Zur Kenntnis der zonalen Wärmeänderung im reinen Land- und Seeklima

Von

Bergrat Fritz Kerner v. Marilaun

k. M. Akad. Wiss.

(Vorgelegt in der Sitzung am 3. April 1919)

Die zonale Temperaturabnahme soll auf einer Wasserhemisphäre nahezu dem Kosinus, auf einer Landhalbkugel aber ungefähr dem Quadrate des Kosinus der geographischen Breite proportional erfolgen. Es schien mir von Interesse, diese Annahme mit den von verschiedenen Forschern teils empirisch, teils auf theoretischem Wege gefundenen Parallelkreistemperaturen im reinen See- und Landklima zu vergleichen.

Die aus den von Liznar² (1900), Zenker³ (1895), de Marchi⁴ (1895), Precht⁵ (1894), Spitaler⁶ (1885) und

¹ J. v. Hann, Handbuch der Klimatologie, II. Aufl., I. Bd., p. 218.

² J. Liznar, Berechnung der Mitteltemperaturen der Breitenkreise einer Land-, beziehungsweise Wasserhemisphäre, sowie der Erde aus den an der Grenze der Atmosphäre zugestrahlten Wärmemengen. Meteorolog. Zeitschr., Bd. XVII, Heft 1.

³ W. Zenker, Der thermische Aufbau der Klimate aus den Wärmewirkungen der Sonnenstrahlung und des Erdinnern. Nova Acta, B. LXVII.

⁴ L. de Marchi, Le cause dell'era glaciale. Sezione II, Cap. IV. Distribucione della temperatura media secondo la latitudine. Pavia 1895.

⁵ W. Precht, Neue Normaltemperaturen. Meteorolog. Zeitschr., Bd. XI, Heft 3.

Es sind hier die unter II für den Transmissionskoeffizienten 0.67 berechneten »Solltemperaturen« genommen.

⁶ R. Spitaler, Die Wärmeverteilung auf der Erdoberfläche, Denkschr. d. Akad. d. Wissensch., math.-naturwiss, Kl., Ll. Bd.

Forbes 1 (1859) sowie von Sartorius v. Waltershausen 2 (1865) für eine Wasserhemisphäre gefundenen Parallel-kreistemperaturen sich ergebenden Werte von $t \varphi - t_{90}$ sind:

è	L.	z.	М.	P.	S.	F.	W.
0	37.9	34.8	34.6	36 · 1	31.7	32.9	25.3
10	37:1	34.0	34 · 1	35.2	31.0	32 ·0	25.0
20	34.9	31.4	32 · 6	32 · 4	29.0	30.4	23 · 1
30	31 · 2	27.5	30 · 1	2 8·0	25.8	27 · 4	19.8
40	25.9	22 · 1	26.0	22.4	21.8	23.5	15.6
50	19.3	15.8	20.4	16.1	17 · 2	18.8	11.0
60	11.5	9.0	13.0	9.9	12.3	13.8	6.7
70	4.6	3.2	5.4	4.8	7.7	8.8	3.1
80	1 · 1	0.2	1.3	1 · 2	4.0	3.6	0.8

Die rein empirischen Bestimmungen von Spitaler und Forbes ergaben für den Tropengürtel tiefere, für die Polarkappe höhere Werte als die neueren besser begründeten Ableitungen der ozeanischen Temperaturen. Das von Sartorius ermittelte Seeklima weicht von allen anderen durch die Kleinheit der zonalen Wärmeschwankung ab.

Die folgenden Tabellen enthalten die Werte von

$$(t_0 - t_{90}) \cos \varphi$$
 und $(t_0 - t_{90}) \cos^2 \varphi$

sowie die Differenzen dieser Werte gegen jene von $t\, \varphi - t_{90}$

¹ J. Forbes, Inquiries about terrestrial temperature. Transact. R. Soc. Edinburgh., Vol. XXII.

² Sartorius v. Waltershausen, Die Klimate der Gegenwart und Vorwelt, Kap. X., Haarlem.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	l I	ı		i			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	φ	L.	Z.	М.	P.	S.	F.	w.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(t ₀ i	t_{90}) cos φ	· <u>· · · · · · · · · · · · · · · · · · </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	37.3	34.3	34.1	35 · 6	31.2	32.4	24.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	35.6	32 · 7	32.5	33.9	29.8	30.9	23.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	32.8	30.1	30.0	31.3	27.5	28.5	l l
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1		I	26.5	1	1	- 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1		1	i			l	l l
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1		1	1		1		1
$(l_0-l_{90})\cos^2\varphi$ $\begin{array}{ c c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	1 1		- [. 1			- 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	6.6	6.0	6.0	6.3	5.5	5.7	4.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				(t ₀ t	' ₉₀) cos² φ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	36.8	33.8	33.6	35.0	30.8	31.9	24.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	33.5	30.7	30.6	31.9	28.0	29 · 1	22.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	28 · 4	26 · 1	26.0	27 · 1	23.8	24.7	19.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	22.2	20.4	20.3	21.2	18.6	19.3	14.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50	15.7	14.4	14.3	1	13 · 1	13.6	10.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						7.9	8.5	
$(t_0-t_{90})\cos\varphi-(t\varphi-t_{90})$ $10 \begin{vmatrix} + 0 \cdot 2 \\ 20 \end{vmatrix} + 0 \cdot 7 \begin{vmatrix} + 1 \cdot 3 \\ + 1 \cdot 3 \end{vmatrix} = 0 \cdot 1 \begin{vmatrix} + 1 \cdot 5 \\ + 0 \cdot 8 \end{vmatrix} + 0 \cdot 2 \begin{vmatrix} + 0 \cdot 4 \\ + 0 \cdot 5 \end{vmatrix} + 0 \cdot 7 \begin{vmatrix} + 1 \cdot 1 \\ + 0 \cdot 7 \end{vmatrix} + 1 \cdot 1 \begin{vmatrix} + 2 \cdot 1 \\ + 0 \cdot 7 \end{vmatrix} + 1 \cdot 1 \begin{vmatrix} + 2 \cdot 1 \\ + 0 \cdot 7 \end{vmatrix} + 1 \cdot 1 \begin{vmatrix} + 2 \cdot 1 \\ + 0 \cdot 7 \end{vmatrix} + 1 \cdot 1 \begin{vmatrix} + 2 \cdot 1 \\ + 0 \cdot 7 \end{vmatrix} + 1 \cdot 1 \begin{vmatrix} + 2 \cdot 1 \\ + 0 \cdot 7 \end{vmatrix} + 1 \cdot 1 \begin{vmatrix} + 3 \cdot 3 \\ + 1 \cdot 7 \end{vmatrix} + 1 \cdot 1 \begin{vmatrix} + 3 \cdot 3 \\ + 1 \cdot 7 \end{vmatrix} + 1 \cdot 1 \begin{vmatrix} + 3 \cdot 2 \\ + 2 \cdot 4 \end{vmatrix} + 1 \cdot 3 \cdot 8 \end{vmatrix}$ $50 \begin{vmatrix} + 5 \cdot 1 \end{vmatrix} \begin{vmatrix} + 6 \cdot 6 \end{vmatrix} \begin{vmatrix} + 1 \cdot 8 \end{vmatrix} \begin{vmatrix} + 7 \cdot 1 \end{vmatrix} \begin{vmatrix} + 3 \cdot 2 \end{vmatrix} \end{vmatrix} + 2 \cdot 4 \begin{vmatrix} + 5 \cdot 3 \end{vmatrix} + 1 \cdot 5 \begin{vmatrix} + 3 \cdot 6 \end{vmatrix} + 1 \cdot 8 \end{vmatrix}$ $60 \begin{vmatrix} + 7 \cdot 5 \end{vmatrix} \begin{vmatrix} + 8 \cdot 4 \end{vmatrix} \begin{vmatrix} + 4 \cdot 3 \end{vmatrix} \end{vmatrix} + 1 \cdot 8 \cdot 2 \begin{vmatrix} + 3 \cdot 6 \end{vmatrix} \end{vmatrix} + 1 \cdot 3 \cdot 4 \begin{vmatrix} + 2 \cdot 5 \end{vmatrix} \end{vmatrix} + 1 \cdot 5 \cdot 6 \cdot 6 \end{vmatrix}$ $70 \begin{vmatrix} + 8 \cdot 4 \end{vmatrix} \begin{vmatrix} + 8 \cdot 4 \end{vmatrix} \end{vmatrix} + 6 \cdot 4 \end{vmatrix} \end{vmatrix} + 7 \cdot 6 \begin{vmatrix} + 3 \cdot 1 \end{vmatrix} \end{vmatrix} + 2 \cdot 5 \end{vmatrix} + 2 \cdot 1 \end{vmatrix} + 3 \cdot 6$ $(t_0 - t_{90}) \cos^2 \varphi - (t \varphi - t_{90})$ $10 \begin{vmatrix} - 0 \cdot 3 \end{vmatrix} - 0 \cdot 2 \begin{vmatrix} 0 \cdot 5 \end{vmatrix} - 0 \cdot 2 \begin{vmatrix} - 0 \cdot 2 \end{vmatrix} - 0 \cdot 1 \begin{vmatrix} - 0 \cdot 5 \end{vmatrix} + 3 \cdot 6 \end{vmatrix}$ $20 \begin{vmatrix} - 1 \cdot 4 \end{vmatrix} - 0 \cdot 7 \end{vmatrix} - 2 \cdot 0 \end{vmatrix} - 0 \cdot 5 \end{vmatrix} - 0 \cdot 2 \end{vmatrix} - 0 \cdot 2 \end{vmatrix} - 0 \cdot 1 \end{vmatrix} - 0 \cdot 5$ $30 \begin{vmatrix} - 2 \cdot 8 \end{vmatrix} - 1 \cdot 4 \end{vmatrix} - 4 \cdot 1 \end{vmatrix} - 0 \cdot 9 \end{vmatrix} - 2 \cdot 0 \end{vmatrix} - 2 \cdot 7 \end{vmatrix} - 0 \cdot 8$ $40 \begin{vmatrix} - 3 \cdot 7 \end{vmatrix} - 1 \cdot 7 \end{vmatrix} - 5 \cdot 7 \end{vmatrix} - 1 \cdot 2 \end{vmatrix} - 3 \cdot 2 \end{vmatrix} - 4 \cdot 1 \end{vmatrix} - 5 \cdot 2 \end{vmatrix} - 0 \cdot 5$ $60 \begin{vmatrix} - 2 \cdot 0 \end{vmatrix} - 0 \cdot 3 \end{vmatrix} - 1 \cdot 4 \end{vmatrix} - 6 \cdot 1 \end{vmatrix} - 1 \cdot 2 \end{vmatrix} - 4 \cdot 1 \end{vmatrix} - 5 \cdot 6 \end{vmatrix} - 0 \cdot 4$ $70 \begin{vmatrix} - 0 \cdot 2 \end{vmatrix} + 0 \cdot 6 \end{vmatrix} - 1 \cdot 4 \end{vmatrix} - 0 \cdot 6 \end{vmatrix} - 4 \cdot 0 \end{vmatrix} - 5 \cdot 0 \end{vmatrix} - 5 \cdot 0 \end{vmatrix} - 0 \cdot 1$		i				3.7		
$ \begin{array}{ c c c c c c c c }\hline 10 & + & 0 \cdot 2 & + & 0 \cdot 3 & 0 \cdot 0 & + & 0 \cdot 4 & + & 0 \cdot 2 & + & 0 \cdot 4 & - & 0 \cdot 1 \\ 20 & + & 0 \cdot 7 & + & 1 \cdot 3 & - & 0 \cdot 1 & + & 1 \cdot 5 & + & 0 \cdot 8 & + & 0 \cdot 5 & + & 0 \cdot 7 \\ 30 & + & 1 \cdot 6 & + & 2 \cdot 6 & - & 0 \cdot 1 & + & 3 \cdot 3 & + & 1 \cdot 7 & + & 1 \cdot 1 & + & 2 \cdot 1 \\ 40 & + & 3 \cdot 1 & + & 4 \cdot 6 & + & 0 \cdot 5 & + & 5 \cdot 3 & + & 2 \cdot 5 & + & 1 \cdot 7 & + & 3 \cdot 8 \\ 50 & + & 5 \cdot 1 & + & 6 \cdot 6 & + & 1 \cdot 8 & + & 7 \cdot 1 & + & 3 \cdot 2 & + & 2 \cdot 4 & + & 5 \cdot 3 \\ 60 & + & 7 \cdot 5 & + & 8 \cdot 4 & + & 4 \cdot 3 & + & 8 \cdot 2 & + & 3 \cdot 6 & + & 2 \cdot 7 & + & 6 \cdot 0 \\ 70 & + & 8 \cdot 4 & + & 8 \cdot 4 & + & 6 \cdot 4 & + & 7 \cdot 6 & + & 3 \cdot 1 & + & 2 \cdot 5 & + & 5 \cdot 6 \\ 80 & + & 5 \cdot 5 & + & 5 \cdot 5 & + & 4 \cdot 7 & + & 5 \cdot 1 & + & 1 \cdot 5 & + & 2 \cdot 1 & + & 3 \cdot 6 \\ \hline \\ & & & & & & & & & & & & & & & & &$	80	1.1	1 · 1	1.0	1.1	i.0	1.0	0.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			($t_0 - t_{90}$) co	os φ—(t φ	t ₉₀)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	+ 0.2	+ 0.3	0.0	+ 0.4	+ 0.2	+ 0.4	— 0·1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	li .	1 '	1 -	0.1	1	1	'	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	+ 1.6	+ 2.6	- 0.1	+ 3.3	+ 1.7	+ 1.1	+ 2.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	+ 3:1	+ 4.6	+ 0.5	+ 5.3	+ 2.5	+ 1.7	+ 3.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	+ 5.1	+ 6.6	+ 1.8	+ 7.1	+ 3.5	+ 2.4	+ 5.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60	+ 7.5	+ 8.4	+ 4.3	+ 8.5	+ 3.6	+ 2.7	+ 6.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	70	1 '	+ 8.4	+ 6.4	+ 7.6	+ 3.1	+ 2.5	+ 5.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	80	+ 5.5	+5.2	+ 4:7	+ 5.1	+ 1.5	+ 2:1	+ 3.6
$ \begin{vmatrix} 20 & -1 \cdot 4 & -0 \cdot 7 & -2 \cdot 0 & -0 \cdot 5 & -1 \cdot 0 & -1 \cdot 3 & -0 \cdot 8 \\ 30 & -2 \cdot 8 & -1 \cdot 4 & -4 \cdot 1 & -0 \cdot 9 & -2 \cdot 0 & -2 \cdot 7 & -0 \cdot 8 \\ 40 & -3 \cdot 7 & -1 \cdot 7 & -5 \cdot 7 & -1 \cdot 2 & -3 \cdot 2 & -4 \cdot 2 & -0 \cdot 7 \\ 50 & -3 \cdot 6 & -1 \cdot 4 & -6 \cdot 1 & -1 \cdot 2 & -4 \cdot 1 & -5 \cdot 2 & -0 \cdot 5 \\ 60 & -2 \cdot 0 & -0 \cdot 3 & -4 \cdot 3 & -0 \cdot 9 & -4 \cdot 4 & -5 \cdot 6 & -0 \cdot 4 \\ 70 & -0 \cdot 2 & +0 \cdot 6 & -1 \cdot 4 & -0 \cdot 6 & -4 \cdot 0 & -5 \cdot 0 & -0 \cdot 1 \end{vmatrix} $			(i	$t_0 - t_{90}$) co	s ² φ—(t φ	$-t_{90}$		1
$ \begin{vmatrix} 20 & -1 \cdot 4 & -0 \cdot 7 & -2 \cdot 0 & -0 \cdot 5 & -1 \cdot 0 & -1 \cdot 3 & -0 \cdot 8 \\ 30 & -2 \cdot 8 & -1 \cdot 4 & -4 \cdot 1 & -0 \cdot 9 & -2 \cdot 0 & -2 \cdot 7 & -0 \cdot 8 \\ 40 & -3 \cdot 7 & -1 \cdot 7 & -5 \cdot 7 & -1 \cdot 2 & -3 \cdot 2 & -4 \cdot 2 & -0 \cdot 7 \\ 50 & -3 \cdot 6 & -1 \cdot 4 & -6 \cdot 1 & -1 \cdot 2 & -4 \cdot 1 & -5 \cdot 2 & -0 \cdot 5 \\ 60 & -2 \cdot 0 & -0 \cdot 3 & -4 \cdot 3 & -0 \cdot 9 & -4 \cdot 4 & -5 \cdot 6 & -0 \cdot 4 \\ 70 & -0 \cdot 2 & +0 \cdot 6 & -1 \cdot 4 & -0 \cdot 6 & -4 \cdot 0 & -5 \cdot 0 & -0 \cdot 1 \end{vmatrix} $	10	10 - 0.3 - 0.2		0.5	_ 0.2	0.2	_ 0.1	_ 0.5
$ \begin{vmatrix} 30 & -2 \cdot 8 & -1 \cdot 4 & -4 \cdot 1 & -0 \cdot 9 & -2 \cdot 0 & -2 \cdot 7 & -0 \cdot 8 \\ 40 & -3 \cdot 7 & -1 \cdot 7 & -5 \cdot 7 & -1 \cdot 2 & -3 \cdot 2 & -4 \cdot 2 & -0 \cdot 7 \\ 50 & -3 \cdot 6 & -1 \cdot 4 & -6 \cdot 1 & -1 \cdot 2 & -4 \cdot 1 & -5 \cdot 2 & -0 \cdot 5 \\ 60 & -2 \cdot 0 & -0 \cdot 3 & -4 \cdot 3 & -0 \cdot 9 & -4 \cdot 4 & -5 \cdot 6 & -0 \cdot 4 \\ 70 & -0 \cdot 2 & +0 \cdot 6 & -1 \cdot 4 & -0 \cdot 6 & -4 \cdot 0 & -5 \cdot 0 & -0 \cdot 1 \end{vmatrix} $				1	1	1		l .
$ \begin{vmatrix} 40 & -3 \cdot 7 & -1 \cdot 7 & -5 \cdot 7 & -1 \cdot 2 & -3 \cdot 2 & -4 \cdot 2 & -0 \cdot 7 \\ 50 & -3 \cdot 6 & -1 \cdot 4 & -6 \cdot 1 & -1 \cdot 2 & -4 \cdot 1 & -5 \cdot 2 & -0 \cdot 5 \\ 60 & -2 \cdot 0 & -0 \cdot 3 & -4 \cdot 3 & -0 \cdot 9 & -4 \cdot 4 & -5 \cdot 6 & -0 \cdot 4 \\ 70 & -0 \cdot 2 & +0 \cdot 6 & -1 \cdot 4 & -0 \cdot 6 & -4 \cdot 0 & -5 \cdot 0 & -0 \cdot 1 \end{vmatrix} $		1		1			1	1
$ \begin{vmatrix} 60 \\ 70 \end{vmatrix} - 2 \cdot 0 \begin{vmatrix} -0 \cdot 3 \\ -0 \cdot 2 \end{vmatrix} - 4 \cdot 3 \begin{vmatrix} -0 \cdot 9 \\ -1 \cdot 4 \end{vmatrix} - 5 \cdot 6 \begin{vmatrix} -0 \cdot 4 \\ -5 \cdot 0 \end{vmatrix} - 0 \cdot 1 $	40	_ 3:7	1			- 3.2	_ 4.2	
	5 0	- 3.6	_ 1.4	- 6.1	_ 1.2	_ 4.1	- 5.2	- 0.5
	60	_ 2.0	- 0.3	- 4.3	- 0.9	_ 4.4	- 5.6	- 0.4
80 0.0 + 0.6 - 0.3 - 0.1 - 3.0 - 2.6 0.0	70	- 0.2	+ 0.6	- 1.4	- 0.6	- 4.0	- 5.0	- 0.1
	80	0.0	+ 0.6	- 0.3	- 0.1	- 3.0	_ 2.6	0.0

Nur bei Forbes bleiben die Differenzen gegen die Produkte in $\cos\varphi$ kleiner als jene gegen die mit $\cos^2\varphi$ multiplizierten Werte von (t_0-t_{90}) . Bei Spitaler halten sich beide Reihen von Differenzen ungefähr die Wage; bei Liznar, Zenker und Precht werden die ersteren Differenzen in den höheren Breiten groß, bei Precht nähert sich die Abnahme der Parallelkreistemperaturen einer zu $\cos^2\varphi$ proportionalen, bei Zenker ist sie in der Polarkappe sogar noch etwas rascher.

Stellt man die Wärmedifferenzen $t \varphi - t_{90}$ durch einen zweigliedrigen Ausdruck von der Form:

$$A\cos\varphi+B\cos^2\varphi$$

dar, so erhält man für die Konstanten dieser Gleichung folgende Werte:

	Λ	В		Α	В
Liznar Zenker de Marchi	\$ 065 5 838 15 985	30·930 29·187 20·020	Spitaler Forbes Sartorius	17·484 28·671 1·356	$14 \cdot 247$ $3 \cdot 201$ $24 \cdot 436$
Precht	3.583	32.836	1	- 0.00	

In dem Größenverhältnisse der beiden Konstanten spiegelt sich das Verhalten der vorangeführten Differenzen wieder. Bei Precht kehrt sich das Verhältnis von A zu B gegenüber jenem bei Forbes gerade um.

Die mit Hilfe des zweigliedrigen Ausdruckes erhaltenen Werte von $t \varphi - t_{90}$ sind:

φ	L.	Z.	M.	P.	S.	F.	w.
0	39.0	35.0	36.0	36.4	31.7	31.9	25.8
10	37.9	34 · 1	35.2	35.4	31.0	31.4	25.0
20	34.9	31.3	32.7	32 · 4	29.0	3 0·0	22.9
30	30.2	27.0	28.9	27 · 7	25.8	27.6	19.5
40	24.3	21.6	24.0	22.0	21 · 8	24 · 4	15.4
50	18:0	15.8	18.6	15.9	17 · 1	20.5	11.0
60	11.8	10 · 2	13.0	10.0	12.3	15.9	6.8
70	6.4	5 · 4	7.8	5 · 1	7.7	10.9	4.3
80	$2 \cdot 3$	1 · 9	3 · 4	1.6	3.5	5.5	1.0

Als Abweichungen von den gegebenen Werten erhält man demnach:

$ \begin{vmatrix} 10 & + & 0.8 & + & 0.1 & + & 1.1 & + & 0.2 & 0.0 & - & 0.6 & 0.0 \\ 20 & 0.0 & - & 0.1 & + & 0.1 & 0.0 & 0.0 & - & 0.4 & - & 0.2 \\ 30 & - & 1.0 & - & 0.5 & - & 1.2 & - & 0.3 & 0.0 & + & 0.2 & - & 0.3 \\ 40 & - & 1.6 & - & 0.5 & - & 2.0 & - & 0.4 & 0.0 & + & 0.9 & - & 0.2 \\ 50 & - & 1.3 & 0.0 & - & 1.8 & - & 0.2 & - & 0.1 & + & 1.7 & 0.0 \\ \end{vmatrix} $		φ	L.	Z.	М.	Р.	S.	F.	w.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	+ 1.1	+ 0.5	+ 1:4	+ 0.3	0.0	1.0	+ 0.2
$ \begin{vmatrix} 30 & -1 \cdot 0 & -0 \cdot 5 & -1 \cdot 2 & -0 \cdot 3 & 0 \cdot 0 & +0 \cdot 2 & -0 \cdot 3 \\ 40 & -1 \cdot 6 & -0 \cdot 5 & -2 \cdot 0 & -0 \cdot 4 & 0 \cdot 0 & +0 \cdot 9 & -0 \cdot 2 \\ 50 & -1 \cdot 3 & 0 \cdot 0 & -1 \cdot 8 & -0 \cdot 2 & -0 \cdot 1 & +1 \cdot 7 & 0 \cdot 0 \\ 60 & +0 \cdot 3 & +1 \cdot 2 & 0 \cdot 0 & +0 \cdot 1 & 0 \cdot 0 & +2 \cdot 1 & +0 \cdot 1 \\ 70 & +1 \cdot 8 & +1 \cdot 9 & +2 \cdot 4 & +0 \cdot 3 & 0 \cdot 0 & +2 \cdot 1 & +1 \cdot 2 \end{vmatrix} $	Ì	10	+ 0.8	+ 0.1	+ 1.1	+ 0.3	0.0	0.6	0.0
$ \begin{vmatrix} 40 & -1.6 & -0.5 & -2.0 & -0.4 \\ 50 & -1.3 & 0.0 & -1.8 & -0.2 \\ 60 & +0.3 & +1.2 & 0.0 & +0.1 \\ 70 & +1.8 & +1.9 & +2.4 & +0.3 \end{vmatrix} $	l	20	0.0	- 0.1	+ 0.1	0.0	0.0	0.4	- 0.3
$ \begin{vmatrix} 50 & -1.3 & 0.0 & -1.8 & -0.2 & -0.1 & +1.7 & 0.0 \\ 60 & +0.3 & +1.2 & 0.0 & +0.1 & 0.0 & +2.1 & +0.1 \\ 70 & +1.8 & +1.9 & +2.4 & +0.3 & 0.0 & +2.1 & +1.2 \end{vmatrix} $	l	30	- 1.0	- 0.5	_ 1.2	- 0.3	0.0	+ 0.2	- 0.3
$ \begin{vmatrix} 60 \\ 70 \\ +1.8 \\ +1.9 \\ +2.4 \\ +0.3 \\ \end{vmatrix} \begin{vmatrix} 0.0 \\ +0.1 \\ 0.0 \\ +2.1 \\ +0.1 \\ +1.2 \\ \end{vmatrix} $		40	- 1.6	- 0.5	→ 2 ·0	- 0.4	0.0	+ 0.9	- 0.5
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		50	- 1.3	0.0	- 1.8	_ 0.5	0.1	+ 1.7	0.0
		6 0	+ 0.3	+ 1.2	.0.0	+ 0.1	0.0	+ 2.1	+ 0.1
$\begin{vmatrix} 80 \end{vmatrix} + 1 \cdot 2 \begin{vmatrix} + 1 \cdot 4 \end{vmatrix} + 2 \cdot 1 \begin{vmatrix} + 0 \cdot 4 \end{vmatrix} - 0 \cdot 5 \begin{vmatrix} + 1 \cdot 9 \end{vmatrix} + 0 \cdot 2$		70	+ 1.8	+ 1.9	+ 2.4	+ 0.3	0.0	+ 2 1	+ 1.2
		80	+ 1.2	+ 1.4	+ 2:1	+ 0.4	- 0.2	+ 1.9.	+ 0.5

Abgesehen von Spitaler's Werten, die eine genaue Wiedergabe erfahren, und jenen von Precht, die auch mit Fehlern < 0.5 zum Ausdrucke kommen, erscheinen die eingangs angeführten Werte von $t\,\varphi - t_{90}$ durch die Formel $A\cos\varphi + B\cos^2\varphi$ nur unzureichend dargestellt.

Zwecks einer schärferen Analyse wurde die Gleichung $(t\,\varphi-t_{90})=(t_0-t_{90})\cos^m\varphi$ für sukzessive Werte von φ nach m aufgelöst. Die mittels der Relation

$$m = \frac{\log(t \varphi - t_{90}) - \log(t_0 - t_{90})}{\log\cos\varphi}$$

erhaltenen Exponenten sind:

ŗ	L.	z.	M.	P.	S.	F.	W.
10 20 30 40 50	1·394 1·326 1·350 1·429 1·527 1·721	1·519 1·653 1·637 1·703 1·787 1·951	0.955 0.959 0.968 1.073 1.196	1 · 667 1 · 741 1 · 765 1 · 792 1 · 828 1 · 867	1 · 470 1 · 433 1 · 432 1 · 405 1 · 384 1 · 366	1 · 833 1 · 270 1 · 270 1 · 263 1 · 266 1 · 253	0·788 1·463 1·702 1·815 1·885
70 80	1·966 2·022	2·141 2·423	1·731 1·875	1.881	1.319	1 · 229	1·957 1·973

Nur bei Forbes ist — sofern man von $\varphi=10^\circ$ absieht — m beinahe konstant, bei Precht zeigt es eine lineare Zunahme mit wachsendem Bogen, in den übrigen Reihen läßt sich ein Wachstum von m gemäß einer Sinuskurve erkennen. Als einfachste zweigliedrige Ausdrücke von m erhält man:

Liznar
$$2 \cdot 1918 - 0 \cdot 9203 \cos \varphi$$

Zenker $2 \cdot 4438 - 0 \cdot 9433 \cos \varphi$
de Marchi . . . $2 \cdot 0602 - 1 \cdot 2105 \cos \varphi$
Precht $1 \cdot 6507 + 0 \cdot 0355 \frac{\text{arc } \varphi}{10}$
Spitaler $0 \cdot 7342 + 0 \cdot 7283 \cos^{1/4} \varphi$
Sartorius $0 \cdot 2237 + 1 \cdot 8653 \sin^{1/2} \varphi$

Für Forbes wird m = 1.2593.

Durch Einsetzung dieser Werte für m in den Ausdruck $(t_0-t_{90})\cos^m\varphi$ ergeben sich für $t\varphi-t_{90}$ folgende Zahlenwerte:

φ	L.	Z.	М.	P.	S.	F.	W.
10	37 · 2	34.0	34 · 1	35 · 2	31.0	32.3	24.9
20	34.9	31.6	32.7	32.4	29.0	30.4	23.3
30	31.0	27.5	29.9	28.0	25 · 8	27 · 4	20.2
40	25.5	22.0	25.6	22 · 4	21.7	23.5	16.0
50	18.7	15.5	19.6	16.1	17 · 2	18.9	11.1
60	11.4	8.9	12.6	9.9	12.5	13.8	6.5
70	5.0	3.6	5.9	4.7	$7 \cdot 9$	8.5	2.9
80	1 · 1	0.6	1 · 4	1 · 2	3.9	3.6	0.7

Die Abweichungen von den gegebenen Werten sind sonach:

φ	L.	Z.	M.	Р.	s.	F.	w.
10 20 30 40 50 60 70 80	+ 0·1 0·0 - 0·2 - 0·4 - 0·6 - 0·1 + 0·4 0·0	+ 0·0 + 0·2 0·0 - 0·1 - 0·3 - 0·1 + 0·1	0·0 + 0·1 0·2 0·4 0·8 0·4 + 0·5 + 0·1	0·0 0·0 0·0 0·0 0·0 0·0	0·0 0·0 0·0 0·0 0·0 + 0·2 + 0·2 - 0·1	+ 0·3 0·0 0·0 0·0 + 0·1 0·0 - 0·3 0·0	$ \begin{array}{r} -0.1 \\ +0.2 \\ +0.4 \\ +0.1 \\ -0.2 \\ -0.2 \\ -0.1 \end{array} $

Hier ist die Wiedergabe eine viel bessere als vorhin durch die zweigliedrige Formel. Nur bei Liznar und de Marchi übersteigt die größte Abweichung noch 0.5; bei Zenker, Spitaler¹ und Forbes geht sie nicht über 0.3

 $^{^1}$ Bei linearer Ausgleichung erhält man für die ozeanischen Temperaturen von Spitaler für m den Wert $1\cdot 4920-0\cdot 0227\,\frac{{\rm arc}\,\phi}{10}$ und folgende Abweichungen:

Ī	10	20	30	40	50	60	70	80
	0.0	0.0	0.0	0.0	0.0	+ 0.1	- 0.1	— 0.8

hinauf. Tadellos wiedergegeben erscheinen die Werte von

Der für Forbes gefundene Wert von m stimmt fast genau mit dem im ersten variablen Gliede seiner Formel vorkommenden Werte $^5/_4$ überein. Ersetzt man auch bei Spitaler die Dezimalbrüche im Ausdrucke für m durch die ihnen am nächsten kommenden gemeinen Brüche (mit kleinstem Nenner), so erhält man:

$$\cos^{3/4}(1+\cos^{1/4}\varphi) \varphi$$
.

Rundet man die ersten drei für m gewonnenen Ausdrücke ab und schreibt die Basen als Quotienten hin, so bekommt man für Liznar und de Marchi $\frac{\cos^2 \varphi}{\cos^{\cos \varphi} \varphi}$ und für Zenker $\frac{\cos^{2t/2} \varphi}{\cos^{\cos \varphi} \varphi}$. Die bei Einsetzung dieser abgerundeten Potenzexponenten sich ergebenden Werte von $t \varphi - t_{90}$ sind:

ဗှ	10	20	3 0	4 0	50	60	70	80
S.	31·0	28·9	25·6	21·5	16·9	12·2	7·7	3·7
L.	37·3	35·5	32·2	27·3	20·8	13·4	6·4	1·6
Z.	34·0	31·6	27·5	21·9	15·3	8·7	3·4	0·6
M.	34·1	32·4	29·4	24·9	19·0	12·2	5·8	1·4

Diese Werte weichen von den gegebenen um folgende Beträge ab:

φ	10	20	30	40	50	60	70	80
S. L. Z.	+ 0.5	+ 0.6	+ 1.0		+ 1.2	+ 1.9	+ 1.8	+ 0.2
Z. М.				$\begin{array}{c c} -0.2 \\ 1.1 \end{array}$				+ 0.1

Der Vorzug größerer Einfachheit der Ausdrücke wird hier naturgemäß mit dem Nachteil einer minder guten Anschmiegung an die gegebenen Werte eingetauscht. Bei Zenker übersteigt die größte Abweichung allerdings auch hier nicht einen halben Grad, wogegen die Wiedergabe der Werte von Liznar schon ganz unbefriedigend ist.

Es zeigte sich vorhin, daß sich für die auf Grund strengerer Erwägungen gewonnenen drei ersteren Temperaturreihen gleichgeformte Exponenten von $\cos \varphi$ ergeben, wogegen man für die auf rein empirischem Wege abgeleiteten vier letzteren Reihen Exponenten von verschiedener Form erhält. Man wird so jene erstere Form als die besser begründete ansehen und wäre wohl geneigt, den für Liznar und de Marchi gefundenen Ausdruck zu bevorzugen, da er die frühere Annahme eines zwischen den Grenzwerten 1 und 2 gelegenen Exponenten von $\cos \varphi$ wahrt, und zwar in der Art, daß für den Gleicher eine zu $\cos \varphi$ und für den Pol eine zu $\cos^2 \varphi$ proportionale Abnahme erwächst und sich der Übergang von der einen in die andere selbst wieder im Verhältnisse zum Breitenkosinus vollzieht.

Der für Zenker's Parallelkreistemperaturen im Seeklima gefundene Wert von *m* spiegelt das Verhalten der nach seiner Berechnung vom Meerwasser empfangenen jährlichen Wärmemenge wieder. Bestimmt man im Ausdrucke

$$(Y\varphi - Y_{90}) \equiv (Y_0 - Y_{90}) \cos^m \varphi$$

den Wert von m, so erhält man:

-									_
	10	20	3 0	40	50	60	70	80	
	1.562	1.594	1.626	1 · 682	1.774	1.934	2.160	2 · 466	
								ļ	1

Sucht man m analytisch darzustellen, so ergeben sich als Ausdrücke einfachster Form:

I.
$$2.5420 - 1.0617 \cos \varphi$$

II. $3.0812 - 1.5690 \cos^{1/2} \varphi$

Die bei Einführung dieser Ausdrücke für m in obige Formel gewonnenen Werte von $Y \varphi - Y_{90}$, die ihrer Bestimmung zugrunde liegenden Werte dieser Differenz $(D)^1$ und die mit 10^5 multiplizierten Abweichungen der ersteren von den letzteren sind:

P	I	II	D	$(I-D) 10^5$	$(II - D) 10^5$
10	0·17285	0·17277	0·17264	+ 21	+ 13
20	0·16063	0·16048	0·16013	+ 50	+ 35
30	0·13999	0·14003	0·13994	+ 5	+ 9
40	0·11159	0·11218	0·11295	-136	- 77
50	0·07777	0·07901	0·08072	-295	-171
60	0·04388	0·04508	0·04626	-238	-118
70	0·01707	0·01737	0·01742	- 35	- 5
80	0·00285	0·00252	0·00236	+ 49	+ 16

Die Wiedergabe von D durch I und II erscheint befriedigend und verbürgt so die Zulässigkeit des gefundenen analytischen Ausdruckes. Dieser ergibt für $\varphi=0$ als Wert von m schon 1·480 und 1·512, entsprechend einem abgerundeten Werte $\sqrt{\cos^3\varphi}$ für $\cos^m\varphi$. Man wird so in der Gleichung $\frac{t\,\varphi-t_{90}}{t_0-t_{90}}=\cos^m\varphi$ dem Exponenten $2^{1/2}-\cos\varphi$ gegenüber dem Ausdrucke $2-\cos\varphi$ den Vorzug geben, wenn die Annahme Zenker's, daß gleichen Strahlungsdifferenzen genau gleiche Temperaturunterschiede entsprechen, vollauf zu Recht besteht.

Die aus den von Liznar, Zenker, de Marchi, Spitaler und Forbes für eine Landhalbkugel gefundenen Parallel-kreistemperaturen sich ergebenden Werte von $t \varphi - t_{90}$ sind:

¹ Bestimmt aus Tab. XVII in Zenker, Die Verteilung der Wärme auf der Erdoberfläche, p. 67.

Ģ	L.	Z.	M.	S.	F.
0	62 · 0	60.7	68.5	70.3	75 · 2
10	60.9	59.6	66.6	68 · 5	73.3
20	57.6	56.1	61.6	63 1	67.8
3 0	52.1	50.2	53.6	54.8	59:2
40	44.1	41.8	42.5	44.5	48.3
50	33.7	31.1	29 · 7	33 · 1	36.4
60	20.8	18.4	16.2	22.0	$24 \cdot 5$
70	8.6	7 · 1	6.4	12.2	13.3
80	2 · 2	1 · 2	1.6	5.2	6.0

Der Überschuß an zonaler Wärmeschwankung in den drei letzteren Reihen gegenüber den zwei ersteren leitet sich zum größten Teile aus der sehr viel höheren Äquatortemperatur ab (Diff. Forbes-Liznar + 9·5). Die Temperatur am landbedeckten Pole ist von de Marchi sogar um 0·8 weniger tief als von Zenker gefunden worden (dagegen Forbes-Zenker — 5·9).

Die folgenden Tabellen enthalten die Werte von

$$(t_0-t_{90})\cos \varphi$$
 und $(t_0-t_{90})\cos^2 \varphi$

sowie die Differenzen dieser Werte gegen jene von $t \varphi - t_{90}$.

φ	L.	Z.	М.	S.	F.
	·	$(t_0 - t_0)$	t_{90}) cos φ	· · · · · · · · · · · · · · · · · · ·	
10	61.1	59.8	67.5	69.3	74 · 1
20	58.3	57.0	64.4	66 · 1	70.7
30	53.7	52.6	59.3	60.9	65 · 1
40	47.5	46.5	52.5	53.9	57.6
5 0	39.9	39.0	44.0	45.2	48.3
60	31.0	30.4	34.3	35.2	37.6
70	21.2	20.8	23 · 4	24.1	2 5·7
80	10.8	10.5	11.9	12.2	13.1

	,	,			
φ	L.	z.	M.	S.	F.
		$(t_0 - t$	$_{90})\; \cos^2 \phi$		
10	60.2	58.9	66.5	68 · 2	73 ·0
20	54.8	53.6	60.5	62 · 1	66 • 4
30	46.5	45.5	51.4	52.7	56.4
40	36.4	35.6	40.2	41.3	44.1
5 0	25 · 6	25 · 1	28.3	29 · 1	31 · 1
60	15.5	15.2	17:1	17.6	18.8
70	7.3	7.1	8.0	8 · 2	8.8
80	1.9	1 · 8	2 · 1	2 · 1	2.3
		$(t_0 - t_{90})$ cos	s φ — (t φ —	t ₉₀)	
10	+ 0.5	+ 0.5	+ 0.9	+ 0.8	+ 0.8
20	20 + 0.7		+ 2.8	+ 3.0	+ 2.9
30	30 + 1.6		+ 5.7	+ 6.1	+ 5.9
40	+ 3.4	+ 4.7	+10.0	+ 9.4	+ 9.3
50	+ 6.5	+ 7.9	+14.3	+12.1	+11.9
60	+10.5	+12.0	+18.1	+13.5	+13.1
70	+12.6	+13.7	+17.0	+11.9	+12.4
80	+ 8.6	+ 9.3	+10.3	+ 7.0	+ 7:1
		(t_0-t_{90}) cos	² φ — (t φ —	t ₉₀)	
10	- 0.7	_ 0· 7	_ 0.1	- 0.3	- 0.3
20	- 2.8	_ 2.5	- 1.1	- 1.0	- 1.4
30	— 5°6	_ 4·7	_ 2.2	- 2:1	_ 2.8
40	_ 7.7	- 6.2	_ 2:3	_ 3.2	— 4·2
50	— 8·1	- 6.0	- 1.4	— 4· 0	— 5⋅3
60	_ 5.3	_ 3.2	+ 0.9	_ 4.4	_ 5·7
70	- 1.3	0.0	+ 1.6	— 4 ·0	— 4·5
80	- 0.3	+ 0.6	+ 0.2	- 3.1	- 3.7
1	I	l	į	I	l i

Bei de Marchi erfolgt die Temperaturabnahme im reinen Landklima in den mittleren Breiten wenig langsamer, in den

höheren noch etwas rascher als im Verhältnisse zu $\cos^2 \phi$. Bei Spitaler und Forbes bleibt sie in den höheren Breiten noch sehr merklich, bei Liznar und Zenker in den mittleren Breiten noch erheblich hinter einer dem Quadrat des Breitenkosinus proportionalen Abnahme zurück.

Stellt man die Wärmedifferenzen $t \varphi - t_{90}$ im reinen Landklima durch den Ausdruck $A\cos\varphi + B\cos^2\varphi$ dar, so nehmen die Konstanten folgende Werte an:

A	В		А	В
Liznar 20.016	44.028	Spitaler	17:604	52.743
Zenker .: 10.841	52:135	Forbes	22.008	53.342
de Marchi 0.562	68.936			'

Im Gegensatz zur Sachlage im Seeklima bleibt hier die Konstante B auch bei Spitaler und Forbes noch um vieles größer als A. Die mit dem obigen Ausdrucke erhaltenen Werte von $t \varphi - t_{90}$ und ihre Abweichungen von den gegebenen Werten sind:

φ	L.	Z.	М.	S.	F.
		A cos φ	$+B\cos^2\varphi$		
0	64.0	63.0	68.5	70.3	75.4
10	62.4	61.3	66.3	68.5	73.4
2 0	57.7	56.2	60.4	63 · 1	67.8
3 0	50.3	48.5	51 · 2	54.8	59 · 1
40	41 · 2	38.9	40.0	44.4	48.2
50	31.1	28.5	28 · 1	33 · 1	36.2
6 0	21.0	18.5	17.0	22 ·0	24.4
70	12.0	9.8	7.9	12.2	13.9
80	4.8	3.5	2.0	4.7	5.4

φ	L.	Z.	М.	s.	F.
	(A	$\cos \varphi + B \cos \varphi$	$\cos^2 \varphi) - (t \varphi)$	— t ₉₀)	
0	+ 2.0	+ 2.3	0.0	0.0	+ 0.5
10	+ 1.5	+ 1.7	0.3	0.0	+ 0.1
2 0	+ 0.1	+ 0.1	_ 1 · 2	0.0	0.0
3 0	— 1·8	— 1·7	- 2.4	0.0	- 0.1
40	- 2.9	— 2 ·9	— 2·5	- 0.1	- 0.1
50	- 2.6	— 2 ·6	- 1.6	0.0	— 0 ·2
60	+ 0.5	+ 0.1	+ 0.8	0.0	- 0.1
70	+ 3.4	+ 2.7	+ 1.5	0.0	+ 0.6
80	+ 2.6	+ 2.3	+ 0.4	_ 0.5	- 0.6

Außer den — wie im Seeklima — genau dargestellten Werten von Spitaler erscheinen hier auch jene von Forbes gut wiedergegeben. Dagegen schmiegen sich die für Liznar, Zenker und de Marchi erhaltenen Werte nur schlecht den gegebenen an, wie im Seeklima in den mittleren Breiten zu tief, in den niedrigen und höheren zu hoch ausfallend.

Bestimmt man wieder — wie dies für das reine Seeklima geschah — die Potenzexponenten von $\cos \varphi$ im Ausdrucke $\frac{t \varphi - t_{90}}{t_0 - t_{90}} = \cos^m \varphi$, so erhält man für m folgende Werte:

φ	L.	Z.	M.	S.	F.
10	1·182	1·212	1 · 848	1·712	1 · 682
20	1·185	1·267	1 · 707	1·741	1 · 667
30	1·210	1·320	1 · 704	1·731	1 · 662
40	1·279	1·400	1 · 792	1·717	1 · 662
50	1·380	1·513	1 · 891	1·705	1 · 642
60	1·576	1·722	2 · 080	1·676	1 · 618
70	1·841	2·000	2·210	1·633	1·615
80	1·907	2·241	2·146	1·488	1·444

Bei Liznar und Zenker weist m bei fast gleichem Wachstum wie im ozeanischen Klima ctwas kleinere Werte als in diesem auf; bei Spitaler und Forbes nimmt es — höhere Werte als im ozeanischen Klima zeigend — mit zunehmender Breite ab. Als einfachste zweigliedrige Ausdrücke für m findet man:

Liznar..... $2 \cdot 0911 - 0 \cdot 9912 \cos \varphi$ Zenker $2 \cdot 4045 - 1 \cdot 2580 \cos \varphi$ de Marchi... $2 \cdot 3247 - 0 \cdot 6173 \cos \varphi$ Spitaler.... $1 \cdot 1027 + 0 \cdot 6517 \cos^{1/4} \varphi$ Forbes $1 \cdot 6953 - 0 \cdot 0114 \frac{\text{arc } \varphi}{10}$

Durch Einsetzung dieser Werte¹ von m in den Ausdruck $(t_0-t_{90})\cos^m\varphi$ erhält man für $t\varphi-t_{90}$ folgende Werte:

φ	L.	Z.	M.	s.	F.
		$(t_0 - t_9)$	$_{0}$) $\cos^{m}\varphi$		
10	60.9	59.6	66 · 7	68.5	73.3
20	57.7	56.3	61.5	63 · 1	67.8
30	51.9	50.2	52.9	54.8	59.2
40	43.5	41.4	41.8	44.6	48.5
5 0	32.6	30.0	29.3	33.4	36.2
60	20.5	17.7	16.9	22.4	24.4
70	9.5	7.3	7.1	12.6	13.3
80	2 · 2	1.3	1.4	4.9	4.2
	[

¹ Für de Marchi kommt — da die Kurvenform auf eine ganze Welle mit der Sohle des Wellentales am Wendekreise und mit dem Scheitel des Wellenberges am Polarkreise weist — auch der Ausdruck 1.9224 — 0.2325 sin 4 ϕ in Betracht. Er führt zu folgenden Werten:

-		!	į.			[
	10	20	30	40	50	60	7 0	80
	66.7	61.7	53.5	41.9	28.3	15.7	6.8	1.8
	+ 0.1	+ 0.1	- 0.1	- 0.6	_ 1.4	- 0.5	+ 0.4	+ 0.3
						İ		

ó	L.	Z.	М.	S.	F.
	($t_0 - t_{90} \cos^4$	m φ — $(t \varphi$ —	· t _{9●})	
10 20 30 40 50 60 70	$ \begin{array}{c} 0.0 \\ + 0.1 \\ - 0.2 \\ - 0.6 \\ - 1.1 \\ - 0.3 \\ + 0.9 \end{array} $	$ \begin{array}{r} 0 \cdot 0 \\ + 0 \cdot 2 \\ 0 \cdot 0 \\ - 0 \cdot 4 \\ - 1 \cdot 1 \\ - 0 \cdot 7 \\ + 0 \cdot 2 \end{array} $	$ \begin{array}{c} + \ 0.1 \\ - \ 0.1 \\ - \ 0.7 \\ - \ 0.7 \\ - \ 0.4 \\ + \ 0.7 \\ + \ 0.7 \end{array} $	$ \begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ + 0.1 \\ + 0.3 \\ + 0.4 \\ + 0.4 \end{array} $	$ \begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ + 0.2 \\ + 0.1 \\ - 0.1 \\ 0.0 \end{array} $
80	0.0	+ 0.1	- 0.3	0.3	— 1.5

Die Anschmiegung an die gegebenen Werte ist wieder besser als mittels der zweigliedrigen Formel, doch erreichen die größten Abweichungen bei Liznar und Zenker noch 1·1, während sie bei den ozeanischen Werten 0·6 nicht übersteigen.

Rundet man auch hier die Zahlen im Exponenten ab und transformiert die Ausdrücke für $\cos^m \varphi$ in der früheren Weise, so bekommt man für Liznar $\frac{\cos^2 \varphi}{\cos^{\cos \varphi} \varphi}$ und für Zenker $\frac{\cos^{2^1/2} \varphi}{\cos^{1^1/4} \cos^{\varphi} \varphi}$. Die mittels dieser kürzeren Ausdrücke gewonnenen Werte von $t \varphi - t_{90}$ schmiegen sich den gegebenen nur zum Teile auch gut an, wie folgende Zusammenstellung zeigt:

φ	10	20	3 0	40	50	60	70	80
L.	61 · 1	58 · 1	52.7	44.6	34.0	21.9	10.5	2.5
Z.	59.5	5 5 · 9	49 · 5	40.2	28.7	16.6	6.6	1 · 1
L.	+ 0.2	+ 0.2	+ 0.6	+ 0.2	+ 0.3	+ 1.1	+ 1.9	+ 0.3
Z.	- 0.1	- 0.2	— 0·7	_ 1.6	- 2.4	_ 1.8	_ 0.5	_ 0.1

Der bei Zenker für das Seeklima gefundene Ausdruck $2^{1}/_{2}$ — $\cos \varphi$, (Z_{1}) gibt für das Landklima zu niedrige Werte.

Für eine in den Exponenten gekürzte Darstellung der Werte von Zenker kommen auch noch die Ausdrücke $2^1/_4$ — $\cos \varphi$, (Z_2) und $2^1/_4$ — $1^1/_4$ $\cos \varphi$, (Z_3) in Betracht. Mit diesen erhält man folgende Werte von $t \varphi - t_{90}$ und Abweichungen von den gegebenen Werten:

φ	10	20	30	40	50	60	70	80
$egin{array}{c} Z_1 \ Z_2 \ Z_3 \ \end{array}$	59·3 59·5 59·8		49.7	38·3 40·9 43·0		15·2 18·1 19·7		1·0 1·6 1·7
$egin{array}{c} Z_1 \ Z_2 \ Z_3 \end{array}$	- 0.1	- 0.1	- 0.5	- 0.9	_ 1.3		+ 0.7	- 0·2 + 0·4 + 0·5

Die eingangs erwähnte Annahme, daß sich der Temperaturabfall im reinen Landklima rascher als im Seeklima vollziehe, trifft sonach nur bei den Werten von de Marchi, Forbes und Spitaler zu. Bei Liznar erfolgt dieser Abfall nur ebenso schnell, bei Zenker sogar etwas langsamer als wie im reinen Seeklima. Es erscheint dies insofern bemerkenswert, als die von den letztgenannten beiden Autoren berechneten Temperaturen die besser begründeten sind.

Aus den von Zenker für das Landklima berechneten Werten von $Y\varphi$ ergeben sich als Differenzen gegen Y_{90} und als Werte von m in der Gleichung $\frac{Y\varphi-Y_{90}}{Y_0-Y_{90}}=\cos^m\varphi$:

φ.	Υ φ — Υ ₉₀	т	φ	Υ φ — Υ ₉₀	m	
10	0·16741	1.563	50	0·07826	1·775	
20	0·15527	1.595	60	0·04485	1·935	
30	0·13569	1.626	70	0·01688	2·161	
40	0·10951	1.683	80	0·00323	2·269	

Die Werte von m stimmen mit den für das reine Seeklima abgeleiteten (p. 9) bis zum 70. Breitenkreise genau überein. Nur im zirkumpolaren Gebiete tritt gegenüber dem Seeklima in der Abnahme eine schwache Verzögerung ein. Die von Liznar und Zenker gefundenen kontinentalen Temperaturen würden so gleichfalls auf eine der Minderung der empfangenen Wärmemengen sehr ähnlich verlaufende Abnahme der Luftwärme hinweisen.