); Süzen and Kaya (2012), and 
Pourghasemi and Rossi (2016). Between different 
landslide predictors, topographic parameters (e.g., 
elevation, slope angle) were recognized as the most 
relevant (Coe et al. 2004; Fabbri et al. 2003) and 
therefore also the most adopted in DdLSM (Budimir 
et al. 2015; Malamud et al. 2004; Pourghasemi and 
Rossi 2016; Süzen and Kaya 2012). 

2.4 Classification techniques 

Many statistical, and also machine learning 
classification techniques have been used for landslide 
prediction Malamud et al. (2014); Reichenbach et al. 
(2018). Pioneer studies such as, Bernknopf et al. 
(1988); Carrara (1983); Carrara et al. (1990, 1991); 
Chung and Fabbri (1999); Guzzetti et al. (1999); Rice 
et al. (1985), and Van Westen et al. (1997) can be 
regarded as the starting point for the adoption of 
DdLSM. DdLSM techniques assign to an object, in 
this case a modelling unit, relative values, or classes 
reflecting the likelihood of phenomena occurrence 
(Brenning 2005). The classifiers themselves, 
considering the relationships between the 
observations and the predictors, estimate relative 
probabilities related to occurrence probabilities, 
usually ranging from 0 (zero) to 1 (one). A very low 
score (near zero) represents very similar terrain 
conditions where no or very few landslides occurred 
in the past. While a higher score (near one), would 
represent very similar terrain conditions where 
landslides have happened in the past (Brabb 1984; 
Guzzetti et al. 2006). 

DdLSM methods are numerous, and although 
similar in theory, adopt their own classification 
algorithms. Some are more mathematically based (e.g. 
statistical methods), and others are more flexible (e.g. 
machine learning methods), based on skilled patterns 
recognition (Ayalew and Yamagishi 2005; Brenning 
2005; Dai and Lee 2002; Micheletti et al. 2014). 
Which often give these models reduced transparency, 
suggesting a ‘black-box’ behavior (Goetz et al. 2015). 
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Machine learning approaches, differently to statistical 
approaches are less based on statistical premises, but 
rather in a very flexible patterns recognition 
algorithms, usually aiming a maximized predictive 
performance (Schratz et al. 2019; Steger and Kofler 
2019). However, literature, suggests that there are 
probably more similarities than differences between 
statistical and machine learning algorithms (Hastie et 
al. 2011). When it comes to the topic of landslide 
prediction using machine learning algorithms, it is 
important to acknowledge the high adaptation power 
of the method to the training samples (Hastie et al. 
2011; James et al. 2013). Which may be of concern to 
landslide predictive studies, especially when dealing 
with imperfect (e.g., biased) input data, which can 
lead to overfitting, possibly overestimated predictive 
performances and harder to interpret predictive maps 
(Brenning 2012; Goetz et al. 2015; Schratz et al. 2019; 
Steger and Kofler 2019). Differences aside, statistical 
and machine learning predictive methods for 
landslide prediction will be, in the context of this 
publication referred to as “data-driven” and analyzed 
together, since both derive generalized modelled 
relationships from data on empirical observations. 
Although there are numerous options of proposed for 
selection of classifiers used to delineate landslide 
susceptibility in literature, there is still no consensus 
on standardized criteria. Some simpler, but still 
efficient classifiers like weight of evidence were 
extensively used in the past decades (Malamud et al. 
2014). Typical machine learning algorithms, such as 
neural networks or decision trees, have gained 
popularity in the recent years (Goetz et al. 2015). 

2.5 Model quality. Sampling partitioning 
strategies and performance evaluation 

Assessing how good a predictive model fits using 
similar landslide observations, indicates how reliable 
this same model is to foresee future events. Also 
named as “measure of significance”, “degree of 
success” or “significance of predictions” (Chung and 
Fabbri 2003), validation methods are normally 
performed through estimation of error measures. A 
validation procedure is essential to supply the study 
with scientific rigor and reliability. Nevertheless, 
Malamud et al. (2014) have shown that 37% of the 
publications did not apply any validation technique or 
measure to the models. Addressed under qualitative 
(e.g., field surveys and geomorphic plausibility of the 

outcomes) or quantitative basis, the options to assess 
the model quality are many. The most frequent 
validation techniques applied to DdLSM are Receiver 
operating characteristic (ROC) curve, success, and 
prediction rate(s) (Chung and Fabbri 2003; Frattini et 
al. 2010). Extensive overviews on validation of 
landslide susceptibility models can be found in 
Beguería (2006); Brenning (2005); Chung and Fabbri 
(2003); Erener et al. (2017); Frattini et al. (2010); 
Guzzetti et al. (2006); Remondo et al. (2003); Zêzere 
et al. (2017). 

Crucial in order to get an impartial estimate of 
how the model can predict future landslides, the 
models need to be tested against an unused set of 
observations (test sample), different from the samples 
used to train the model (training sample) (Brenning 
2005; Chung and Fabbri 2003). Correctly predicting 
unknown landslide locations as unstable zones and 
landslide absence as stable zones are what most of the 
validation metrics are based on (Frattini et al. 2010). 
The Receiver Operating Characteristic (ROC) curve is 
mostly used as performance evaluator for most 
DdLSM. It is built by analyzing a series of multiple 
confusion matrices, which correlates wrong (false 
positives and false negatives) and correctly (true 
positives and true negatives) classified samples 
(Beguería 2006). A ratio of true positives to false 
negatives provides a measure of sensitivity, while the 
ratio of true negatives to false positives a measure of 
specificity. This gives a range of 0-1 values that are the 
basis for the ROC curve. The 0-1 range typically 
informs how good the model was able to predict 
landslide occurrence.  

The sampling partitioning strategy is also an 
important element in the validation. The testing and 
training samples are mostly selected using three main 
strategies: (i) random, (ii) temporal, and (iii) spatial 
partitioning (Chung and Fabbri 2003). Random 
sampling, also named single holdout, is recognized as 
the most widely used method, which consists of an 
exclusive split of the inventory between training and 
test samples (e.g., 70% as training and 30% as test 
samples) (Chung and Fabbri 2003; Juliev et al. 2019; 
Kohavi 1995; Panahi et al. 2020; Wang et al. 2020). 
Temporal partitioning, consists of testing a model 
with a set of observations that occurred in different 
circumstances than the observations used to train the 
model (usually a different triggering event) (Brenning 
2005; Chung and Fabbri 2003; Ciurleo et al. 2016; 
Poonam et al. 2017). Spatial partitioning uses the 
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landslides with in a specific area(s) as a the training 
samples and subsequently the remaining landslides as 
a test sample (Chung and Fabbri 2003; Depicker et al. 
2020; Gorsevski et al. 2016; Lombardo et al. 2014). 
The partitioning process can also be repeated multiple 
times, randomly or spatially. When using multiple 
repeated partitioning techniques (Fig. 3C and 3D), the 
training and testing samples are randomly selected 
multiple times, with or without a spatial component. 
The n-fold and n-repetition will define how many 
times the model will be re-sampled and validated. The 
random non-spatial component for separating test 
and training samples is named “Non-spatial cross-
validation”, while when the spatial location of the 
samples is considered, the term “Spatial cross-
validation” is used. These main partitioning methods 
are illustrated in Fig. 3. 

3    Bibliometric Analysis 

Bibliometric analysis is a tool to analyze 
publications databases in order to identify trends, 
patterns, and important information related to 
specific research fields (Glänzel 2012). This technique 
has been broadly used in many research fields. Within 
geomorphology, Gokceoglu and Sezer (2009); Piégay 
et al. (2015); Sassa et al. (2015); Stott (2010, 2011, 
2013); Wu et al. (2015) have used bibliometric 
analyzes to evaluate patterns related to fluvial 

geomorphology and also landslides. Wu et al. (2015) 
pointed out some research trends related to the term 
“landslide”, highlighting a growing usage in recent 
decades. They demonstrate a dynamic behavior of 
different related key-terms, often describing 
methodologies or internal aspects. Using 
bibliographic analysis, Wu et al. (2015) presented the 
30 top key-terms related to “landslide”, including 
“logistic regression,” which has risen from a non-
ranked position in the period between 1991 - 1999 to 
the 13th place between 2010 and 2014. Based on a 
bibliometric analysis of 1136 publications available in 
Scopus, Steger and Kofler (2019) demonstrated the 
exponential growth over the last years of publications 
with “statistical landslide susceptibility” as terms in 
the title. 

3.1 Bibliographic database acquisition and 
processing 

Assuming that meaningful methodological 
aspects and features are present on the publication 
titles, abstract and keywords, bibliographic analysis 
can be used to get an overview of specific research 
patterns of a certain topic. In order to access the 
research productivity and trend patterns related to 
DdLSM publications, a query was performed in May 
2020 through the Web of Science, Clarivate Analytics 
database. The query was realized by gathering query 
terms like “landslide susceptibility” and/or “landslide 

Fig. 3 Schematic visualization of varied partitioning strategies based on artificial data. (A) Random or temporal 
partitioning; can be usually split using varied proportions (%) for training and testing sets. The visual representation 
of the temporal partitioning is the same as the random. (B) Spatial partitioning: model is usually trained with samples 
from a well-documented area and tested over larger areas. (C) Non-spatial multiple repeated partitioning: also called 
as non-spatial cross-validation. (D) Spatial multiple repeated partitioning: also called spatial cross-validation. 
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hazard” and “statistic*” or “machine learning” when 
contained on the titles, abstract, or keywords of 
publications. Although landslide hazard and 
susceptibility have a different meaning, the inclusion 
of both expressions as query terms is justified by 
evidence provided by the literature that clear 
distinctions of both terminologies were not always 
adopted in some publications. The misconception of 
many authors between both terms is especially found 
in publications dating prior to the 2000’s. For this 
reason, the authors have decided to use both terms in 
order to cover all the relevant literature on the topic. 
Only articles, reviews, conference papers, and book 
chapters written in English were considered. The key 
terms cited above were manually removed from the 
following bibliometric analysis. 

The complete data set was processed by the 
bibliometric software, ‘VOSviewer’, version 1.6.5 (Eck 
and Waltman 2010). To filter the results, 
corresponding terms like “geographic information 
system” and “GIS”; or “maps” and “map” were 
manually merged using the “thesaurus” tool. This last 
process can avoid double counting of similar terms 
and provides a correct count of the key terms. Since 
only the most repeatedly cited terms are the main 
interest of the bibliometric analysis, only the items 
with an occurrence greater than ten times were 
further processed. To collate just relevant key terms, 
an additional step removed terms defining locations 

(e.g., Iran, China, Southern Italy). 
Based on this inquiry, 2585 research items were 

identified, while 2083 were classified as research 
articles, 429 proceedings papers, 39 general reviews, 
and 34 book chapters. The query revealed research 
items produced between 1985 and 2020. 

3.2 Temporal research development 

The temporal investigation of publications 
dealing with the topic demonstrates an increasing 
number of publications, especially after the 2000’s, 
reaching the maximum value of 380 items in 2019 
(Fig. 4F). This constantly growing number of 
publications dealing with landslide susceptibility 
mapping can be attributed to the increasing number 
of landslide reports, causalities, people and 
infrastructure affected by landslides in the last 
decades (Kirschbaum et al. 2015; Nadim et al. 2013, 
2006; Petley 2012). 

The journals with the greatest number of related 
publications were Geomorphology and Natural 
Hazards (both with 153 publications), followed by 
Environmental Earth Sciences (141), Landslides (137) 
and Engineering Geology (93). The top-5 (Fig. 4) most 
productive journals contributed to 26% of the total 
research items, and 32% of the research articles. All 
the 2083 research articles were divided between 327 
sources. Journals like Natural Hazards and Earth 

Fig. 4 Temporal productivity of the top 5 most active journals find in the database. Source: Database gathered from 
Web of Science, Clarivate Analytics in May 2020. 
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System Sciences, Catena, Bulletin of Engineering 
Geology and the Environment, Arabian Journal of 
Geosciences; and Geomatics Natural Hazards & Risk 
were also within the topmost productive journals. A 
further comparison between the previously cited 
journals (Table 1), illustrates that the number of 
publications is not necessarily related to the number 
of cumulative or average citations. 

3.3 Spatial distribution of author affiliations 

The countries of affiliations of the first 
authorship of the 2585 publications are distributed 
over 76 countries. The global distribution of the first 
author’s affiliations is predominantly from the 
countries, China, Italy, India, Iran, South Korea, 

Turkey, United States, Malaysia, Spain, and Germany 
(Fig. 5A). The top 10 countries represent 68% of the 
total number of publications. It was also observed in 
that same analysis that 67% of all publications were 
international collaborations. This reveals a strong 
international network of collaboration between 
researchers within this research topic. The identified 
country of affiliation of the first author can be used as 
a measure of hot-spots within this research field (Fig. 
5B). However, it is noted that the quantity of research 
items does not necessarily reflect the overall quality of 
the publications. An approximated assessment of the 
general research impact within the field was 
calculated by analyzing the mean number of citations 
for the top 10 most productive countries of each 
publication. However, it should be kept in mind that 

Table 1 Top five scientific journals on the topic of statistical landslide susceptibility models, from Web of Science, 
Clarivate Analytics (Thomson Reuters 2014). 

Journals Total number of publications Cumulative citations Average citations per publication
Geomorphology 153 11252 73.5
Natural Hazards 153 5762 37.6
Environmental  
Earth Sciences 

141 3996 28.3 

Landslides 137 4963 36.2
Engineering Geology 93 7707 82.8

 

 
Fig. 5 Histogram representing the 25 top-most productive countries (Source: Web of Science; Clarivate Analytics; 
May 2020) (A). Observed number of publications of the top 10 countries, divided by the type of collaboration (single 
or only national collaboration, versus multiple authorship, with international collaboration) (B); Average number of 
citations per publication per country of the top 10 most productive countries (C). The countries correspond to the 
declared nationality of the 1st author institution.  
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self-citation could contribute to a significant bias 
towards an increased citation rate of a publication or 
a researcher. It is important to stress that the 
implications of self-citations were not explored in this 
research and the productivity scenario might be 
biased towards self-citation.  

3.4 Key terms analysis as a potential research 
trend indicator 

A total of 4299 different key terms were used by 
the authors in the respective publications. The most 
frequently used key terms are illustrated in Fig. 6 and 
the detailed described in Table 2. Fig. 6 shows a large 
variation of terms mainly related to important 
DdLSM classification techniques, methodological 
aspects, input parameters, landslide predictors and 
landslide typologies. Table 2 addresses more in detail 
the temporal quantified usage development of the 30 
topmost used terms. The 30 most mentioned terms 
were analyzed in terms of chronological ranking as 
key terms (Table 2). Within the top terms, techniques 
such as “Logistic Regression”, “Frequency Ratio (FR)”, 
“Analytic Hierarchy Process (AHP)”, “Artificial Neural 

Networks (ANN)”, “Support Vector Machine (SVM)”, 
“Weight of Evidence”, “Machine Learning”, “Random 
Forest”, “Fuzzy Logic”, “Certainty Factor”, “Bivariate”, 
“Decision Tree” and “Evidential Belief Function” 
appear to provide an overview of the most applied 
classifications techniques on DdLSM. Important 
geospatial tools and techniques like “GIS” and 
“Remote Sensing” were also often mentioned. The 
occurrence of terms describing landslide typologies 
such as “Debris Flows” and “Shallow Landslide” 
indicates a great usage of DdLSM related to these 
landslide types. It is also important to highlight the 
usage of terms such as “Validation”, “Roc Curve” and 
“Landslide Inventory”, possibly representing 
importance that many researchers place on the 
quality and reliability of the outcomes. Additionally, 
terms such as “Digital Elevation Model (DEM)” and 
“LIDAR” are one of the most cited terms since the 
topographical factors related to landslide occurrence 
mostly used as landslide predictors within the frame 
of DdLSM (e.g., slope, aspect, elevation, curvature, 
etc.) are derivatives of these data. Landslide triggering 
factors such as “Earthquake” and “Rainfall” are also 
mentioned often within this topic of research. 

Fig. 6 Temporal co-occurrence network of the most used keywords. (Data source: Web of Science, Clarivate 
Analytics; April 2020). The line thickness represents the connection strength between the key terms on the 
publications. Following the legend, the color of the boxes and lines represents the chronological usage density of each 
term. The frame size represents the relative usage of the term as key term. 
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Table 2 displays the chronological relative 
position (ascendant or descendent) of each term. 
Novel techniques like “Support Vector Machine 
(SVM)”, “Machine learning”, “Random Forest”, and 
“Decision Tree” exhibit a constant increased usage 
throughout the whole period. This trend is likely 
related to the recent increased popularity and usage of 
modern programming software and tools (Goodchild 
2010; Reichenbach et al. 2018; Steger and Kofler 
2019). Increases in online code availability and 
usability of open-source software have also improved 
the uptake of these modern techniques. Noteworthy 

recent efforts in this direction are Brenning et al. 
(2018); Muenchow et al. (2017); Rossi and 
Reichenbach (2016) and Bivand et al. (2019). A good 
example of increased usage of modern classifiers 
predictors can be revealed by analysing the usage of 
the term “Machine Learning”. From no citations prior 
to 2013, the term became the fourth most cited 
between 2017 and 2020. Innovative statistical 
classification techniques such as “Artificial Neural 
Network” and “Frequency Ratio” were also frequently 
used during this period. However, these terms have 
oscillated within the top 30 through time. Non 

Table 2 Predominant keywords find on the 2585 publications through the bibliometric software. The signals after the 
terms correspond to the invariable (=); ascending (↑); descendant (↓); or oscillating (↑↓) comportment along the 
chronological sequence. (Source: Web of Science; May 2020). 

Keywords 
Total occurrence 
1985 – 2020 

Occurrences
1985 – 2004

Occurrences
2005 – 2008

Occurrences
2009 – 2012

Occurrences 
2013 – 2016 

Occurrences
2017 – 2020

Count Rank Count  Rank Count  Rank Count Rank Count  Rank Count  Rank
Gis = 687 1st 27 1st 70 1st 158 1st 162 1st 270 1st

Logistic regression = 214 2nd 6 2nd 17 2nd 48 2nd 54 2nd 89 2nd

Frequency ratio (FR) ↑↓ 154 3rd 1 29th 7 8th 26 5th 39 3rd 81 3rd 
Remote sensing ↑↓ 145 4th - - 9 6th 38 3rd 38 4th 60 7th 
Analytic hierarchy process 
(AHP) ↑ 

116 5th - - 5 10th 20 6th 28 5th 63 5th 

Artificial neural network 
(ANN) ↑↓ 

102 6th 2 11th 11 3rd 27 4th 23 6th 39 9th 

Support vector machine 
(SVM) ↑ 

91 7th - - 1 69th 9 12th 18 9th 63 6th 

Weight of evidence ↑↓ 73 8th 1 30th 2 33rd 16 7th 19 8th 35 10th 
Machine learning ↑ 67 9th - - - - - - 3 72nd 64 4th 
Shallow landslide ↑↓ 67 10th 3 5th 4 13th 7 16th 20 7th 33 11th 
Debris flows ↑↓ 63 11th 6 3rd 10 4th 11 8th 15 10th 21 13th 
Random forest ↑ 57 12th - - - - 1 - 5 37th 51 8th 
Landslide inventory ↑↓ 55 13th 3 6th 4 14th 8 14th 9 14th 31 12th 
Fuzzy logic ↑↓ 42 14th 2 12th 3 19th 9 11th 11 11th 17 15th 
Risk assessment ↑↓ 40 15th 1 13th 10 11th 6 9th 6 22nd 17 14th 
Validation ↑↓ 40 16th 2 31st 5 5th 9 19th 6 23rd 18 17th 
Digital elevation model 
(DEM) ↑↓ 

39 17th 2 15th 9 15th 7 10th 9 17th 12 19th 

Slope stability ↑↓ 39 18th 2 14th 4 7th 9 15th 8 15th 16 25th 
Earthquake ↑↓ 32 19th 3 7th 3 20th 6 20th 10 13th 10 31st 
Lidar ↑↓ 30 20th - - 2 34th 3 75th 9 12th 16 16th 
Roc curve ↑↓ 30 21st - - - - 2 35th 11 16th 17 18th 
Vulnerability ↑↓ 28 22nd - - 3 21st 7 18th 8 18th 10 32nd 
Rainfall ↑↓ 26 23rd 2 16th 5 12th 2 62nd 6 24th 11 28th 
Certainty factor ↑↓ 23 24th - - - - 5 24th 5 32nd 13 23rd 
Natural hazard ↑↓ 22 25th 1 32nd 3 22nd 3 34th 1 34th 14 21st 
Geomorphology ↑↓ 21 26th 2 17th 4 16th 7 17th 3 54th 5 77th 
Map ↑↓ 20 27th 3 8th 7 9th 1 - 2 94th 7 54th 
Bivariate ↑↓ 19 28th 1 33rd 3 23rd 4 26th 7 20th 4 96th 
Decision tree ↑ 19 29th - - - - 3 43rd 5 34th 11 30th 
Evidential belief function 
↑↓ 

19 30th - - - - 2 76th 6 25th 11 29th 
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DdLSM methods like “Analytic Hierarchy Process”, 
“Weight of Evidence” and “Fuzzy logic” were also 
mentioned very often. 

While novel techniques applied to the field of 
DdLSM predictions appear to be increasingly used, 
the term “Bivariate” demonstrates an opposite 
tendency. Bivariate methods have been gradually 
substituted by more modern methods (e.g., 
“Generalized Additive Models”, “Random Forest”, 
“Support Vector Machines”). This pattern might be 
connected to the availability of modern statistical 
software and or related programming languages 
(especially the open-source like R and Python), which 
offer multiple online tools, packages, and scripts for 
landslide susceptibility modelling.  

A vital component of the DdLSM predictions is 
the classification technique applied. Fig. 7, shows a 
relative temporal importance rank between classifiers 
based on the chronological bibliometric data. This 
was calculated by selecting only the DdLSM 
classification method in the top 30 most cited terms. 
The most cited classifier “Logistic Regression” (Lr) 
appears to reduce over time. With a prevalence of 54% 
in the first time-period (1985-2004), the occurrence 
of the term Logistic regression between the key terms 
dropped to 19% in the last analyzed period (between 
2017 and 2020, in Fig. 7). Oppositely, “Support Vector 
Machine” gained a substantial presence within the key 
citations, from 0% between 1985 and 2004 to 14% 
between 2017 and 2020. A similar pattern is 
associated with “Machine Learning”, which was not a 
top term during the period between 2009 and 2012 
and reached 14% in the period between 2017 and 
2020. The term “Bivariate” shows a similar trend to 
“Logistic Regression” reducing its presence as top-
cited terms within the frame of DdLSM publications, 
ranging from 9% predominance in the first period, 
1985 to 2004, to circa 1% (only four research items) 
between 2017 and 2020. This trend, increasing 
prevalence of modern high-flexible classifiers, and 
decreasing prevalence of “Logistic Regression” and 
“Bivariate”, might foresee a future trend in the topic 
of DdLSM. It is also observed a trend towards the 
application of modern, computer expensive and 
complexes machine learning algorithm-methods. This 
could be a signal of a trend shift from 
geomorphological research towards GIS and 
programming experts, possibly less concerned with 
the process understanding, and more focused on 
performance, applying more modern, however less 

transparent methods (Goetz et al. 2015). 
The interpretation of bibliometric results should 

be performed carefully. This is related to the 
observation that the many publications, despite 
having the query items in the titles, keywords, or 
abstract, are not necessarily using the cited terms. 
Therefore, bibliometric analysis should only be used 
as a preliminary tool to investigate a research field. To 
have a complete overview of the topic and trends 
within DdLSM, a quantitative oriented literature 
evaluation is presented in the following section.  

4 Quantitative-Oriented Analysis of 
Relevant Publications 

4.1 Baseline approach 

A database containing over than 400 topic 
related publications was created using the following 
criteria: (i) main source: Science Direct website and 
the proceedings from the World Landslide Forums II 
and III, (ii) query terms: “landslide susceptibility”, 
and “landslide hazard”, (iii) time frame: 1985 to 2020 
(last query on June 12th, 2020) and (iv) document 
type: journal papers; book chapters and conference 

Fig. 7 Relative usage rank between data-driven 
classifiers found within the top 30 key terms. In the 
legend, “LR” stands for Logistic regression;” FR” for 
Frequency ratio; “ANN” for Artificial neural network; 
“SVM” for Support vector machine; “WofE” for Weight 
of evidence; “ML” for Machine learning; “RF” for 
Random forest; “CF” for Certainty factor; “BV” for 
Bivariate; and “DT” for Decision tree. 
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proceedings exclusively written using English as the 
official language. Additionally, publications using the 
term “hazard” have been carefully investigated for 
how the authors defines hazard. If a hazard is 
correctly defined by the frequency and magnitude of a 
given landslide in a specific place and time, then this 
paper has been excluded from further analysis. 
However, if the authors use hazard in a similar 
meaning as “susceptibility”, this paper has been 
included in this analysis. Finally, a subset of 313 
research items was selected. These research items 
were distributed over 40 varied sources (book 
chapters, proceedings, and scientific journals). 

4.2 Findings 

From the 313, 65% (206 research items) were 
found within the following journals: Geomorphology, 
Natural Hazards, Landslides, Engineering Geology, 
and Catena. After, factors such as: study site features 
(extent and location) and landslide inventory features; 
modelling unit and spatial resolution (when 
applicable); landslide predictors; classification 
technique used; and the applied performance 
evaluation technique were further quantitatively 
investigated. A deeper focus on those elements will be 
given in the following sections. The results presented 
here will be based on over a clear summarizing 
percentage indicator from the totality of 313 
publications (100%). 

4.2.1 Study site extent and landslide inventory 

Globally, the total sum coverage of the studies is 
17.7 million km², representing approximately 11% of 
the total land surface plan area (Blakemore 2018). 
However, a very large portion of these studies could 
contain overlapping extents. Following the categorical 
scales set by Cascini (2008), analysis from the 
selected publications (Fig. 8), shows the application of 
DdLSM over varied territories sizes. Although some 
studies assessed multiple areas with differing sizes, 
the major adoption of DdLSM techniques was found 
for assessments comprising areas between 10 and 100 
km², and in territories between 100 to 500 km². A 
small number of studies have applied DdLSM 
techniques for specific site locations (Costanzo et al. 
2012; Das et al. 2012; Nefeslioglu et al. 2008a; 
Santacana et al. 2003; Singh et al. 2005; Vorpahl et al. 
2012). It was also observed, polygons are the most 
commonly used unit to represent a landslide 
inventory (55%), followed by points (39%). For the 

remaining publications, either this information was 
missing or unclear. 

4.2.2 Modelling unit and spatial resolution 

The results show 88% of the studies use pixel-
based as the standard modelling unit for DdLSM. 
Although polygon-based units have been increasingly 
gained attention in landslide susceptibility modeling, 
the percentage of studies using polygon-based units is 
10%. For a few studies, the modelling unit used was 
not clear. Within the polygon-based units, slope units 
and unique condition units were the most used 
modelling units. Within the pixels-based studies, a 
varied range of pixel resolution was found (Fig. 9). It 
is possible to observe a clear relationship between the 
spatial extent of the assessments and the adopted 
pixel size (Fig. 9). Assessments over large areas, using 
pixels as mapping units tends to adopt larger pixels 
sizes. Varying from very small pixel sizes, usually 
applied to small areas assessments (Lombardo et al. 
2018; Oztekin and Topal 2005; Steger and Kofler 
2019) to relatively large pixel sizes, commonly the 
case of large areas assessments (Catani et al. 2013; 
Depicker et al. 2020; Sabatakakis et al. 2013).  

4.2.3 Landslide predictors 

A total of 116 different landslide predictors were 
found in use within the predictive models. On average, 
each research item used seven variables as predictors. 
Only a small number of research items used one or 
two predictors (e.g. Chang et al. (2014); Reichenbach 
et al. (2018)), and some had a maximum of twenty 
(Durić et al. 2019). Predictors like slope angle 
(present on 88% of the studies), slope aspect, and 
rock type (both with 72%), land cover (63%), and 
curvature (61%) were the five most frequently used 

Fig. 8 Distribution of the spatial extent range of the 
study areas found in selected publications. 
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predictors (Fig. 10 and Table 3). Although multiple 
curvature variations were used in literature (e.g., 
profile, plan, and total curvatures), they were treated 
in this analysis as synonyms. These topmost used 
predictors were then followed by distance to drainage 
network (49%); elevation (47%); distance to faults 
(35%); distance to roads (32%); and topographic-
wetness index (28%), completing the top ten. 

Fig. 10 illustrates the most used predictors 
classified into categories. Topographical and thematic 
variables are the most used within the analyzed set of 
publications. However, proximity, hydrological and 
climatic describing variables are also often used. The 
most used topographical variables were slope angle 
(SA, 88%), Aspect (As, 73%), Curvature (Curv, 61%), 
Elevation (Elv, 47%) and Soil thickness (STk, 11%) 

 
Fig. 9 Relationship between the spatial extent of the study area and the pixel sizes for the assessments contained in 
the selected publications. 
 

Fig. 10 Most used geo-environmental predictors variables within the assessments contained in the selected 
publications. Legend: “SA”, slope angle; “As”, aspect; “Curv”, Curvature (including possible multiple variations like 
planar and profile curvatures);“Elv”, elevation; “STk”, Soil thickness; “Ge”, Geology (rock type); “LC”, land cover; 
“STy”, Soil type; “NDVI”, Normalized difference vegetation index; “DDr”, distance to drainage; “DF”, distance to 
faults; “DRo”, distance to roads; “LB”, Distance to lineaments; “TWI”, Topographic wetness index; “SPI”, Stream 
power index; “DDe”, Drainage density and “R”, rainfall. 
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(Fig. 10). Within the thematic variables, lithological 
describing layers (Ge, 73%), and Land Cover (Lc, 
63%), Soil Type (STy, 16%) and the Normalized 
Difference Vegetation Index (NDVI, 14%) had the 
highest usage rates. For proximity related variables, 
Distance to Drainage (DDr), Distance to Faults (DF), 

Distance to Roads (DRo) and Distance to Lineaments 
(LB) had the greatest usage rates with 49%, 35%, 32% 
and 11% respectively. Topographic Wetness Index 
(TWI, 28%) was the most used hydrological related 
factor, followed by Stream Power Index (SPI, 14%) 
and Drainage Density (DDe, 10%). Some studies (22%) 

Table 3 Top 15 landslide predictors identified within the selected publications. The table describes landslide 
predictors, quantification of the usage on the publications, the description, and their respective sources. 

Landslide 
predictors 

Total 
usage 

Percentage 
(%) 

Definition and importance on landslide susceptibility 
according to the literature Sources 

Slope angle  
or gradient 276 88 

Slope inclination. Usually expressed in degrees (°), but can 
also be represented by percentage, radians or classes. Aims 
to inform gravitational related downslope forces. 

Digital elevation 
models or 
topographic maps. 

Aspect 228 73 
Define the orientation of the slope. It can be input express 
as a continuous or categorical variable. 

Digital elevation 
models. 

Geology  
(rock type) 227 73 

Lithology units or class. Customarily used as a categorical 
variable. 

Geological maps 
and/or field surveys.

Land cover 197 63 
It describes the superficial coverage of the terrain. 
Customarily used as a categorical variable, act as a 
hydrological and mechanical condition indicator. 

Satellite and aerial 
imagery 
interpretation; 
landcover maps 
and/or field surveys.

Curvature 192 61 

Generally used as a continuous variable, this predictor 
describes the morphological structure of the terrain, like 
erosional and runoff processes. Include all types of 
curvatures (e.g., plain, total, profile, tangential). 

Digital elevation 
models. 

Distance to 
drainage 
network 

153 49 

Describes distancing of a determined point to the drainage 
network system. Generally used as a continuous variable, 
this predictor illustrates the hydrological and saturation 
characteristic of the terrain. 

Digital Elevation 
models or 
topographic maps. 

Elevation 148 47 

This layer portrays the altimetric variation of the terrain. 
Normally used as a continuous variable, this predictor is 
also used to indirectly indicate unmeasured processes 
related to altimetric variations. 

Topographic map or 
digital elevation 
models. 

Distance to 
faults 108 35 

Continuous variable (normally) describing the distance 
from a determined point to geological discontinuities. 

Stereo imagery 
interpretation; 
geological maps 
and/or field surveys.

Distance to 
roads 

100 32 

Continuous variable (normally) describing the distance 
from a determined point to roads, railroads, or tracks. This 
predictor is usually considered when on the study site is 
observed some failures caused by defective geotechnical 
considerations on the pathways. 

Topographic and 
infrastructure maps.

Topographic 
wetness  
Index 

89 28 

Describes the spatial extend of saturated zones for runoff 
generation. This continuous variable is a function of the 
upslope contributing area and slope gradient. High values 
indicate areas with a high probability of being drained by 
the saturated flow. 

Digital Elevation 
models. 

Rainfall 70 22 

One of the most important landslides triggering elements, 
this continuous or categorical predictor, is used to indicate 
the water input on the terrain. It is also used as a 
weathering proxy to describe terrain stability. It can be 
represented in many different magnitudes, and the 
adoption on landslide susceptibility assessments is 
questionable. 

Meteorological 
records. 

Soil type 51 16 
Categorical variable describing the soil type coverage of the 
terrain. Represent geotechnical variations and 
discontinuities between the soils. 

Pedological maps 
and/or field surveys.

(-To be continued-) 
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used some variation of rainfall measurement (R) to 
relate to landslide occurrences. Table 3 contains the 
15 most used predictors within the analyzed research 
items, together with a brief description and its main 
sources. A minimum adoption threshold of 10% was 
used to establish these top 15 predictors. 

4.2.4 Classification techniques 

Within the database of publications, a total of 518 
classifiers were used, suggesting that multiple studies 
have applied, more than one classifier per study. The 
majority, 198 (64%) used only a single predictor, 
while 36% used more than one. Two and three 
classifiers appear in 20% and 12% of the research 
items, respectively. Some publications have applied a 
very larger number of classifiers, such as, Vorpahl et 
al. (2012) and Pourghasemi and Rahmati (2018), 
using seven and ten different classifiers respectively. 
The use of multiple classifiers was usually adopted in 
the publications aiming to compare the outcome 
patterns from different techniques. From an average 
of 1.3 classifiers per publication between 1985 and 
2004, this average number was found to have 
increase to two different classifiers per publication in 
the period between 2017 and 2020. Studies 
comparing statistical classification techniques with 
physically-based approaches (Carrara et al. 2008; 
Cervi et al. 2010; Goetz et al. 2011; Weidner et al. 

2019) or heuristic models (Akgün and Bulut 2007; Du 
et al. 2020; Van Westen et al. 1997; Zhu et al. 2018) 
were also identified. 

Logistic regression was present in 127 (41%) of 
the studies (Fig. 11). Artificial neural networks were 
applied within 45 (14%) of the research items and was 
the second most used technique. With 41 occurrences 
(13%), Likelihood frequency ratio, a bivariate 
classifier, is the third most used technique. 
Completing the top 10 most used techniques the 
analysis shows respectively: Weight of evidence with 
33 occurrences (11%), Information value with 25 
occurrences (8%), Support Vector Machine, with 23 
occurrences (7%), Linear discriminant analysis 
occurring 22 times (7%), Decision tree, with 21 
occurrences (7%), Conditional probability model 
occurring 18 times (6%) and finally Random Forest 
occurred in 15 research items (5%). Although this 
overall picture of the total classifier’s usage may 
inform important trends within the topic of DdLSM, it 
is necessary to understand how the classifiers’ 
adoption evolves over time. 

To focus on the most recent trends, we examined 
a subset of the whole collection for the period between 
2017 and 2020. Within these selected publications, 
Logistic regression was used 19 times and is still the 
most used classifier to predict landslides. The others 
five most used terms in this subset were machine 

(-Continued-) 

Table 3 Top 15 landslide predictors identified within the selected publications. The table describes landslide 
predictors, quantification of the usage on the publications, the description, and their respective sources. 

Landslide 
predictors 

Total 
usage 

Percentage 
(%) 

Definition and importance on landslide susceptibility 
according to the literature 

Sources 

Stream  
power index 

45 14 

Continuous variable indicating the potential erosion flow 
at the given point of the topographic surface. It is an 
indicator of erosional power, considering the slope 
geometry and contributing area. 

Digital elevation 
models. 

Normalized 
difference 
vegetation 
index (NDVI) 

43 14 
The index is used to estimate the quality, quantity, and 
development of the vegetation in a given region. 

Analyzing of multi-
band imagery. 

Distance to 
lineaments 

35 11 

Used similarly to the distance to faults, this normally 
continuous variable represents the distance from a 
determined point to a topographic feature of regional 
extent representing a crustal structure. 

Imagery 
interpretation; 
geological map 
and/or field surveys.

Soil 
thickness 

33 11 
This predictor might be used to describe differing 
weathering, geotechnical and hydrological patterns. Also 
determines the potential slide volume. 

Literature and field 
measurements. 

Drainage 
density 

30 10 

Rate between upslope contributing size and length of the 
channels. It informs how efficient the water is conducted 
along the slopes. It relates closely with hydrological and 
geotechnical parameters. 

Topographic maps; 
field surveys or 
extracted from 
digital elevation 
models. 
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learning related. While Random Forest is in the 10th 
place overall, it was ranked second for the period 2017 
and 2020 and accounts for nine of the 42 publications. 
In addition, support vector machine was mentioned 
in nine publications. Artificial neural networks and 
decision tree (with respectively eight and five 
appearances) completed the top used classifiers 
within the period 2017-2020. The analysis of these 
last years of publications indicates the usage decay of 
simpler (e.g., bivariate classifiers), while the usage of 
sophisticated machine learning algorithms is clearly 
increasing. 

4.2.5 Model quality. Sampling partitioning 
strategies and performance evaluation 

Within the selected research items, 38% of the 
publications have no or unclear information about the 
inventory partition procedure that was used. Random 
single holdout partitioning was the most applied 
method, used in 36% of the publications (Fig. 12). 
Temporal partitioning was the second most adopted, 
used in 9% of the publications. Repeated multiple 
partitioning, are used here as synonyms to all 
varieties of cross-validation techniques (spatial and 
non-spatial) and adopted in 8% of the publications. 
Analyzing a most recent subset of the publications set 
(2017-2020), repeated multiple partitioning (cross-
validation) were applied in a quarter of the 

publications. The higher uptake of this method in the 
last few years, highlights the promising nature of this 
sampling strategy (Amato et al. 2019; Chen et al. 2018; 
Dou et al. 2019; Steger et al. 2020;  Sun et al. 2020). 

Fig. 11 Overview of the classification techniques used over the selected publications database. Histograms (A): 
Chronological usage of the top 10 most used classifiers. Bar graph (B): Cumulative sum of the respective classifier usage. 

 
Fig. 12 Inventory test and training sampling 
partitioning technique. The numbers represent the 
usage percentage of each technique. Repeated 
multiple partitioning is represented in purple color 
since it can use a randomized either spatial, non-
spatial and even temporal splitting component. 



J. Mt. Sci. (2022) 19(6): 1670-1698   

 1687

Within the selected research items, 43% reported 
to use a single performance evaluation measure, and 
44% used multiple techniques. It was also observed in 
13% of the publications there was no clear 
information about the technique used. Within the 
investigated literature, nearly half of the publications 
(44%) included the Area Under the Receiver 
Operating Characteristic Curve (AUROC), as one of 
the assessment quality evaluators (Fig. 13). Metrics 
based on success and predictive rates were present in 
25% of the publications. Sensitivity, also called hit 
rate, which informs the rate of true positives (the rate 
of actual landslides correctly classified as unstable), 
was used in 12% of the publications. The next most 
used procedures were metrics based on the R2 
coefficient (10%), Confusion matrix interpretation 
(7%), and Cohen Kappa coefficient-based techniques, 
present in 7% of the publications (Fig. 13). Methods 
like Akaike Information criteria and expert evaluation 
of the prediction’s map were also considerably 
adopted, but with a usage adoption lower than 5%. 

5    Scrutinizing the Quantitative Analysis 

Creating reliable maps is the objective of all 
DdLSM’s. However, literature suggests that 
researchers should adopt a wide range of research 
designs in order to reach this aim. There are 
numerous choices related to the DdLSM 

methodological design. Methodological combinations 
to produce landslide predictive maps using DdLSM 
seem to be endless. Examination of what has been 
applied in the published research might help to 
understand research trends. 

5.1 Study site extent and landslide inventory 

Earlier studies have tried to establish defined 
standards related to the scale and spatial extension of 
the study area (Cascini 2008; Corominas et al. 2014; 
Soeters and van Westen 1996). Based on the typical 
limitation of quality/availability, propositions were 
suggested. In the past, very large areas were mostly 
assessed through expert-based (heuristic) models due 
to the lack of computational resources to process large 
databases, and the lack of comprehensive data to 
cover large territories. National and even continental-
scale studies made, especially recently, were assessed 
under DdLSM (e.g., Günther et al. (2013); Havenith et 
al. (2015); Hu et al. (2020); Lima et al. (2017); 
Nsengiyumva et al. (2019); Sabatakakis et al. (2013); 
Schicker and Moon (2012); Van Den Eeckhaut and 
Hervás (2012)). This research has shown that most of 
the publications were performed over large spatial 
extent assessments (areas from 10 to 1,000 km²). In 
the last decade a great number of assessments dealing 
with DdLSM and covering very large areas were 
published (e.g., Guo et al. (2015); Hu et al. (2020); 
Jiao et al. (2019); Liu et al. (2013); van Den Eeckhaut 
et al. (2012)). Nowadays, the definition of a suitable 
model is based on the data availability and quality, 
rather than on purely predefined guidelines using 
spatial study site extension. 

Challenges related to landslide inventory quality 
and its effects on the predictive maps are numerous 
and include the positional (in)accuracy and its 
propagated effects (Ardizzone et al. 2002; Steger et al. 
2016b); numerical (in)completeness (Du et al. 2020; 
Hussin et al. 2016; Steger et al. 2017); the adopted 
sampling strategy (Bordoni et al. 2020; Conoscenti et 
al. 2016; Erener and Düzgün 2012; Heckmann et al. 
2014; Hong et al. 2019; Nefeslioglu et al. 2008b; Poli 
and Sterlacchini 2007; Regmi et al. 2014; Shirzadi et 
al. 2019); and the expert interpretation on inventory 
mapping (Galli et al. 2008; Guzzetti et al. 2000; 
Zêzere et al. 2009). 

Positional inaccuracy has significant influences 
on the appearance and quality of the outcomes 
(Ardizzone et al. 2002; Fressard et al. 2014; Galli et al. 

 
Fig. 13 Most used validation error measure techniques 
within the selected studies. 
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2008; Santangelo et al. 2015; Steger et al. 2017). 
Imprecise positioned inventories would still predict 
landslide susceptibility, but inaccurately. A positional 
mismatch of a few tens of meters might, for instance, 
systematically associate samples to inaccurate 
steepness or land-cover classification (Steger et al. 
2016b). For this reason, assuring inventory’s best 
positional accuracy is extremely important. It is 
known that historical and accurate landslide 
inventories are virtually never available, especially 
when dealing with very large areas (Herrera et al. 
2018; Lima et al. 2021; Lin et al. 2021; van den 
Eeckhaut and Hervas 2014). However emerging 
landslide mapping techniques that enable, immediate 
and precise event-based cataloging or techniques 
allowing past landslide extraction from high-
resolution digital terrain models can positively 
contribute (Guzzetti et al. 2012). Systematic errors 
and uncertainties related to each mapping procedure 
should be taken into consideration, since they can 
highly influence the outcomes (Ardizzone et al. 2002; 
Carrara 1993; Guzzetti et al. 2006; Hoffman and 
Hammonds 1994; Karam 2005; Malamud et al. 2004; 
Oberkampf et al. 2002, 2004; Petschko et al. 2014b). 
When dealing with inaccurate positional samples is 
the only possibility, the adoption of a larger mapping 
unit (e.g., slope units in Alvioli et al. (2016); Lima et 
al. (2021); Schlögel et al. (2018)) might reduce the 
effects caused by a positional inaccuracy. 

The minimum number of landslide samples able 
to provide meaningful result from DdLSM is also 
often a major concern for researchers. Beyond the 
fundamental numerical representativeness of the 
samples, the (in)completeness might impact the 
results even more and when the (in)completeness is 
systematically associated with a predictor, cause 
biases. A low number of landslide samples might also 
reduce the confidence and reliability of the 
predictions. For example, Hussin et al. (2016) 
demonstrate that although the validation of a model is 
not substantially influenced by under-sampling (e.g., 
reducing the number of samples by half), the lower 
number of landslide samples influences the 
appearance of the map output, and consequently its 
interpretation (Petschko et al. 2014). Steger et al. 
(2017), by artificially simulating a systematical 
scarcity (under sampling bias) over a particular 
predictor, demonstrated the propagation of 
undesirable bias effects on predictive maps. They 
suggest the adoption of a mixed-effects model in 

situations where the bias is clear. Du et al. (2020) 
suggests for regions with incomplete and uncertain 
inventories, expert judgment capable of weighting the 
landslide samples, according to its (un)certainty. 
These weighted landslide samples are then used in 
multinomial, rather than a binomial predictive 
classification. 

The sampling strategy is also an important 
DdLSM component. Poli and Sterlacchini (2007) 
suggest that a multiple point sampling method is 
more effective when compared to a single centroid 
sampling, due to the possible uncertain location of the 
landslide centroid. Regmi et al. (2014) have shown 
that similar models built using samples taken from 
landslide masses and scarps outperform models using 
singular samples from landslide centroids or scarps. 
Nefeslioglu et al. (2008b) supports the application of 
seed cells for landslide representation. Aiming for a 
more realistic representation of the pre-failure 
topographical conditions, some authors also choose to 
sample the landslide vicinity (seed-cells) (Che et al. 
2012; Nefeslioglu et al. 2008b; Süzen and Doyuran 
2004; Yesilnacar and Topal 2005; Yilmaz 2010). 
Similar findings were also presented by Hussin et al. 
(2016). However, even though many authors have 
proposed a multiple point’s representation either the 
scarp or landslide body, Zêzere et al. (2017) showed 
that a single point per landslide can also generate 
accurate landslide susceptibility maps. Due to the 
limited number of publications trying to compare 
multiple strategies, the literature does not present a 
clear definitive agreement on the landslide 
representation strategy. Publications supporting a 
single point are normally based on the argument that 
mapping is more time effective, computational power 
needs are reduced, there are fewer uncertainties 
related to the delineation of landslide boundaries and 
prevent the size weighting effect. On the other hand, 
the publications that advocate for a multiple points 
per landslide feature, mentions the size weighting 
effect as positive. However, this could over-represent 
large landslides compared to small ones (Steger 2017). 
Besides the advantages and disadvantages of each 
strategy, the landslide representation should be 
performed considering: (i) the characteristics of the 
inventory available (e.g., point or polygon-based), and 
also (ii) the resolution (i.e., pixel size) of the landslide 
predictors; since high resolution predictors related to 
positional inaccurate inventories could lead to 
uncertain predictions. 
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Several studies have been focused on the 
advantages and disadvantages of landslide presence 
sampling strategies. In any landslide modelling design, 
landslide-free areas should also be adequately 
sampled (Steger and Glade 2017; Van Den Eeckhaut 
et al. 2012). However, the literature lacks publications 
focusing on the efforts to evaluate the importance of a 
landslide absence sampling design strategy. Only a 
few publications have attempted to uses strategies the 
incorporates non-landslide sampling (Conoscenti et al. 
2016; Hervás 2013; Hong et al. 2019; Steger and 
Glade 2017; van Den Eeckhaut et al. 2012). The 
design of a non-landslide sampling strategy also 
acknowledges in some of the previously cited 
references to be able to possibly counterbalance 
outcome’s effects imposed by biased inventories. 

5.2 Modelling unit and spatial resolution 

The results show that a large amount of the 
literature uses a grid cell approach within DdLSM. 
This is also in agreement with the findings of 
Malamud et al. (2014) and Reichenbach et al. (2018), 
who showed grid-based models are the majority of the 
modelling units used in DdLSM. These previous 
studies pointed respectively to 84% and 86%, while 
this study calculated 88% for grid-based approaches. 
Polygon-based units, slope units are a well-
established modelling unit and are being increasingly 
used in DdLSM research. Automated algorithms and 
software for slope units delimitation (e.g., r.slopeunits 
in Alvioli et al. (2016)), and publications debating 
optimized slope units delimiting procedures 
depending on input DEM resolutions (Schlögel et al. 
2018) strengthen the adoption of slope units as an 
alternative to pixels. Even though polygon-based 
modelling units, due to its general large size, might 
open the discussion about the heterogeneity of large 
internal features. Some contributors (e.g., Camilo et al. 
(2017); Jacobs et al. (2020)) have suggested the use of 
multiple summarizing values to represent predictors 
with the slope units (e.g., mean, median, standard 
deviation, between others). The best performing 
metrics would subsequently be selected based on their 
mathematical importance to describe the phenomena. 
Some other valuable contributions demonstrated the 
advantages of adopting polygon-based as terrain units 
(Camilo et al. 2017; Carrara et al. 1999; Galli et al. 
2008; Guzzetti 2005; Guzzetti et al. 1999; Zêzere et al. 
2017). Debates about the use of polygon-based units 

are usually around the subjective delineation of the 
respective units. However, there are nowadays 
automatic tools able to perform this delineation, 
guaranteeing its reproducibility (Alvioli et al. 2016). 
Although the modelling unit representation is a 
particular researcher’s decision, this choice should 
take into account the landslide inventory, predictors’ 
characteristics and the accuracy (Lima et al. 2021; 
Zêzere et al. 2017). 

Recent remote technological advances enabling 
the generation of very high-resolution data have 
produced a more realistic representation of landscape 
characteristics through high-resolution grid cells. 
However, more pixels (relatively small pixel sizes) do 
not necessarily increase the quality and performance 
of the predictions (Brock et al. 2020; Shirzadi et al. 
2019). Studies such as (Arnone et al. 2016; Catani et 
al. 2013; Palamakumbure et al. 2015; Paudel et al. 
2016; Paulin et al. 2010), demonstrated that the 
aspect of the final maps and their validations highly 
vary depending on the spatial resolution of the input 
parameters. 

The interplay between landslide size, inventory 
positional (in)accuracy, and the size/resolution of the 
modelling unit should always be kept in mind. This is 
vital for imprecise landslide inventories as the 
incorrectly mapped landslide location could lead to 
association with incorrect predictors. The landslide 
occurrence and propagation over multiple units (grids 
or polygon-based) should also be of concern. For 
instance, when using small slope-units or high-
resolution grid pixels (i.e., relatively small pixel size), 
large landslides can impact more than a single 
modelling unit. When the usage of such imprecise 
inventories is inevitable, the adoption of a slightly 
larger modelling unit is recommended in order to 
limit the propagation of uncertainty (Lima et al. 2021). 
Therefore, the size or resolution of the modelling unit 
should consider the estimated mean positional 
inventory accuracy and landslide size. 

5.3 Landslide susceptibility predictors 

Out of all of the predictor’s types, topographically 
related predictors (e.g., elevation, aspect, curvature, 
and slope angle) were the ones most adopted. Within 
these, the slope angle, followed by aspect were the 
most applied predictors. This is in clear agreement 
with what was already measured by Malamud et al. 
(2014); Pourghasemi and Rossi (2016); Van Westen et 
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al. (2008) and Reichenbach et al. (2018). Previously, 
Budimir et al. (2015); Malamud et al. (2014); Süzen 
and Kaya (2012) and Pourghasemi and Rossi (2016) 
have found similar patterns in the application of 
landslide predictors within the field of DdLSM. 
Comparing the findings of this research with the 
publications cited above, predictors such as slope 
angle, lithology, aspect, land cover; curvature, 
elevation, distance to drainage and distance to geo-
structural features (faults) were the most prevalent. 
However, these findings represent only the 
recurrently most used predictors, and not a 
suggestion of which ones to use. Although proximity 
related predictors are useful, they should be used with 
caution, together with a good understanding of 
possible limitations. For instance, establishing 
binomial (true/false) presence, based on a distance to 
a feature, can be questionable. For example, is the 
influence of the distance to a road equally relevant 
over the whole “true” (e.g., 0 - 100m) range buffer 
around the road?  

Although some publications have included 
triggering factors, such as precipitation related to 
landslide predictors (e.g., accumulated rainfall in a 
given time interval, rainfall intensity, average annual 
precipitation), theoretically the inclusion of those 
triggering variables on landslide susceptibility models, 
should be avoided. Landslide triggering factors, 
normally describe temporal-magnitude relationships, 
scope-related to hazard assessments (Cascini et al. 
2005; Fell et al. 2008; Guzzetti 2005; Guzzetti et al. 
1999). However, it is important to highlight that the 
long term measured spatial rainfall patterns (e.g., 
maximum annual 24-hour rainfall) might also 
geographically describe areas where rainfall induced 
landslides are likely (or not) to occur. 

The selection and representation of landslide 
predictors are an important step in DdLSM. Some 
authors have suggested the application of methods for 
automated predictor selection (Goetz et al. 2011; 
Steger et al. 2016a; Vorpahl et al. 2012). However, 
these methods should be implemented carefully since 
the automated selection of predictors is likely to 
introduce biased predictors into the model (Steger et 
al. 2016a), leading to propagation of bias throughout 
the model. It has been shown that many landslide 
inventories are strongly spatially associated with 
some predictors, which often causes biases (Carrara et 
al. 1995; Malamud et al. 2014; Petschko et al. 2014). 
Nearly all biases within DdLSM research arise from 

the landslide mapping procedure. Many of these 
biases are responsible for determining the appearance 
of the outcomes maps and for the results of the 
validations (Lima et al. 2017, 2021; Steger et al. 
2016b). The adoption of biased predictors is not 
recommended and can lead to overestimated 
validation metrics and possibly non-reliable landslide 
susceptibility maps. Therefore, a careful 
interpretation of the maps is necessary. As an 
alternative, a specific classifiers able to deal with bias 
should be considered (Lima et al. 2021; Lin et al. 2021; 
Steger et al. 2017). 

5.4 Classification techniques 

The spatial prediction patterns and validation 
results are mainly dependent on the classifiers 
utilized (Goetz et al. 2015; Steger et al. 2017, 2016a). 
The examples of DdLSM techniques used to spatially 
predict landslides are many, but as identified 
previously (Budimir et al. 2015; Malamud et al. 2014; 
Reichenbach et al. 2018; Wu et al. 2015) and also 
according to this analysis, logistic regression is the 
most adopted technique. Linear models such as 
logistic regression, besides being considered simple, 
have proved to be a reliable landslide classification 
method (Brenning 2008). Nonlinear classifiers such 
as Generalized Additive Models (also named GAM’s) 
were also noted in some publications as an 
exponential and trustworthy classifier in the field, due 
to their capability to reproduce nonlinear relations 
(Brenning 2005, 2012; Goetz et al. 2015, 2011; Lin et 
al. 2021). Within the collection of analyzed 
publications, some examples which have used non-
linear classifiers are Brenning (2008); Chen et al. 
(2017); Goetz et al. (2015); Petschko et al. (2013); 
Pourghasemi and Rahmati (2018); Vorpahl et al. 
(2012). The validation of Machine Learning models 
can often return higher AUROC values when 
compared to other DdLSM (Goetz et al. 2015). This 
could partially explain the rising popularity of this 
type of model. The overestimated importance on 
higher predictive performance rather than a model 
understanding and transparency (Steger 2017), is not 
only observed within the topic of landslide predictions, 
but also, in other scientific fields. 

An adequate landslide susceptibility map should 
not only provide satisfactory predictive performance, 
but also need to produce realistic and meaningful 
geomorphological outcome. Some DdLSM methods 
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produce easier to interpret outputs, which in turn 
make the results easier to implement into planning 
decisions (Petschko et al. 2014). Machine learning 
algorithms due to a very high-flexibility and qualified 
pattern recognition character, are frequently pointed 
to be significantly prone to overfitting, sometimes at 
the cost of a noisy, pixelated and hard to interpret 
predictive maps (Brenning 2005, 2012; Goetz et al. 
2015; Steger et al. 2016a). The selection of classifiers 
should consider the attributes of the input parameters 
(Lima et al. 2021). The interpretation of the results 
should be carefully considered, considering the 
models’ particularities, scale, and input data quality. 

5.5 Model quality. Sampling partitioning 
strategies and performance evaluation 

Malamud et al. (2014) and Reichenbach et al. 
(2018) both found that nearly 40% of the publications 
did not mention or did not clearly describe what 
quality assessment were undertaken and it appears to 
be unfortunate ongoing conduct within the field of 
DdLSM. However, the percentage of publications not 
accessing or not clarifying a quality assessment 
methodology appears to be reducing. Within this 
research, 13% of the publications do not describe any 
model quality assessment or at least they are not clear 
about how this procedure was performed.  

Common findings between the previously cited 
research, and this one is the prevalence of adoption of 
the AUROC and the success and predictive rates 
curves as the most used metrics to assess model 
quality. Although these metrics are constantly used to 
judge and prioritize a model or approach over others, 
recent literature shows the necessity of interpreting 
the validations’ achievements carefully. As 
demonstrated by Steger et al. (2016a) and Zêzere et al. 
(2017), nearly equivalent validation metrics can be 
achieved by models using different quality of input 
datasets, questioning any possible interpretation or 
judgment merely based on validation metrics. 
Sterlacchini et al. (2011) also pointed out that the 
spatial appearance and reliability of the outcome 
maps are not necessarily connected to the calculated 
predictive performance, also suggesting that the 
inference of the best model is solely through 
quantitative validations metrics, may be mistaken. 
The selection of the most reliable map should bring 
together in conjunction with the quantitatively 
measured validation an extensive expert 

geomorphological plausibility evaluation of the maps 
(Demoulin and Chung 2007; Petschko et al. 2014b; 
Steger et al. 2016a). 

Within the publications that communicated the 
validations clearly, random splitting was the most 
adopted partitioning strategy. It was also observed 
within this publication that the random threshold 
criteria-established to split between training and test 
samples (e.g., 60% — 40%; 70% — 30%) was not 
frequently communicated and therefore was not 
computed within this study. The influence of this 
sample splitting ratio was however, assessed by 
publications like Dou et al. (2020); Heckmann et al. 
(2014); Hussin et al. (2016); Shirzadi et al. (2019). A 
common finding between those is that the splitting 
ratio and sample size indeed affected the accuracy of 
the models; however, no clear split ratio guideline 
could be established. Even though only present in a 
low portion of the publications, repeated multiple 
partitioning strategies Brenning (2012) are gaining 
considerable space on the field of DdLSM (Brenning 
2012; Depicker et al. 2020; Goetz et al. 2015; Hong et 
al. 2018; Palamakumbure et al. 2015; Steger et al. 
2020; Sun et al. 2020; Tien Bui et al. 2012; Vargas-
Cuervo et al. 2019). This technique, by repeatedly 
fragmenting the samples in different pools of training 
and test samples, might increase the reliability of the 
validation outcomes. Cross validations processes are 
also acknowledged to improve the robustness of the 
validation (Brenning 2012; Brenning et al. 2015; 
Goetz et al. 2015; Petschko et al. 2014b; Steger et al. 
2017, 2016a) and to prevent overfitting (Tien Bui et al. 
2012). As also suggested by Brenning (2012), the 
adoption of a repeated spatially-based partitioning 
might avoid training overfitting caused by spatial 
auto-correlation, especially when using highly flexible 
predictors (e.g., machine learning algorithms). 

6    Conclusions 

Over the past decades, considering the great 
number of assessments published on spatial landslide 
prediction, DdLSM have been proven useful to 
appropriately predict landslides. However, the 
literature analyses also highlight numerous current 
challenges and limitations to be overcome by these 
models. This publication has shown, the outcomes of 
landslide susceptibility maps generated through 
DdLSM are highly reliant on many factors. However, 
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despite the challenges, recent trends show approaches 
expanding this frontier’s research topic. For instance, 
the work of Lombardo et al. (2020), which reassess 
the classical spatial susceptibility score by introducing 
extra dimensions (e.g., landslide intensity) to the 
standard spatial prediction.  

This review demonstrates that the publications 
released over the years 2017- 2020 were not sufficient 
to significantly change the overview observed by 
Reichenbach et al. (2018). It is also observed that 
there are still various unresolved challenges related 
within the topic of DdLSM. It is also important to 
stress that despite the identified trends, the topic is 
currently experiencing a rapid development. However, 
this study would like to highlight the following points 
related to DdLSM, which can affect the quality and 
reliability of the models. 

Every study area and the available data are 
unique and might require individualized handling and 
possibly a custom research-design. 

Quality should come over quantity. Increased 
sample sizes do not alter substantially the validations 
achievements; however, over-sampling can create bias; 
and underestimated inventories might also alter 
substantially predictions on quality and reliability. 

Inventories are the most crucial input data. They 
are usually already available, and frequently full of 
imperfections. Remapping, depending on the area 
size and resources available, is nearly impossible. 
Therefore, it is the job of the researcher to invest time 
in a preliminary exploratory analysis to gain a 
detailed knowledge of potential weaknesses. The 
model design should be built around this knowledge, 
in a manner to avoid error and propagation of 
uncertainty. The weaknesses should also be properly 
recorded and communicated. 

It is important to be aware of the positional 
uncertainty of the inventory samples. Associating 
uncertain positional samples with high-resolution 
predictors might create flawed predictions. It should 
be considered re-sampling the predictors to 
resolutions matching the accuracy of the inventory or 
the use of polygon-based landscape representations 
(e.g., slope units). 

The classification techniques selection is 
important. Every classifier is basically unique. 
Therefore, a deep knowledge of the input data 
characteristics might help in selecting the most 
appropriate classifier. A reliable classifier must: (i) 
effectively represent future landslide locations and 

conform with the geomorphological process, (ii) avoid 
overfitting, (iii) create reliable and usable maps for 
the final users and decision-makers; and (iv) avoid 
data error’s propagation. 

Flexible machine learning algorithms should be 
selected and interpreted carefully; especially when 
dealing with imperfect input-datasets. The high 
adaptation power to the training samples makes these 
algorithms likely to reproduce errors within the 
training data. 

The use of multiple partitioning algorithms (e.g., 
spatial, and non-spatial cross-validation) for 
training/test partitioning should be preferred method. 

Model quality measures are crucial. However, its 
interpretation should be made with care. Input data 
and classifiers might influence (over or underestimate) 
predictive performances. Good validations results do 
not necessarily imply a meaningful geomorphological 
prediction. With regard to the technique choice, a 
geomorphological evaluation of the prediction maps 
should be conducted. 
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