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Abstract: Here, we revisit the most prominent features of the complete Bouguer anomaly map and their interpretation, 
along with the current knowledge of the lithospheric thickness in the Carpathian–Pannonian region. The stripped gravity 
map, i.e., the sediment-stripped complete Bouguer anomaly map, was used to interpret the most prominent highs and 
lows of the gravity field. The complete Bouguer anomaly data were used in structural density modelling and integrated 
geophysical modelling to determine or revise the previously known sources of the most pronounced gravity features of 
the region. The Carpathian gravity low was divided into three sub-lows: the Western, Eastern, and Southern. The Western 
Carpathian gravity low consists of the clearly distinguishable External and Internal lows, which are due to different causes. 
The source of the External Western Carpathian gravity low reflects the low-density sediments of the External Western 
Carpathians (2.49–2.59 g cm–3) and the Foredeep (~2.43 g cm–3), while the Internal Western Carpathian gravity low is 
explained by the upper crustal deficit mass, which is formed by the rocks of the Alpine Tatric and Veporic units. These 
tectonic units are built mainly from granites and crystalline schists, of which the average density (~2.70 g cm–3) is lower 
than the average density of the lower crust of the Internal Western Carpathians (~2.90 g cm–3). The main sources of  
the Eastern and Southern Carpathian gravity lows are the gravity effects of the crustal roots created by continental collision, 
the Foredeep, and the surface sediments of the External Carpathians. The Pannonian gravity high is caused by the expressive 
Moho elevation (24–26 km). Since the Pannonian Basin upper mantle, which is built by high-density peridotites or dunites, 
is located several kilometres closer to the surface, this rock material represents a great excess mass (high-density 
anomalous bodies). Based on the calculated stripped gravity map, several local gravity highs (˃ +50 mGal) have been 
recognised, and they are all located in the Danube Basin, the Transcarpathian Basin, the Békés Basin, as well as the Makó 
trough. Their sources are high-density crustal bodies (Eo-Alpine metamorphic complexes), whose apical parts reach 
depths of only 7 to 12 km. Finally, the expressive different depths of the lithosphere-asthenosphere boundary in the Western 
and Eastern Carpathians were explained by the different Neo-Alpine development of both orogens. The mantle litho-
spheric root (~240 km) in the Eastern Carpathians is results from the sinking of the upper part of the broken slab during 
the frontal continental collision. On the contrary, no thickening of the mantle lithosphere was observed in the junction 
zone of the Western Carpathians and the Bohemian Massif. The typical thickness of the continental lithosphere (~100 km) 
in this zone was explained by the oblique continental collision. The Pannonian Basin system is characterised by one of 
the thinnest continental crusts (~25 km) and lithospheres (~75 km) in the world.

Keywords: complete Bouguer anomaly, stripped gravity map, integrated geophysical modelling, lithosphere, gravimetric 
interpretation, Carpathian–Pannonian region

Introduction

The geology of Central Europe is very complex and consists 
of the Western European Paleozoic Platform (including the 
Bohemian Massif), the Precambrian Eastern European Craton, 
the Trans European Suture zone (TESZ), the Carpathian 
Orogen, and the Pannonian Basin System. The mosaic of plat-

forms, orogenic arc, and related fore-arc and back-arc basins 
offer an exceptional opportunity to study the structure and com
position of the lithosphere, as well as the interaction of litho-
spheric and asthenospheric processes during formation of these 
structures (e.g., Alasonati Tašárová et al. 2016; Šimonová  
et al. 2019). In addition, the Carpathian–Pannonian region,  
together with its neighbouring tectonic units, represents  
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a natural laboratory that allows geoscientists to study simul
taneously not only the continental collision, but also its 
extension.

Therefore, the geology of Central Europe has always been 
the focus of geoscientists, and the results of geodynamic 
research have been published in many papers (e.g., Balla 
1984; Royden & Horváth 1988; Royden & Burchfiel 1989; 
Ratschbacher et al. 1991a, b; Horváth 1993; Csontos 1995; 
Fodor et al. 1999; Pharaoh 1999; Tari et al. 1999; Kováč  
2000; Plašienka 2002, 2018; Golonka 2004; Bezák et al.  
2004; Schmid et al. 2004; Horváth et al. 2006, 2015; Bada et 
al. 2007; McCann 2008a, b; Vozár et al. 2010; Matenco & 
Radivojević 2012; Hók et al. 2014; Hetényi et al. 2015;  
Balázs et al. 2017). 

Geophysical research has primarily been based on the seis-
mic deep reflection and refraction (e.g., Beránek & Zátopek 
1981; Tomek et al. 1987, 1989; Posgay et al. 1995, 2006; 
Vozár & Šantavý 1999; Hrubcová et al. 2005, 2010; Grad et al. 
2006; Środa et al. 2006; Janik et al. 2009, 2011; Malinowski et 
al. 2009; Brückl et al. 2010; Brixová et al. 2018a, b), seismo-
logical (e.g., Babuška et al. 1987; Babuška & Plomerová 
2006; Plomerová & Babuška 2010), gravimetric (e.g., Tomek 
et al. 1979; Bielik 1988a, b; Lillie et al. 1994; Szafián et al. 
1997; Bielik et al. 2006; Kiss 2006; Królikowski 2006; Szafián 
& Horváth 2006; Sumanovac 2010; Grabowska et al. 2011; 
Alasonati Tašárová et al. 2016; Pánisová et al. 2018; Šamajová 
et al. 2019; Godová et al. 2021; Zahorec et al. 2021), geo
thermal (e.g., Čermák & Hurtig 1979; Majcin et al. 1998; 
Lenkey 1999; Majorowicz et al. 2019) and magnetotelluric 
measurements (e.g., Jankowski et al. 1977; Varga & Lada 
1988; Praus et al. 1990; Ádám et al. 2008; Majcin et al. 2018; 
Bezák et al. 2020; Vozár et al. 2021), as well as their 
interpretations.

Despite the great efforts of geologists and geophysicists, 
many questions concerning the deep structure, composition, 
and tectonics of the lithosphere in the Carpathian–Pannonian 
region and its surrounding geological units remain unanswe
red. Therefore, the main goal and mission of the paper is not 
only to highlight, but also attempt to find solutions to some of 
these problems in the light of the current geoscientific know
ledge. The paper deals first with pointing out the most promi-
nent dominant gravity anomalies in the Carpathian–Pannonian 
region, and then tries to find the optimal answer as to the 
sources of these anomalies. For this purpose, the stripped 
gravity map was calculated. Finally, the paper addresses the 
problem of determining the important boundary between  
the lithosphere and asthenosphere (LAB) and its implications 
for Neo-Alpine evolution of the study area.

Tectonic evolution of Central Europe

The complex tectonic evolution of Central Europe includes 
three geological periods of orogenic processes linked with 
folding during the Caledonian, Hercynian (Variscan), and 
Alpine orogenesis.

The European Platform was formed during the Precambrian 
and consists of the Precambrian Eastern European Craton in 
the NE and a younger Western European Paleozoic Platform 
in the NW (Fig. 1). The Eastern European Craton is formed by 
Proterozoic igneous and metamorphic rocks covered with the 
Vendian and Paleozoic strata (Dadlez et al. 2005). Both tec-
tonic units are separated by the TESZ (e.g., Pharaoh 1999), 
which is ~200 km wide, and runs through Europe from the 
North Sea to the Black Sea. The north-eastern boundary of this 
zone, which is located in Poland, is formed by the Teisseyre–
Tornquist zone (Dadlez et al. 2005). It consists of several 
interesting terranes accreted to the southeastern border of  
the Eastern European Craton during the Paleozoic (Winchester  
et al. 2002). 

The Bohemian Massif represents the easternmost termina-
tion of the Paleozoic Variscan orogenic belt in Central Europe 
and is a complicated terrane that was consolidated during the 
Paleozoic. Its current structure is the result of the convergence 
and collision of the Laurentia, Baltika, Avalonia, and Gond
wana continents after the closure of various ocean basins, 
followed by nappe thrusting and continental collision with 
strike-slip movements that took place between 500 Ma and 
250 Ma (Matte et al. 1990; Dallmeyer et al. 1994; Schulmann 
et al. 2009; Guy et al. 2011). The Bohemian Massif consists 
mainly of low- to high-grade metamorphic and plutonic Paleo
zoic rocks exposed on the surface. Based on the respective 
effects of Cadomian and Variscan orogeneses, the Bohemian 
Massif area (Dallmeyer et al. 1994; Hrubcová et al. 2005)  
is subdivided into several regional tectonostratigraphic units, 
which are separated by faults, shear zones, or thrusts. 

In the Eastern Alps, several tectonic units can be recognised: 
the Molasse Basin, the Flysch Zone, the Northern Calcareous 
Alps, and the Central Eastern Alps, which are distinguished by 
their age, rock composition, and their lithostratigraphic affi
liation (Alasonati Tašárová et al. 2009). 

The Carpathian–Pannonian region consists of the Carpathian 
orogen and the Pannonian back-arc basin system. The geolo
gical picture is the result of Neogene evolution, at the begin-
ning of which the Inner Carpathian region consisted of two 
independently-moving microplates known as the ALCAPA 
(Alps–Carpathians–Pannonian Basin) and Tisza–Dacia mega-
tectonic units (Fig. 1). The structural and paleogeographic 
development contains the elements reflecting the collision of 
the orogen with the platform, as well as the consequences of 
stretching the overthrusted plates, accompanied by rifting, 
mantle upwelling, and Neogene volcanism. 

The tectonic evolution of the Carpathian–Pannonian region 
in the present-day of its knowledge still offers us a lot of space 
for discussion (Csontos 1995; Alasonati Tašárová et al. 2009, 
2016; Janík et al. 2011). According to Alasonati Tašárová et al. 
(2016), one group interprets the evolution of the Carpathian–
Pannonian Basin region in terms of gravitational collapse of 
the continental lithosphere (Alasonati Tašárová et al. 2016). 
This interpretation excludes the existence of subduction and 
favours active continental lithospheric delamination under the 
Carpathians (e.g., Knapp et al. 2005; Gemmer & Houseman 
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2007; Göğüş et al. 2016; Bracco Gartner et al. 2020). The second 
group, however, includes the subduction and associated sub-
lithospheric mantle uplift as a key process in the tectonic 
development of the Carpathian–Pannonian region (e.g., Ratsch
bacher et al. 1991a, b; Csontos et al. 1992; Horváth 1993; 
Tomek & Hall 1993; Linzer 1996; Kováč et al. 1998; Kováč 
2000; Konečný et al. 2002).

Geology of the Western Carpathians  
and the Pannonian Basin System

The recent structure of the Western Carpathians contains 
several different allochthonous tectonic units moved during 
the two phases of Alpine orogeny (Hók et al. 2016).  
The Paleo-Alpine phase is characterised by the subduction, 
collision, and stacking of groups of nappes in the Internal 
Western Carpathians (IWECA), accompanied by the extention 
of oceanic realms in the External Western Carpathians 
(EWECA) during the Cretaceous (Plašienka 1995, 1999;  
Hók et al. 2014). The Neo-Alpine phase is characterised by 
oblique diachronous subduction of the EWECA basement 

along the periphery of the IWECA (Kováč 2000; Hók et al. 
2014). In the collision zone, the rootless Flysch Belt nappes 
were thrusted onto the European platform margin. During this 
phase, basin formation and back-arc type volcanism were 
active in the IWECA. Oblique collision of the IWECA with 
the European platform, in combination with the rollback of  
the European slab, caused a large, counterclockwise rotation 
of the IWECA during the Neogene (e.g., Márton & Fodor 
2003). Simultaneously, lateral extrusion of the Carpathians 
from the Eastern Alpine area (Ratschbacher et al. 1991a, b), as 
well as escape of the Transdanubic and Bükkic terranes from 
the Southern Alpine and Dinaride realms and their accretion  
to the IWECA occurred (Haas et al. 2001; Márton & Fodor 
2003).

The Western Carpathians were divided into two main parts: 
the Externides and the Internides (Mišík et al. 1985; Froitzheim 
et al. 2008; Hók et al. 2014), which are referred to by their 
acronyms, EWECA (External Western Carpathians) and 
IWECA (Internal Western Carpathians). These two main parts 
are separated by the Pieniny Klippen Belt (PKB), which is  
a narrow zone with a complex Paleo-Alpine structure that  
has been predominantly affected by the younger Neogene 
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deformation (Hók et al. 2014; Plašienka et al. 2020).  
The EWECA lie in the north with a dominant Tertiary defor-
mation. The IWECA are in the south, where the Mesozoic 
(Cretaceous) deformation dominated. The IWECA consist of 
Paleo-Alpine (Cretaceous) crustal units (Tatricum, Veporicum, 
Gemericum) and a cover in the form of Mesozoic nappe units 
(Fatricum, Hronicum, Meliaticum, Turnaicum, Silicicum). 
Sedimentary basins with Upper Cretaceous, Paleogene, and 
Neogene infill and neovolcanic complexes represent a Neo-
Alpine formation superimposed on the Paleo-Alpine nappe 
system (e.g., Kováč et al. 2016, 2017). The overthrusting of 
the IWECA was completed before the Cenozoic Era (approxi-
mately 65 Ma), while the EWECA were folded during the 
Cenozoic (30–12 Ma). The morphological and tectonic loca-
tions of the Western Carpathians were mostly influenced by 
Tertiary (Neo-Alpine) tectonics. The Tertiary accretionary 
prism of the EWECA is a common, and at the same time, uni-
fying element of the entire Alpine–Carpathian Mountain range 
(Tomek et al. 1979). It consists of several nappe systems that 
have been overthrust onto the European platform. The final 
process of the accretionary prism formation was connected to 
the flexure of the platform margin onto which the Foredeep 
was developed (Kováč 2000; Alasonati Tašárová et al. 2009). 
The Western Carpathian Foredeep is mostly filled with marine 
sediments of the Middle Miocene (Oszczypko 1998).

The Pannonian Basin System formed as a typical conti
nental back-arc basin, in which there was a roughly east-west 
oriented ~220–290 km Miocene extension that was accompa-
nied by rollback flexure of the Carpathian or Dinaric litho-
spheric plates (e.g., Matenco & Radivojević 2012; Horváth et 
al. 2015) and mantle upwelling behind the Carpathian arc 
(Csontos et al. 1992; Horváth 1993; Royden 1993a, b; Kováč 
2000). The general extensional geometry of the basin is cha
racterised by individual sub-basins filled by ~1–3.5 km of 
lower to lowermost Late Miocene syn-kinematic deposits and 
overlain by a 1.5–3.5 km thick post-extensional sedimentary 
cover (Balázs et al. 2016). The thickness of the sedimentary 
infill ranges from 0 to 7 km (e.g., Bielik 1988a; Kilényi & 
Šefara 1989; Csato et al. 2007; Alasonati Tašárová et al. 2009). 
The formation of the extension basin, as well as the subse-
quent post-rift thermal development, has been accompanied 
by intense volcanism (e.g., Lexa et al. 1993; Konečný et al. 
2002; Harangi & Lenkey 2007).

Complete Bouguer anomaly map

The complete Bouguer anomaly (CBA) map is the essential 
gravity map for gravimetric or integrated geophysical studies 
of the structure and composition of the lithosphere. The CBA 
data are topographically-corrected gravity anomalies (Vajda et 
al. 2020), i.e., gravity anomalies corrected for the gravitational 
effect of topographic masses, as well as for the effect of  
the (negative) density contrast of seawater (e.g., Tenzer et al. 
2009; Pašteka et al. 2017; and references therein). The subsur-
face structural positive density contrasts produce gravity highs 

(positive anomalies) in the CBA map, while negative density 
contrast structures produce gravity lows (negative anomalies). 
All 2D linear geological structures (such as faults and linea-
ments), if accompanied by their respective density contrasts, 
are manifested by linear horizontal gravity gradients. 

Since the observed values ​​of the CBA represent the sum 
(superposition) of gravity effects of all density inhomogenei
ties (anomalous structural sources) located within the litho-
sphere, the interpretation of individual gravity anomalies 
(their decomposition) is often very difficult. The complete 
Bouguer anomaly map of the Carpathian–Pannonian region 
(Fig. 2a) shows several positive and negative anomalies of 
various amplitudes, sizes, and origin. 

The most prominent regional features of the CBA are the 
Carpathian gravity low (CGL) and the Pannonian gravity high 
(PGH), which are indicated in Fig. 2a. The CGL is a continua-
tion of the Alpine gravity low, and it is characterized by gravity 
values ​​ranging from −30 to −110 mGal (1 mGal = 10–5 m s–2).  
It is divided into the Western Carpathian gravity low (WCGL), 
Eastern Carpathian gravity low (ECGL), and Southern Car
pathian gravity low (SCGL) (Fig. 2b).  These expressive gra
vity lows correlate with the Western, Eastern, and Southern 
Carpathians. The Eastern and Southern Carpathians are 
accompanied by the highest (−110 mGal), while the Western 
Carpathians by the lowest (−60 mGal) amplitude. A second 
prominent feature is represented by the Pannonian gravity 
high (PGH, Fig. 2a), which extends over the Pannonian Basin 
System. It is characterised by the gravity values that vary at  
a relatively narrow interval from −10 to +20 mGal. It is worth 
noting that there is a well-established anti-correlation between 
the Carpathian gravity low and the Pannonian gravity high, 
including the topography. The high Carpathian topography  
is characterised in the complete Bouguer anomaly map by  
a regional gravity low, while the low Pannonian topography 
by an overall regional gravity high. 

In general, orogenic belts are typically represented in the 
complete Bouguer anomaly map by belts of negative anomaly 
(gravity lows). This is caused by the fact that the roots of 
orogens  isostatically compensate the topographic masses. 

Several local gravity highs can also be observed within the 
regional Pannonian gravity high (Fig. 2b): the Transdanubian 
(TdGH), the Mecsek (MeGH), the Papuk (PaGH), the Trans
carpathian (TcGH), and the Békés (BGH). The TdGH, the 
MeGH, and the PaGH are caused by the pre-Cenozoic rocks 
that build the Transdanubian Range, the Mecsek Mts., and  
the Papuk Mts. The reason for the Transcarpathian and Békés 
gravity highs is different, which we will explain below.

Even though considerable attention had been paid to the 
interpretation of the sources of the major gravity anomalies  
in the Carpathian–Pannonian region (e.g., Ibrmajer 1981; 
Steinhauser et al. 1990; Lillie et al. 1994; Królikowski & 
Petecki 2001; Švancara 2004; Bielik et al. 2006), their inter-
pretation remains problematic. In order to be able to better 
answer the questions regarding the sources of the dominant 
gravity features in the studied area, the so-called stripped 
gravity map was calculated. 
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Stripped gravity map

The gravity-stripping procedure has pro
ved to be useful in revealing deeper inhomo
geneities or morphology of deeper density 
interfaces in the lithospheric structure that 
might be masked in the CBA map by shal-
lower structures with relatively stronger 
gravity signal (Hammer 1963; Bielik 1988a; 
Bielik et al. 2013). Stripping is applied to 
crustal or lithospheric structures that are 
already known from previous or indepen-
dent geophysical studies (e.g., Vajda et al. 
2008; Tenzer et al. 2009). Stripping is based 
on forward computation of the gravity effect 
of the known subsurface 3D structure (such 
as sedimentary fill) and the removal of this 
effect from the CBA (Bielik et al. 2013). 
Stripping requires that the 3D geometry  
of the structure and its density contrast are 
known. The density contrast is taken rela-
tive to the density of the surrounding rock 
environment (in the case of sediments rela-
tive to the topographic masses or to the upper 
crust). The resultant stripped gravity map 
(SGM), such as the sediments-stripped CBA, 
is calculated by subtracting the gravity 
effect of the sediments (of their negative 
density contrast) from the CBA. The benefit 
of interpreting the SGM as opposed to the 
CBA map is due to the inhomogeneities 
deeper beneath the sedimentary basement 
that were masked by the effects of sedi-
ments in the CBA map and are now unco
vered in the SGM. 

To calculate the SGM in the Carpathian–
Pannonian region, we had to compile both 
the thickness (Fig. 3a) and the density  
(Fig. 3b) models of the sediments which 
cover the Pannonian Basin System and the 
Transylvanian Basin, the External Carpa
thians, and the Foredeep. The thickness of 
the Neogene-Quaternal sediments (Fig. 3a) 
varies between 0–7 km in the Pannonian 
Basin System, 0–3 km in the Transylvanian 
Basin (Bielik 1988a; Kilényi & Šefara 
1989; Makarenko et al. 2002; Bielik et al. 
2004, 2005), and 0–9 km in the Foredeep 
(Poprawa & Nemčok 1989; Matenco 1997; 
Kováč 2000; Bielik et al. 2004, 2005 and 
the references therein). The largest 15 km 
thickness of the Paleogene sediments 
(Mocanu & Radulescu 1994; Krejčí & Jurová 
1997; Kováč 2000; Bielik et al. 2005; Rylko 
& Tomaš 2005), which forms the accretio
nary prism of the External Carpathians, can 
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be observed in the eastern part of the EWECA, 
while in the seismic Vrancea zone it is about 9 km 
(Fig. 3a).

The densities of the Pannonian Basin System and 
Transylvanian Basin sediments (e.g., Khomenko 
1971; Granser 1987; Bucha & Blížkovský 1994; 
Szafián et al. 1997; Šefara & Szabó 1997; Maka
renko et al. 2002; Bielik et al. 2005 and the refe
rences therein) change with depth (Fig. 3b). Due to 
less information on density data (e.g., Sovchik 
1976; Tomek et al. 1979; Ibrmajer & Suk 1992; 
Królikowski & Petecki 2001; Bielik et al. 2004, 
2005 and the references therein), the External 
Carpathian and Foredeep density model is simpler. 
The densities here are considered constant with 
depth and vary only laterally (Fig. 3b). 

The gravity effect of the 3D model of the Carpa
thian–Pannonian sediments (Fig. 4) was calculated 
by means of the algorithm, which was developed by 
Starostenko et al. (1997). The gravity effect values 
vary from −0 to −80 mGal. The highest values ​​of 
−80 mGal are observed in the eastern part of  
the External Western Carpathians, and a little less 
(−60 mGal) in the Vrancea zone. In the Pannonian 
Basin System and the Transylvanian Basin, the lar
gest amplitudes of the gravity effect are around −45 
to −50 mGal. The resulting stripped gravity map is 
presented in Figure 5. 

At first glance, the stripped gravity map appears 
similar to the complete Bouguer anomaly map. 
However, the differences are significant; not only  
in the size of the amplitudes, but also in the charac-
teristics of the gravity anomalies. On the SGM,  
the Pannonian gravity high is characterised by much 
more pronounced positive values, which reach up to 
+70 mGal. On the other hand, the maximum nega-
tive values of the Carpathian gravity low ​​on the 
SGM are lower, although still accompanied by high 
negative amplitudes. They are −50 mGal in the 
Western Carpathians, −80 mGal in the Eastern Car
pathians, and −100 mGal in the Southern Carpa
thians. These differences themselves enabled us to 
improve the interpretation of the sources of the 
most dominant and prominent gravity features 
(anomalies) in the Carpathian–Pannonian region.

Western Carpathian gravity low 

Tomek et al. (1979) were the first authors to rea
lize that the Carpathian gravity low (CGL, shown 
on map Fig. 2a) represents one of the most signi
ficant gravity anomalies in the Carpathian Mts.  
In their paper, they also interpreted the depth of  
the source of the Western Carpathian gravity low 
(WCGL). Their conclusion was that the source of 
the WCGL is unusually shallow (maximum lower 
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boundary of this source reaches a depth of 8.5 km) represen
ted by the low-density sediments of the External Western 
Carpathians (EWECA) and the Foredeep. However, this inter-
pretation was soon challenged by Pospíšil & Filo (1980). 
Based on the stripped gravity map features, the Western 
Carpathian gravity low must be divided into two gravity sub-
lows: the External Western Carpathian gravity low (EWCGL) 
and the Internal Western Carpathian gravity low (IWCGL), 
since their sources are completely different. On the SGM, we 
can see that the External Western Carpathian gravity low has 
practically disappeared. Based on this and the results of our 
gravity modelling (Fig. 6, Bielik 1995), we agree with the 
opinion of Tomek et al. (1979) that the source of the External 
Western Carpathian gravity low is the low-density sediments 
of the External Western Carpathians and the Western Carpa
thian Foredeep. However, it is impossible to apply a source of 
the same type to explain the existence of the Internal Western 
Carpathian gravity low. Firstly, in this area, there are almost no 
low-density sediments on the surface. This zone of the Internal 
Western Carpathians is built mostly by the pre-Cenozoic crys-
talline basement rocks in the Tatric, Veporic, and Gemeric 
tectonic units. The results of our gravity modelling (Fig. 6, 
Bielik 1995) clearly show that the source of the Internal 
Western Carpathian gravity low is the Internal Western 
Carpathian upper crust with a density contrast of −0.20 g cm−3 

(1 g cm−3 = 1000 kg m−3). This upper crust is built largely by 
granites and crystalline schists (see Geological map of 
Slovakia, Vozár et al. 2021). The average density of these 
rocks (~2.70 g cm−3) represents a significant deficit mass 
against the average high-density (~2.90 g cm−3) of the Internal 
Western Carpathian lower crust (e.g., Šimonová & Bielik 
2016; Šimonová et al. 2019). This means that the Internal 
Western Carpathian gravity low can be explained by the upper 
crustal deficit mass, which is predominantly formed by the 
rocks of the Alpine Tatric and Veporic units.

Eastern and Southern Carpathian gravity lows 

The Eastern and Southern Carpathians in the stripped gra
vity map (Fig. 5) are still characterised by significant gravity 
lows, even after correction of the complete Bouguer anomaly 
for the (negative) gravity effect of the sediments. Therefore, 
the sources of the Eastern and Southern Carpathian gravity 
lows (ECGL and SCGL) cannot be due to just the low-density 
sediments of the External Carpathians and the Foredeep.  
And so, it is necessary to look for additional sources to explain 
the cause of both the gravity lows. When taking into consi
deration the calculations of the gravity models (e.g., Dérerová 
et al. 2006, 2021; Grinč et al. 2013) and the crustal thickness 
(Fig. 7, Bielik et al. 2018 and references therein), we can state 

Fig. 4. 3D gravity effect of the Carpathian–Pannonian sediments. Abbreviation: VZ = Vrancea zone.
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that the main source of the Eastern and Southern Carpathian 
gravity lows are crustal roots that were formed by continental 
collision below the external parts of the Eastern and Southern 
Carpathians. It follows that the observed amplitude of the 
ECGL and the SCGL (Figs. 2 and 5) is the sum of the negative 
gravity effects of both surface sediments and thick crust 
(crustal root). Both surface and deep anomalous zones repre-
sent a deficit mass. The gravity effect of the Cenozoic surface 
sediments of the External Eastern Carpathians and the Fore
deep is negative, since their average densities are less in  
comparison with the average density of the upper crust of  
the Eastern and Southern Carpathians. Similarly, the densities 
of the Eastern and Southern Carpathian crustal roots are less 
than average density of the upper mantle beneath these oro-
gens, and therefore their gravity effects are also negative.  
In terms of percentage, the observed amplitudes of the Eas
tern and Southern Carpathian gravity lows account for 70 % 
of the crustal roots and 30 % of the sedimentary gravity effects 
(Dérerová et al. 2006).

Pannonian Basin gravity high  

The Pannonian Basin represents a significant regional gra
vity high, not only on the complete Bouguer anomaly map 

(Fig. 2b), but also on the stripped gravity map (Fig. 5). It may 
appear strange in the gravity field of the Pannonian Basin 
System because, even though it is covered with low-density 
sediments that reach a thickness of several kilometres, it is 
accompanied by positive instead of negative values of the 
gravity field. The positive gravity field can only be explained 
by the fact that under the sedimentary basement, there must be 
an anomalous body whose positive gravity effect is greater 
than the negative gravity effect of the sediments. This notion 
is strongly supported by the calculated SGM (Fig. 5), because 
the amplitude of the Pannonian gravity high (PGH) is signifi-
cantly larger in comparison with the CBA (Figs. 2a, b). On the 
basis of many 2D density (e.g., Lillie et al. 1994; Szafián et al. 
1997; Zeyen et al. 2002; Dérerová et al. 2006; Šimonová et al. 
2019) and 3D density models (e.g., Alasonati Tašárová et al. 
2009, 2016), the regional PGH is caused by the expressive 
Moho elevation (Fig. 7). Since the Pannonian Basin upper 
mantle is built by high-density peridotites or dunites and is 
located several kilometres closer to the surface, they represent 
a great excess mass (high-density anomalous bodies). The Moho 
(upper mantle) depth here is only 24–26 km (e.g., Grad et al. 
2009; Bielik et al. 2018 and references therein). On the SGM, 
the sub-basins of the Pannonian Basin System, such as the 
Danube Basin, the Békés Basin, the Transcarpathian Basin, 
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and the Makó Through, which have the thickest 
sedimentary infill, are accompanied by significant 
local gravity highs (values ​​  +50 mGal). They cor-
relate very well with the areas of major extension 
(Horváth & Royden 1981). The sources of these 
local gravity highs are high-density crustal bodies 
(Eo-Alpine metamorphic complexes) with the den-
sity contrast of +0.30 g cm−3, which were modelled 
in the upper and lower crust beneath the Békés 
Basin (Fig. 8a) by Nemesi & Slomfai (1992), Ádám 
& Bielik (1998), Bielik & Ádám (2006); the Danube 
Basin by Bielik (1998), Prutkin et al. (2011, 2014); 
and the Transcarpathian Basin by Pospíšil (1980) 
and Bielik (1998). Based on these modelling results, 
Bielik & Ádám (2006) suggested the scheme of  
a narrow rift (sub-basin) model of continental exten
sional tectonics for the Pannonian Basin System 
(Fig. 8b). The apical parts of these bodies reach 
depths of only 7 to 12 km.

 2D and 3D integrated modelling

One of the goals of the 2D and 3D integrated 
geophysical modelling (Zeyen et al. 2002; Dérerová 
et al. 2006; Alasonati Tašárová et al. 2009, 2016; 
Grinč et al. 2013, 2014; Šimonová et al. 2019) was 
the determination of the lithosphere–asthenosphere 
boundary (LAB). It lies between a cooler, rigid 
lithosphere and the warmer, ductile asthenosphere 
and represents a mechanical interface between both 
of these layers. The actual depth of the LAB is still 
a topic of debate and study, although it is known to 
vary according to the environment.

The first LAB calculations in the Carpathian–
Pannonian region were performed using seismolo
gical (Babuška et al. 1987, 1988), later magnetotelluric (Praus 
et al. 1990; Horváth 1993; Ádám 1996), and geothermic 
(Čermák 1993) data. However, the resulting lithosphere thick-
nesses determined by these geophysical fields disagree by as 
many as 50–60 km in some areas (e.g., in the South Slovak 
Basin). 

To eliminate these discrepances, systematic 2D (Zeyen et al. 
2002; Dérerová et al. 2006; Grinč et al. 2013; Šimonová et al. 
2019) and 3D (Alasonati Tašárová et al. 2009, 2016) inte-
grated geophysical modelling was applied to determine the 
LAB morphology more accurately. In the 2D solution, we 
applied the CAGES program (Zeyen & Fernandez 1994). This 
software is capable of a combined interpretation of heat flow, 
absolute topographic elevation, geoid, and gravity. For the 3D 
solution, we first used the IGMAS software (Interactive 
Gravity and Magnetic Application System) and then the 
LiTMod 3D. The IGMAS software (Götze & Lahmeyer 1988; 
Schmidt & Götze 1999) enables to model geological bodies, 
which are defined along several parallel vertical cross-sections 
(profiles). The software connects the profiles via triangulation, 

thereby generating a 3D structure. LitMod 3D (Afonso et al. 
2013a, b) was developed to perform integrated geophysical–
petrological LIThospheric forward MODelling of the litho-
sphere and the sub lithospheric mantle down to the top of the 
transition zone at a depth of 410 km (Fernàndez et al. 2010; 
Fullea et al. 2010; Grinč et al 2014; Alasonati Tašárová et al. 
2016). All codes (CAGES, IGMAS and LitMod 3D) allow for 
the modelling of several geophysical data sets simultaneously. 
All the mentioned integrated approaches significantly reduce 
the uncertainties related to modelling the geophysical data sets 
individually (separately).

The lithosphere thickness in the Carpathian–Pannonian 
region (Fig. 9) shows important differences across the chain, 
as well as along the strike of the Carpathian arc. Lithosphere 
thickness varies from 240 km in the Eastern Carpathians to 
75–110 km, under the Pannonian Basin System. Along the 
Carpathian Mts., the lithosphere thickness increases from  
the Western (~100 km) to the Eastern Carpathians (~240 km). 
The Southern Carpathians are characterised by a lithospheric 
thickness of ~180 km. 
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The first most prominent feature of the lithosphere thickness 
map (Fig. 9) is the existence of the lithosphere root in the 
Eastern Carpathians, which reaches a depth of ˃240 km.  
Based on the results of seismic tomography (Wortel & 
Spakman 2000), we suggest that the lithospheric root rep-
resents the remnant of a slab detachment. At the beginning  
of the Neo-Alpine evolution of the Carpathian–Pannonian 
region, the subduction process had been accompanied by roll-
back and slab detachment (Fig.10, Wong et al. 1997; Wortel & 
Spakman 2000). According to Wortel & Spakman (2000),  
the lower part of the broken slab gradually sank into the deeper 
mantle and formed a distinct horizontal P-waves velocity 
anomaly beneath the Pannonian Basin System. This anomaly 
represents the positive percentage deviation from average 
mantle velocities and extends to depths between 410 to 660 km. 
The seismic Pannonian anomaly is only part of the giant seis-
mic anomaly that can be observed at these depths below the 
Mediterranean region (Wortel & Spakman 2000). Recent con-
tinental lithosphere root in the Eastern Carpathians is the result 
of a gradual sinking of the upper part of the broken slab to 
depths greater than 240 km by continuation of the frontal col-
lision (convergence) in this region. According to Lillie et al. 
(1994) and Wortel & Spakman (2000), the seismic Vrancea 
zone (Bokelmann & Rodler 2014; Bala et al. 2021; Petrescu et 
al. 2021) could represent the last stage of the lateral migrating 
slab detachment process along the Carpathian orogen.

When comparing the lithosphere thickness in the Western 
and Eastern Carpathians, we can observe that the Western 
Carpathians are characterised by a much thinner lithosphere. 
The junction zone of the western part of the Western Car
pathians and the Bohemian Massif has a lithosphere thickness 
of 100–120 km and, unlike the Eastern and Southern Car
pathians, no lithospheric root is observed here. We assume that 
this fact can be explained by different Neo-Alpine evolution of 
this region. During the Tertiary collision, the ALCAPA micro-
plate, which represents a wedge-shaped mega-unit, was 
strongly squeezed into its Eastern Alpine part between the 
Adriatic indenter and the southern spur of the Bohemian 
Massif. The Western Carpathian part of the ALCAPA was 
extruded from this collision towards the unconstrained eastern 
area, occupied by an extended lithosphere underlying complex 
of the present Carpathian Flysch Belt (e.g., Balla 1984; 
Ratschbacher et al. 1991a, b; Csontos et al. 1992; Kováč et al. 
1994; Schmid et al. 2008). The ALCAPA lithosphere fragment 
moved towards the east along the left-lateral strike-slip 
Salzachtal–Ennstal–Mariazell–Puchberg fault zone in the 
Eastern Alps and along the similar Mur–Mürz–Leitha fault 
zone toward the northeast at the Alpine–Bohemian–Carpathian 
boundary (Ratschbacher et al. 1991a, b; Fodor 1995; Linzer 
1996; Lankreijer et al. 1999). This means that the relative 
movement of the ALCAPA lithosphere fragment changed 
from E to NE because of lateral extrusion (oblique collision). 
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This scenario could explain the absence of lithosphere  
thickening in this transition zone, since the movement was 
mainly strike-slip along a deep reaching fault following  
the contact of the European platform (Bohemian Massif) and 
the microplate ALCAPA (the Western Carpathians).

The second most prominent feature of the lithosphere mor-
phology is the very thin lithosphere beneath the Pannonian 
Basin System (only 75–90 km). The young and warm con
tinental back-arc Pannonian Basin System is characterised  
by not only upper mantle (Fig. 7), but also asthenosphere 

Fig. 8. a — Density model along the profile A–A´. The density contrast values are in g cm−3. b — Scheme of a narrow rift model (sub-basin) 
of continental extensional tectonics for the Pannonian Basin System (modified from Bielik & Ádám 2006).
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upwelling (Fig. 9). With its crustal (24–26 km) and litho-
spheric (75–90 km) thicknesses, the Pannonian Basin System 
belongs to the continental basin, which is characterised by one 
of the thinnest crusts and lithospheres worldwide. Based on 
geophysical features, it could be compared to the Basin and 
Range Province in North America (Lillie 2005). 

Conclusion

More than fifty years of detailed geophysical and geological 
research in the Carpathian–Pannonian region and its surroun
ding tectonic units have resulted in sufficient knowledge of 
their subsurface geology, crustal and lithospheric structure, 
and mantle processes. Data and results from interpretation of 
gravity data and integrated geophysical modelling have been 
reviewed in this paper with the aim of offering an optimal 
quantitative interpretation of the most significant gravity 
anomalies, as well as the explanation of varying lithospheric 
thicknesses in the studied area. And so, the most important 
observations and their interpretation have led to the following 
main conclusions:
•	 The most prominent feature of the complete Bouguer ano

maly map and the stripped gravity map is the Carpathian 
gravity low and the Pannonian gravity high. The Carpathian 
gravity low consists of the Western Carpathian gravity low, 
the Eastern Carpahian gravity low, and the Southern 
Carpathian gravity low, which correlate with the Western, 
Eastern, and Southern Carpathians. 

•	 The Western Carpathian gravity low consists of two diffe
rent gravity sub-lows: the External Western Carpathian 
gravity low and the Internal Western Carpathian gravity 
low. The source of the External Western Carpathian gravity 

low is low-density sediments of the External Western Car
pathians and the Western Carpathian Foredeep. The source 
of the Internal Western Carpathian gravity low is the Internal 
Western Carpathian upper crust (~18 km thick), which is 
built mostly by low-density granites and crystalline schists 
of the Alpine Tatric and Veporic units 

•	 The Eastern and Southern Carpathian gravity lows are 
caused by gravity effects of two different sources: the near-
surface and the deep one. The near-surface source is repre-
sented by the low-density sediments, which belong to the 
External Carpathians and the Foredeep. The deep source is 
formed by the crustal roots, which are located below the 
external parts of the Eastern and Southern Carpathians.  
The gravity effect of the deep source is approximately twice 
the size of the near-surface source.

•	 The source of the regional Pannonian gravity high is the 
Moho elevation.

•	 The local Transdanubian gravity high, Papuk gravity high, 
and Mecsek gravity high observed on the complete Bouguer 
anomaly map reflect the pre-Cenozoic rocks that build  
the Transdanubian Range, the Papuk Mts. and the Mecsek 
Mts. On the other hand, the stripped gravity map discovered 
considerable local gravity sub-highs: the Danube gravity 
high, Makó gravity high, Békés gravity high, and Trans
carpathian gravity high over the deepest sub-basins of the 
Pannonian Basin System. The sources of these local gravity 
sub-highs are high-density crustal bodies (Eo-Alpine meta-
morphic complexes) with density contrast of +0.30 g cm−3, 
whose apical parts reach depths of only 7 to 12 km. 

•	 The Eastern Carpathian lithosphere root is the result of  
a sinking upper part of the broken slab to a depth of  
˃240 km during the ongoing convergence between the Euro
pean platform and ALCAPA and Tisza–Dacia microplates, 
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which is characterised by frontal continental collision.  
It is assumed that the slab is formed by the continental 
lithosphere. 

•	 The junction zone of the Western Carpathians and the 
Bohemian Massif wasn’t accompanied by thickening of  
the mantle lithosphere, since the oblique continental colli-
sion dominated here. The collision probably took place 
along a deep reaching fault following the contact of the 
European platform (Bohemian Massif) and the microplate 
ALCAPA (the Western Carpathians).

•	 The Pannonian Basin system is characterised by one of  
the thinnest continental crusts (~25 km) and lithospheres 
(~75 km) in the world. 
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