Mitteilungen des Institutes für Radiumforschung Nr. 303

Lumineszenzuntersuchungen an Fluoriten, II

Von

Herbert Haberlandt

(Vorgelegt in der Sitzung am 26. Jänner 1933)

Außer den bisher gefundenen Vorkommen von Fluoriten mit roter Lumineszenz: Schlaggenwald in Böhmen, Wölsendorf in Bayern, Alston Moor in England (nach Angaben von G. G. Stokes²), konnte ein weiteres, und zwar bei Alland in Niederösterreich namhaft gemacht werden. Die auf dunklem Gutensteiner Kalk aufgewachsenen blaßvioletten Würfelchen leuchten unter der Ultralampe (mit UV.-Filter und vorgeschalteter CuSO₄-Lösung) himbeerrot auf. Von 34 Stufen dieses Vorkommens zeigten alle diese Erscheinung.

Durch künstliche Bestrahlung mit Radium konnte die rote Fluoreszenz am schnellsten und kräftigsten bei solchen farblosen Fluoriten von Derbyshire in England (auf Bleiglanz und Zinkblende) und von Freiberg in Sachsen, welche ganz von Schwefelkieskriställchen erfüllt sind, ferner bei einem blaßgelben Vorkommen von Joachimstal in Böhmen und einem gelben von Annaberg in Sachsen — beide ebenfalls mit Sulfidbegleitung — unter gleichzeitiger Blaufärbung hervorgerufen werden. Vielleicht übt hier der reichliche Sulfidgehalt eine sensibilisierende Wirkung im Sinne von H. Steinmetz³ aus, wie auch bei den Vorkommen mit natürlicher roter Leuchtfarbe eine solche möglich wäre, da Fluorit fast immer von Sulfiden in wechselnden Mengen begleitet ist.

Bemerkenswert erscheint an den Stücken von Derbyshire und Freiberg die schwache, kaum merkliche normale violette Lumineszenz im unbestrahlten Zustand, welche auch nach der Bestrahlung im Spektroskop kaum erkennbar ist.

Dieselbe Erscheinung findet man sonst gewöhnlich bei überbestrahlten, dunklen Fluoriten.

Fast bei allen künstlich bestrahlten Vorkommen war die hervorgerufene rote Leuchtfarbe mit gleichzeitiger Blauverfärbung verknüpft, welche oft nur bestimmte Partien der Fluoritkristalle ergriff. Insbesondere bei englischen Flußspatwürfeln trat diese Verfärbung

Mitt. d. Inst. f. Radiumforsch. Nr. 290. Wiener Akad. Ber., IIa, 141, 441, 1932.

² H. Kayser, Handbuch der Spektroskopie. Leipzig, Hirzel, 1908, Bd. IV, p. 865. ³ H. Steinmetz, Über Fluoritfärbungen. Zeitschr. f. Kryst., Bd. 61, Heft 5/6, 1925.

Fundort	Farbe, Ausbildung und Paragenese	Fluoreszenzfarbe		
		natürlich	mit Radium bestrahlt	geglüht und bestrahlt
Alland, Niederösterreich	blaßviolette Würfel auf Guten- steiner Kalk	himbeerrot1		7
Laussa, Steiermark	violette Würfel mit farblosen Zonen	dumpf	rot (helle und dumpfe Zonen)	
Hall, Tirol	violette Würfel kombiniert mit Oktaeder	dumpf .	rötliche Stellen	
Krimml, Salzburg	blaugrüne Würfel auf hellem kristallinem Dolomit	blau	rot leuchtende Stellen	
Bleiberg, Kärnten	lichtgraue Würfel mit Zinkblende auf Kalk	grünlich bis gelblich	ziegelrot¹ (Verfärbung blau)	
Sarntal, Südtirol	farbloses Spaltoktaeder mit Zinkblende	violblau	dreieckige, blauverfärbte Stelle mit roter Lumines- zenz, sonst unverändert	
Sarntal, Südtirol	farblose Würfel mit Bleiglanz, Zinkblende, Quarz	violblau	stellenweise rötlich	
Bozen, Südtirol	farblose Würfel auf Porphyr	violblau	stellenweise rötlich	
Joachimstal, Böhmen	blaßgelbe Würfelchen mit Sulfiden	lila .	karmin bis ziegelrot (Verfärbung blau)	
Zinnwald, Erzgebirge	Spaltblättchen: violette, farblose und gelbe Zonen	dumpf	rot (nur bestimmte Zonen)	
Annaberg, Sachsen	gelbe Würfel (Ecken violett) mit Sulfid und Baryt	lila (Ecken violblau)	rot (abgesehen von den Ecken)	

Freiberg, Sachsen	farblose Würfel mit Schwefelkies- einschlüssen	dumpf	karminrot ¹ (Verfärbung blau)	
Epprechtsstein, Fichtelgebirge	blaßgrüne bis blaßviolette Bruchstücke	dumpf violblau	unverändert	rosa bis rot1
Wölsendorf, Pfalz	derbkristallinisch, grün und violett gestreift	violblau (hell und dunkel)	rote Streifen neben unveränderten	
Wölsendorf, Pfalz	derbkristallinischer Stinkspat mit Uranpecherz	dumpf	unverändert	stellenweise rot
Kinzigtal, Schwarzwald	grünes Oktaeder	blau	unverändert	
Hesselbach, Schwarzwald	farblose Würfel	viol bis lila	rot (nur die Außenzonen)	
Baveno, Italien	blaßgrüne Oktaeder mit Rauchquarz	dumpf	unverändert	
Weardale, England	fluoreszierende Würfel: innen gelb, außen violette und grüne Zonen	leuchtend blaue Zone in der dunkler blauen Hauptmasse	rote Partien orientiert eingelagert	
Derbyshire, England	farblose Würfel mit Schwefelkies- einschlüssen auf Bleiglanz	dumpf	ziegelrot¹ (Verfärbung blau)	rot
England	zonarer Würfel; innen gelblich, blauviolette Zone	innen leuchtend blau, dunklere Zone	schmale, rote, blauverfärbte Zone	
Tysfjord Norwegen	gelblicher Yttrofluorit mit Orthit und Orthoklas	kanariengelb	fast unverändert	
Colorado, Amerika	grün-kristallinisch mit rosa Manganspat	blau mit leuchtenden Zonen	untergeordnet rötliche Stellen	
Erie-See, Kelley Island	violettbraune Würfel mit Coelestin verwachsen	gelblichweiß bis bläulich- weiß zonar	unverändert	

¹ Wurde spektroskopisch untersucht.

an kristallographisch orientierten Zonen entweder gegen die Ecken zu oder parallel den Würfelflächen auf. Letztere Erscheinung wurde schon von G. G. Stokes¹ beobachtet.

In Übereinstimmung mit früheren Befunden² konnte bei keinem der deutlich rot lumineszierenden Stücke durch Beobachtung mit dem Hauer-Kowalski'schen Spektrophotometer Linien der Seltenen Erden nachgewiesen werden.

Da in einer Arbeit von E. Jahoda³ Manganspuren als Träger der roten Fluoreszenz mancher Steinsalzstücke wahrscheinlich gemacht werden konnten, wurde ein grüner Fluorit in Paragenese mit rosa Manganspat von Colorado in die Untersuchung einbezogen. Es ergab sich aber dabei kein sicherer Hinweis, da die Stücke mit normal violblauer Lumineszenz nach der Bestrahlung nur untergeordnet rot leuchtende Zonen aufwiesen.

Gänzlich abweichende gelbe, beziehungsweise weißliche Fluoreszenz zeigen ein norwegischer Yttrofluorit mit deutlich bei spektroskopischer Beobachtung in Erscheinung tretenden Seltenen-Erdlinien und ein braunviolettes bituminöses Vorkommen vom Erie-See in Paragenese mit Coelestin, welches beim Erhitzen infolge Verkohlung der Verunreinigungen schwarz wird.

Auch die mit Zinkblende vergesellschafteten lichtgrauen Würfel von Bleiberg in Kärnten weisen eine abweichende Fluoreszenz mit grünlichem Ton auf.

Aus allen diesen Erscheinungen geht deutlich hervor, daß beim Fluorit ein inniger Zusammenhang zwischen seiner Lumineszenzfarbe und seinen Verunreinigungen, beziehungsweise Begleitmineralien besteht. Dagegen konnte eine erst kürzlich von W. Witteborg⁴ beim Kalkspat erkannte Abhängigkeit der Lumineszenz (unter der UV.-Lampe) von seinem minerogenetischen Alter beim Flußspat nicht sicher nachgewiesen werden, wenn auch die natürliche oder durch Bestrahlung hervorgerufene rote Fluoreszenz bisher nur bei Kristallen in Würfelform, aber nicht bei Oktaedern beobachtet wurde. Die minerogenetische Bedeutung der Thermolumineszenz wird in einer nach Abschluß dieser Untersuchungen erschienenen Arbeit von Fr. Hegemann und H. Steinmetz⁵ näher erörtert.

Die Ergebnisse der vorliegenden Beobachtungen werden anschließend in Tabellenform wiedergegeben. Die Bestrahlung der Stücke dauerte nur einige Tage bis eine Woche, um die sich rasch verfärbenden Fluorite kenntlich zu machen.

¹ H. Kayser, Handbuch der Spektroskopie, a. a. O.

² K. Przibram, Mitt. d. Inst. f. Radiumforsch. Nr. 289. Wiener Akad. Ber., II a, 141, 1932.

³ E. Jahoda, Wiener Akad. Ber., IIa, 135, 675, 1926.

⁴ W. Witteborg, Die minerogenetische Bedeutung der Lumineszenzerschei-

nungen des Kalkspats. Zentralbl. f. Mineral., 1932, Nr. 11, p. 364.

⁵ Fr. Hegemann und H. Steinmetz, Über die Thermolumineszenz der Mineralien in ihrer minerogenetischen Bedeutung. Zentralbl. f. Mineral., 1933, Nr. 1, p. 29.

Herrn Dr. K. Hlawatsch sei bestens für die freundliche Überlassung einer Yttrofluoritstufe sowie Herrn A. Berger und I. Gabriel für die reichliche Versorgung mit Beobachtungsmaterial gedankt.

Zusammenfassung.

Es wird ein neues Vorkommen (Alland in Niederösterreich) von violettem Fluorit mit natürlicher roter Photolumineszenz ausfindig gemacht.

Die kräftige rote Radiophotolumineszenz, welche bei gewissen farblosen und gelben Fluoriten mit reichlicher Sulfidbegleitung, beziehungsweise Einlagerung auftritt, läßt auf eine sensibilisierende Wirkung der Sulfide im Sinne von H. Steinmetz schließen. Im allgemeinen ist eine innige Abhängigkeit der Lumineszenz von den paragenetischen Verhältnissen festzustellen. So ist die abweichende Leuchtfarbe in einem Fall auf den Gehalt an Seltenen Erden, in einem anderen auf bituminöse Verunreinigungen zurückzuführen. Dagegen konnten als Ursache des roten Leuchtens Seltene Erden in Übereinstimmung mit früheren Arbeiten nicht nachgewiesen werden.