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Abstract 

 
The precise positioning of satellites in Low Earth Orbits (LEO) has become a key technology 
for advanced space missions. Dedicated satellite missions, such as CHAMP, GRACE and 
GOCE, that aim to map the Earth’s gravity field and its variation over time with 
unprecedented accuracy, initiated the demand for highly precise orbit solutions of LEO 
satellites. Furthermore, a wide range of additional science opportunities opens up with the 
capability to generate accurate LEO orbits. For all considered satellite missions, the primary 
measurement system for navigation is a spaceborne GPS receiver. The goal of this thesis is to 
establish and implement methods for Precise Orbit Determination (POD) of LEO satellites 
using GPS. Striving for highest precision using yet efficient orbit generation strategies, the 
attained orbit solutions are aimed to be competitive with the most advanced solutions of 
other institutions.  
 
Dynamic and reduced-dynamic orbit models provide the basic concepts of this work. These 
orbit models are subsequently adjusted to the highly accurate GPS measurements. The GPS 
measurements are introduced at the zero difference level in the ionosphere free linear 
combination. Appropriate procedures for GPS data screening and editing are established to 
detect erroneous data and to employ measurements of good quality only. For the dynamic 
orbit model a sophisticated force model, especially designed for LEO satellites, has been 
developed. In order to overcome the limitations that are induced by the deficiencies of the 
purely dynamical model, two different types of empirical parameters are introduced into the 
force model. These reduced-dynamic orbit models allow for the generation of much longer 
orbital arcs while preserving the spacecraft dynamics to the most possible extent. The two 
methods for reduced-dynamic orbit modeling are instantaneous velocity changes (pulses) or 
piecewise constant accelerations. For both techniques highly efficient modeling algorithms 
are presented. The additional parameters are estimated within the adjustment process. In 
order to regulate their impact on the dynamic solution, the empirical parameters are 
assigned statistical a priori information. This allows for a perfect synergy of the advanced 
knowledge of spacecraft dynamics and the high accuracy of the GPS measurements. 
 
The developed routines have been implemented in a computer program and tested for 
CHAMP and GRACE. The applied strategies proved to be highly efficient, robust and flexible.  
The attained orbit solutions are validated against solutions of other well-established POD 
methods. It is shown, that dynamic POD delivers accuracies at the 1 dm level for orbital 
lengths of up to 90 minutes. Furthermore, employing an adequate number of pseudo-
stochastic parameters with optimal weighting, reduced-dynamic orbit determination is a 
powerful strategy for LEO POD. Orbital arcs over a whole day can be generated with an 
accuracy of up to 4.5 cm RMS. 
 
 
  





 

 

 
 

Kurzfassung 

 
Die präzise Bahnbestimmung von Satelliten in niedrigen Erdumlaufbahnen (LEO für Low 
Earth Orbit) entwickelte sich zu einem zentralen Verfahren für moderne 
Weltraummissionen. Das Erfordernis hochgenauer Orbitlösungen wurde wesentlich durch 
dedizierte Satellitenmissionen, wie CHAMP, GRACE und GOCE, ausgelöst, mit dem Ziel das 
Schwerefeld der Erde und dessen zeitliche Variation mit bisher unerreichter Genauigkeit zu 
bestimmen. Durch die Möglichkeit, LEO Satellitenbahnen genau zu bestimmen, eröffnen sich 
zusätzlich weitreichende wissenschaftliche Möglichkeiten. Das zugrundeliegende 
Messsystem für die Navigation dieser Satellitenmissionen sind GPS-Empfänger. Es ist das Ziel 
dieser Arbeit, Methoden zur exakten Bahnbestimmung (POD für Precise Orbit 
Determination) mittels GPS von LEO Satelliten zu entwickeln und umzusetzen. Dabei wird ein 
Höchstmaß an Genauigkeit angestrebt, bei gleichzeitiger Achtung auf Effizienz und 
Schnelligkeit der zum Einsatz kommenden Verfahren. Die erstellten Bahnlösungen sollen die 
Qualität der Lösungen etablierter Methoden anderer Organisationen erreichen. 
 
Dynamische und reduziert-dynamische Bahnmodelle bilden die Grundlage der hier 
verwendeten Verfahren. Diese Modelle werden an die hochgenauen GPS-Messungen 
angepasst. Dabei werden die GPS-Messungen undifferenziert in der ionosphärenfreien 
Linearkombination verwendet. Es werden geeignete Methoden entwickelt um fehlerhafte 
Beobachtungsdaten zu detektieren und herauszufiltern. Für das dynamische Bahnmodell 
wird ein hochentwickeltes Kraftfeld speziell für LEO Satelliten erarbeitet. Um die dennoch 
eingeschränkte Einsatzfähigkeit rein dynamischer Modelle auszugleichen, wird das 
Bahnmodell alternativ um zwei verschiedene Arten empirischer Parameter erweitert. Das 
resultierende reduziert-dynamische Orbitmodell erlaubt die Erstellung weit längerer 
Bahnbögen unter größtmöglicher Bewahrung der dynamischen Gesetzmäßigkeiten. Als 
reduziert-dynamische Methoden werden Geschwindigkeitssprünge an vorgegebenen 
Zeitpunkten (Pulse) oder abschnittsweise konstante Beschleunigungen eingesetzt. Für beide 
Techniken kommen hocheffiziente Algorithmen zur Anwendung. Die Bestimmung der 
zusätzlich eingeführten Parameter erfolgt während der Anpassung an die Messdaten. Dabei 
werden diesen Parametern statistische Eigenschaften vorgegeben um deren Einfluss auf die 
Bahnlösung zu kontrollieren. Hiermit wird ein ausgezeichnetes Zusammenwirken des 
fortgeschrittenen Kenntnisstandes über Bahnbewegung und der hohen Genauigkeit der GPS-
Messungen erzielt.  
 
Die entwickelten Verfahren wurden in einem Computerprogramm umgesetzt und für die 
Missionen CHAMP und GRACE getestet. Die verwendeten Verfahren erwiesen sich als 
überaus effizient, robust und flexibel. Im Vergleich zu Bahnlösungen anderer bewährter 
Verfahren erreichen dynamisch erstellte Lösungen, mit Bahnlängen bis zu 90 Minuten, 
Genauigkeiten im 1-Dezimeterbereich. Mit dem Einsatz einer angemessenen Anzahl pseudo-
stochastischer Parameter mit entsprechender Gewichtung, eignet sich die reduziert-
dynamische Bahnbestimmung hervorragend für LEO-POD-Anwendungen. Es werden 
Genauigkeiten von bis zu 4.5 cm RMS für Orbitlösungen über einen ganzen Tag erreicht. 
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1 Introduction 

 
The aim of this thesis is to develop and implement methods for the determination of the 
position and velocity of spacecraft in low Earth orbits with the most possible precision. The 
developed algorithms should deliver competitive results compared to orbit solutions of 
other highly accurate orbit determination technologies. In addition, it is intended that the 
established procedures are efficient, robust and yield very fast computation times.  
 
The equipment of Low Earth Orbiters (LEOs) with spaceborne Global Positioning System 
(GPS) receivers offers a unique possibility for Precise Orbit Determination (POD). For 
satellites orbiting at altitudes of up to 1500 km the extremely precise GPS measurements 
can be collected globally, densely and with a good viewing geometry. In the last years 
several technologies have been developed to make use of the GPS to determine the orbits of 
LEOs with unprecedented accuracy.  
 
The methods of dynamic and reduced-dynamic orbit modeling are chosen as the two basic 
concepts for this research. Dynamic orbit models allow for the incorporation of a priori 
knowledge of the motion of spacecraft to the highest possible extent. This is done by 
introducing the spacecraft dynamics especially relevant for low Earth orbits. Today, the 
models which describe the forces that govern the motion of a LEO satellite are mostly highly 
advanced. In recent years especially highly accurate Earth gravity field models habe been 
developed. However, several uncertainties remain in the modeling of LEO dynamics. 
Predominantly the impact of the upper atmosphere cannot be modeled with satisfactory 
accuracy. Thus, the use of purely dynamic orbit solution is limited in terms of orbital lengths. 
Therefore, in this research the dynamic force model is augmented by two different types of 
empirical models to overcome the inflexibility of the dynamic model within the adjustment 
process. This will be achieved by either instantaneous velocity changes (pulses) at 
predefined epochs or by piecewise constant accelerations over predefined time intervals. By 
this means, the rigidity of the dynamics is reduced by the necessary extent to enable the 
trajectory to fit optimally to the measurements. The parameters of the empirical models are 
assigned statistical properties to allow for an adequate balance between the impact of the 
dynamic principles and the precision of the GPS observations. Thus, reduced-dynamic orbit 
solutions fully exploit the accuracy of the GPS measurements while retaining a maximum of 
information about orbital motion. 
 
In this work, the GPS measurements are incorporated in the zero difference mode. Due to 
the availability of highly accurate GPS orbit and clock data, the direct introduction of 
undifferenced GPS observations yields an efficient and yet precise technique. In order to 
employ only GPS data of good quality, adequate data screening has been developed to 
reliably reject erroneous data and detect interruptions in the observation of the GPS carrier 
phases. The adjustment of the adopted orbit models to the cleaned measurements is 
performed in the batch mode. Here, the whole observation data over the concerned orbital 
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arc is processed in one step. This method promises to be very robust and to yield the most 
accurate and best fitting solution. 
 
In the following chapters, the entire process of dynamic and reduced-dynamic orbit 
determination will be discussed in full detail. The descibed methods were implemented into 
a computer program and are tested with real LEO GPS data. The capabilities as well as the 
limitations of the established POD strategies will be assessed for various model and data 
configurations. It will be shown that the generated orbit solutions are of extremely good 
quality and the developed software may be used for many POD and POD related 
applications. 
 
 

1.1 LEO Precise Orbit Determination in Geodesy 

 
The motivation for precise orbit determination from a geodetic point of view is driven by the 
fact that from the very beginning of spaceflight artificial satellites of all kinds and orbits 
played a key role for all fundamental fields of research in geodesy. Satellites orbiting at high 
altitues, like GPS or other Global Navigation Satellite System (GNSS) satellites, are and have 
been of vital importance for the determination of the seize and shape of the Earth as well as 
of its rotational behavior. 
 
The motion of artificial satellites orbiting the Earth is governed by a multitude of forces 
induced by various interactions between the satellites and the physical environment of the 
Earth. Satellites in LEO orbits are especially sensitive to geophysical properties like the 
Earth’s gravity field and the atmosphere, which represent yet further areas of primary 
geodetic interest. The big advantage of satellite gravity field mapping is that a global and 
homogeneous coverage of the Earth is obtained. The exact knowledge of the motion of 
satellites, such as position and velocity, stability and variation of the orbit geometry, is 
therefore of great importance for these areas of research.  
 
A series of dedicated missions, equipped with geodetic-type spaceborne GPS receivers, has 
been launched for the generation of high-fidelity gravity field models, GPS radio occultation 
to sound the atmosphere and radar or laser altimetry. LEO POD is therefore presently an 
important and evolving technology, under intensive development and research. In addition, 
new science opportunities emerge through the analysis of ground reflected GPS signals. The 
highly successful missions have already delivered extremely valuable data and products, and 
are continuing to do so. New missions of single or multiple spacecraft for geodetic research 
will certainly be deployed. 
 
Thus, LEO POD in geodesy is driven by a continuous demand for ever increasing accuracy of 
orbital solutions of LEO satellites. This holds not only for the spacecraft position but also for 
its velocity and acceleration, primarily for the determination of Earth gravity field models. 
Therefore, advanced orbit modeling is required to most realistically represent the trajectory. 
Furthermore, real-time or near real-time orbit determination is especially required for 
atmospheric sounding. Thus, the underlying algorithms increasingly need to be efficient to 
yield a fast generation of orbit solutions. 
 



Introduction  3 

 

 

1.2 Outline 

 
This thesis provides a thorough treatment of the whole process of dynamic and reduced-
dynamic orbit determination. 
 
Chapter 2, LEOs using GPS, gives an introduction of the basic concept of LEO orbit 
determination using GPS measurements. An overview of the most dedicated geodetic LEO 
space missions is given, with the missions CHAMP, GRACE and GOCE being discussed in 
detail. 
 
Chapter 3, Fundamentals of GPS, provides a short overview of the Global Positioning System. 
The applied GPS observational models are discussed in detail. In addition, a review of 
available GPS orbit and clock data as well as an assessment of the quality of the employed 
GPS data is given. 
 
Chapter 4, Precise LEO Orbit Determination, gives a detailed description of the applied 
dynamic and reduced-dynamic orbit determination models. Highly efficient algorithms for 
reduced-dynamic orbit determination using either instantaneous velocity changes or 
piecewise constant accelerations are outlined. Furthermore, efficient procedures for data 
screening and editing, the principles of least-squares estimation, the necessary reference 
frame transformations and a method for initial orbit determination are explained.  
 
Chapter 5, The Software ORBIT, gives an overview of the structure and features of the 
established software ORBIT. 
 
Chapter 6, Results for CHAMP and GRACE POD, demonstrates the capabilities of the 
developed strategies using real LEO GPS data. The attained orbit solutions are compared to 
highly accurate solutions of other institutions to assess their quality. 
 
Chapter 7, Conclusion and Outlook, finally sums up the achieved results and provides an 
outlook for POD applications related to this work. 
 
 
 
 
 



 

 
 

2 LEOs using GPS 

Satellites orbiting the Earth at altitudes below 1500 km are commonly classified as Low Earth 
Orbiters (LEOs) [Capderou, 2005]. The LEO segment is the most populated of all space 
segments [Wertz, 2001]. LEO satellites serve for almost the whole range of space 
applications comprising scientific, commercial and military missions. Figure 2.1 shows a 
typical LEO orbit (CHAMP over 1 hour in a height of approximately 400 km). 
 

 
 
                 Figure 2.1: Orbit of a LEO satellite (CHAMP) 

 
 
On the other hand, satellites of the Global Positioning System (GPS), as well as satellites of 
other global navigation satellite systems (GNSS), orbit at much higher altitudes of around 
20000 km above the surface of the Earth in so-called medium Earth orbits (MEO) [Capderou, 
2005]. The GPS satellites emit navigation signals within a cone of about 15 degrees aperture 
from the nadir direction [Švehla and Rothacher, 2005 and Wertz, 2001]. This makes GPS 
capable of serving as a spaceborne orbit navigation and control system for LEO satellites, 
following the concept of satellite-to-satellite tracking (SST). Figure 2.2 displays the concept 
of SST. Because these inter-satellite links are made between a high orbiting GPS satellite and 
a LEO satellite, the concept is more specifically referred to as high-low SST (hl-SST). For 
higher orbiting satellites the use GPS is usually not feasible, because of not enough GPS 
satellites in view, due to the limited emission section of 15 degrees [Wertz, 2001]. 
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          Figure 2.2: The concept of satellite-to-satellite tracking 

 
The possibility of making use of the GPS for orbit determination (OD) of other spacecraft was 
demonstrated for the fist time in 1984 reaching navigational accuracies of 50 m for the 
LANDSAT-4 satellite [Jäggi, 2006]. Since that time significant advancements in receiver 
technology and processing techniques made spaceborne GPS navigation a well established 
technology, delivering superb accuracies at very low costs. The achievable high accuracy, the 
global coverage and the three-dimensional nature of the GPS measurements are striking 
advantages over other traditional satellite tracking systems [Kroes, 2006].  
 
Today GPS receivers are the primary navigation system for many satellite missions. A variety 
of manufacturers offer GPS receivers for spacecraft OD [Wertz, 2001]. In most cases, a 
medium navigational accuracy is sufficient. For this purpose commercial off-the-shelf 
receivers (mostly single-frequency receivers) are a cheap and well-established means for OD 
[Montenbruck et al., 2007]. For LEO satellites equipped with single-frequency receivers 
orbital accuracies of 1 – 10 meters could be achieved [Gill and Montenbruck, 2004 and 
Montenbruck, 2003].  
 
For scientific applications, especially for geodetic research, orbit accuracies of the best 
possible extent are of significant interest. Along with the appearance of dedicated LEO 
missions for geodetic and geophysical research precise orbit determination (POD) for LEOs 
became a key technology in recent years. It has to be mentioned that LEO POD crucially 
relies on POD of GPS satellites, which has reached an excellent quality over the last years 
[IGSCB, 2005]. 
 
To make the best use of the highly accurate GPS measurements, advanced dual-frequency 
receivers are necessary. Table 2.1 lists some important LEO missions carrying geodetic-type 
GPS receivers onboard [Jäggi, 2006]. All these missions demand highest orbit accuracies. 
Topex/Poseidon was the first space mission dedicated to the investigation of the circulation 
of the oceans [Fu et al., 1994]. It carried the first spaceborne radar altimeter to map the 
ocean topography. Mocrolab-1 was the first mission to demonstrate the ability of GPS radio 
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occultation for atmosphere sounding [Rocken et al., 1997]. It carried a GPS antenna which 
was pointed 90 degrees with respect to the zenith direction. This enables to analyze signals 
that propagate horizontally through the atmosphere. By sounding the atmosphere with GPS 
for each day a large amount of globally distributed atmospheric profiles, e.g. of temperature, 
can be obtained [Kursinski et al. 1997]. The mission Satelite de Aplicanciones Cientificas-C 
(SAC-C) carries, among several other scientific instruments, a GPS receiver which serves a 
total of four antennas [SAC-C, 2009]. The antennas are mounted zenith-viewing for POD, 
fore- and aft-viewing for atmosphere sounding and also nadir-viewing for GPS altimetry by 
means of GPS signals reflected by the Earth’s oceans. JASON-1 is the follow-on mission of 
TOPEX/Poseidon [JASON-1, 2009]. It is equipped with an advanced instrument for dual-
frequency radar altimetry, but also carries a BlackJack GPS receiver, a retro-reflector array 
for SLR and a Doris receiver for POD. For Jason-1 a record of 1 cm radial accuracy has been 
reached [Luthcke et al., 2003 and Haines et al., 2004]. This is mainly due to its altitude of 
over 1300 km, where atmospheric drag is at a very low level. For satellites at lower altitudes 
precise orbit determination becomes more difficult, because of the increasing influence of 
the atmosphere. The Ice, Cloud and Land Elevation Satellite (ICESat) was designed to 
measure the annual and long-term behavior of the cryosphere [Schutz et al., 2005] using a 
dedicated laser altimetry system. As a crucial condition for altimetry, ICESat is equipped with 
a BlackJack receiver for precise orbit determination. Radial accuracies of 2 cm have been 
achieved for ICESat which orbits at about 600 km [Rim et al., 2005]. The Formosat-3 mission, 
also referred to as Cosmic (Constellation Observing System for Meteorology, Ionosphere and 
Climate) mission, is a constellation of six microsatellites [Wu et al., 2005]. Each satellite 
carries two GPS antennas for precise orbit determination and two GPS occultation limb 
antennas for atmosphere sounding. 
 
However, geodetic missions for studying the Earth’s gravity field require highest orbital 
accuracies at the lowest possible altitudes. In the following the three most important and 
most dedicated geodetic missions, namely CHAMP, GRACE and GOCE, are discussed in more 
detail. 
 

       Table 2.1: LEOs using geodetic-type GPS receivers [Jäggi, 2006] 
 

Satellite Apogee (km) Perigee (km) Inclination (°) Launch date 

TOPEX/Poseidon 1331 1317 66.1 10 Aug. 1992 
MicroLab-1 749 733 70.0 3 Apr. 1995 
CHAMP 477 416 87.3 15 Jul. 2000 
SAC-C 707 687 98.2 21 Nov. 2000 
JASON-1 1333 1318 66.1 7 Dec. 2001 
GRACE 1,2 506/507 483/483 89.0 17 Mar. 2002 
ICESat 598 595 94.0 13 Jan. 2003 
Formosat 3A,B,D-F 524-543 496-508 72.0 15 Apr. 2006 
Formosat 3C 828 776 72.0 15 Apr. 2006 
GOCE 270 270 96.5 exp. Mar. 2009 
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2.1 CHAMP 

 
The German CHAMP (CHAllenging Minisatellite Payload) mission marked the first of a series 
of dedicated LEO satellite missions to study the Earth’s gravity field *Reigber et al., 2003]. 
The mission is managed by the GeoForschungsZentrum (GFZ) Potsdam, Germany [CHAMP, 
2008]. CHAMP was launched from Plesetsk, Russia on 15 July 2000 into a near polar orbit 
with an inclination of 87° to obtain an almost global orbit coverage of the Earth. The orbit is 
near circular and had an initial altitude of approximately 454 km. Atmospheric drag is 
continuously lowering the satellite. Depending mostly on the density of the upper 
atmosphere, the spacecraft loses between some 10 to almost 100 meters per day in height. 
However, the envisaged mission lifetime of five years could repeatedly be prolonged by orbit 
maneuvers [Jäggi, 2006].  
 
The spacecraft (see Figure 2.3) is 8.333 m long, 1.621 m wide and has a height of 0.750 m. 
Its mass amounts 522 kg. 

 

 
 
    Figure 2.3:  An artist’s impression of the CAHMP satellite in orbit 
             [courtesy of Astrium GmbH] 

 
 
The CHAMP mission aims to study the Earth’s gravitiy field, its magnetic field and the 
physical properties of the troposphere and ionosphere [Reigber et al., 2003]. In order to 
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achieve these goals, the spacecraft is equipped with several highly accurate scientific 
instruments. For the determination of the gravity field a GPS receiver, an accelerometer, SLR 
reflectors and star sensors are the most relevant instruments. For the other scientific 
research goals the satellite is additionally equipped with a magnetometer and an ion drift 
meter [Reigber et al., 2003]. 
 
The satellite carries a BlackJack GPS receiver which was manufactured by the Jet Propulsion 
Laboratory (JPL) [Kuang et al., 2001]. It is connected to a total of four GPS antennas and 
collects dual-frequency phase and pseudo-range measurements. The prime antenna is 
equipped with a choke ring and mounted on top of the satellite and serves for precise orbit 
determination [Kroes, 2006]. A backup antenna for POD is mounted right next to it. On the 
rear side of the spacecraft another antenna is placed for occultation measurements to sound 
the atmosphere [Wickert et al., 2005]. The fourth antenna is positioned nadir-looking to be 
used for GPS altimetry.  
 
To keep the spacecrafts attitude within a few degrees with respect to its nominal attitude 
cold gas thrusters are regularily fired (between 70 and 200 times per day) [Jäggi, 2006]. The 
spacecrafts attitude is autonomously determined by star sensors. The ASC (Advanced Stellar 
Compass) sensors provide attitude measurements with a precision of approximately 4 arcsec 
[Jäggi, 2006]. 
 
For the gravity field estimation the non-conservative forces acting on the satellite must be 
separated from the conservative forces. This task is performed by an accelerometer which is 
located within 2 mm from the center of mass. The STAR (Space Triaxial Accelerometer for 
Research missions) instrument measures the accelerations acting on the spacecraft along all 
three body axes with highest precision [Reigber et al., 2003]. 
 
For an independent tracking of the satellite by Satellite Laser Ranging (SLR), CHAMP 
additionally carries a laser retro-reflector array on its bottom side. This allows for validation 
of the orbit solution derived purely from GPS measurements. 
 
 

2.2 GRACE 

 
The Gravity Recovery and Climate Experiment (GRACE) mission, see Figure 2.4, can be 
considered as the direct follow-on mission to CHAMP [Tapley et al., 2004b]. It is a joint 
German - US mission conducted by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) 
and the US National Aeronautics and Space Administration (NASA) [GRACE, 2008]. GRACE 
consists of two almost identical satellites flying in formation. The orbital characteristics are 
relatively similar to that of CHAMP, with the two satellites orbiting in the same trajectory 
with a nominal distance of approximately 220 km [GRACE, 2008]. The two satellites were 
launched on 17 March 2002 from Plesetsk, Russia. The orbit is near circular and near polar 
with an inclination of 89° and an initial altitude of 500 km. Orbital maneuvers are carried 
out at intervals of about 50 days to maintain the two spacecraft GRACE A and GRACE B 
within a distance of 170 and 270 km. GRACE A was initially the leading satellite of the 
formation. To avoid atmospheric surface erosion of the instruments a switch maneuver was 
conducted on 10 December 2005 making GRACE B the leading satellite [Jäggi, 2006]. 
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     Figure 2.4:  An artist’s impression of the GRACE satellites in orbit  
              [courtesy of University of Texas]  

 
 
The two GRACE spacecraft are of the same size with a lengh of 3.122 m, a width of 1.942 m 
and a height of 0.720 m [Jäggi, 2006]. The primary mission goal is to map the Earth’s gravity 
field and its temporal variation with unprecedented accuracy [Tapley et al., 2004b]. For this 
purpose, like for the CHAMP mission, the GRACE satellites themselves can be considered as 
the main scientific instruments. They are free falling proof masses that probe the Earth’s 
gravity field. To accurately track the spacecrafts trajectory the satellites are equipped with 
several instruments for precise orbit determination. These comprise a JPL BlackJack receiver, 
a SuperSTAR accelerometer, autonomous star sensors and SLR reflectors. In addition, the 
two satellites are equipped with a ranging system to measure the (biased) distance between 
the two spacecraft [Kang et al., 2006a]. This K/Ka-Band Ranging (KBR) system can be 
considered as the key instrument of the GRACE mission.  
 
The GPS BlackJack receiver is a dual-frequency codeless type receiver which serves a total of 
three antennas mounted on the spacecraft. The main antenna for precise orbit 
determination is placed zenith-viewing and is equipped with a choke ring. The other two 
antennas are limb-viewing for atmosphere sounding.  
 
The SuperSTAR accelerometer is a modified model of the STAR accelerometer as it is used 
for CHAMP. The accuracies of the measured accelerations are specified with 10−10 𝑚 𝑠2  for 
the radial and along-track directions, and 10−9 𝑚 𝑠2  for the cross-track component [Kang et 
al., 2006b].  
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The orientation of the GRACE spacecraft is monitored by star camera assemblies (SCA) which 
measure the attitude of the satellites with a precision of approximately 25 arsec. This is a 
little bit less accurate than for CHAMP, because the vector measurements of the 
magnetosphere demand highest precision attitude data for CHAMP. However, accurate 
maintenance of the line-of-sight pointing of the K-band radar is necessary. Therefore the 
GRACE attitude control is very accurate and the actual attitude coincides with the nominal 
attitude model by less than 0.4° [Kirschner et al., 2001]. It is therefore appropriate to use the 
nominal attitude model for the center of mass correction of the GPS signals, because the 
GPS antenna is separated from the center of mass of the satellite by 0.450 m which relates 
to an effect of incorrect attitude of only 0.1 mm [Kang et al., 2006a]. 
 
The key instrument of the GRACE mission, however, is the K/Ka-Band inter-satellite ranging 
system. The two GRACE satellites form a gradiometer that is particularly sensitive to high-
order harmonic components in the Earth's gravity field [Kirschner et al., 2001]. The system 
delivers ultra-precise measurements of the change of distance between both spacecraft. The 
KBR system generates K- and Ka-band microwave signals at 24.5 GHz and 32.7 GHz for the 
generation of ionosphere free biased range measurements. The precision of these 
observations is of 10 μm at 1 Hz samples [Dunn et al., 2003]. The concept of two LEO 
satellites measuring their mutual distance is generally denoted as low-low satellite-to-
satellite tracking (ll-SST) [van Loon, 2008]. 
 
 

2.3 GOCE 

 
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) is so far the last of a 
series of dedicated gravity field satellite missions [GOCE, 2008]. It is managed by the 
European Space Agency (ESA) as part of its “Living Planet Program“. The project experienced 
several delays and the satellite was eventually launched on 17 March 2009. Atfer the 
commissioning phase, it will be an ideal complement to the existing CHAMP and GRACE 
missions.  
 
The GOCE satellite (see Figure 2.5) is the first satellite to carry a gradiometer onboard. Three 
pairs of accelerometers measure the gravity gradients in three orthogonal directions. The 
baselines between the accelerometers are approximately 0.5 m. The accelerometers will 

work with a precision of 10−12 𝑚 𝑠2  𝐻𝑧  [Drinkwater et al., 2007]. The difference of the 
respective accelerometer readings is the actual gradiometer measurement, and the half of 
the sum of the readings represents the total external acceleration acting on the satellite 
[Jäggi, 2006]. The data of the Electrostatic Gravity Gradiometer (EGG) will allow for a high 
resolution recovery of the static gravity field of homogeneous quality with unprecedented 
accuracy and resolution. The resulting products will eventually yield a remarkable step 
forward in ocean, solid Earth and sea-level modelling.  
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Figure 2.5: An artist’s impression of the GOCE satellite in orbit [courtesy of ESA] 
 
For a spaceborne gradiometer a very low orbit is preferable because it implies stronger 
signals and a better accuracy. Therefore, GOCE will start operation at an altitude of 250 km. 
This will allow for a mapping of the gravity field with a precision of 1 mgal which relates to a 
determination of the geoid with a precision of 1 to 2 cm [Drinkwater et al., 2007]. The orbit 
will be inclined by 96.5° and almost circular for global coverage. The nominal mission 
duration is set to 20 month in a sun-synchronous dusk-dawn configuration. In contrast to 
the CHAMP and GRACE missions the GOCE satellite will orbit using drag-free control. An 
assembly of ion thrusters will work to overcome drag in the along-track direction. The drag-
free attitude-control system comprises star trackers, Sun and Earth sensors [Drinkwater et 
al., 2007]. The spacecraft propulsion for flying in drag-free mode is necessary to prevent the 
satellite from declining too rapidly due to atmospheric drag in its very low altitude. The 
mission duration is thus ultimatively dependent on the lifetime of the ion thruster. In 
addition, to keep the effect of atmospheric drag low, the spacecraft is shaped like an 
arrowhead with a minimized cross-section of 0.8 m2 in the direction of flight [Drinkwater et 
al., 2007]. The satellite has a lengh of 5 m and a mass of 1100 kg.  
 
It must be pointed out that for the GOCE mission the gradiometer is the main measurement 
system, and not the satellite body itself, like it is for the CHAMP and GRACE missions. Non-
gravitational effects acting on a spacecrafts surface exhibit constant accelerations 
throughout the spacecrafts body. Thus, gradiometer measurements, acquired through 
forming the difference between two accelerometer measurements, are not affected from 
non-gravitational forces. Therefore, flying in drag-free mode is possible for gravity field 
recovery with gradiometry.  
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In order to locate its measurements with respect to the Earth, the satellite gradiometry will 
be complemented by instruments for precise orbit determination. The dual-frequency 
Lagrange GPS receiver is connected to two GPS antennas and can track up to twelve GPS 
satellites. The Lagrange receiver provides high precision GPS data at a sample rate of 1 Hz 
[Drinkwater et al., 2007]. Like the CHAMP and GRACE satellites, a laser retro-reflector array 
is mounted on the botton side of the GOCE satellite.  
 
 
 



 

 
 

3 Fundamentals of GPS 

 
Besides a wide range of terrestrial applications, GPS is also a highly capable means for 
spacebased applications like orbit navigation and control of LEO satellites. Compared to 
other orbit navigation systems, GPS has the striking advantage of remarkable accuracy with 
a global coverage. The relevant information and the mathematical framework about GPS, as 
needed for the POD applications applied in this research, will be provided in the following. 
The employed observation types, what affects them and how they are prepared for 
positioning will be outlined in detail. 
 
 

3.1 The Global Positioning System – an Overview 

 
As described in Leick [2004], the Global Positioning System is operated by the U.S. 
Department of Defense as a space-based radio navigation system. It nominally consists of 24 
satellites distributed over six orbital planes. The planes are inclined by 55° with respect to 
the Earth’s equator and equally spread by 60° on the equator. The orbits are near circular 
with a semi-major axis of about 26600 km. Figure 3.1 illustrates a GPS satellite orbit over a 
time intervall of 10 hours. 
 

 
 

Figure 3.1: Orbit of a GPS satellite over 10 hours 



Fundamentals of GPS  14 

 

The revolution period for GPS satellites is about 11 hours and 58 minutes atomic time, 
which corresponds to half a sidereal day. As a consequence, the ground track of each 
satellite repeats itselve twice a day in an Earth-fixed reference system. The entire 
constellation of all the GPS satellites is denoted as the space segment. The full operational 
capability (FOC) of the space segment was declared in July 1995. FOC assures that there are 
permanently at least four or more GPS satellites in view for any location on the Earth and 
within its vicinity of about 1000 km elevation [Wertz, 2001]. However, the space segment 
gets continuously maintained and modernized, with satellites of newer generations 
replacing out-dated ones. GPS satellites are produced in always modernized tranches, 
denoted as Blocks. These are Block I, Block II, Block IIA (‘A’ denotes advanced), Block IIR (‘R’ 
denotes replenishment), Block IIR-M (‘M’ denotes modernized), Block IIF (‘F’ denotes follow 
on) and Block III [Hofmann-Wellenhof et al., 2008]. As of April 2008, there are 32 active 
satellites in orbit ranging from Block IIA to Block IIR-M [Hugentobler, 2008]. Figure 3.2 
displays the status of the space segment as of 7 April 2008. The modernization of GPS also 
includes new signals on additional frequencies, starting with BlockIIR-M. The receivers that 
provide data for this research only make use of the initially provided signals. Therefore, only 
these initial signals and frequencies are discussed in the following chapters. Nevertheless, 
the types of the different GPS satellites must be distinguished for applying different 
corrections to the observations (see Section 3.1.1). 
 
 

                                     

 
         Figure 3.2:  The GPS space segment (Status as of 7 April 2008) 
                   [courtesy of Hugentobler, 2008] 

 
 
Each satellite continuously emits data on two carriers, denoted as 𝐿1 and 𝐿2, in the 
microwave L-band. As already mentioned, the emission of the signals covers the area of a 
cone around the nadir direction with an opening angle of approximately 15 degrees. The 
two frequencies, 𝑓1  and 𝑓2, and their corresponding wavelengths, 𝜆1 and 𝜆2, amount to 
[Hofmann-Wellenhof et al., 2008] 
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𝑓1 = 1575.42 MHz
𝑓2 = 1227.60 MHz

     with   
𝜆1 ≈ 19.0 cm ,
𝜆2 ≈ 24.4 cm .

 (3.1) 

For the acquisition and tracking of the signals, so-called pseudo random noise (PRN) codes 
are generated and modulated onto the carriers. The coarse acquisition (C/A) code is modu-
lated onto the first frequency only. It is freely accessible for all users. The more accurate 
precision (P) code is modulated on both of the frequencies. Direct observation of the P-code 
is usually restricted to authorized users by “anti-spoofing” (AS), which generates an 
encrypted version of the P-code, called P(Y)-code [Kroes, 2006].  
 
As described later, the orbit determination methods used throughout this research are 
based on undifferenced observation data. An important precondition for this approach is 
that the intentional manipulation of GPS clocks and orbits, called selective availability (SA) 
remains turned off as it is the case since 2 May 2000 [Hofmann-Wellenhof et al., 2008]. 
 
Besides the signals for navigation, GPS satellites additionally emit the broadcast message 
which contains information comprising the satellite‘s orbit ephemeris data and clock offset 
estimations, the satellite‘s health status, i.e. the satellite’s operational status, various 
correction data, such as ionospheric corrections, and other data messages [Hoffmann-
Wellenhof, 2008]. However, for applications as presented in this work, the accuracy of the 
broadcast orbit and clock data is too coarse to reach the intended precision for LEO 
positioning [IGSCB, 2005]. Precise orbit and clock data of the GPS satellites must therefore 
be acquired from external sources. 
 
 

3.1.1 GPS Orbit and Clock Products 

 
Accurate orbit and clock information is of crucial importance for any precise GPS application, 
especially for the chosen zero difference approach of this research (see section 3.2). For 
post-processing applications, as it is the case in this research, other data than that contained 
in the broadcast message can easily be employed. For GPS and other Global Naviation 
Satellite Systems (GNSS) the International GNSS Service (IGS) is the primary provider of 
precise orbit and clock products. As a service of the International Association of Geodesy 
(IAG), the IGS is a well-established voluntary federation of more than 200 worldwide 
agencies that collect station data and contribute to the generation of highly accurate GNSS 
ephemerides [Dow et al., 2005]. The number of contributors to the IGS and the achieved 
product quality is continuously increasing. Due to the worldwide participation of 
organizations to the IGS, one of its most decisive advantages is that it maintains a large and 
globaly distributed network of over 300 tracking stations (see Figure 3.3). Furthermore, the 
IGS provides Earth orientation parameters (ERPs), coordinates and velocities of the tracking 
stations, global ionosphere maps and tracking station troposphere zenith wet delays [Dow et 
al., 2005]. All data and products of the IGS are currently free of charge and will apparently 
stay freely available in the foreseeable future. 
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            Figure 3.3: The IGS Tracking Network [courtesy of IGS] 

 
 
Within the IGS, several analysis centers (ACs) produce independent orbit and clock data. 
These solutions are afterwards combined to a single IGS product by suitable weighting. 
Currently three types of ephemerides with different latencies are offered [IGSCB, 2008], 
namely the final, rapid and ultra-rapid products (see Table 3.1). The final orbits and clocks 
are published with a latency of about 13 days after each week. They are the most carefully 
processed and quality controlled solution with a reported orbital accuracy of better than 5 
cm root mean square (RMS). The rapid solution is already made available approximately 
some 17 hours after the end of the day. Today the rapid solution already achieves an 
accuracy comparable to the final solution. The ultra-rapid solution contains an observed and 
a predicted part. It is updated four times daily, with the observed half even too reaching this 
high accuracy level of the other solutions, whereas the accuracy of the prediction decreases 
to about 10 cm RMS for the orbits. The ultra-rapid solution is especially intended for real-
time applications.  
 

           Table 3.1: IGS orbit and clock products [IGSCB, 2008] 
 

Solution Product Accuracy Rate Latency 

Final 
Orbits < 5 𝑐𝑚 15 min 

13 days 
Clocks  < 0.1  𝑛𝑠 5 𝑚𝑖𝑛 

Rapid 
Orbits < 5 𝑐𝑚 15 𝑚𝑖𝑛 

17 hours 
Clocks 0.1  𝑛𝑠 5 𝑚𝑖𝑛 

Ultra-Rapid 
(observed) 

Orbits < 5 𝑐𝑚 15 𝑚𝑖𝑛 3 hours 
Clocks ~0.2  𝑛𝑠 

Ultra-Rapid 
(predicted) 

Orbits 10 𝑐𝑚 
15 𝑚𝑖𝑛 real – time 

Clocks 5  𝑛𝑠 
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The IGS uses a set of various standard formats for its data and products. The above 
described ephemerides are provided in the SP3 format [Hilla, 2007]. Therein, positions, 
velocities and also clock offsets of the GPS satellites are provided in a temporal resolution of 
15 minutes. For high-precision applications the satellite clocks are additionally offered 
separately with a rate of 5 minutes or even 30 seconds, delivered in the clock-RINEX format 
[Ray and Gurtner, 2006].  
 
The orbits are expressed in the International Terrestrial Reference Frame, i.e. an Earth-fixed 
reference frame (ITRF) [ITRF, 2009]. As recommended by the IGS, a Lagrange interpolation 
between the given positions may be employed to compute the position for each needed 
epoch [Hofmann-Wellenhof et al., 2008]. An 8th-order Lagrange interpolation delivers 
positions of sufficient accuracy with 15 min spaced data points, and is therefore used within 
this work [Kroes, 2006]. Furthermore, the given positions relate to the center of mass of the 
spacecraft. To be used for precise positioning the actual position of the antenna phase 
center must be known. Therefore, the positions have to be corrected for the so-called 
antenna phase center offsets (PCO), following exact rules, stipulated by the IGS. The 
coordinates of the antenna phase center are defined in the GPS satellite body coordinate 
system. According to Kouba and Héroux [2001], the constant PCOs for the different satellite 
blocks, given in Table 3.2, are to be applied. 
 

        Table 3.2:  Antenna phase center offsets for GPS satellites  
                 in the body fixed coordinate system 

 

 X [m] Y [m] Z [m] 

Block II/IIA 0.279 0.000 1.023 
Block IIR 0.000 0.000 0.000 

 
 
However, this convention was only valid until 5 November 2006 (GPS week 1400). On 6 
November 2006 a change from relative to absolute antenna phase center corrections has 
been accomplished [Schmid et al., 2005 and Schmid et al., 2007]. From this epoch on more 
elaborate models of the PCOs have to be used [Gendt, 2006]. The PCO coordinates are no 
longer considered identical for all satellites of a certain block. For the individual satellites 
(and also for the IGS ground stations) the PCOs are now published in the ANTEX format 
[Rothacher and Schmid, 2006]. It further accounts for the fact that besides the phase center 
offset, the GPS antennas additionally show nadir- and azimuth-dependent phase center 
variations (PCVs). As the PCVs are typically at the mm level [Schmid et al., 2005], they are not 
taken into account for this research. 
 
The transformation of the PCO correction from the body-fixed coordinate system requires 
the knowledge of the satellites orientation in space. For that, it can be assumed that the 
orientation of the GPS satellites is close enough to the nominal attitude. It is defined that the 
z-axis is pointed towards the center of the Earth, the y-axis is perpendicular to the vector 
between the Sun and the GPS satellite and the x-axis completes the right-handed system 
[Kouba, 2002 and Xu, 2003]. The vector of the Sun can be conveniently calculated with 
sufficient precision using analytical series expansions [Montenbruck and Gill, 2000]. 
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As specified in Table 3.1, the clock estimates of the precise IGS products are at the 0.1 – 0.2 
nanosecond level. This corresponds to 3-6 cm, which is compatible with the orbit precision 
[Kouba, 2001]. For the interpolation of the clock offsets a linear interpolation is more 
appropriate than any higher order interpolation [Kroes, 2006]. This yields a precision level 
for interpolated values of a few decimeters using 15 min sampled data, and is below the 
decimeter level with a 5 min data grid [Zumberge and Gendt, 2001]. 
 
Montenbruck et al. [2005a] carried out extensive testing and assessment of the errors 
resulting from interpolation of the different clock data. It revealed a dependency on the 
satellite block and further on the type of the atomic clock. In general the satellites using 
Rubidium clocks show a better performance, see Figure 3.4, which has also been confirmed 
by Bröderbauer, 2009. Because of the fact, that an increasing number of GPS satellites is 
equipped with Rubidium clocks, the overall interpolation error for the entire GPS 
constellation decreased to 6 cm for the 15 min interpolation and to 3 cm for the 5 min 
interpolation by the end of year 2004, see Figure 3.5 [Montenbruck et al., 2005a]. 

 

 

        Figure 3.4:  RMS error of GPS clock interpolation for 5 and 15 minute 
                 sampling [courtesy of Montenbruck et al., 2005a] 
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      Figure 3.5:  Number of GPS satellites operating cesium (Cs) and rubidium (Rb)  
               clocks over time [courtesy of Montenbruck et al., 2005a] 

 
 
Besides the release of the combined solutions by the IGS, some of the contributing Analysis 
Centers make their own products available. Due to the increasing request for an even denser 
sampling rate, the Center for Orbit Determination in Europe (CODE) and the Jet Propulsion 
Laboratory (JPL) publish so-called high-rate orbit and clock data with a 30 seconds sampling 
rate [Hugentobler, 2004]. Within this research, the same antenna phase offsets and attitude 
model, as applied for IGS products, are also used for the high-rate data. For these products 
Zumberge and Gendt [2001] determined an interpolation error of only 4 mm. 
 
However, the chosen approach for orbit determination of this thesis, which is based on zero 
difference GPS observations (see. section 3.2.3), fully relies on the quality of precise orbit 
and clock data. Especially in the radial direction, any error in these data, but also errors in 
the phase center correction, map into the observation equation and thus affects the LEO 
positioning. As described in chapter 4, this is particularly the case for kinematic orbit 
determination. Nevertheless, the chosen orbit model of reduced-dynamic orbit 
determination is also heavily affected due to the high relaxation by pseudo-stochastic 
parameters [Švehla and Rothacher, 2006]. 
 
 

3.2 Modeling of GPS Observations  

 
GPS observables are ranges which are deduced from measured time or phase differences 
based on a comparison between received signals and receiver-generated signals [Hoffmann-
Wellenhof et al, 2008]. These measurements are categorized as “down-links“ from the 
satellite down to the receiver. Employing the “one-way concept“, the obtained ranges are 
biased by the difference of the errors of the involved satellite and receiver clocks. As a 
consequence, these biased ranges are denoted as pseudoranges.  
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In general, there are three types of GPS observations, the code or pseudorange observation, 
the carrier phase or integrated Doppler observation, and the range-rate or instantaneous 
Doppler observation [Kroes, 2006]. Not every spaceborne receiver supports or records all of 
these observations. This section primarily deals with the GPS observation types that are used 
within this research. 
 
Although the P(Y)-code is encrypted, several techniques, such as (semi-)codeless tracking, 
have been developed allowing P(Y)-code observations to be made without the decryption 
key and hardware, at the expense of the Signal to Noise Ratio (SNR), and thus a reduced 
precision [Woo, 1991]. The CHAMP and GRACE satellites are equipped with identical JPL 
Blackjack receivers, which record observations of all three GPS codes (C/A, P1, P2) and the 
two carrier phases (L1, L2). 
 
All GPS signals are related to the time of the GPS system. The GPS time is defined as a 
common reference time, and has a constant offset of −19 seconds with respect to the 
international atomic time (TAI) [McCarthy, 1996 and McCarthy et al., 2003]. To realize GPS 
time, the satellites are equipped with Cesium and/or Rubidium atomic clocks. Geodetic-type 
receivers mostly make use of temperature compensated crystal oscillators (TCXOs) [Kroes, 
2006]. 
 
However, both the GPS satellite clock’s time 𝑠 and the receiver clock’s time 𝑟 experience a 
deviation (𝛿𝑠 and 𝛿𝑟) with respect to the GPS system time 𝑡. These clock offsets are not 
constant over time, but exhibit a drift. The internal times as well as their offsets can 
therefore be considered as functions of 𝑡: 

 𝑠 𝑡 = 𝑡 + 𝛿𝑠 𝑡  

 𝑟 𝑡 = 𝑡 + 𝛿𝑟 𝑡 . 
(3.2) 

For each measurement the two relevant epochs are the emission time 𝑡𝑒  and the reception 
time 𝑡𝑟 . Accordingly, the received signal is the satellite signal 𝑠𝑒  of emission time 𝑡𝑒  and rr is 
the receiver generated signal at reception time 𝑡𝑟 : 

 𝑠𝑒 = 𝑠 𝑡𝑒 = 𝑡𝑒 + 𝛿𝑠 𝑡𝑒  

 𝑟𝑟 = 𝑟 𝑡𝑟 = 𝑡𝑟 + 𝛿𝑟(𝑡𝑟)  
(3.3) 

Because the clock offsets are not constant over time they are only valid for a certain epoch. 
This has to be taken into account when modelling the different observation types. Modern 
GPS receivers, such as those onboard the CHAMP and GRACE satellites, however, keep their 
clocks roughly synchronized with respect to GPS time within about one millisecond [Jäggi, 
2006]. However, the epoch 𝑡𝑟 , at which the observation is made, can be considered the 
same for all types of measurements and to all satellites. Of course, the corresponding 
emission times are different for each involved satellite. 
 
In the following sections the GPS observation equations, linear combinations and further 
processing details that are relevant for the chosen approach for LEO POD will be discussed. 
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3.2.1 Code Observation Equation 

 
PRN codes essentially realize a reference to the system time on the signal. A measure of 
signal travel time, and thus of the distance between receiver and satellite, can therefore be 
obtained by time correlation of the received and the internally generated code. The code 
observation 𝑃(𝑡𝑟), measured at time 𝑡𝑟 , is thus the difference of 𝑟𝑟 − 𝑠𝑒 , multiplied by the 
speed of light 𝑐 to obtain a measure in units of meters:  

 𝑃 𝑡𝑟 =  𝑟𝑟 − 𝑠𝑒 ∙ 𝑐. (3.4) 

Substitution of (3.3) into (3.4) yields 

 𝑃 𝑡𝑟 =  𝑡𝑟 + 𝛿𝑟 𝑡𝑟 − 𝑡𝑒 − 𝛿𝑠 𝑡𝑒  ∙ 𝑐 . (3.5) 

Rearranging leads to 

 𝑃 𝑡𝑟 =  𝑡𝑟 − 𝑡𝑒 ∙ 𝑐 + 𝛿𝑟 𝑡𝑟 ∙ 𝑐 − 𝛿𝑠 𝑡𝑒 ∙ 𝑐 . (3.6) 

The term  𝑡𝑟 − 𝑡𝑒 ∙ c represents the true geometric range between the phase centers of the 
receiver and the satellite at the considered epochs. The true signal travelling time  𝑡𝑟 − 𝑡𝑒  
is denoted as 𝜏 𝑡𝑟  and the true geometric range is given by 𝜌 𝑡𝑟 = 𝑐𝜏 𝑡𝑟 . Substitution of 
these expressions results in the basic pseudorange observation equation 

 𝑃 𝑡𝑟 = 𝜌 𝑡𝑟 + 𝛿𝑟 𝑡𝑟 ∙ 𝑐 − 𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  ∙ 𝑐 . (3.7) 

Thus, the code observation is a direct but biased measure of the true range between the 
antenna phase centers of the GPS satellite and the receiver. Equation (3.7) is only 
parametrized with 𝑡𝑟 . Although, 𝜏 as well as 𝜌 are actually functions of the unknown epoch 
𝑡𝑒 , this fact can be dealt with using the light time equation [Blewitt, 1991]. A detailed 
description and derivation of the light time equation is given in Appendix A.1. 
 
Equation (3.7) represents the fundamental concept of the code observation. The actual 
observation however is further affected by additional influences. Most relevant for this work 
are atmospheric effects, instrumental biases in both the satellite and the receiver, signal 
multipath and measurement noise [Kroes, 2006].  
 
For GPS signals the relevant propagation regions in the atmosphere are the troposphere and 
the ionosphere. The troposphere‘s effective height is about 40 km [Leick, 2004]. Therefore it 
is of no relevance for the considered space applications because no ground based 
observations are involved. 
 
Other than the troposphere, the ionosphere ranges from about 50 to 1000 km above the 
surface of the Earth [Hofmann-Wellenhof et al., 2008]. It consists of ions and free electrons 
and is a dispersive medium with respect to GPS L-band radio signals. Thus, its effect on the 
signals is frequency dependent. According to Hofmann-Wellenhof et al. [2008] the 
ionosphere causes a delay of the modulated code signal. The so-called ionospheric path 
delay, 𝐼 𝑡, 𝑓 , can be modeled for GPS code observations, given in units of meters, by  
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𝐼 𝑡, 𝑓 =  
40.3

𝑓2
TEC 𝑡  , (3.8) 

where TEC is defined as the Total Electron Content along the signal path between the 
receiver an the respective GPS satellite. It has to be mentioned that (3.8) only covers the first 
order ionospheric effect. But it comprises the dominant part of the delay, i.e. more than 
99.9% of the total effect, whereas higher order effects only cause influences up to the mm 
level on the measurements [Montenbruck and Gill, 2002]. 
 
The remaining relevant biases and errors can be grouped into one term [Leick, 2004], 

 𝑀𝑃 𝑡 = 𝑠𝑃 𝑡 + 𝑚𝑃 𝑡 + 𝑟𝑃 𝑡   , (3.9) 

where 𝑠𝑃 𝑡  covers the satellite hardware delay, 𝑚𝑃 𝑡  stands for the code multipath delay 
and the receiver hardware delay is given by 𝑟𝑃 𝑡 . 
 
Each observation underlies a thermal measurement noise 𝜀𝑃 𝑡 , which can be assumed 
purely random with a zero mean and is typically at the decimeter level for modern geodetic- 
type receivers [Kroes, 2006]. 
 
However, a rigorous consideration of GPS observations also requires to account for post-
Newtonian effects. The (periodic) relativistic effects on the signal between a moving receiver 
and emitter are caused by variations of velocity and potential level in the Earth’s gravity 
field, due to the eccentricity of the orbits. The effects induced by the receiver motion and by 
the motion of the GPS satellite are attained with sufficient accuracy through  

𝛿𝑟𝑒𝑙  𝑡𝑟 = 𝛿𝑟𝑒𝑙𝐿𝐸𝑂 𝑡𝑟 + 𝛿𝑟𝑒𝑙𝐺𝑃𝑆 𝑡𝑟 = 

=
−2 ∙ 𝒙𝐿𝐸𝑂 𝑡𝑟 ∙ 𝒗𝐿𝐸𝑂 𝑡𝑟 

𝑐
+

2 ∙ 𝒙𝐺𝑃𝑆 𝑡𝑒 ∙ 𝒗𝐺𝑃𝑆 𝑡𝑒 

𝑐
 , 

(3.10) 

[McCarthy, 1996 and Ashby, 2007], where 𝒙 and 𝒗 are the positions and the velocities of the 
LEO spacecraft and of the GPS satellite, respectively. 
 
Taking into account these additional effects, the final observation equation for code 
pseudoranges for each of the two frequencies yields 

𝑃 𝑡𝑟 = 𝜌 𝑡𝑟 + 𝛿𝑟 𝑡𝑟 ∙ 𝑐 − 𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  ∙ 𝑐 + 𝐼 𝑡𝑟 , 𝑓 + 𝑀𝑃 𝑡𝑟 + 𝛿𝑟𝑒𝑙  𝑡𝑟 + 𝜀𝑃 𝑡𝑟  . 

 (3.11) 

 
A summary of all effects, and their amounts, that influence the pseudorange measurement 
is given in Table 3.3 [Ramos-Bosch, 2008a]. 
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    Table 3.3: Effects of the code observation equation for LEO satellites 
 

Effect Amount of influence 

Geometric range 𝜌 ~20000 km 
Receiver clock offset 𝑐𝛿𝑟 < 300 km 

GPS satellite clock offset 𝑐𝛿𝑠 < 300 km 
Ionospheric phase delay 𝐼 𝑡𝑟 , 𝑓  2 − 5 m 

Satellite and receiver hardware delays 𝑠𝑃& 𝑟𝑃 < 2 m 
Multipath 𝑚𝑃  < 5 cm 

Relativistic effects (for eccentricities 𝒆 ≤ 𝟎. 𝟎𝟏) 𝛿𝑟𝑒𝑙  < 13 m 
Thermal noise 𝜀𝑃  < 1 m 

 
 
The observation equation (3.11) relates the phase centers of the GPS satellite’s antenna and 
of the LEO satellite’s receiver. Center of mass corrections have to be applied for LEO 
positioning, see section 4.1.3. Furthermore, it has to be considered, that the epoch 𝑡𝑟  of the 
measurement is initially unknown, due to the unknown clock offset 𝛿𝑟(𝑡𝑟). The epoch has, 
therefore, to be updated within each iteration of positioning.  
 
 

3.2.2 Phase Observation Equation 

 
Similar to the measurement of the code, most GPS receivers additionally track the 
accompanying carrier onto which the code is modulated. For one of the frequencies the 
according carrier phases are here denoted as 𝜓 for the satellite’s phase and 𝜙 for the 
receiver’s phase. The considered phases are: 

𝜓𝑒 = 𝜓 𝑡0 + 𝑓 𝑡𝑒 − 𝑡0 + 𝑓 𝛿𝑠 𝑡𝑒 − 𝛿𝑠 𝑡0   , 

𝜙𝑟 = 𝜙 𝑡0 + 𝑓 𝑡𝑟 − 𝑡0 + 𝑓 𝛿𝑟 𝑡𝑟 − 𝛿𝑟 𝑡0   , 
(3.12) 

where 𝜓 𝑡0  and 𝜙 𝑡0  are the initial phases of the receiver and of the satellite at 𝑡0, and 𝑓 
is the frequency of the particular carrier. Correlation 𝛷 of these phases is ambiguous 
because of an unknown integer number 𝑁 of carrier cycles between the two signals. Thus 
the beat phase is given in units of cycles by 

 𝛷 𝑡𝑟 = 𝜙𝑟 − 𝜓𝑒 + 𝑁. (3.13) 

Substitution of (3.12) into (3.13), rearrangement and the introduction of the signal travel 
time 𝜏 𝑡𝑟  yields 

 𝛷 𝑡𝑟 = 𝑓𝜏 𝑡𝑟 + 𝑓𝛿𝑟 𝑡𝑟 − 𝑓𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  + 𝐴𝐿  , (3.14) 

where the now real valued bias or ambiguity term 

 𝐴𝐿 = 𝑁 + 𝜙 𝑡0 − 𝑓𝛿𝑟 𝑡0 − 𝜓 𝑡0 + 𝑓𝛿𝑠 𝑡0  ,  (3.15) 
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contains all parameters which are constant over a continuous tracking pass [Teunissen and 
Kleusberg, 1998]. The phase ambiguity parameter is the same for all observation epoches as 
long as the GPS satellite is above the horizon of the receiving antenna and phase-lock is 
maintained. If the receiver loses lock of the signal, a new bias term has to be introduced due 
to the discontinuity (phase break) in the accumulated carrier phase. Like for the code 
observation equation, the basic phase observation (3.14) is directly related to the true signal 
travelling time 𝜏 𝑡𝑟 =  𝑡𝑟 − 𝑡𝑒  between the phase centers of the satellite and the receiver, 
and only parametrized with 𝑡𝑟 . 
 
Also the phase observation underlies further influences, like the effect of the ionosphere, 
hardware delays, multipath and thermal noise [Kroes, 2006]. Like for the code observation, 
the troposphere does not affect the phase observation when the considered range is located 
in space. 
 
The carrier phase experiences an advancement due to the ionosphere [Leick, 2004]. In a first 
order approximation it amounts the same as the delay of the modulated code, but with 
opposite sign [Leick, 2004]. 
 
Relativistic effects on the phase measurements occur in the same way as for the code 
measurements, see equation (3.10) [McCarthy, 1996 and Ashby, 2007]. 
 
Multiplication of equation (3.14) with the according signal wavelength 𝜆 yields an expression 
in units of meters. Introducing the necessary corrections, the final carrier phase observation 
equation, for any of the two frequencies, is given by 

𝐿 𝑡𝑟 = 𝜌 𝑡𝑟 + 𝑐𝛿𝑟 𝑡𝑟 − 𝑐𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  − 𝐼 𝑡𝑟 , 𝑓 + 𝜆𝐴𝐿 + 𝑀𝐿 𝑡𝑟 + 𝛿𝑟𝑒𝑙  𝑡𝑟 + 𝜀𝐿 𝑡𝑟  . 

 (3.16) 

The bias term 

 𝑀𝐿 𝑡 = 𝑠𝐿 𝑡 + 𝑚𝐿 𝑡 + 𝑟𝐿 𝑡 + 𝑤𝐿 𝑡  , (3.17) 

comprises all systematic errors of the observation, where 𝑠𝐿 𝑡  covers the satellite hardware 
delay, 𝑚𝐿 𝑡  stands for the phase multipath delay and the receiver hardware delay is given 
by 𝑟𝐿 𝑡 . In addition 𝑤𝐿 𝑡  accounts for the effect of phase wind-up. Because of the 
polarized GPS signal, phase wind-up occurs when the receiver is rotating around the line of 
sight towards the GPS satellite [Wu et al., 1993]. Such a rotation is interpreted by the 
receiver as an apparent variation of distance relative to the GPS satellite. For spaceborne 
GPS applications this effect can increase to significant amounts when e.g. the satellite’s 
attitude is not actively controlled [Kroes, 2004]. 
 
The measurement noise 𝜀𝐿 𝑡𝑟  is again assumed to be purely random with a zero mean. The 
overall accuracy of phase observations is on the mm level, and thus much more accurate 
than of code measurements. Furthermore, multipath errors can be confined to a quarter of 
the signal wavelength [Braasch, 1995]. A summary of all effects, and their amounts, that 
influence the carrier phase signal is given in Table 3.4 [Ramos-Bosch, 2008a]. 
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 Table 3.4: Effects of the carrier phase observation equation for LEO satellites 
 

Effect Amount of influence 

Geometric range 𝜌 ~20000 km 
Receiver clock offset 𝑐𝛿𝑟 < 300 km 

GPS satellite clock offset 𝑐𝛿𝑠 < 300 km 
Ionospheric phase advance 𝐼 𝑡𝑟 , 𝑓  2 − 5 m 

Ambiguity term 𝜆𝐴𝐿 ~20000 km 
Satellite and receiver hardware delays 𝑠𝐿& 𝑟𝐿 < 2 m 

Multipath 𝑚𝐿 < 2 cm 
Phase wind-up 𝑤𝐿  < 20 cm 

Relativistic effects (for eccentricities 𝒆 ≤ 𝟎. 𝟎𝟏) 𝛿𝑟𝑒𝑙  < 13 m 
Thermal noise 𝜀𝐿 < 1 cm 

 
 
The described carrier phase observation equation relates the phase centers of the GPS 
satellite’s antenna and of the LEO satellite’s receiver. Therefore, center of mass corrections 
have to be applied for LEO positioning, see section 4.1.3. Like for the code measurement, the 
epoch 𝑡𝑟  has to be updated with a new estimate for the clock offset 𝛿𝑟 𝑡𝑟  within each 
iteration of positioning.  
 
 

3.2.3 Dual Frequency Observation Model 

 
Modern GPS receivers generate pseudoranges and carrier phases to all satellites in view at 
the same nominal time 𝑡𝑟  on both frequencies [Leick, 2004]. Therefore, the receiver clock 
error, but also hardware delays, can be considered the same for a single epoch. Without 
considering the comparatively imprecise C/A-code for this research, the overall dual 
frequency observation model for the P-code and the associated carrier phase measurements 
can be grouped as 

𝑃1 𝑡𝑟 = 𝜌 𝑡𝑟 + 𝑐𝛿𝑟 𝑡𝑟 − 𝑐𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  +      𝐼 𝑡𝑟 , 𝑓1                 + 𝑀𝑃1
 𝑡𝑟 + 𝛿𝑟𝑒𝑙  𝑡𝑟 + 𝜀𝑃1

 𝑡𝑟 

𝑃2 𝑡𝑟 = 𝜌 𝑡𝑟 + 𝑐𝛿𝑟 𝑡𝑟 − 𝑐𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  + 
𝑓1

2

𝑓2
2 𝐼 𝑡𝑟 , 𝑓1                 + 𝑀𝑃2

 𝑡𝑟 + 𝛿𝑟𝑒𝑙  𝑡𝑟 + 𝜀𝑃2
 𝑡𝑟 

𝐿1 𝑡𝑟 = 𝜌 𝑡𝑟  + 𝑐𝛿𝑟 𝑡𝑟 − 𝑐𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  −      𝐼 𝑡𝑟 , 𝑓1 + 𝜆1𝐴𝐿1
+ 𝑀𝐿1

 𝑡𝑟 + 𝛿𝑟𝑒𝑙  𝑡𝑟 + 𝜀𝐿1
 𝑡𝑟 

𝐿2 𝑡𝑟 = 𝜌 𝑡𝑟 + 𝑐𝛿𝑟 𝑡𝑟 − 𝑐𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  −
𝑓1

2

𝑓2
2 𝐼 𝑡𝑟 , 𝑓1 + 𝜆2𝐴𝐿2

+ 𝑀𝐿2
 𝑡𝑟 + 𝛿𝑟𝑒𝑙  𝑡𝑟 + 𝜀𝐿2

 𝑡𝑟 

  

 
(3.18) 

with the phase ambiguity terms 

𝐴𝐿1
= 𝑁1 + 𝜙1 𝑡0 − 𝑓1𝛿𝑟 𝑡0 − 𝜓1 𝑡0 + 𝑓1𝛿𝑠 𝑡0  , 

𝐴𝐿2
= 𝑁2 + 𝜙2 𝑡0 − 𝑓2𝛿𝑟 𝑡0 − 𝜓2 𝑡0 + 𝑓2𝛿𝑠 𝑡0  . 

(3.19) 



Fundamentals of GPS  26 

 

The subscripts 1 and 2 correspond to the two frequencies, 𝑓1  and 𝑓2. The set of observations 
(3.18) is attained for every tracked satellite per epoch. Furthermore, the ionospheric path 
delay for 𝑓1  is mapped to 𝑓2, employing equation (3.8) [Kroes, 2006]. 
 
Within this thesis further assumptions are made concerning the true range 𝜌 𝑡𝑟  between 
the phase centers. For each set of observations as (3.18), it is assumed to be identical for all 
code and phase observations to the respective satellite at the particular epoch. In fact, the 
signal travelling time slightly differs between the two frequencies, but within less than 
0.1 𝜇𝑠, which results in sub-mm differences for positioning [Kroes, 2006]. 
 
The stochastic part of the observation equation is captured in the thermal noise terms 𝜀 𝑡𝑟 . 
As described earlier it is considered purely random with a zero mean. Furthermore, it is 
assumed to be completely uncorrelated between the frequencies and observation types, 
between all satellites and between consecutive epochs. Thus, the stochastic model of the 
observation vector 

 𝒁𝑫  𝑡𝑟 =

 

 

𝑃1 𝑡𝑟 

𝑃2 𝑡𝑟 

𝐿1 𝑡𝑟 

𝐿2 𝑡𝑟  

 , (3.20) 

is given by the covariance matrix 

 𝑸𝒁𝑫 𝑡𝑟 =

 

 
 
 
 
 

 𝜀𝑃1
 𝑡𝑟  

2

0 0 0

0  𝜀𝑃2
 𝑡𝑟  

2

0 0

0 0  𝜀𝐿1
 𝑡𝑟  

2

0

0 0 0  𝜀𝐿2
 𝑡𝑟  

2

 

 
 
 
 
 

 . (3.21) 

 
The above described observation model is the basis for several differencing techniques, used 
extensively for the wide range of GPS applications. The resulting differenced observation 
models are referred to as single difference (SD), double difference (DD) or triple difference 
(TD) observation models. Within this context the model described in equation (3.20) is often 
denoted as undifferenced (UD) or zero difference (ZD) model.  
 
 

3.3 The Ionosphere free linear Combination 

 
The ZD dual frequency observation model, as described in equation (3.20), can not, or not 
easily, be used for positioning applications. But several linear combinations can be derived 
from the original measurements which make positioning possible. One of the most 
applicable linear combinations is the ionosphere free linear combination which eliminates 
(or at least drastically reduces) the first order ionospheric effect [Hofmann-Wellenhof et al., 
2008]. As the ionospheric effect is frequency dependent, it can be eliminated by 
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𝑃𝐼𝐹 𝑡𝑟 =
𝑓1

2

𝑓1
2 − 𝑓2

2 𝑃1 𝑡𝑟 −
𝑓2

2

𝑓1
2 − 𝑓2

2 𝑃2 𝑡𝑟 ≈ 2.546 𝑃1 𝑡𝑟 − 1.546 𝑃2 𝑡𝑟  , 

𝐿𝐼𝐹 𝑡𝑟 =
𝑓1

2

𝑓1
2 − 𝑓2

2 𝐿1 𝑡𝑟 −
𝑓2

2

𝑓1
2 − 𝑓2

2 𝐿2 𝑡𝑟 ≈ 2.546 𝐿1 𝑡𝑟 − 1.546 𝐿2 𝑡𝑟  , 

(3.22) 

yielding the ionosphere free (IF) observation model 

𝑃𝐼𝐹 𝑡𝑟 = 𝜌 𝑡𝑟 + 𝑐𝛿𝑟 𝑡𝑟 − 𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  +                  𝑀𝑃𝐼𝐹
 𝑡𝑟 + 𝛿𝑟𝑒𝑙 𝑡𝑟 + 𝜀𝑃𝐼𝐹

 𝑡𝑟  , 

𝐿𝐼𝐹 𝑡𝑟 = 𝜌 𝑡𝑟 + 𝑐𝛿𝑟 𝑡𝑟 − 𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  + 𝜆𝐼𝐹𝐴𝐼𝐹 + 𝑀𝐿𝐼𝐹
 𝑡𝑟 + 𝛿𝑟𝑒𝑙 𝑡𝑟 + 𝜀𝐿𝐼𝐹

 𝑡𝑟  . 

 (3.23) 

The ZD ionosphere free linear combination will be used for POD troughout this work. It must 
be noted, that because of the non-integer multiplication the integer nature of the 
ambiguities 𝑁1 and 𝑁2, contained in the ambiguity term 𝐴𝐼𝐹 , is lost. The resulting 
wavelength 𝜆𝐼𝐹  amounts approximately to 10.7 cm. 
 
The covariance matrix for the ionosphere free model is still uncorrelated. But the noise is 
about a factor 3 higher than for the individual measurements, due to the propagation of the 
covariances. Furthermore, within this research the thermal noise will be assumed constant 
over time and identical for all GPS satellites, resulting in the following overall covariance 
matrix 

 𝑸𝑰𝑭 𝑡 =  
 𝜀𝑃𝐼𝐹

 
2

0

0  𝜀𝐿𝐼𝐹
 

2 , (3.24) 

with only receiver specific values for 𝜀𝑃𝐼𝐹
 and 𝜀𝐿𝐼𝐹

.  

 
The ionosphere free observation model has the striking advantage that it can be used for 
absolute positioning. 
 

 

3.4 Linearization of the Observation Equations 

 
The described ionosphere free observation model (3.23), parametrized with the unknown 
range 𝜌, is formally linear. But for positioning applications the observation has to be related 
to the phase center position of the receiver. The geometric range 

 𝜌 𝑡𝑟 =   𝒙𝑟 𝑡𝑟 − 𝒙𝑠 𝑡𝑟 − 𝜏 𝑡𝑟   , (3.25) 

is the norm of the vector from the position of the GPS satellite’s antenna phase center 

𝒙𝑠 𝑡𝑟 − 𝜏 𝑡𝑟   at emission time to the position of the receiver’s antenna phase center 

𝒙𝑟 𝑡𝑟  at reception time. Introducing (3.25) into (3.23), results in a non-linear observation 
equation. 
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The unknowns, now contained in the observation model, are the three coordinates of the 
receivers phase center 𝒙𝑟 𝑡𝑟 , the receiver clock offset 𝛿𝑟 𝑡𝑟 , the ionosphere free carrier 
phase ambiguity term 𝐴𝐼𝐹  and the biases and errors captured in the terms 𝑀𝑃𝐼𝐹

 𝑡𝑟  and 

𝑀𝐿𝐼𝐹
 𝑡𝑟 .  

 
Within this work the bias terms 𝑀𝑃𝐼𝐹

 𝑡𝑟  and 𝑀𝐿𝐼𝐹
 𝑡𝑟  are not taken into account in the 

estimation process. The terms comprise hardware delays of the satellite and of the receiver, 
multipath effects and phase wind-up. The effects of multipath are asumed to be eliminated 
by adequate data editing procedures prior to the estimation process. The mean value of all 
receiver-dependent delays, to all satellites in view, cannot be separated from the receiver 
clock offset. The estimated receiver clock offset will therefore be biased. This can be 
accepted, because it does not affect the position of the receiver. Similarly, the mean value of 
the hardware delays of the GPS satellite, over a continuous tracking pass, is mapped into the 
respective phase ambiguity term. This is also the case for constant phase channel biases. 
Again, this has no effect on the positioning. The variations of these hardware delays 
however, do well affect the position, but are considered to be negligible. The same holds for 
the effects of phase wind-up.  
 
The remaining parameters of the observation equations, the poition of the GPS satellite’s 

phase center 𝒙𝑠 𝑡𝑟 − 𝜏 𝑡𝑟   and the clock offset of the GPS satellite 𝛿𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  , are 

obtained from external sources (see chapter 3.1.1) for each epoch. Thus, they are not 
estimated within this research. Nevertheless, the errors of these ephemerides (Table 3.1) 
introduce an additional uncertainty into the observation model. The error of the adopted 
value of the GPS satellite clock offset fully maps into the observation. The error of the GPS 
satellite’s position is propagated into the observation equation depending on the line of 
sight towards the receiver. Thus, mainly the radial error component of the GPS satellite 
position affects LEO positioning. 
 
As already mentioned, the signal travelling time 𝜏 𝑡𝑟  (and consequently also the emission 
epoch 𝑡𝑒 ) are strictly determined by a priori values for the unknown position and clock offset 
of the receiver and the known ephemerides and clock offset data of the GPS satellite. A 
detailed derivation of the light time equation is given in Appendix A.1. 
 
However, the least squares estimation process for orbit determination, as outlined in 
chapter 4, requires linear observation equations with respect to the unknowns. Linearization 
of the ionosphere free code observation equation with respect to the unknown coordinates 
of the receivers phase center position yields 

 
𝜕𝑃𝐼𝐹

𝜕𝑥𝑟 𝑖
 𝑡𝑟 

=
𝜕𝜌 𝑡𝑟 

𝜕𝑥𝑟 𝑖
 𝑡𝑟 

=
 𝑥𝑟 𝑖

 𝑡𝑟 − 𝑥𝑠𝑖
 𝑡𝑟 − 𝜏 𝑡𝑟   

 𝒙𝑟 𝑡𝑟 − 𝒙𝑠 𝑡𝑟 − 𝜏 𝑡𝑟   
  ;                𝑖 = 1,2,3. (3.26) 

Here, 𝑥𝑟 𝑖
 and 𝑥𝑠𝑖

 represent the coordinates of the phase center of the receiver and of the 

GPS satellite respectively. Although the relativistic correction in the observation equation 
actually also contains the unknown coordinates 𝑥𝑟 𝑖

, its contribution to the derivations is 

negligible.  
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Furthermore, the observation equation has to be linearized with respect to the unknown 
receiver clock offset 𝛿𝑟 𝑡𝑟 , which simply yields 

𝜕𝑃𝐼𝐹

𝜕𝛿𝑟 𝑡𝑟 
= 𝑐 . (3.27) 

The above developed derivations have to be applied in the same way for the carrier phase 
observation. Additionally, the carrier phase observation depends on the ionosphere free 
carrier phase ambiguity term 𝐴𝐼𝐹 . The linearization for this term yields 

𝜕𝐿𝐼𝐹

𝜕𝐴𝐼𝐹
= 𝜆𝐼𝐹  . (3.28) 

 
Thus, the linearized ionosphere free zero difference observation equations for code and 
phase reads 

∆𝑃𝐼𝐹 𝑡𝑟 =  
 𝑥𝑟 𝑖

 𝑡𝑟 − 𝑥𝑠𝑖
 𝑡𝑟 − 𝜏 𝑡𝑟   

 𝒙𝑟 𝑡𝑟 − 𝒙𝑠 𝑡𝑟 − 𝜏 𝑡𝑟   
∙ ∆𝑥𝑟 𝑖

+ 𝑐 ∙ ∆𝛿𝑟 𝑡𝑟 

3

𝑖=1

  , 

∆𝐿𝐼𝐹 𝑡𝑟 =  
 𝑥𝑟 𝑖

 𝑡𝑟 − 𝑥𝑠𝑖
 𝑡𝑟 − 𝜏 𝑡𝑟   

 𝒙𝑟 𝑡𝑟 − 𝒙𝑠 𝑡𝑟 − 𝜏 𝑡𝑟   
∙ ∆𝑥𝑟 𝑖

3

𝑖=1

+ 𝑐 ∙ ∆𝛿𝑟 𝑡𝑟 + 𝜆𝐼𝐹  ∙ ∆𝐴𝐼𝐹   . 

(3.29) 

Equation (3.29) can be readily applied for kinematic orbit determination where the receiver 
coordinates at every epoch are to be directly estimated (see section 4). Care must be taken 
in the case of dynamic and reduced-dynamic orbit determination (see sections 4.2 and 4.3), 
where an orbit model is introduced, which replaces the epoch-wise coordinates by state, 
dynamic and pseudo-stochastic parameters 𝑃𝑗 , 𝑗 = 1, … , 𝑛, of the trajectory as unknowns. 

Applying the chain rule for derivation, the linearized code observation equation with respect 
to these parameters yields 

         
𝜕𝑃𝐼𝐹

𝜕𝑃𝑗
=   

𝜕𝜌 𝑡 

𝜕𝑥𝑟 𝑖
 𝑡 

∙

3

𝑖=1

𝜕𝑥𝑟 𝑖
 𝑡 

𝜕𝑃𝑗

 

𝑡𝑟

=  𝒆 𝑡𝑟 ∙
𝜕𝒙𝑟 𝑡 

𝜕𝑃𝑗

 
𝑡𝑟

  , (3.30) 

where 

         𝒆 𝑡𝑟 =
𝒙𝑟 𝑡𝑟 − 𝒙𝑠 𝑡𝑟 − 𝜏 𝑡𝑟  

 𝒙𝑟 𝑡𝑟 − 𝒙𝑠 𝑡𝑟 − 𝜏 𝑡𝑟   
  , (3.31) 

is the line of sight unit vector from the GPS satellite to the receiver. The term  

         
𝜕𝒙𝑟 𝑡 

𝜕𝑃𝑗
 , (3.32) 

describes the dependency of the orbit solution 𝒙𝑟 𝑡  on the parameters 𝑃𝑗 , which is 

calculated through the variational equations, described in section 4.2.2. 
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Together with a priori values for all unknown parameters the above developed linearized 
observation equations can be applied for the adjustment processes of the various orbit 
determination strategies. The principles of the least squares adjustment are outlined in 
chapter 4.1.1. 
 
 

3.5 GPS Data Quality of spaceborne Receivers 

 
The quality of GPS data is of fundamental importance for any positioning application. 
Naturally, highly accurate measurements are desirable, which is the case for the employed 
geodetic-type BlackJack receivers. For the use in a least-squares estimation application the 
measurements are preferably randomly distributed around a zero mean. As already 
indicated, several known systematic effects, like hardware delays, channel biases or 
multipath effects, are not taken into account in the functional model in the LSQ process. 
Because these influences are extremely hard to model or require a priori knowledge from 
pre-flight calibration, these effects have to be accounted for in the stochastic part or 
systematically affected data has to be eliminated by proper data editing.  
 
The mean value of all receiver-dependent systematic effects to all satellites in view are 
absorbed by the clock offset for every measurement epoch. On the other hand, the mean 
systematic effects of any particular GPS satellite is mapped into the phase ambiguity bias for 
every continuous tracking pass. Accepting the solutions of the clock offsets and of the 
ambiguity parameters to be biased does not influence the positioning of the spacecraft. For 
this research, all remaining variational effects are, if not detected and eliminated within the 
data screening procedures, still assumend to be random with a zero mean and uncorrelated. 
As a consequence, the according a priori standard deviation has to be given a higher value 
than for thermal noise only. For the mitigation of multipath effects the GPS antennas on 
board the satellites are equipped with choke rings. 
 
For the assessment of the variance level of the different observation types, intensive in-flight 
validation was carried out, see Montenbruck and Kroes [2003] and Kroes [2006]. The 
validation was done by analyzing post-fit residuals dependent on the azimuth and elevation 
of the incoming signal with respect to the spacecraft body-fixed reference frame. Code 
observation data of the BlackJack receiver onboard CHAMP showed maximum values of 0.8 
m for the ionosphere free combination. These errors are not caused by multipath effects but 
are induced by cross-talk interference between the GPS POD and GPS occultation antennas 
of the receiver. The residuals of the pseudorange observations of the GRACE satellites were 
generally at the sub-dm level with maximum values of 0.2 m. The reason of the different 
noise levels for the two missions is that during the validation of the GRACE observations the 
occultation antenna was not activated. In addition, the physical separation of the occultation 
antenna from the main POD antenna is larger for GRACE than for CHAMP.  
 
Analyzing the residuals of the ionosphere free carrier phase measurements is a bit more 
difficult. Due to the fact that these residuals are at the mm to cm level, observational errors 
can not precisely be separated from errors in the dynamic model or GPS clock offsets [Kroes, 
2006]. However, these errors can be assumed to be at the mm level with maximum values of 
about 1 cm.  
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All observation types show dependencies on the elevation and also on the azimuth. The use 
of an elevation mask to discard observations obtained below a defined elevation, e.g. 5 
degrees, might be advisable. However, no correlations between any observation types have 
been discovered [Montenbruck and Kroes, 2003]. In the presence of still undetected 
multipath and and other systematic errors, as well as errors introduced by the GPS 
ephemerides, it is recommendable to use spacecraft and observation type specific but 
constant a priori standard deviations [Kroes, 2006]. The adopted values for this research are 
given in Table 3.5. 
 

   Table 3.5: Standard deviations for the ionosphere free GPS observations 
 

 CHAMP GRACE A GRACE B 

𝝈𝑷𝑰𝑭
 [cm] 50.0 40.0 40.0 

𝝈𝑳𝑰𝑭
 [cm] 3.0 2.0 2.0 

 
 
However, the BlackJack GPS receivers are top quality spaceborne dual-frequency receivers 
which deliver extremely accurate measurements. This is especially remarkable considering 
the high velocity of the receivers. LEO satellites at approximately 400 km orbit at about 7 km 
per second which results in a complete different viewing geometry compared to receivers at 
the surface of the Earth. A particular GPS satellite is typically tracked 14 times per day. Each 
pass lasts generally over 30 to 40 minutes. Due to the polar orbit of the considered missions, 
these passes appear as straight and vertical lines in a skyplot. It also has to be mentioned 
that the BlackJack receiver usually manages to lock the signal when the GPS satellite has 
ascended to an elevation of about 10 degrees. Descending satellites are usually being 
tracked down to 0 degrees or even some degrees below [Jäggi, 2006]. 
 
 



 

 
 

4 Precise LEO Satellite Orbit Determination 

 
Orbit determination (OD) of human-made objects has been an important and challenging 
discipline since the first space flight of a satellite in 1957. Since that time orbit tracking and 
determination became a key operation with a continuous demand for increasing accuracy of 
the spacecrafts position and velocity. The range of concepts, techniques and models, 
developed during the last decades, is manifold. The introduction of serveral highly accurate 
tracking systems, along with enhanced computational resources allowed for constantly 
upgraded approaches to orbit modeling with improved accuracy. Today, at least under 
permissive conditions, the trajectory of a spacecraft can be reliably determined reaching the 
sub-decimeter level. Scientific satellite missions hold the most stringent accuracy 
requirements. The associated techniques are commonly referred to as precise orbit 
determination (POD). 
 
LEO satellites have always been of special interest for geodetic research. However, especially 
the accurate determination of trajectories of LEO spacecraft has been extremely difficult for 
a long time. This has changed dramatically with the implementation of satellite based 
navigation systems, such as the GPS. Extracting the orbit of a LEO satellite from GPS 
observations became a key research area in recent years. A wide range of concepts and 
techniques has been developed for accurate and efficient orbit determination. This holds for 
the trajectory models, the observational models and for the estimation methods. 
 
For all applications within this research GPS measurements are introduced in the zero 
difference mode using the ionosphere free linear combination, see chapter 3.3. The ZD 
observational model requires highly precise ephemerides and clock data of the GPS 
satellites. Since the beginning of operation of the IGS in 1994, ephemerides and clock data 
are publicly available with ever increasing accuracy, see section 3.1.1. An alternative to ZD 
observations would be the use of doubly differenced (DD) observations. By using DD 
observations errors in the GPS ephemeris and clock data are eliminated by the formation of 
baselines between the LEO stellite and ground stations [Hofmann-Wellenhof et al., 2008]. 
This approach requires the processing of a huge amount of GPS observations of a large 
global network of GPS receivers [Švehla and Rothacher, 2002]. CPU times are significantly 
longer because of the big amount of data to be handled. Furthermore, the use of triply 
differenced GPS observations has been demonstrated for LEO POD [Byun, 2003]. The ZD 
approach was chosen, because of its comparatively simple and efficient data handling. The 
resulting orbit accuracies are by no means worse as for POD using DD or TD GPS data. It is 
especially attractive for the positioning of a single LEO spacecraft. For the estimation of 
baselines between two or more spacecraft in a formation, the DD mode would be more 
adequate [Kroes, 2006]. This work concentrates on the use of ionosphere free linearly 
combined observations of dual-frequency GPS data, obtained from most accurate GPS 
receivers onboard CHAMP and GRACE. It is referred to Montenbruck [2003] and Gill and 
Montenbruck [2004] for appropriate observation modeling of single-frequency spaceborne 
GPS data. 
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Concerning the trajectory, several models have been established, which in turn are adjusted 
to the observations within an estimation procedure. Kinematic approaches to orbit 
determination are comparatively simple and do not require any external models. The 
trajectory is represented as a time series of positions [Bock et al., 2005]. Thus, kinematic 
POD is highly usable for many mission scenarios. On the other hand, kinematic orbit 
determination is particularly sensitive to erroneous measurements, inappropriate viewing 
geometry and data gaps. These disadvantages are widely removed by dynamical orbit 
modeling [Gill and Montenbruck, 2004]. Here, use is made out of a priori knowledge of the 
motion of the spacecraft. Physical models for the trajectory are introduced to constrain the 
estimate of the orbit. Bad observation data can be detected and eliminated easierly or 
attenuated by an averaging effect of measurements over different epochs. In addition, data 
outages can be overcome by simply propagating the current state vector according to the 
dynamic model. Thus, dynamic orbit solutions are continuous and have no gaps, which 
makes them preferable for a large portion of applications. Nevertheless, due to insufficient 
knowledge of spacecraft dynamics, especially for LEOs, dynamic solutions diverge with 
increasing lengths of data arcs. Over long data arcs, trajectories, which strictly fulfil the 
dynamics of a given model, can not be fitted to the measurements in a way that the 
residuals are kept at a constant level. In order to retain the advantages of dynamic solutions 
while fully exploiting the geometrical accuracy of the GPS observations, the concept of 
reduced-dynamic orbit modeling has been established [Montenbruck et al., 2005b]. Hereby, 
the dynamic model is given additional flexibility to allow for a consistent adjustment to the 
measurements. This is achieved by introducing empirical parameters, which are co-
determined in the estimation process. Although the total number of estimation parameters 
in the dynamic and reduced-dynamic cases is less than for the kinematic case, the numerical 
integration of the trajectory and of the variational equations, as well as usually more 
iterations, result in longer computation times. 
 
Two concepts of reduced-dynamic orbit modeling, which are subsequently employed for 
precise orbit determination, will be discussed. The first concept introduces impulsive shots 
into the trajectory model, commonly referred to as pulses. This enables the trajectory to be 
flexibly fitted to the measurements, yielding satisfying results for positioning. The resulting 
jumps in the velocity are, however, undesirable in some respects. The second concept 
employs empirical constant accelerations over consecutive intervals. This results in a 
continuous, smoother and generally more accurate solution of the satellite orbit. The jumps 
now occur at the acceleration level, which is somewhat more realistic. It will be shown that 
the solution of the variational equations with respect to pseudo-stochastic parameters can 
be achieved very efficiently. Furthermore, the corresponding normal equation system can be 
rapidly set up for the adjustment process. Thus, precise reduced-dynamic orbit 
determination is a powerful alternative to any other approach for POD. 
 
This chapter provides the mathematical framework of dynamic and reduced-dynamic orbit 
modeling. In the subsequent process of orbit determination, the chosen orbit models are 
adjusted to the GPS measurements. An efficient orbit estimation method will be outlined 
and applied with zero difference GPS observations. Antecedant, important prerequisites for 
orbit determintation will be discussed. Additionally, applicable data screening and editing 
procedures, in order to attain clean observational data, will be presented. 
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4.1 Prerequisites for POD 

 
In the following the fundamentals of batch least-squares estimation, the required coordinate 
transformations and initial orbit determination, which yields an a priori trajectory for the 
estimation, will be discussed. 
 
 

4.1.1 Principles of Least-Squares Estimation 

 
Within this work, the concept of least-squares estimation is used for the adjustment of the 
orbit models to the observations. This method follows the principle, that the sum of squares 
of the observation residuals is minimized. The technique outlined here processes all 
measurements in one step which is referred to as batch least-squares processing. The 
observation data over the whole time span must be available. Thus, the batch mode is only 
applicable for post-processing applications. 
 
For real-time applications a filter technique, which processes the observations sequentially, 
might be preferable. The mathematical framework for various filter techniques can be found 
in Rogers [2007] and Tapley et al. [2004a]. For results attained from real-time processing of 
the considered LEO satellites it is referred to Montenbruck and Ramos-Bosch [2007]. 
 
The batch least-squares estimation however is a quite robust adjustment technique, which 
potentially delivers the best possible results. In the following a brief discussion of the batch 
least-squares algorithm is given, as far as applied in this research. 
 
Following Montenbruck and Gill [2000], the observations 𝐿𝑖 , 𝑖 = 1, … , 𝑛 are grouped in the 
observation vector 𝒛. The model function 𝑭 covers the observation equations, which relate 
the estimation parameters 𝑋𝑗 , 𝑗 = 1, … , 𝑢, contained in the vector 𝑿, with the observations 

by 

𝒛 + 𝝐 = 𝑭 𝑿 . (4.1) 

Here, the vector 𝝐 contains the resulting residuals 𝜖𝑖 . In general, the vector 𝑭 comprises non-
linear functions. The adjustment can only employ linear model functions. Linearization about 
a reference solution with a priori values for the unknowns leads to 

𝒛 + 𝝐 = 𝑭 𝑿0 + 𝑨𝒙, (4.2) 

where 

𝑿0 is the vector of a priori values for the unknown parameters, 

𝑨 is the model matrix or design matrix, and 

𝒙 is the vector containing the corrections of the a priori values 𝑿0. 
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The design matrix 𝑨 is the Jacobian matrix of 𝑭, defined by 

𝑨 =  𝜕𝑭 𝑿 

𝜕𝑿
 
𝑿=𝑿0

. (4.3) 

Introducing a priori values for all estimation parameters makes the corrections of these 
values the actual unknowns. Expressing the residual vector yields the system of correction 
equations 

𝝐 = 𝑨𝒙 −  𝒛 − 𝑭 𝑿0  = 𝑨𝒙 − 𝒚. (4.4) 

Here,  

𝒚 = 𝒛 − 𝑭 𝑿0  , (4.5) 

denotes the differences between the actual observations and the observation equations 
evaluated for the reference solution. The computation regime for 𝒚 is often denoted as 
“observed minus computed”. 
 
The stochastic model of the observations is described by the covariance matrix of the 
observations 𝑸𝒛𝒛 containing the variances 𝜎𝑖  of the observations. The weighting matrix is 
described by 

𝑾 = 𝑪𝒛𝒛
−1 = 𝜎0

2𝑸𝒛𝒛
−1  , (4.6) 

where 

𝜎0 is the a priori standard deviation, and 

𝑪𝒛𝒛 is the cofactor matrix of the observations. 

Now the correction equations (4.4) can be solved by requiring the cost function 

𝑱 = 𝝐𝑇𝑾𝝐 =  𝑨𝒙 − 𝒚 𝑇𝑾 𝑨𝒙 − 𝒚 , (4.7) 

to be minimized. The minimum is determined by using the method of Lagrange multiplieres, 
which yields the so-called normal equation system 

𝑨𝑇𝑾𝑨𝒙 − 𝑨𝑇𝑾𝒚 = 𝟎 . (4.8) 

The solution is finally given by 

𝒙 =  𝑨𝑇𝑾𝑨 −1𝑨𝑇𝑾𝒚 = 𝑵−1𝒏 , (4.9) 

where 𝑵 = 𝑨𝑇𝑾𝑨 is the normal equation matrix and 𝒏 = 𝑨𝑇𝑾𝒚.  
 
The adjusted model parameters are now attained by 

𝑿1 = 𝑿0 + 𝒙 .  (4.10) 
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This process can be repeated iteratively until sufficient convergence of the reference is 
reached with model parameters 𝑿𝑘 . 
 
In addition, the stochastic properties of the adjusted parameters can be assessed. Therefore, 
the a posteriori standard deviation is given by 

𝑠0 =  
𝝐𝑇𝑾𝝐

𝑛 − 𝑢
 . (4.11) 

The covariance and cofactor matrices, 𝑸𝒙𝒙 and 𝑪𝒙𝒙, containing the cofactors and variances 
of the adjusted model parameters can be calculated by 

𝑸𝒙𝒙 = 𝑠0
2𝑪𝒙𝒙 = 𝑠0

2𝑵−1. (4.12) 

 
 
A Priori Values and Weighting of Parameters 
 
For many orbit determination procedures it is desirable to constrain specific model 
parameters to pre-defined a priori values within the adjustment process. Especially for 
reduced-dynamic orbit determination, pseudo-stochastic parameters are often constrained 
to a priori expectation values with a priori variances. By this means a smoother, and thus 
more plausible, behavior of the estimated parameters can be achieved, which prevents the 
solution from adjusting too heavily to the measurements. 
 
Therefore, artificial measurements are introduced which directly “observe” the parameters 

with the values 𝒛 and the associated weighting matrix 𝑾. Introducing these observations to 
the normal equation system (4.9) yields 

𝒙 =  𝑨𝑇𝑾𝑨 + 𝑾 
−1

 𝑨𝑇𝑾𝒚 + 𝑾𝒚 = 𝑵−1𝒏 , (4.13) 

where 

𝒚 =  𝒛 − 𝑭  𝑿0  . (4.14) 

It has to be mentioned, that for further iterations, 𝑿0 has to be replaced by the current state 
𝑿𝑙 , which is usually non-zero for all elements.  
 
The calculation of the covariances (4.12) remains unchanged, but the calculation of the a 
posteriori standard deviation (4.11) has to be modified to 

𝑠0 =  
𝝐𝑇𝑾𝝐

𝑛 + 𝑛 − 𝑢
 , (4.15) 

in order to account for the number of artificial measurements 𝑛. 
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Parameter Pre-Elimination and Back-Substitution 

 
The solution of the normal equation system (4.9) requires the inversion of the matrix 𝑵 of 
dimension 𝑢 × 𝑢, with 𝑢 being the number of the estimation parameters. For applications 
like orbit determination this number can easily reach up to serveral thousands which results 
in severe numerical problems and long calculation times.  
 
As will be described in section 4.4, a proper sequence of the unknowns within the normal 
equation matrix can yield submatrices being diagonal matrices. Thus, the uncomplex 
inversion of a diagonal matrix should be exploited for solving the whole normal equation 
system. 
 
Therefore the normal equation system (4.9) is subdivided into 

 
𝑵11 𝑵12

𝑵21 𝑵22
  

𝒙1

𝒙2
 =  

𝒏1

𝒏2
 . (4.16) 

where 𝑵22  is assumed to be a diagonal matrix. The first group of unknowns 𝒙1 can be pre-
eliminated by 

𝒙1 =  𝑵11 − 𝑵12𝑵22
−1𝑵21 −1 𝒏1 − 𝑵12𝑵22

−1𝒏2 , (4.17) 

[Dach et al., 2007]. Subsequently the solution is back-substituted to obtain the second part 
of the unknowns by  

𝒙2 = 𝑵22
−1 𝒏2 − 𝑵21𝒙1 . (4.18) 

Thus, the inversion of the whole normal equation matrix is replaced by the simple inversion 
of a diagonal matrix and a general inversion of a ususally much smaller matrix. 
 
The related cofactors and covariances are given by  

𝑸11 = 𝑠0
2𝑪11 = 𝑠0

2 𝑵11 − 𝑵12𝑵22
−1𝑵21 −1 , (4.19) 

and 

𝑸22 = 𝑠0
2𝑪11 = 𝑠0

2 𝑵22
−1 +  𝑵22

−1𝑵21 𝑪11 𝑵22
−1𝑵21 𝑇 . (4.20) 

Further exploitation of the special structure of the normal equation system for inversion will 
be described in section 4.4. 
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4.1.2 Initial Orbit Determination 

 
As described in chapter 4.1.1, in order to attain the best estimate of the model parameters, 
the least-squares adjustment procedure requires a priori model parameters 𝑿0. With these 
parameters a reference trajectory is established and subsequently fitted to the 
measurements.  
 
Within this work, initial orbit determination is done by determination of positions for every 
epoch using only code measurements, which is referred to as single point positioning (SPP). 
This yields a kinematic orbit solution, see Figure 4.1. From these low precision positions 
initial conditions are taken for a first dynamic orbit integration. In order to get a dynamic 
solution of similar precision as of the kinematic solution, the integrated trajectory is first 
fitted to the kinematic solution, taking the positions as pseudo-measurements. The resulting 
orbit and the corresponding solution of the variational equations are now at disposal to be 
further improvements within the adjustment process. The epoch-wise clock offsets, attained 
as a by-product of kinematic positioning, are also taken as a priori values for the adjustment. 
It is advisable to generate the best possible initial solution in order to avoid many iterations 
in the least-squares estimation and thus save computation time. 
 

 

          Figure 4.1: Kinematic orbit solution (epochwise positions) 
 
 
Additionally, already for initial orbit determination a coarse code data screening is necessary 
to detect outliers. Therefore, the quality of the position solution is examined at every epoch. 
Whenever the RMS of the associated residuals exceeds a predefined threshold, the code 
observation that contributes the dominationg error is identified and removed from the set 
of observations. This procedure is repeated until all remaining observations fulfil that 
requirement. As a consequence, not every epoch yields a position, especially at polar 
regions, as seen in Figure 4.1. 
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4.1.3 Reference Frame Transformations 

 
The process of orbit determination involves that position coordinates and vectors are 
expressed in different coordinate systems. Within this research a total of four different 
coordinate systems are being used. The principal calculations, i.e. the integration of the 
trajectory and its adjustment to the measurements, are most conveniently accomplished in 
an inertial reference frame. Therefore the International Celestial Reference Frame (ICRF) is 
employed [McCarthy, 1996 and McCarthy and Petit, 2004]. The ephemeris data of the GPS 
satellites provided by the IGS is related to the International Terrestrial Reference Frame 
(ITRF) [ITRF, 2009]. Thus, transformations between these coordinate systems are necessary. 
In addition, measures related to the spacecraft, e.g. the offset of the receiver position with 
respect to the center of mass, are given in the satellite body-fixed coordinate frame. In order 
to process the observations, these quantities also have to be transformed into the inertial 
system. Furthermore, for applications like orbit validation the residuals related to an other 
orbit solution are most representatively expressed in the accompanying satellite coordinate 
system. For the considered CHAMP and GRACE missions the accompanying satellite system 
is closely related to the body-fixed frame due to attitude control. In the following the 
required coordinate transformations are briefly summarized. 
 
 
ICRF – ITRF Transformation 
 
The transformation of a position vector 𝒓𝐼𝐶𝑅𝐹 , given in the ICRF, to the ITRF is accomplished 
by 

𝒓𝐼𝑇𝑅𝐹 = 𝑼 𝑡 ∙ 𝒓𝐼𝐶𝑅𝐹  , (4.21) 

where 𝑼 𝑡  is a time-varying 3 × 3 orthogonal matrix. It consists of a series of successive 
rotations, defined by 

𝑼 𝑡 = 𝑷𝑥
𝑇 𝑡 ∙ 𝑷𝑦

𝑇 𝑡 ∙ 𝑬 𝑡 ∙ 𝑵 𝑡 ∙ 𝜫 𝑡   , (4.22) 

where 

𝑷𝑥
𝑇 , 𝑷𝑦

𝑇   are the matrices describing the polar motion, i.e. the separation between the third 

axis of the terrestrial system (Conventional Terrestrial Pole) and the Celestial 
Ephemeris Pole, 

𝑬 describes the Earth rotation as a function of the Greenwich apparent sidereal time, 

𝑵 is the matrix accounting for the nutation, and 

𝜫 is the matrix which accounts for the precession. 

 
The exact calculation of each of these matrices is defined by the International Astronomical 
Union (IAU). The algorithms are outlined in the IERS 1996 conventions [McCarthy, 1996] or 
in the later adopted and slightly improved IERS 2000 conventions [McCarthy, 2003]. 
However, the differences of these transformation algorithms are negligible for the 
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considered applications. For this work the IERS conventions 1996 are used. The particular 
models used for this transformation are summarized in Table 4.1. 
 

   Table 4.1: Reference frame transformation models used for this research 
 

Transformation Model Description 

 𝜫 𝒕  IAU 1976 Precession 
 𝑵 𝒕  IAU 1980 Nutation 
 𝑬 𝒕  IAU 1982 Sidereal Time 
 𝑷𝒙

𝑻, 𝑷𝒚
𝑻 IERS EOPs 

 
 
The Earth orientation parameters (EOPs), such as the polar motion parameters and the time 
offset UT1 – UTC, are required as input values for the models mentioned in Table 4.1. For 
this research, these parameters are obtained from the International Earth Rotation and 
Reference Systems Service (IERS) [IERS, 2009]. 
 
For the ITRF the convention used is the IGS realization of ITRF2000, also called IGS00, which 
is implied by the IGS or CODE GPS ephemerides. The transformation models described in 
Table 4.1 then yield the ICRF realization of Earth mean equator and equinox of J2000 
(EME2000), also referred to as the J2000 inertial system. 
 
The transformation of a position vector from the ICRF to the ITRF can be carried out using 
equation (4.21). The inverse transformation is simply given by the transpose 𝑼𝑇 𝑡  of the 
matrix 𝑼 𝑡 , due to its orthogonality, yielding  

𝒓𝐼𝐶𝑅𝐹 = 𝑼𝑇 𝑡 ∙ 𝒓𝐼𝑇𝑅𝐹  . (4.23) 

For the practical computation of various perturbing forces the transformations of 
accelerations is additionally required. Therefore, the second derivative of equation (4.21) is 
given with sufficient accuracy by [Seeber, 2003] 

𝒓 𝐼𝑇𝑅𝐹 = 𝑼 𝑡   ∙ 𝒓 𝐼𝐶𝑅𝐹   ,

𝒓 𝐼𝐶𝑅𝐹 = 𝑼𝑇 𝑡 ∙ 𝒓 𝐼𝑇𝑅𝐹   .
  (4.24) 

Here, the assumption was made, that the occurring products 𝑼 ∙ 𝒓 and 𝑼 ∙ 𝒓  are always 

negligible due to the relatively small values of 𝑼  and 𝒓  [Seeber, 2003]. Furthermore, the 
employed method for integrating the spacecrafts trajectory within the force model and the 
computation of the variational equations requires the transformation of the Jacobian 
matrices of the accelerations between the ITRF and ICRF systems. This is achieved by 

𝑱𝐼𝑇𝑅𝐹 = 𝑼 𝑡 ∙ 𝑱𝐼𝐶𝑅𝐹 ∙ 𝑼𝑇 𝑡   ,

𝑱𝐼𝐶𝑅𝐹 = 𝑼𝑇 𝑡 ∙ 𝑱𝐼𝑇𝑅𝐹 ∙ 𝑼 𝑡   ,

  (4.25) 

with the Jacobian matrices defined by 
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𝑱𝐼𝑇𝑅𝐹 =  
𝜕𝒓 𝐼𝑇𝑅𝐹

𝜕𝑥𝐼𝑇𝑅𝐹

𝜕𝒓 𝐼𝑇𝑅𝐹

𝜕𝑦𝐼𝑇𝑅𝐹

𝜕𝒓 𝐼𝑇𝑅𝐹

𝜕𝑧𝐼𝑇𝑅𝐹
   ,

𝑱𝐼𝐶𝑅𝐹 =  
𝜕𝒓 𝐼𝐶𝑅𝐹

𝜕𝑥𝐼𝐶𝑅𝐹

𝜕𝒓 𝐼𝐶𝑅𝐹

𝜕𝑦𝐼𝐶𝑅𝐹

𝜕𝒓 𝐼𝐶𝑅𝐹

𝜕𝑧𝐼𝐶𝑅𝐹
   .

  (4.26) 

 
 
SCS – ICRS Transformation 
 
As already mentioned, in order to compare different orbit solutions the position difference 
can be expressed in the time-varying satellite coordinate system (SCS). The SCS has its origin 
in the spacecraft‘s center of mass (COM). The three coordinate axes are defined as, see 
Figure 4.2,   

𝒓 𝑡    is the unit vector pointing from the geocenter to the satellite’s center of mass (radial), 

𝒂 𝑡   is the unit vector pointing in the flight direction of the satellite (along-track), and 

𝒄 𝑡  is the unit vector completing the right-handed coordinate system (cross-track). 

 

 

 
The instantaneous axes are attained from the position 𝒙 𝑡  and velocity 𝒙  𝑡  vectors of the 
satellite by 

𝒓 𝑡 =
𝒙 𝑡 

 𝒙 𝑡  
  , 

𝒂 𝑡 =
𝒙  𝑡 

 𝒙  𝑡  
  , 

𝒄 𝑡 =
𝒙 𝑡 × 𝒙  𝑡 

 𝒙 𝑡 × 𝒙  𝑡  
  . 

(4.27) 

𝒄 𝑡  

Geocenter 

Satellite 

𝑧𝐼𝐶𝑅𝐹  

𝑥𝐼𝐶𝑅𝐹  
𝑦𝐼𝐶𝑅𝐹  

𝒓 𝑡  

𝒙 𝑡  

𝒂 𝑡  

𝒙  𝑡  

Figure 4.2: The accompanying Satellite Coordinate System (SCS) 
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The satellite coordinate system is a time-varying, non-orthogonal and right-handed system. 
The transformation of a direction vector in the SCS system to the inertial system is carried 
out by 

𝒓𝐼𝐶𝑅𝐹 = 𝑫 𝑡 ∙ 𝒓𝑆𝐶𝑆  , (4.28) 

with the transformation matrix 

𝑫 𝑡 =   𝒓 𝑡 𝒂 𝑡 𝒄 𝑡    . (4.29) 

For the inverse transformation the matrix has to be inverted due to its non-orthogonality, 
yielding 

𝒓𝑆𝐶𝑆 = 𝑫−1 𝑡 ∙ 𝒓𝐼𝐶𝑅𝐹  . (4.30) 

If required, the transformation between the SCS and the ITRF is given by 

𝒓𝐼𝑇𝑅𝐹 = 𝑼 𝑡 ∙ 𝑫 𝑡 ∙ 𝒓𝑆𝐶𝑆  , 

𝒓𝑆𝐶𝑆 = 𝑫−1 𝑡 ∙ 𝑼𝑇 𝑡 ∙ 𝒓𝐼𝑇𝑅𝐹  . 
(4.31) 

 
 
 
S/C-Body – ICRS Transformation 
 
The spacecraft body system is a body-fixed reference system. It is used for the description of 
the locations of the instruments with respect to the structure of the spacecraft. Its alignment 
to the inertial reference system is determined by the actual attitude of the spacecraft. In the 
case of CHAMP and GRACE a specified nominal attitude model is very accurately maintained. 
Thus, the nominal attitude model can be used as an approximation of the body-fixed frame. 
The unit vectors of the nominal orientation for both missions are defined as, see Figure 4.3,  
 

𝒙𝐵𝑜𝑑𝑦  𝑡    is perpendicular to the 𝒛𝐵𝑜𝑑𝑦 - axis and lies in the orbital plane towards the flight 

direction, 

𝒚𝐵𝑜𝑑𝑦  𝑡   is perpendicular to the orbital plane, and 

𝒛𝐵𝑜𝑑𝑦  𝑡  is pointing in nadir direction towards the Earth. 
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The origin of the body-fixed frame is located in the center of mass (COM) of the respective 
satellite. The orthogonal axes are calculated by 

𝒙𝐵𝑜𝑑𝑦  𝑡 = 𝒚𝐵𝑜𝑑𝑦  𝑡 × 𝒛𝐵𝑜𝑑𝑦  𝑡   , 

𝒚𝐵𝑜𝑑𝑦  𝑡 = −
𝒙 𝑡 × 𝒙  𝑡 

 𝒙 𝑡 × 𝒙  𝑡  
  , 

𝒛𝐵𝑜𝑑𝑦  𝑡 = −
𝒙 𝑡 

 𝒙 𝑡  
  . 

(4.32) 

The body-fixed coordinate system is a time-varying, orthogonal and right-handed system. 
The transformation of a direction vector from the Body-fixed system to the inertial system is 
given by 

𝒓𝐼𝐶𝑅𝐹 = 𝑪 𝑡 ∙ 𝒓𝐵𝑜𝑑𝑦  , 

𝒓𝐵𝑜𝑑𝑦 = 𝑪𝑇 𝑡 ∙ 𝒓𝐼𝐶𝑅𝐹  , 
(4.33) 

with the transformation matrix 

𝑪 𝑡 =   𝒙𝐵𝑜𝑑𝑦  𝑡 𝒚𝐵𝑜𝑑𝑦  𝑡 𝒛𝐵𝑜𝑑𝑦  𝑡    . (4.34) 

Preferably, for a rigorous transformation the actual attitude may be obtained from the 
precise attitude data, which is determined from the star camera observations. The attitude 
information is commonly provided as quaternions [Montenbruck, 2000]. However, the 
nominal attitude model is accurate to about 3 degrees with respect to the actual orientation 
[Kang et al., 2006a und Jäggi, 2006]. Thus, the use of the nominal attitude model is largely 
justifiable. This is even more the case for GRACE due to the closer distance of the GPS 
receiver from the center of mass. 

𝒛𝐵𝑜𝑑𝑦  𝑡 = −
𝒙 𝑡 

 𝒙 𝑡  
 

𝒙𝐵𝑜𝑑𝑦  𝑡  

𝒙  𝑡  

𝒚𝐵𝑜𝑑𝑦  𝑡  
COM 

POD Antenna 

 Figure 4.3:  The S/C-Body Coordinate System related to the 
           nominal attitude (example of CHAMP) 
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The exact coordinates of the main GPS receivers for CHAMP [Schwintzer et al., 2002] and 
GRACE [Case et al., 2004 and Bettadpur, 2007], given in the body-fixed system are listed in 
Table 4.2. It has to be mentioned, that on 10 December 2005 the signs of the components 
have to be changed for the two GRACE spacecraft due to a switch maneuver. The offsets are 
assumed to be constant, implying that possible phase center variations are ignored. This also 
holds for variations of the spacecraft’s center of mass, which can be caused by the expulsion 
of propellant.  
 

     Table 4.2: GPS receiver phase center offsets in the body-fixed frame 
 

Satellite 𝑿𝑩𝒐𝒅𝒚 𝒎  𝒀𝑩𝒐𝒅𝒚 𝒎  𝒁𝑩𝒐𝒅𝒚 𝒎  

CHAMP −1.4880  0.0000  −0.3928  
GRACE A −0.0004  −0.0004  −0.4514  
GRACE B 0.0006  0.0007  −0.4514  

 
For GPS signal processing the center of mass correction must also be applied for the GPS 
satellites. The nominal attitude model and antenna phase center offsets of the GPS satellites 
are outlined in section 3.1.1. 
 
 

4.2 Dynamic Orbit Modeling 

 
As already outlined, the chosen approaches of orbit modeling are the dynamic and reduced-
dynamic models. In this chapter the concept of dynamic orbit modeling, which is also the 
basis for reduced-dynamic orbit modeling, will be discussed in detail. 
 
The motion of artificial satellites orbiting the Earth is governed by a multitude of forces 
induced by various interactions between the satellites and their physical environment. The 
mathematical framework describing the orbit is referred to as the equations of motion. They 
are built up successively, based on the gravitational force of a pointlike Earth, resulting in a 
linear differential equation system of second order. This equation represents the 
combination of Newton’s second law with his law of gravitation for point masses, given by 

𝒙  𝑡 = −
𝐺𝑀

𝑟3
∙ 𝒙 𝑡  , (4.35) 

where 𝒙 𝑡  represents the position of the spacecraft related to the center of the Earth as a 
function of time, 𝒙  𝑡  is the second derivation of 𝒙 𝑡  and represents the acceleration, 𝑟 is 
the norm of 𝒙 𝑡 , 𝑀 stands for the mass of the Earth and 𝐺 is the gravitational constant 
[Schneider, 1988]. Equation (4.35) assumes the Earth’s gravitiy field to be pointlike or 
spherically symmetric. It further assumes the mass of the satellite to be negligible compared 
to the mass of the Earth. The formula holds for the center of mass of the spacecraft. It is 
expressed in an inertial system. As will be shown later, additional corrections have to be 
introduced, if the orbit of the spacecraft is considered in an Earth-centered quasi-inertial 
system. 
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Equation (4.35) is the basic approximation of the equation of motion for artificial Earth 
satellites. It is the fundamental basis for any more advanced modeling of the equations of 
motion. Any solution of equation (4.35) represents a particular orbit. It can be solved 
analytically, revealing that all solutions have the shape of conic sections, also referred to as 
Keplerian orbits [Vallado, 2007]. For a three-dimensional differential equation of second 
order six constants of integration need to be defined in order to identify a particular 
trajectory. This set of constants of integration, denoted as the state of the orbit, can be 
arranged using initial values for position and velocity at epoch 𝑡0  

𝒓0 = 𝒙 𝑡0   ;

𝒗0 = 𝒙  𝑡0   ,
  (4.36) 

or using two boundary (position) values at epochs 𝑡1 and 𝑡2  

𝒓1 = 𝒙 𝑡1   ;

𝒓2 = 𝒙 𝑡2   .
  (4.37) 

For many practical applications, such as orbit propagation, the use of the (also more 
illustrative) six Keplerian Elements is preferable [Vallado, 2007]. With these elements the 
orbit is strictly defined, and position and velocity of the spacecraft can easily be calculated 
for any epoch. Figure 4.4 illustrates the concept of the Keplerian elements and the 
mathematical algorithms for Keplerian ephemeris calculation are given in Appendix A.2. The 
six elements are the semimajor axis a, the eccentricity e, the inclination i, the right ascension 
of the ascending node Ω, the argument of perigee ω and the true anomaly ν [Vallado, 2007]. 
 

 
 

 

     Figure 4.4: The Keplerian (or classical) elements 
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However, any satellite is affected by a virtually vast number of additional forces, perturbing 
the orbital motion (4.35). In this context, the above described model is denoted the 
unperturbed orbit model. To establish the perturbed orbit model, the accelerations 
𝒙  𝑡 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 ,𝑖  , which are implied by the additionally considered forces, are subsequently added 

into equation (4.35), which can be written as 

𝒙  𝑡 = −
𝐺𝑀

𝑟3
∙ 𝒙 𝑡 + 𝒙  𝑡 𝑝𝑒𝑟𝑡𝑢𝑟𝑏   , (4.38) 

with 

𝒙  𝑡 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 =  𝒙  𝑡 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 ,𝑖

𝑖

  . (4.39) 

Equation (4.38) is a non-linear differential equation of second order. The particular 
perturbational forces actually can depend on the position 𝒙, the velocity 𝒙 , the time 𝑡 and on 
additional force model parameters 𝑞1, … , 𝑞𝑑  

𝒙  𝑡 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 ,𝑖 = 𝒙  𝑡, 𝒙, 𝒙 , 𝑞1, … , 𝑞𝑑 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 ,𝑖   . (4.40) 

These parameters are referred to as dynamical parameters [Montenbruck, 2000]. Dynamical 
parameters are either considered to be known or estimated together with the initial 
conditions within an adjustment process. In the case dynamical parameters relate to 
analytical models of accelerations they are also referred to as deterministic parameters 
[Bertiger et al., 1994]. Dynamic orbit modeling only involves deterministic parameters. 
 
Equation (4.38) can formally be written as 

𝒙  𝑡 = 𝒇 𝑡, 𝒙, 𝒙 , 𝑞1 , … , 𝑞𝑑 =  𝒇 𝑡, 𝑝1 , 𝑝2 , … , 𝑝6 , 𝑞1, … , 𝑞𝑑  , (4.41) 

with 𝑝1, 𝑝2 , … , 𝑝6  representing the six initial parameters. It is generally too complex to be 
solved analytically. Therefore it has to be solved numerically. A wide range of methods has 
been developed for solving the differential equations efficiently and accurately [Beutler, 
2005 and Vallado, 2007]. 
 
For this research the so-called collocation method was chosen [Beutler, 1990, Beutler, 2005 
and Swatschina, 2004]. It can be considered as the most accurate and flexible numerical 
integrator for orbit propagation. It directly yields a polynomial function of time instead of a 
table of positions. The accumulated error of integration is at a remarkable low level due to 
the high orders of integration. Only limited by computational precision, orders of up to 12 
can be employed [Beutler, 2005]. Test runs with the developed software (see section 5) 
showed that the integration of an unperturbed orbit coincides with the actual elliptic orbit 
within one millimeter even after several revolutions. In addition, with the collocation 
method also the boundary value problem is directly solvable. A detailed description of the 
collocation method as well as techniques to further improve its efficiency can be found in 
Beutler [1990], Beutler [2005] and Swatschina [2004].  
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4.2.1 The Dynamic Force Model 

 
In this chapter, the modeling of the dynamic force field for LEO satellites will be discussed. 
The perturbational influences can generally be divided into gravitational and non-
gravitational forces or accelerations. As the name suggests, gravitational perturbations are 
forces induced by mass attractions apart from the pointlike Earth model. Forces of 
gravitational nature are also denoted as conservative forces. Accordingly, non-gravitational 
forces are referred to as non-conservative forces.  
 
Gravitational accelerations are fully determined by the position of the satellite. Therefore, 
the choice of which perturbations are included must be considered depending on the orbital 
characteristics of the respective mission. On the other hand, non-gravitational accelerations 
may additionally depend on a variety of other parameters. These parameters might describe 
the physical environment of the spacecraft, e.g. the density of the surrounding atmosphere, 
but also the properties of the spacecraft itself like its mass, shape and material. Thus, 
dynamic orbit modeling has to be treated spacecraft- and orbit-specific in order to achieve 
most precise results. 
 
Table 4.3 lists the most relevant conservative accelerations acting on a typical LEO satellite in 
about 400 km altitude. 
 

  Table 4.3: Gravitational perturbations acting on a LEO satellite [Bock, 2003] 
 

Perturbation Acceleration [m/s2] 

1/r2-Term  8.6 
Inhomogeneous Earth Gravity Field  1.5∙10-2 
Lunar Attraction  5.5∙10-6 
Solar Attraction  5.0∙10-7 
Attraction of other Planets (Jupiter, Venus)  1.0∙10-10 
Solid Earth Tides  1.5∙10-7 
Polar Tides  1.0∙10-8 
Oceanic Tides  5.0∙10-8 
General Relativity  5.0∙10-9 

 
 
Non-gravitational perturbations can be globally categorized as frictional. The amplitude of 
the force component is directly proportional to the surface area of the spacecraft seen from 
a certain direction (e.g. the flight-direction or the direction towards the Sun) [Feltens, 1991]. 
Due to the mechanical inertia, the resulting force is indirectly proportional to the mass of the 
space vehilce. Besides other parameters, the effect of non-conservative perturbations 
depends essentially on the area-to-mass ratio 𝐴 𝑚 . Table 4.4 gives an overview of the most 
relevant non-gravitational perturbational forces for a spacecraft like CHAMP or GRACE in a 
LEO orbit. 
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Table 4.4: Non-gravitational perturbations acting on a LEO satellite [Bock, 2003] 

 

Perturbation Acceleration [m/s2] 

Atmospheric Drag  5.0∙10-7 
Direct Radiation Pressure  3.0∙10-8 
Albedo  4.0∙10-9 
Orbit Maneuvers -   

 
 
Dynamic orbit modeling crucially relies on the quality of the employed force field and on the 
accuracy of the integrator. As already mentioned, the integration can be performed 
delivering by far sufficient accuracy. In fact, purely dynamical orbit modeling is always 
limited by the deficiencies of the most dominant force among those forces that could not be 
satisfactorily modeled. In the case described in Tables 4.3 and 4.4, this holds for the 
modeling of the atmospheric drag. Due to the lack of the required knowledge of the 
atmospheric density and its variation with time and location, atmospheric drag modeling is 
much more uncertain than models for other, more dominant perturbations. Therefore, 
accurate dynamic orbits are always limited to rather short time intervals. With growing 
orbital length, the deficiencies of the dynamic model add up and force the orbit solution to 
diverge. As will be discussed later, the deficiencies of the dynamic model can be widely 
overcome by adding empirical forces to the dynamic model. Trajectories of much longer 
time intervals can be computed. The orbital length of such reduced-dynamic orbits is not 
limited any more by the underlying model, but rather by numerical problems of solving for 
too many parameters. For many applications, this even allows for disregarding the dynamics 
to some extent, which in turn yields shorter computation times. For scientific interest it is 
nevertheless reasonable to model the dynamics to the best possible extent. Thereby, the 
empirical part of the orbit model is reduced to a minimum, making the solution most 
plausible. This holds not only for the position, but also for the velocity and acceleration 
levels. 
 
Below, an introduction of the modeling techniques for the listed gravitational and non-
gravitational perturbations is given. The partial derivatives of most of the presented force 
model components with respect to the position and velocity coordinates are given in 
Appendix A.3. The derivatives are required for the orbit propagation with the collocation 
method and for the solution of the variational equations. 
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Gravitational Perturbations 
 
The inhomogeneous Earth Gravity Field 
 
The inhomogeneous Earth gravity field, that deviates from the gravitation of a point mass or 
a spherically symmetric mass, is commonly represented by spherical harmonic functions 
[Hofmann-Wellenhof and Moritz, 2006]. Using Legendre polynomials, the perturbing 
gravitational potential 𝑇 can be modeled as 

𝑇 =
𝜇

𝑟
  

𝑎

𝑟
 

𝑛

  𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 + 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙ 𝑃𝑛𝑚  𝑐𝑜𝑠 𝛩 

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 , (4.42) 

where 

𝜇  is the gravitation parameter (product of the gravitational constant 𝐺 and the 
mass of the Earth 𝑀), 

𝑎 is the equatorial radius of the Earth, 

𝑟 is the norm of the spacecraft’s position, 

𝜆 is the geocentric longitude of the spacecraft, 

𝛩 is the polar distance of the spacecraft, 

𝑃𝑛𝑚  are the associated Legendre polynomials, 

𝐶𝑛𝑚 , 𝑆𝑛𝑚  are the coefficients of spherical harmonics, and 

𝑛, 𝑚 are the dregree and order of the spherical harmonics expansion. 

To avoid numerical problems, normalized Legendre polynomials are usually employed 
[Hofmann-Wellenhof and Moritz, 2006]. The Earth-fixed cartesian coordinates 𝑥𝑒, 𝑦𝑒  and 𝑧𝑒  
are related to the spherical coordinates by 

𝑟 =  𝑥𝑒
2 + 𝑦𝑒

2 + 𝑧𝑒
2 , 

𝛩 = arctan  
 𝑥𝑒

2 + 𝑦𝑒
2

𝑧𝑒

 , 

𝜆 = arctan  
𝑦𝑒

𝑥𝑒
 . 

(4.43) 

The perturbing acceleration of the inhomogeneous gravity field 𝒙 𝑇𝑖
 is the gradient vector of 

the potential 𝑇. It has to be transformed into the inertial system from the Earth-fixed system 
where it is given by 
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𝒙 𝑇𝑒
= ∇𝑐𝑎𝑟𝑡𝑒𝑠 𝑇 = 𝐷 ∙ ∇𝑠𝑝𝑒𝑟𝑒 𝑇 , (4.44) 

where 

∇𝑐𝑎𝑟𝑡𝑒𝑠 𝑇 =

 

 
 
 
 

𝜕𝑇

𝜕𝑥𝑒

𝜕𝑇

𝜕𝑦𝑒

𝜕𝑇

𝜕𝑧𝑒 

 
 
 
 

, 

𝐷 =

 

 
 
 
 

𝜕𝑟

𝜕𝑥𝑒

𝜕𝛩

𝜕𝑥𝑒

𝜕𝜆

𝜕𝑥𝑒

𝜕𝑟

𝜕𝑦𝑒

𝜕𝛩

𝜕𝑦𝑒

𝜕𝜆

𝜕𝑦𝑒

𝜕𝑟

𝜕𝑧𝑒

𝜕𝛩

𝜕𝑧𝑒

𝜕𝜆

𝜕𝑧𝑒 

 
 
 
 

, 

∇𝑠𝑝𝑒𝑟𝑒 𝑇 =

 

 
 
 

𝜕𝑇

𝜕𝑟
𝜕𝑇

𝜕𝛩
𝜕𝑇

𝜕𝜆 

 
 
 

. 

(4.45) 

The partial derivatives of 𝑇 with respect to the spherical coordinates are given by 

𝜕𝑇

𝜕𝑟
=

𝜇

𝑟
  1 − 𝑛 

𝑎𝑛

𝑟𝑛+1
  𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 + 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙ 𝑃𝑛𝑚  𝑐𝑜𝑠 𝛩 

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 , 

𝜕𝑇

𝜕𝛩
=

𝜇

𝑟
  

𝑎

𝑟
 

𝑛

  𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 + 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙
𝜕𝑃𝑛𝑚  𝑐𝑜𝑠𝛩 

𝜕𝛩

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 , 

𝜕𝑇

𝜕𝜆
=

𝜇

𝑟
  

𝑎

𝑟
 

𝑛

 𝑚 ∙  −𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 + 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙ 𝑃𝑛𝑚  𝑐𝑜𝑠 𝛩 

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 . 

(4.46) 

The derivation of the associated Lengendre polynomials and their derivatives can be found 
in Swatschina [2004] Hofmann-Wellenhof and Moritz [2006]. 
 
Satellites in lower orbit regions are much more sensitive to higher order terms of the 
inhomogeneous gravity field. On the other hand, with increasing distance from the Earth the 
gravity field becomes increasingly pointlike. 
 
Today, an increasing number of high quality gravity field models, with degree and order 
reaching up to 360 or more, are available. The employed gravity field models will be 
described in section 5. 
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Third-Body Perturbations 
 
The second largest perturbation on the spacecrafts trajectory is caused by third-body 
attractions of the Moon an the Sun. The Earth-centered quasi-inertial coordinate system 
underlies no rotations, but is still subject to the translative accelerations of the Earth‘s 
center of mass. The forces that act on the Earth‘s center of mass and govern its motion differ 
at all other positions outside the Earth‘s center of mass. Thus, this difference appears as an 
apparent force acting on a satellite, when considered in the quasi-inertial system. Figure 4.5 
illustrates the third-body perturbation as a differential force. These tidal forces, caused by 
the celestial body 𝐶, can be described by 

𝒙 𝐶 = 𝐺𝑀𝐶 ∙  
𝒙𝑐 − 𝒙

 𝒙𝑐 − 𝒙 3
−

𝒙𝑐

 𝒙𝑐  3
  , (4.47) 

where 

𝐺𝑀𝐶 is the gravitational constant of the celestial body 𝐶, 

𝒙𝑐  is the geocentric position of 𝐶, and 

𝒙 is the geocentric position of the satellite. 

 
 

 
 
 
It can be shown that the acceleration increases linearly with the satellite’s distance from the 
center of the Earth, while it decreases with the third power of the distance of the perturbing 
body [Vallado, 2007].  
 
As already mentioned, the third-body attractions have to be accounted only for the Moon 
and the Sun. These bodies can be treated as point masses and their coordinates need not to 

Figure 4.5: The third-body attraction acting on a satellite 
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be known to the highest precision. Low-precision formulas for Solar and Lunar coordinates, 
which are accurate to about 0.1 − 1%, can be found in Montenbruck and Gill [2000], and are 
employed in this research. 
 
 
Solid Earth tides 
 
Under the direct impact of the tidal forces the solid Earth itself experiences a deformation. 
The resulting change in the gravitational potental of the Earth causes additional forces that 
act on the satellite. This can be considered as an indirect gravitational effect of the Sun and 
the Moon. The acceleration caused by solid Earth tides is given by 

𝒙 𝑆𝑇,𝐶 =
𝑘2

2

𝐺𝑀𝐶

 𝒙𝐶 3

𝑎5

 𝒙 5
∙  −15

 𝒙 ∙ 𝒙𝐶 2

 𝒙 2 𝒙𝐶 2
∙ 𝒙 + 6 ∙

 𝒙 ∙ 𝒙𝐶 

 𝒙𝐶 2
∙ 𝒙𝐶 + 3𝒙  , (4.48) 

where 𝑘2 is the Love number, providing a measure for the elasticity of the Earth [Seeber, 
2003].  
 
The value of 0.29525 for the Love number 𝑘2 represents the mean and frequency-
independent part of the solid earth tides [McCarthy, 1996]. To account for the effects that 
are dependent on the frequencies of the tides, the tidal potential is developed in spherical 
harmonics. Then the time-dependent correction terms ∆𝐶𝑛𝑚

𝑆𝑇  and ∆𝑆𝑛𝑚
𝑆𝑇  are simply added to 

the geopotential coefficients 𝐶𝑛𝑚  and 𝑆𝑛𝑚 . A detailed description of the calculation of ∆𝐶𝑛𝑚
𝑆𝑇  

and ∆𝑆𝑛𝑚
𝑆𝑇  can be found in McCarthy [1996]. A revised model is given in McCarthy and Petit 

[2004]. 
 
Satellites in LEOs orbit are much more sensitive to indirect Earth tide effects than higher 
orbiting satellites like GNSS or geostationary satellites due to the rapid attenuation of the 
gravity inhomogenities with increasing distance. 
 
 
Polar Tides 
 
The centrifugal effect of the polar motion generates a perturbation in the external potential 
of the Earth, referred to as pole tide. It can be calculated as changes in the geopotential 
coefficients 𝐶21  and 𝑆21 , depending on the polar motion variables 𝑥𝑃 and 𝑦𝑃  [McCarthy, 
1996 and McCarthy and Petit, 2004]. 
 
 
Ocean Tides 
 
The direct tidal forces also affect the oceans causing mass redistributions. Similar to the 
treatment of solid Earth tides, the effect of ocean tides can be modeled using time variable 
spherical harmonics coefficients ∆𝐶𝑛𝑚

𝑂𝑇  and ∆𝑆𝑛𝑚
𝑂𝑇  [McCarthy and Petit, 2004]. However, the 

effect of ocean tides is rather small and their amplitudes are about one order of magnitude 
smaller than that of solid Earth tides. 
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Relativistic Effects 
 
For a rigorous treatment of the orbital motion, the theory of general relativity has to be 
taken into account. The post-Newtonian effects can be very effectively handled by adding a 
correction term to the Newtonian acceleration (4.35), which is given by 

𝒙 𝑅𝑒𝑙 =
𝜇

𝑐2 𝒙 3
∙   4

𝜇

 𝒙 
− 𝒙 2 ∙ 𝒙 + 4 ∙  𝒙 ∙ 𝒙  ∙ 𝒙  + 

+2
𝜇

𝑐2 𝒙 3
∙  

3

 𝒙 2
 𝒙 × 𝒙   𝒙 ∙ 𝑱 +  𝒙 ∙ 𝑱  + 

+3  𝑹 ×  
−𝐺𝑀𝑆𝑹

𝑐2 𝑹 3
 × 𝒙   , 

(4.49) 

 [McCarthy and Petit, 2004], where 

 𝑐  is the speed of light,  

𝑹 is the position of the Earth with respect to the Sun,  

𝑱 is the Earth’s angular momentum per unit mass   𝑱 ≅ 9.8 ∙ 108  𝑚2 𝑠  , and  

𝑀𝑆  is the mass of the Sun. 

 
The first term of equation (4.49) is the relativistic correction to the Newtonian acceleration 
for the Schwarzschild metric due to the central gravitational term [Ashby and Bertotti, 1984]. 
The second and third terms describe the Lense-Thirring precession and the de Sitter 
precession, respectively [Ashby and Bertotti, 1984 and Ashby, 2007]. However, the 
relativistic effect of the inhomogeneous mass distribution of the Earth can be ignored. 
 
The Schwarzschild field of the Earth causes the main part of the relativistic effects on a near-
Earth satellite. It acts like a small scaling factor to the classical Newtonian equations of 
motion. The relativistic acceleration is a linear combination of the position and velocity and 
thus lies in the orbital plane. For close Earth satellites the relativistic perturbation amounts 
to the order of 10−9 of the central term.  
 
The relativistic effects caused by other celestial bodies, like the Sun, lead to distance 
variations at the sub-mm level for Earth satellites and thus can also be neglected 
[Montenbruck and Gill, 2004].  
 
Concerning the classification of the relativistic perturbation it is remarkable that (4.49) does 
not fulfil the criteria for conservative forces, i.e. the rotation of (4.49) does not vanish 

𝑟𝑜𝑡 𝒙 𝑅𝑒𝑙  = ∇ × 𝒙 𝑅𝑒𝑙 ≠ 𝐎 , (4.50) 

where ∇ is the Nabla-Operator which is defined by 
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∇=

 

 
 
 
 

∂

∂𝑥
∂

∂𝑦
∂

∂𝑧 

 
 
 
 

 . (4.51) 

Thus, the relativistic correction term is non-conservative, but undeniably not non-
gravitational. 
 

 
Non-gravitational Perturbations 
 
 
Atmospheric Drag 
 
As already pointed out, the atmospheric forces represent the largest non-gravitational 
perturbations acting on satellites at low altitudes. Accurate atmospheric drag modeling is 
difficult in many respects. In the first place, the physical properties of the upper atmosphere, 
especially the density which depends in a complex way on a variety of different parameters, 
are not known with sufficient accuracy. Furthermore, an exact knowledge of the aero-
dynamic impact of neutral gas and charged particles of the spacecraft with its complex 
structure and different surfaces would be necessary. Moreover, precise determination of the 
(often) varying attitude of the satellite towards the flight direction and atmospheric particle 
flux is required. 
 
However, for many applications drag modeling can yet be done with admissible precision. A 
range of models for atmospheric densities at satellite heights, like the widely used Harris-
Priester model [Harris and Priester, 1962 or Montenbruck and Gill, 2000] or the Jacchia 1971 
density model [Jacchia, 1971 or Montenbruck and Gill, 2000], yield acceptable results. If a 
spacecraft is attitude controlled with a constant alignment with respect to the flight 
direction, then atmospheric drag can be modeled appropriately by 

𝒙 𝐷 = −
1

2
𝐶𝐷

𝐴

𝑚
𝜌 ∙   𝒙  2 ∙

𝒙 

 𝒙  
   , (4.52) 

[Montenbruck and Gill, 2000], where 

𝐶𝐷  is the dimensionless drag coefficient, 

𝐴 is the satellite’s cross sectional area of the satellite in flight direction, 

𝑚 is the mass of the satellite, and 

𝜌 is the atmospheric density at the satellite’s location. 

The drag coefficient describes the aerodynamic interaction of the atmosphere with the 
surface material of the spacecraft. The a priori knowledge of 𝐶𝐷  is usually very imprecise. 
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Thus, it has to be estimated within the orbit determination process. Typical values range 
from 1.5 to 3.0 [Montenbruck and Gill, 2000].  
 
However, the modeling of the atmospheric impact does not reach the precision as it is 
attained for the previously discussed gravitational perturbations. This holds especially for 
non-spherical spacecraft because the “cannonball“-model described by (4.52) neglects any 
lift forces and binormal forces, acting perpenticular to the velocity of the spacecraft.  
 
 
Direct Solar Radiation Pressure 
 
The incoming radiation of the Sun exerts a force on the satellite. The effect of the direct 
radiation pressure is not related to the altitude of a satellite. Because the amplitude of the 
atmospheric drag decreases exponentially with height, the radiation pressure usually is the 
dominating non-gravitational perturbation for satellites above 600 km [Beutler, 2004]. 
 
The difficulties of radiation pressure modeling are similar as for atmopheric drag modeling. 
The entire process involves determining the location of the Sun, the satellite’s attitude, the 
effective cross-sectional area exposed to radiation and the correct modeling of the (usually 
time-varying) coefficients of the satellite’s reflectivity as well as the time-varying solar 
radiation. 
 
For a spherically shaped satellite the resulting acceleration can be modeled by 

𝒙 𝑆𝑅 = −
𝐶𝑆𝑅

2

𝐴𝑒
2

 𝒙 − 𝒙𝑆 2

𝑆

𝑐

𝐴

𝑚

𝒙 − 𝒙𝑆

 𝒙 − 𝒙𝑆 
 , (4.53) 

[Beutler, 2004], where 

𝐶𝑆𝑅  is the coefficient describing the reflective properties of the satellite’s surface, 

𝐴𝑒  is the astronomical unit, 𝐴𝑒 = 149 597 870 610 𝑚,  

𝑆 is the Solar constant, 𝑆 = 1 368 
𝑊

𝑚 2, 

𝑐 is the speed of light, 

𝐴 is the cross-sectional area of the satellite in direction towards the Sun, 

𝑚 is the mass of the satellite, 

𝒙 is the geocentric position of the satellite, and 

𝒙𝑆  is the geocentric position of the Sun. 

 
In practice, this model can be employed efficiently as a first order approximation for 
radiation pressure.  
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A more refined empirical radiation pressure model , which is widely used for GPS satellites, 
decomposes the perturbing acceleration in three directions [Springer et al., 1999]. For GPS 
satellites these directions are defined that the d-axis is pointing towards the Sun, the y-axis is 
perpendicular to the vectors between the Sun and the GPS satellite and between the 
geocenter and the GPS satellite and the x-axis completes the right-handed system [Bock, 
2003]. The parametrization comprises constant parameters, 𝐷0, 𝑌0 and 𝑋0, and once-per-
revolution cosine- and sine-terms, 𝐷𝐶 , 𝐷𝑆, 𝑌𝐶 , 𝑌𝑆, 𝑋𝐶  and 𝑋𝑆, which depend on the latitude 𝑢 
of the spacecraft. The parameters are empirically estimated for the individual satellite and 
the model is given by 

 

𝑎𝑑

𝑎𝑦

𝑎𝑥

 =  
𝐷0

𝑌0

𝑋0

+
+
+

𝐷𝐶 ∙ cos 𝑢
𝑌𝐶 ∙ cos 𝑢
𝑋𝐶 ∙ cos 𝑢

+
+
+

𝐷𝑆 ∙ sin 𝑢
𝑌𝑆 ∙ sin 𝑢
𝑋𝑆 ∙ sin 𝑢

  , (4.54) 

An analoguous empirical modeling of radiation pressure may be performed in the orbit-fixed 
reference frame, using the directions in along-track, radial and cross-track [Bock, 2003]. 
 
Additionally, the modeling of Solar radiation pressure has to account for shadowing effects, 
caused by either the Earth or the Moon. For satellites in LEO orbit a simple shadow cylinder 
casted by the Earth is usually sufficient. More elaborate shadow modeling accounts for the 
totally eclipsed umbra and the partially obscured penumbra regions of both the Earth and 
the Moon [Feltens, 1991 and Vallado, 2007].  
 
 
Earth Albedo 
 
In addition to the direct solar radiation pressure, the radiation reflected or re-emitted by the 
Earth, called albedo, yields a small pressure on the satellite. It decreases with height and can 
amount 10 − 35% of the direct radiation pressure for low Earth orbiters [Montenbruck and 
Gill, 2000]. The albedo radiation varies significantly due to surface characteristics and cloud 
coverage. Accurate modeling of albedo pressure is difficult. However, adequate modeling 
can be achieved by dividing the Earth’s surface in a number of surface elements. Using the 
Lambertian reflection law the radiation of each element is calculated employing the same 
model as it is used for the direct radiation pressure (4.53). 
 
 
Thrust 
 
Aside from natural forces, onboard thrusters intentionally exert forces on the spacecraft for 
orbit control. The procedure of maintaining a nominally defined orbit is referred to as station 
keeping [Wertz, 2001]. Due to atmospheric drag, a LEO spacecraft is permanently 
decelerated, which leads to a loss in altitude. In order to prolong the mission lifetimes of the 
CHAMP and the GRACE missions, some major orbit maneuvers were carried out to transfer 
the spacecraft back into higher orbits. Furthermore, the two spacecraft of the GRACE 
mission have to be kept within a distance of 220 ± 50 km [Ramos-Bosch, 2008a]. Apart from 
these maneuvers the satellites can be widely considered as freely falling.  
 
In addition, the mentioned spacecraft are also continuously attitude controlled. Due to the 
misalignments of the pointing of the thruster pairs, the attitude maneuvers can also exert a 
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residual translative force on the satellite. Any modeling of these residual forces is extremely 
difficult. However, besides the rare orbit maneuvers, the effects of thrust can easily be 
captured by empirical orbit models, as described in section 4.3. Thus, thrust is not included 
in the dynamical models for CHAMP and GRACE. 
 
As already mentioned, the GOCE satellite is permanently propelled by an ion engine to 
overcome drag. In this case, it is well appropriate to model the propulsion dynamically. 
 
 

4.2.2 Variational Equations 

 
Dynamic orbit modeling describes the trajectory of a spacecraft as a particular solution of 
the equations of motion, set up in (4.41). As already mentioned, a particular solution is 
determined by its initial and dynamical parameters. Within the orbit determination process 
the trajectory that is best fitting to the observations is estimated. This requires the partial 
derivatives of the a priori orbit solution 𝒙 𝑡  with respect to the initial and selected 
dynamical parameters 𝑃𝑖  

𝒛𝑃𝑖
 𝑡 = 

𝜕𝒙 𝑡 

𝜕𝑃𝑖
 , (4.55) 

with 

𝑃𝑖 ∈  𝑝1 , 𝑝2 , … , 𝑝6 , 𝑞1 , … , 𝑞𝑑  . (4.56) 

The equations of motion (4.41) are not solvable analytically. Thus, the functional relations 
between the particular orbit and the orbit parameters 𝑃𝑖  are not known. However, the dif-
ferential equation system (4.41), which rigorously describes the relationship between the 
accelerations and the orbit parameters, can be differentiated with respect to these para-
meters. The resulting differential equations are referred to as variational equations, given by 

𝒛 𝑃𝑖
= 𝑨0 ∙ 𝒛𝑃𝑖

+ 𝑨1 ∙ 𝒛 𝑃𝑖
+

𝜕𝒙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏

𝜕𝑃𝑖
 , (4.57) 

with the Jacobian matrices 𝐴0 and 𝐴1, defined by 

𝑨0,𝑗𝑘 = 𝑨0,𝑗𝑘  𝑡, 𝒙, 𝒙  =
𝜕𝒇,𝑗

𝜕𝒙,𝑘
 ,            𝑗, 𝑘 = 1,2,3 , (4.58) 

and 

𝑨1,𝑗𝑘 = 𝑨1,𝑗𝑘  𝑡, 𝒙, 𝒙  =
𝜕𝒇,𝑗

𝜕𝒙 ,𝑘
 ,            𝑗, 𝑘 = 1,2,3 . (4.59) 

The last term of equation (4.57) is non-zero only for dynamical parameters 𝑃𝑖 ∈  𝑞1, … , 𝑞𝑑 . 
Thus, for initial values 𝑃𝑖 ∈  𝑝1 , 𝑝2 , … , 𝑝6  the variational equation system becomes a linear 
and homogeneous differential equation system of second order. It is the same equation 
system for all initial parameters with different initial values for the derivatives 𝒛𝑝𝑖

. Whereas 
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for dynamical parameters the equation system is inhomogeneous and different for each 
parameter, but the initial values for the derivatives 𝒛𝑞𝑖

 are always zero. Table 4.5 shows the 

initial values for the variational equations with respect to the parameters 𝑃𝑖 . 
 

 
          Table 4.5: Initial conditions for the variational equations 

 

𝑷𝒊 𝒛𝑷𝒊,𝟏
 𝒕𝟎  𝒛𝑷𝒊,𝟐

 𝒕𝟎  𝒛𝑷𝒊,𝟑
 𝒕𝟎  𝒛 𝑷𝒊,𝟏

 𝒕𝟎  𝒛 𝑷𝒊,𝟐
 𝒕𝟎  𝒛 𝑷𝒊,𝟑

 𝒕𝟎  

𝒙,𝟏 = 𝒑𝟏 1 0 0 0 0 0 

𝒙,𝟐 = 𝒑𝟐 0 1 0 0 0 0 

𝒙,𝟑 = 𝒑𝟑 0 0 1 0 0 0 

𝒙 ,𝟏 = 𝒑𝟒 0 0 0 1 0 0 

𝒙 ,𝟐 = 𝒑𝟓 0 0 0 0 1 0 

𝒙 ,𝟑 = 𝒑𝟔 0 0 0 0 0 1 

𝒒𝒊 0 0 0 0 0 0 

 
 

 
To solve the variational equations according to a given (numerical) solution 𝒙0 of the 
primary equations (4.41), the Jacobian matrices and the last term of equation (4.57) have to 
be evaluated at 𝒙0, yielding 

𝒛 𝑃𝑖
=  𝑨0 𝑡, 𝒙, 𝒙   

𝒙=𝒙0

∙ 𝒛𝑃𝑖
+  𝑨1 𝑡, 𝒙, 𝒙   

𝒙=𝒙0

∙ 𝒛 𝑃𝑖
+

𝜕𝒙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏  𝑡, 𝒙, 𝒙  

𝜕𝑃𝑖

 

𝑥=𝒙0

 . (4.60) 

For this thesis the collocation method is employed for solving all the primary and variational 
differential equations [Beutler 1990, Beutler, 2005 and Swatschina 2004]. This method 
requires linear differential equations. Therefore, the primary equations have to be linearized 
and solved iteratively. The linearization implies that the Jacobian matrices are available 
when solving the primary equations. They simply have to be taken from the converged 
solution and are identical for all variational equation systems (4.60). Thus, using the 
collocation method, the variational equation systems can be set up very efficiently with little 
additional computation effort only for dynamical parameters. 
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4.3 Reduced Dynamic Orbit Modelling 

 
The quality of dynamical orbit solutions relies on the one hand on the quality of the dynamic 
force model and on the other hand on the quality of the measurements tracking the 
spacecraft. Spaceborne GPS measurements continuously yield highly accurate observation 
data. For short arcs, e.g. over one hour, state-of-the-art dynamic models, adjusted to GPS 
measurements, achieve excellent results. But with increasing orbital length, e.g. several 
hours to a whole day, the accuracy of purely dynamic models decrease rapidly due to its 
deficiencies which add up exponentially. This is especially the case for LEO satellite 
dynamics. Thus, the advantage of the dynamic approach over the kinematic approach, due 
to the averaging effect of the measurements over successive epochs, is only beneficial for 
rather short time intervals. 
 
To overcome this drawback the concept of reduced-dynamic orbit determination has been 
established [Wu et al., 1991]. Hereby the deterministic orbit model (4.41) is augmented by 
appropriate parametrization, which reads as 

𝒙  𝑡 = 𝒇 𝑡, 𝑝1, 𝑝2 , … , 𝑝6 , 𝑞1 , … , 𝑞𝑑 + 𝒇1 𝑎1, … , 𝑎𝑛  . (4.61) 

The introduced parameters , 𝑎1, … , 𝑎𝑛 , are determined empirically within the adjustment 
process. With the additional parametrization the deficiencies of the imperfectly known force 
model can be overcome, and the accuracy and geometrical strength of the GPS 
measurements can be fully exploited. This means that the trajectory can be adjusted to the 
observation data with the essential flexibility while retaining the highest possible amount of 
dynamical information. 
 
The empirical parameters are usually assigned a priori stochastic properties like expectation 
values and weighting [Montenbruck et al., 2005b]. Therefore these parameters are 
commonly referred to as pseudo-stochastic parameters. Realistic a priori constraints have to 
be applied in order to prevent the estimated trajectory from divergence. 
 
The relaxation of the dynamic orbit model depends on the amount of the introduced 
pseudo-stochastic parameters, as well as on the constraints that are imposed on these 
parameters. The dynamics are attenuated with an increasing number of parameters, 
whereas an increase in weighting preserves the influence of the dynamics. At least 
theoretically, introducing a maximum of parameters with no constraints, the solution 
matches that of the kinematic model, because the whole dynamic restraint is removed. In 
this context reduced-dynamic models approaching this condition are referred to as highly 
reduced-dynamic (HRD) orbit models. Figure 4.6 illustrates the classification of the different 
orbit models with respect to the number and a priori standard deviation of the introduced 
pseudo-stochastic parameters. 
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Several pseudo-stochastic force models, that are added to the deterministic force model, 
have been developed [Jäggi et al., 2006]. Pseudo-stochastic parameters reduce the influence 
of the force field deficiencies only to a certain extent due to discretization effects, which 
depend on the type and spacing of pseudo-stochastic parameters. In the following, the 
concept of pseudo-stochastic pulses and piecewise constant accelerations, which are used in 
this work, are discussed. As will be demonstrated, these types of empirical parameters are 
highly adequate for compensating for the deficiencies of the deterministic force model. The 
difference of the pseudo-stochstic concepts presented below, become more pronounced at 
the velocity level. Velocities derived from the pulse solution show discontinuities. Thus, 
piecewise constant accelerations, which exhibit the discontinuities at the acceleration level, 
are much more realistic from a physical point of view. 
 
For the adjustment process the partial derivatives of the orbit with respect to the empirical 
parameters are required. It will be shown that the solution of the variational equations of 
these parameters as well as the composition of the normal equation matrix can be 
accomplished very efficiently.  
 
 

4.3.1 Instantaneous Velocity Changes 

 
Instantaneous changes in the amount and direction of the spacecraft’s velocity at particular 
epochs very effectively compensate for the imperfect modeling of the dynamics by 
continuously correcting the course of the satellite [Beutler et al., 1994]. These instantaneous 
changes appear as discontinuities in the veolcity function, which result in Dirac delta 
functions in the acceleration. Therefore, the parameters describing the velocity changes are 
commonly referred to as pseudo-stochastic pulses.  

Kinematic 

 
HRD 

 
 
 

Reduced-dynamic 
 
 
 

Sigma                                   # Par. 

 
Dynamic 

 
 Figure 4.6:  The relations between the dynamic, reduced-dynamic, highly reduced-

dynamic (HRD) and kinematic orbit determination methods as a 
function of the number (# Par.) and a priori standard deviation (Sigma) 
of the introduced pseudo-stochastic parameters 

          [Jäggi, 2006, slightly modified]. 
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Pseudo-stochastic pulses are used routinely for the orbit determination of GPS and GLONASS 
satellites to overcome the difficulties in solar radiation pressure modeling, which is the 
limiting factor for modeling high altitude satellites. Here, the changes in velocity are set up 
once per revolution. To compensate for atmospheric drag a far higher number of pulses at 
much smaller time intervals is required. However, this method is also attractive for LEO orbit 
determination, because the huge amount of parameters can be processed very efficiently.  
 
The characteristics of pseudo-stochastic pulses imply that the resulting trajectory is 
continuous and at pre-defined epochs the velocity of the orbit exhibits discontinuities [Bock, 
2003]. In between the pulses the orbit is represented piecewise by a conventional ordinary 
differential equation of motion, i.e. the deterministic equation of motion. The pseudo-
stochastic parameters are estimated conventionally within a classical least squares 
adjustment process, and are given a priori variances. Figure 4.7 illustrates the concept of 
pseudo-stochastic orbit modeling with pulses. 
 

 
 

           Figure 4.7: The concept of pseudo-stochastic pulses 
 
 
Setting up three pulses 𝑣𝑖,𝑗 , 𝑖 = 1, … , 𝑛 − 1, 𝑗 = 1,2,3, at predefined epochs 𝑡𝑖  in preset 

directions 𝒆𝑗  𝑡𝑖  (e.g. in the radial, along-track and cross-track directions) yields the equation 

of motion which can formally be written as 

𝒙  𝑡 = 𝒇 𝑡, 𝑝1, 𝑝2 , … , 𝑝6 , 𝑞1 , … , 𝑞𝑑 +   𝑣𝑖,𝑗 ∙ 𝛿 𝑡 − 𝑡𝑖 ∙ 𝒆𝑗  𝑡𝑖 

3

𝑗 =1

𝑛−1

𝑖=1

 , (4.62) 

where 𝛿 𝑡  denotes the Dirac delta distribution [Jäggi et al., 2005]. The complete time 
interval considered is assumed to be 𝑇 =  𝑡0, 𝑡𝑛  , with 𝑡0 < 𝑡1 and 𝑡𝑛−1 < 𝑡𝑛 . The 
corresponding variational equation for a particular component of one particular pulse can be 
written as  

𝒛 𝑣𝑖 ,𝑗
= 𝐴0 ∙ 𝒛𝑣𝑖 ,𝑗

+ 𝐴1 ∙ 𝒛 𝑣𝑖 ,𝑗
+ 𝛿 𝑡 − 𝑡𝑖 ∙ 𝒆𝑗  𝑡𝑖 . (4.63) 

Satellite Trajectory 

𝒙 𝑖+1
𝑓𝑖𝑛𝑎𝑙

 

𝒗𝑖  
𝒙 𝑖

𝑓𝑖𝑛𝑎𝑙
 

𝒙 𝑖+1
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

𝒙 𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

𝒗𝑖+1  
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However, it can be shown that the solution of the variational equations with respect to any 
pulse 𝑣𝑖,𝑗  may be written as a linear combination (with constant coefficients) of the six 

solutions 𝒛𝑝𝑘
, 𝑘 = 1, … ,6, referring to the six initial conditions 𝑝𝑘  [Beutler et al., 2006]. The 

solution of the varational equation system (4.63) can be written in the form 

𝒛𝑣𝑖 ,𝑗
 𝑡 =  

𝟎                     ;  𝑡 < 𝑡𝑖

    𝛽𝑖𝑗 ,𝑘 ∙ 𝒛𝑝𝑘
 𝑡 

6

𝑘=1

;  𝑡 ≥ 𝑡𝑖
     . (4.64) 

Thus, for the computation of all partial derivatives 𝒛𝑣𝑖 ,𝑗
 only the variational equations with 

respect to the initial conditions have to be solved. The coefficients 𝛽𝑖𝑗 ,𝑘  are obtained from 

the condition equations 

𝒛𝑣𝑖 ,𝑗
 𝑡𝑖 = 𝟎 , 

𝒛 𝑣𝑖 ,𝑗
 𝑡𝑖 = 𝒆𝑗  𝑡𝑖  , 

(4.65) 

leading to the equation system 

 
𝒛𝑝1

𝒛𝑝2
𝒛𝑝3

𝒛𝑝4
𝒛𝑝5

𝒛𝑝6

𝒛 𝑝1
𝒛 𝑝2

𝒛 𝑝3
𝒛 𝑝4

𝒛 𝑝5
𝒛 𝑝6

 ∙

 

 
 
 
 

𝛽𝑖1,1 𝛽𝑖2,1 𝛽𝑖3,1

𝛽𝑖1,2 𝛽𝑖2,2 𝛽𝑖3,2

𝛽𝑖1,3 𝛽𝑖2,3 𝛽𝑖3,3

𝛽𝑖1,4 𝛽𝑖2,4 𝛽𝑖3,4

𝛽𝑖1,5 𝛽𝑖2,5 𝛽𝑖3,5

𝛽𝑖1,6 𝛽𝑖2,6 𝛽𝑖3,6 

 
 
 
 

=  
𝟎 𝟎 𝟎
𝒆1 𝒆2 𝒆3

  ; (4.66) 

to be evaluated for epoch 𝑡𝑖 . 
 
The above described process for determining the partial derivatives 𝒛𝑣𝑖 ,𝑗

 𝑡  is extremely 

time-saving and requires far less storage when setting up a large number of pulses with 
3 𝑛 − 1  parameters to be determined. 
 
However, further use can be made of the fact that the partial derivatives of the pulses are 
linear combinations of the partial derivatives of the initial conditions, when assembling the 
normal equation system. Linearizing the observation equation 𝜑𝑙  of a particular observation 
𝑙 with respect to the initial conditions and all preceeding pulses leads to the correction 
equation 

  
𝜕𝜑𝑙

𝜕𝑝𝑘

6

𝑘=1

∙ ∆𝑝𝑘 +   
𝜕𝜑

𝜕𝑣𝑚 ,𝑗

3

𝑗=1

∙ ∆𝑣𝑚 ,𝑗 − 𝑦𝑙 =

𝑖

𝑚=1

𝜖𝑙   , (4.67) 

where the assumption was made that 𝑡𝑙 ∈   𝑡𝑖 , 𝑡𝑖+1   and that three pulses were set up per 
epoch. Here 𝑦𝑙  denotes the difference between the measurement and the computed value 
and 𝜖𝑙  is the residual of the observation. Now the partial derivatives related to 𝑝𝑘  are 
directly introduced and the partial derivatves related to 𝑣𝑖 ,𝑗  are introduced using the 

representation (4.64), which yields 
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  ∇𝜑𝑙
𝑇 ∙ 𝒛𝑝𝑘

 𝑡𝑙  ∙ ∆𝑝𝑘

6

𝑘=1

 

+   ∇𝜑𝑙
𝑇 ∙ 𝒛𝑝𝑘

 𝑡𝑙  ∙

6

𝑘=1

  𝛽𝑚𝑗 ,𝑘

3

𝑗 =1

∙ ∆𝑣𝑚 ,𝑗 − 𝑦𝑙 =

𝑖

𝑚=1

𝜖𝑙   . 

(4.68) 

By grouping all observations of the subinterval   𝑡𝑖 , 𝑡𝑖+1  , the correction equations can be 
written  

𝑨𝑖 ∙ ∆𝒑 + 𝑨𝑖 ∙  𝑩𝑚 ∙

𝑖

𝑚=1

∆𝒗𝑚 − 𝒚𝑖 = 𝝐𝑖   , (4.69) 

[Beutler et al., 2006], where 𝑨𝑖  is the design matrix of the involved observations concerning 
the initial conditions 𝒑 =  𝑝1, 𝑝2 , … , 𝑝6 𝑇 , 𝑩𝑚  covers the coefficients 𝛽𝑚𝑗 ,𝑘  

𝑩𝑚 =

 

 
 
 
 

𝛽𝑚1,1 𝛽𝑚2,1 𝛽𝑚3,1

𝛽𝑚1,2 𝛽𝑚2,2 𝛽𝑚3,2

𝛽𝑚1,3 𝛽𝑚2,3 𝛽𝑚3,3

𝛽𝑚1,4 𝛽𝑚2,4 𝛽𝑚3,4

𝛽𝑚1,5 𝛽𝑚2,5 𝛽𝑚3,5

𝛽𝑚1,6 𝛽𝑚2,6 𝛽𝑚3,6 

 
 
 
 

  , (4.70) 

and the correction vector of the three pulses of the corresponding epoch reads 

∆𝒗𝑚 =  

∆𝑣𝑚 ,1

∆𝑣𝑚 ,2

∆𝑣𝑚 ,3

   . (4.71) 

The correction equations for the whole observation data, where all observations are devided 
into the according subintervals   𝑡𝑖 , 𝑡𝑖+1  , 𝑖 = 0, … , 𝑛 − 1, can now be written in submatrix 
notation as 

 

 
 

𝑨0 𝟎 𝟎 ⋯ 𝟎
𝑨1 𝑨1𝑩1 𝟎 ⋯ 𝟎
𝑨2 𝑨2𝑩1 𝑨2𝑩2 ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮

𝑨𝑛−1 𝑨𝑛−1𝑩1 𝑨𝑛−1𝑩2 ⋯ 𝑨𝑛−1𝑩𝑛−1 

 
 

∙

 

 
 

∆𝒑
∆𝒗1

∆𝒗2

⋮
∆𝒗𝑛−1 

 
 

− 𝒚 = 𝝐  . (4.72) 
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Finally, the entire normal equation system can be established, reading 

 

 
 
 
 
 
 
 
 
 
 

 𝑵𝑖

𝑛−1

𝑖=0

 𝑵𝑖

𝑛−1

𝑖=1

𝑩1  𝑵𝑖

𝑛−1

𝑖=2

𝑩2 ⋯  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩𝑛−1

𝑩1
𝑇  𝑵𝑖

𝑛−1

𝑖=1

𝑩1
𝑇  𝑵𝑖

𝑛−1

𝑖=1

𝑩1 𝑩1
𝑇  𝑵𝑖

𝑛−1

𝑖=2

𝑩2 ⋯ 𝑩1
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩𝑛−1

𝑩2
𝑇  𝑵𝑖

𝑛−1

𝑖=2

𝑩2
𝑇  𝑵𝑖

𝑛−1

𝑖=2

𝑩1 𝑩2
𝑇  𝑵𝑖

𝑛−1

𝑖=2

𝑩2 ⋯ 𝑩2
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩𝑛−1

⋮ ⋮ ⋮ ⋱ ⋮

𝑩𝑛−1
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩𝑛−1
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩1 𝑩𝑛−1
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩2 ⋯ 𝑩𝑛−1
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩𝑛−1

 

 
 
 
 
 
 
 
 
 
 

∙ 

∙

 

 
 

∆𝒑
∆𝒗1

∆𝒗2

⋮
∆𝒗𝑛−1 

 
 

=

 

 
 
 
 
 
 
 
 
 
 

 𝑨𝑖
𝑇𝑾𝑖 ∙ 𝒚𝑖

𝑛−1

𝑖=0

𝑩1
𝑇  𝑨𝑖

𝑇𝑾𝑖 ∙ 𝒚𝑖

𝑛−1

𝑖=1

𝑩2
𝑇  𝑨𝑖

𝑇𝑾𝑖 ∙ 𝒚𝑖

𝑛−1

𝑖=2

⋮

𝑩𝑛−1
𝑇  𝑨𝑖

𝑇𝑾𝑖 ∙ 𝒚𝑖

𝑛−1

𝑖=𝑛−1  

 
 
 
 
 
 
 
 
 
 

  , 

(4.73) 

[Beutler et al., 2006], where 𝑵𝑖 = 𝑨𝑖
𝑇𝑾𝑖𝑨𝑖  is the normal equation matrix of the subinterval 

  𝑡𝑖 , 𝑡𝑖+1   related to the six initial conditions, with 𝑾𝑖  being the weighting matrix pertaining 
to the according subinterval. 
 
As can be seen from the structure of the full normal equation system (4.73), no large 
submatrices have to be set up and an appropriate computation sequence allows for a 
minimum of multiplications to attain the full equation system. It should also be mentioned, 
that the normal equation matrix is by definition symmetric. This method of setting up the 
normal equation system is extremely timesaving compared to conventionally setting up the 
system. Nevertheless, a matrix of dimension 𝑑 = 6 + 3 ∙  𝑛 − 1  has to be inverted. 
 
The empirical parameters may be constrained to predefined expectation values. Within this 
work the pseudo-stochastic pulses are constrained individually to zero with an a priori set 
standard deviation. The characteristics of this stochastic model resemble that of a white 
noise sequence [Beutler et al., 2006]. Therefore, artificial observations directly measure the 
pulses, given by 

𝒗𝑖 = 𝟎  ;                          𝑖 = 0, … , 𝑛 − 1 .  (4.74) 

The associated weighting matrix is defined as the inverse of the covariance matrix for these 
parameters 
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𝑾   𝑖 = 𝜎0
2𝑸𝒗𝑖

−1 =

 

 
 
 
 

𝜎0
2

𝜎1
2 0 0

0
𝜎0

2

𝜎2
2 0

0 0
𝜎0

2

𝜎3
2 

 
 
 
 

  ;                          𝑖 = 0, … , 𝑛 − 1 ,  (4.75) 

where  

𝜎0   is the a priori standard deviation, 

𝑸𝒗𝑖
  is the covariance matrix of the parameters 𝒗𝑖 , and 

𝜎𝑘  ;  𝑘 = 1,2,3 are the predefined standard deviations of the three components of 𝒗𝑖 . 

 
For this thesis the same a priori weighting is applied to all triples of pulses, yielding 𝑾   𝑖 ≐ 𝑾   . 
It has to be mentioned, that also relative constraints can be applied to the empirical 
parameters. This concept of a random walk sequence for the stochastic model is described 
in Montenbruck et al. [2005b]. In the case of another stochastic model for the empirical 
parameters, however, only the values of the weighting matrix and of the artificial 
observations are different. The computation algorithm remains unchanged. 
 
Now the normal equation system including the constraints is attained as described in section 
4.1.1. This is done by taking the normal equation matrix of (4.73) and adding the weighting 
matrix 𝑾    to all submatrices of the diagonal except for the first one, given by  

𝑩𝑖
𝑇  𝑵𝑙

𝑛−1

𝑙=1

𝑩𝑖 + 𝑾     ;                   𝑖 = 1, … , 𝑛 − 1 . (4.76) 

The adjustment of the orbit model to the observations within the least-squares method 
usually requires several iterations. For reduced-dynamic orbit determination the a priori 
solution for the first iteration may be a dynamic solution where all pulses are considered to 
be set to zero. For any further iteration 𝐼 the pulses will usually be assigned non-zero values. 
Thus, the computation of observed minus computed for the artificial observations yields  

𝒚 𝑖 = 𝟎 − 𝒗𝑖
𝐼   ;                          𝑖 = 1, … , 𝑛 − 1 . (4.77) 

This has to be accounted for in the right-hand side of the normal equation system (4.73) in 
all subvectors except for the first one, by 

𝑩𝑖
𝑇  𝑨𝑙

𝑇𝑾𝑙 ∙ 𝒚𝑙

𝑛−1

𝑙=1

+ 𝑾   ∙ 𝒚 𝑖   ;                   𝑖 = 1, … , 𝑛 − 1 . (4.78) 

Finally, the a posteriori standard deviation has to be computed by 
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𝑚0 =  
 𝝐𝑖

𝑇𝑾𝑖𝝐𝑖
𝑛−1

𝑖=0

𝑛𝑟𝑒𝑎𝑙 + 𝑛𝑎𝑟𝑡 − 𝑢𝑑𝑦𝑛 − 𝑢𝑟𝑒𝑑
  , (4.79) 

where 𝑛𝑟𝑒𝑎𝑙  and 𝑛𝑎𝑟𝑡  are the numbers of the real and artificial observations, respectively, 
𝑢𝑑𝑦𝑛  is the number of deterministic unknowns and 𝑢𝑟𝑒𝑑  is the numbers of the empirical 

parameters. Using the above notation yields  

𝑢𝑟𝑒𝑑 = 𝑛𝑎𝑟𝑡 = 3 ∙  𝑛 − 1 . (4.80) 

It has to be mentioned, that if enough measurements per subinterval are present, no 
constraints on the pulses have to be set in order to get a non-singular normal equation 
matrix. 
 
Up to now the normal equation system accounts for the initial conditions and the pseudo-
stochastic pulses. The introduction of further dynamical parameters and parameters of the 
observation model, like clock offsets and ambiguity biases, that also have to estimated, will 
be discussed in section 4.4. 
 
 

4.3.2 Piecewise Constant Accelerations 

 
The above presented technique of introducing pseudo-stochastic pulses is highly capable of 
overcoming the deficiencies of an imperfectly modeled force field. However, the artificial 
jumps in the velocity of the spacecraft at the epochs 𝑡𝑖 , 𝑖 = 1, … , 𝑛 − 1, are disadvantageous 
for certain applications. From the physical point of view, the pulses cause discontinuities and 
undifferentiabilities at the velocity level. For applications like gravity field recovery, which is 
very sensitive to velocity errors, an improvement in the velocities would be very much 
appreciated [Gerlach et al., 2003]. 
 
Therefore, a refined concept of empirical parametrization, namely piecewise constant 
accelerations, may be introduced [Jäggi et al., 2005]. This method yields much more 
plausible and realistic orbit solutions. As will be shown, just one additional parameter in 
each coordinate component has to be introduced in order to upgrade the pseudo-stochastic 
model from instantaneous pulses to piecewise constant accelerations. 
 
Piecewise constant accelerations compensate for the deficiencies of the dynamics more 
continuously than pulses at discrete epochs. The resulting trajctory as well as the velocity is 
continuous over the entire orbital arc. Empirical constant accelerations are introduced over 
predefined intervals in predefined directions. Just like for the pulses these directions may be 
assigned to the radial, along-track and cross-track component of the trajectory. Thus, the 
discontinuities at the velocity level at the epochs 𝑡𝑖  are shifted to the next derivative. The 
discontinuities now occur at the acceleration level. Figure 4.8 illustrates the concept of 
pseudo-stochastic orbit modeling with piecewise constant accelerations. 
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Figure 4.8: The concept of pseudo-stochastic piecewise constant accelerations 
 
 
In the following, the mathematical framework for piecewise constant accelerations, which is 
closely related to that of pulses, will be elaborated. Three constant accelerations 𝑎𝑖 ,𝑗 , 𝑖 =

0, … , 𝑛 − 1, 𝑗 = 1,2,3, are set up within each time interval   𝑡𝑖 , 𝑡𝑖+1   in three predefined 
directions 𝒆𝑗  𝑡  [Jäggi et al., 2005]. In the case of the proposed radial, along-track and cross-

track directions, these directions are time-dependent in the inertial coordinate system. The 
time interval is assumed to be 𝑇 =  𝑡0, 𝑡𝑛  , assuring that the whole time span is covered with 
empirical parameters. 
 
The according equation of motion may be written 

𝒙  𝑡 = 𝒇 𝑡, 𝑝1, 𝑝2 , … , 𝑝6 , 𝑞1 , … , 𝑞𝑑 +   𝑎𝑖,𝑗 ∙ 𝜉𝑖 𝑡 ∙ 𝒆𝑗  𝑡 

3

𝑗 =1

𝑛−1

𝑖=0

 , (4.81) 

with 𝜉𝑖  being defined as 

𝜉𝑖 𝑡 =    

0  ;   𝑡 < 𝑡𝑖              

1  ;   𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1

0  ;   𝑡𝑖+1 ≤ 𝑡         

    . (4.82) 

The variational equations corresponding to a certain acceleration 𝑎𝑖 ,𝑗  reads 

𝒛 𝑎𝑖 ,𝑗
= 𝑨0 ∙ 𝒛𝑎𝑖 ,𝑗

+ 𝑨1 ∙ 𝒛 𝑎𝑖 ,𝑗
+ 𝜉𝑖 𝑡 ∙ 𝒆𝑗  𝑡 . (4.83) 

Again, it can be shown that the solution of the variational equations with respect to any 
acceleration 𝑎𝑖,𝑗  may be written as a linear combination (now with constant and time-

varying coefficients) of the six solutions 𝒛𝑝𝑘
, 𝑘 = 1, … ,6, referring to the six initial conditions 

𝑝𝑘  [Beutler et al., 2006]. The partial derivates solving equation (4.83) take the form 

Satellite Trajectory 

𝒂𝑖  

𝒂𝑖+1  

𝒂𝑖+2  

𝒂𝑖+4  
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𝒛𝑎𝑖 ,𝑗
=

 
  
 

  
 

𝟎                                                                    ;  𝑡 < 𝑡𝑖              

    𝛽𝑖𝑗 ,𝑘 𝑡 ∙ 𝒛𝑝𝑘
 𝑡 

6

𝑘=1

= 𝒛 𝑎𝑖 ,𝑗
                            ;  𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1

 𝛽𝑖𝑗 ,𝑘 𝑡𝑖 ∙ 𝒛𝑝𝑘
 𝑡 

6

𝑘=1

=  𝛽𝑖𝑗 ,𝑘 ∙ 𝒛𝑝𝑘
 𝑡 

6

𝑘=1

;  𝑡𝑖+1 ≤ 𝑡         

     . (4.84) 

The coefficients of the linear combination are zero for the time prior to the respective 
interval, time-dependent during the interval and constant afterwards. However, an efficient 
solution for the parameters 𝛽𝑖𝑗 ,𝑘  requires the additional computation of the partial 

derivatives of the trajectory with respect to constant accelerations 𝑎 𝑗 , 𝑗 = 1,2,3, over the 

entire arc [Jäggi et al., 2005]. The three accelerations 𝑎 𝑗  must be set in the same directions 

as for the piecewise constant accelerations, which in this case are the radial, along-track and 
cross-track directions. The variational equations for these accelerations are  

𝒛 𝑎 𝑗
= 𝑨0 ∙ 𝒛𝑎 𝑗

+ 𝒆𝑗  𝑡  , (4.85) 

which have to be solved conventionally for 𝑗 = 1,2,3. 
 
It now can be shown that the partial derivative 𝒛 𝑎𝑖 ,𝑗

 can be written as yet another linear 

combination of the partial derivatives 𝒛𝑝𝑘
 plus 𝒛𝑎 𝑗

, but now with constant coefficients 𝛼𝑖𝑗 ,𝑘 , 

over the designated time interval 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1, given by  

𝒛 𝑎𝑖 ,𝑗

(𝑟) 𝑡 = 𝒛𝑎 𝑗
(𝑟) 𝑡 −  𝛼𝑖𝑗 ,𝑘 ∙ 𝒛𝑝𝑘

(𝑟) 𝑡 

6

𝑘=1

  ;           𝑟 = 0,1  , (4.86) 

where 𝑟 denotes the order of the derivative [Jäggi et al., 2005]. Evaluating equation (4.86) at 
epoch 𝑡𝑖  and considering that, according to equation (4.84), 𝒛 𝑎𝑖 ,𝑗

 𝑡𝑖 = 𝟎, yields the 

following condition equations for the coefficients 𝛼𝑖𝑗 ,𝑘  

 𝛼𝑖𝑗 ,𝑘 ∙ 𝒛𝑝𝑘
 𝑡𝑖 

6

𝑘=1

= 𝒛𝑎 𝑗
 𝑡𝑖  ; 

 𝛼𝑖𝑗 ,𝑘 ∙ 𝒛 𝑝𝑘
 𝑡𝑖 

6

𝑘=1

= 𝒛 𝑎 𝑗
 𝑡𝑖  . 

(4.87) 

After determination of the coefficients 𝛼𝑖𝑗 ,𝑘  the partial derivatives 𝒛 𝑎𝑖 ,𝑗
 𝑡  can be computed 

at every epoch using expression (4.86).  
 
Finally the constant coefficients 𝛽𝑖𝑗 ,𝑘  for 𝒛𝑎𝑖 ,𝑗

 for 𝑡𝑖+1 ≤ 𝑡 can be obtained by computing 𝒛𝑎 𝑗
 

at epoch 𝑡𝑖+1 
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  𝛽𝑖𝑗 ,𝑘 ∙ 𝒛𝑝𝑘
 𝑡𝑖+1 

6

𝑘=1

= 𝒛 𝑎𝑖 ,𝑗
 𝑡𝑖+1  ; 

  𝛽𝑖𝑗 ,𝑘 ∙ 𝒛 𝑝𝑘
 𝑡𝑖+1 

6

𝑘=1

= 𝒛  𝑎𝑖 ,𝑗
 𝑡𝑖+1  . 

(4.88) 

All condition equations can be solved in analogy to equation (4.66). Now all 3𝑛 partial 
derivatives with respect to the piecewise constant accelerations are efficienty determined. 
 
Analogously to orbit determination using pseudo-stochastic pulses, the composition of the 
normal equation system for piecewise constant accelerations can be done efficiently using 
the above relationships between the partial derivatives. 
 
Therefore the observations are grouped into the subintervals   𝑡𝑖 , 𝑡𝑖+1  , 𝑖 = 0, … , 𝑛 − 1. The 
correction equations for the subinterval 𝑖 reads 

𝑨𝑖 ∙ ∆𝒑 + 𝑨𝑖 ∙  𝑩𝑚+1 ∙

𝑖−1

𝑚=0

∆𝒂𝑚 + 𝑨 𝑖 ∙ ∆𝒂𝑖 − 𝒚𝑖 = 𝝐𝑖   , (4.89) 

[Beutler et al., 2006], where the matrix 𝑨 𝑖  contains the partial derivatives of the 
observations with respect to the piecewise constant accelerations pertaining to the 
subinterval   𝑡𝑖 , 𝑡𝑖+1  . The matrix 𝑩𝑖  contains the constant parameters 𝛽𝑖𝑗 ,𝑘  attained from 

equation (4.88), but resulting from the subinterval   𝑡𝑖−1 , 𝑡𝑖  . It should be noted, that these 
parameters are not identical to the parameters for pulses. 
 
The full set of correction equations is now given by 

 

 
 
 
 

𝑨0 𝑨 0 𝟎 ⋯ 𝟎 𝟎

𝑨1 𝑨1𝑩1 𝑨 1 ⋯ 𝟎 𝟎
𝑨2 𝑨2𝑩1 𝑨2𝑩2 ⋯ 𝟎 𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑨𝑛−2 𝑨𝑛−2𝑩1 𝑨𝑛−2𝑩2 ⋯ 𝑨 𝑛−2 𝟎

𝑨𝑛−1 𝑨𝑛−1𝑩1 𝑨𝑛−1𝑩2 ⋯ 𝑨𝑛−1𝑩𝑛−1 𝑨 𝑛−1 

 
 
 
 

∙

 

 
 
 

∆𝒑
∆𝒂0

∆𝒂1

∆𝒂2

⋮
∆𝒂𝑛−1 

 
 
 

− 𝒚 = 𝝐  . (4.90) 
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Accordingly, the full normal equation system is written as 

 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 𝑵𝑖

𝑛−1

𝑖=0

 𝑵𝑖

𝑛−1

𝑖=1

𝑩1 ⋯  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩𝑛−1 𝟎

𝑩1
𝑇  𝑵𝑖

𝑛−1

𝑖=1

𝑩1
𝑇  𝑵𝑖

𝑛−1

𝑖=1

𝑩1 ⋯ 𝑩1
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩𝑛−1 𝟎

⋮ ⋮ ⋱ ⋮ ⋮

𝑩𝑛−1
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩𝑛−1
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩1 ⋯ 𝑩𝑛−1
𝑇  𝑵𝑖

𝑛−1

𝑖=𝑛−1

𝑩𝑛−1 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 

 
 
 
 
 
 
 
 
 

+    

 

 

 
 
 
 
 
 
 

𝟎 𝑨0
𝑇𝑾0𝑨 0 𝑨1

𝑇𝑾1𝑨 1 ⋯ 𝑨𝑛−1
𝑇 𝑾𝑛−1𝑨 𝑛−1

𝑨 0
𝑇𝑾0𝑨0 𝑨 0

𝑇𝑾0𝑨 0 𝑩1
𝑇𝑨1

𝑇𝑾1𝑨 1 ⋯ 𝑩1
𝑇𝑨𝑛−1

𝑇 𝑾𝑛−1𝑨 𝑛−1

𝑨 1
𝑇𝑾1𝑨1 𝑨 1

𝑇𝑾1𝑨1𝑩1 𝑨 1
𝑇𝑾1𝑨 1 ⋯ 𝑩2

𝑇𝑨𝑛−1
𝑇 𝑾𝑛−1𝑨 𝑛−1

⋮ ⋮ ⋮ ⋱ ⋮

𝑨 𝑛−1
𝑇 𝑾𝑛−1𝑨𝑛−1 𝑨 𝑛−1

𝑇 𝑾𝑛−1𝑨𝑛−1𝑩1 𝑨 𝑛−1
𝑇 𝑾𝑛−1𝑨𝑛−1𝑩2 ⋯ 𝑨 𝑛−1

𝑇 𝑾𝑛−1𝑨 𝑛−1  

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

∙ 

∙

 

 
 
 

∆𝒑
∆𝒂0

∆𝒂1

∆𝒂2

⋮
∆𝒂𝑛−1 

 
 
 

=

 

 
 
 
 
 
 
 
 
 
 
 
 

 𝑨𝑖
𝑇𝑾𝑖 ∙ 𝒚𝑖

𝑛−1

𝑖=0

𝑩1
𝑇  𝑨𝑖

𝑇𝑾𝑖 ∙ 𝒚𝑖

𝑛−1

𝑖=1

𝑩2
𝑇  𝑨𝑖

𝑇𝑾𝑖 ∙ 𝒚𝑖

𝑛−1

𝑖=2

⋮

𝑩𝑛−1
𝑇  𝑨𝑖

𝑇𝑾𝑖 ∙ 𝒚𝑖

𝑛−1

𝑖=𝑛−1

𝟎  

 
 
 
 
 
 
 
 
 
 
 
 

+

 

 
 
 
 
 
 
 
 
 
 
 
 

𝟎

𝑨 0
𝑇𝑾0 ∙ 𝒚0

𝑨 1
𝑇𝑾1 ∙ 𝒚1

⋮

𝑨 𝑛−2
𝑇 𝑾𝑛−2 ∙ 𝒚𝑛−2

𝑨 𝑛−1
𝑇 𝑾𝑛−1 ∙ 𝒚𝑛−1 

 
 
 
 
 
 
 
 
 
 
 
 

  , (4.91) 

where 𝑵𝑖 = 𝑨𝑖
𝑇𝑾𝑖𝑨𝑖 . 

 
It can be seen that the structure and thus the efficiency is similar as for the pulses. The 
additional contributions require only little computational effort. It also has to be noted, that 
compared to pulses, for the same division into subintervals only three additional 
accelerations, i.e. ∆𝒂0, have to be set up. This yields a normal equation matrix of dimension 
𝑑 = 6 + 3 ∙ 𝑛. 
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Constraints for the piecewise constant accelerations may be imposed in exactly the same 
way as for the pulses. In principle, the accelerations can also be estimated without being 
given any a priori weighting. For the presented method of computing the partial derivatives 
with respect to the piecewise accelerations the solution for the partial derivatives with 
respect to accelerations over the whole time span is required. However, these permanent 
accelerations 𝑎 𝑗  are not yet included for estimation in the normal equation system (4.91). 

Nevertheless, accelerations over the entire orbital arc are usually estimated together with all 
other parameters. In this case, unconstrained piecewise constant accelerations would lead 
to a linear dependence of the unknowns and thus a singular normal equation matrix. 
 
So far, equation (4.91) contains only the initial conditions and pseudo-stochastic piecewise 
constant accelerations. In the next chapter, the introduction of additional parameters into 
the normal equation system will be discussed. 
 
 

4.4 Dynamic and Reduced-dynamic Orbit Determination 

 
In the two preceding chapters the concepts of dynamical and reduced-dynamical orbit 
modeling has been described in detail. The actual process of dynamical and reduced-
dynamical orbit determination, however, comprises the adjustment of these models to 
observations. The observations imply a reference between the position of the satellite and a 
priori known positions of other satellites or ground stations. In this process the best fitting 
trajectory is determined according to the measurements. 
 
Within this research, the adjustment is accomplished by a weighted batch least-squares 
(LSQ) estimation. The principles of the LSQ estimation have been outlined in section 4.1.1. 
Processing in the batch mode means that all code and phase measurements collected over 
the considered data arc are incorporated at once. As already stated, the measurements are 
introduced at the zero difference (ZD) level and in the ionosphere free (IF) linear 
combination (3.23). Thus, the measurements yield a reference between the spacecraft’s GPS 
receiver position to the positions of the antennas of the GPS satellites in the form of biased 
ranges. The choice of employing zero differenced GPS observation data was primarily driven 
by the deactivation of Selective Availability (SA). As a consequence, highly precise ephemeris 
and clock data of the GPS satellites is available nowadays, see section 3.1.1. This allows to 
avoid making use of doubly or triply differenced GPS observations, which has to incorporate 
GPS data from a large network of GPS ground stations [Švehla and Rothacher, 2003 and van 
den Ijssel et al., 2003]. Thus, the associated complex data handling is avoided in the ZD 
mode. 
 
Within the adjustment process all orbital parameters of interest are estimated. This is 
definitely the case for the initial values (or boundary values) of the trajecory, for both the 
dynamical and the reduced-dynamical POD strategies. In addition, a number of dynamical 
orbit parameters, describing the force field, may be added to the estimation parameters. In 
the case of reduced-dynamic orbit determination the empirical parameters are estimated 
along with the orbital parameters as well. 
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The required partial derivatives of the respective trajectory model with respect to the 
various orbital parameters are attained through the solution of the variational equations. 
The computation and efficient solution of all required variational equations has been 
elaborated in chapters 4.2 and 4.3. In addition, the structure and an efficient strategy to set 
up the normal equation system with respect to all orbital parameters has been presented. 
 
However, the use of GPS based dynamic and reduced-dynamic orbit determination 
introduces additional estimation parameters. In the case of ZD observations, the observation 
model also contains the unknown receiver clock offset and the ionosphere free ambiguity 
bias. In this chapter, the necessary adaptations of the LSQ adjustment for processing zero 
difference observations will be outlined in detail. The following algorithms will always 
include both the code and the phase measurement types. It is, however, possible to use 
pseudoranges only, which simplifies the computation to some extent at the expense of the 
accuracy. 
 
The observation model (3.23), as well as its linearized form (3.29), is parametrized for every 
measurement with the phase center position of the GPS receiver and the GPS receiver clock 

offset, which here may be denoted 𝒙𝑖 =  𝑥1, 𝑦2 , 𝑧3 𝑖
𝑇 and 𝛿𝑡𝑖 , for all epochs 𝑖 = 1, … , 𝑛𝑇 . 

These parameters are the same for all measurements at one particular epoch, but vary for 
different epochs. Additionally, the ionosphere free ambiguity or bias parameter 𝐴𝐼𝐹𝑗

 

appears in the carrier phase measurement model, where 𝑗 = 1, … , 𝑛𝐵  . In contrast to the 
receiver clock offset, different ambiguity parameters are set up for all measurements at a 
single epoch, but they are kept constant over several epochs within an uninterrupted 
tracking pass of a particular GPS satellite, i.e. when the GPS satellite is above the horizon of 
the receiving antenna and phase-lock is maintained [Teunissen and Kleusberg, 1998]. For 
numerical reasons the clock offset, as well as the ambiguity parameters, might be estimated 
in metric units, given by 𝑐𝛿𝑡𝑖  and 𝑏𝑗 =  𝜆𝐼𝐹𝐴𝐼𝐹 𝑗  . 

 
Thus, if no data gaps occur, a typical one day (24 hours) data arc yields 𝑛𝑋  = 8640 epochs 
for a 10 second data sampling, or 𝑛𝑇 = 2880 when the measurements are given at 30 
seconds intervals. Due to the rapid motion of the considered spaceborne receivers, GPS 
satellites are in view for a maximum of about 40 minutes. This usually results in about 15 
phase connected tracking passes to a single GPS satellite per day. The total number of 
independent ambiguity parameters, that have to be introduced over a one day arc, is 
approximately 𝑛𝐵 ≈ 700 − 800 for LEO satellites. The resulting total number of parameters 
to estimate is therefore 4𝑛𝑇 + 𝑛𝐵 ≈ 35000 for 10𝑠 GPS data, or 12000 for 30𝑠 data. This 
number of parameters has to be solved for in the kinematic approach where epoch-wise LEO 
positions are determined. With the respective spaceborne receivers, delivering on average 
about 6 code and phase measurements of good quality per epoch, the number of 
observations is about 105000 or 35000 for 10𝑠 or 30𝑠 GPS data, respectively [Švehla and 
Rothacher, 2003]. Thus, for spaceborne scenarios, the estimation system is overdetermined 
for the kinematic strategy. 
 
In this research, however, the dynamic and reduced-dynamic strategies for POD were 
chosen. The major difference of these techniques to the kinematic approach is that the 
epoch-wise position coordinates of the spacecraft are replaced by the orbital parameters of 
the trajectory model. Now, this implies that the (linearized) observational equations have to 
be related to the according estimation parameters in order to set up the design matrix. As 
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already mentioned briefly in section 3.4, this is achieved by applying the chain rule for 
derivation. The partial derivation of observation function 𝜑𝑙  with respect to the orbital 
parameter 𝑃𝑖  is given by  

𝜕𝜑𝑙

𝜕𝑃𝑖
=  

𝜕𝜑𝑙

𝜕𝑥𝑘 𝑙

∙
𝜕𝑥𝑘 𝑙

𝜕𝑃𝑖

3

𝑘=1

= ∇𝜑𝑙
𝑇 ∙

𝜕𝒙𝑙

𝜕𝑃𝑖
 ,      (4.92) 

which yields for both code and phase observations in the IF ZD mode  

𝜕𝜑𝑙

𝜕𝑃𝑖
= 𝒆𝑙 ∙ 𝒛𝑃𝑖

 𝑡𝑙  ,      (4.93) 

where 𝒆𝑙  is the line of sight unit vector from the antenna phase center of the GPS satellite to 
the phase center of the LEO receiver, and 𝒛𝑃𝑖

 is the partial derivative of the the trajectory 

with respect to any orbital parameter 𝑃𝑖 . The orbital estimation parameter 𝑃𝑖 ∈

 𝑝1 , … , 𝑝6 , 𝑞1 , … , 𝑞𝑛𝑄
, 𝑎1, … , 𝑎𝑛𝐴−1  is either an initial value 𝑝𝑖  or (possibly) a dynamical 

parameter 𝑞𝑖  or (in the case of reduced-dynamical orbit determination) an empirical 
parameter 𝑎𝑖  . The computation of all necessary partial derivatives 𝒛𝑃𝑖

 has been described in 

sections 4.2.2, 4.3.1 and 4.3.2. Equation (4.93) has to be evaluated for the actual time 𝑡𝑙  of 
the measurement. Here, it has to be considered, that the exact epochs of the observations 
are initially unknown, due to the unknown clock offset. The epoch when the observation is 
introduced, is, thus, updated for every iteration, according to the improved estimate of the 
clock offset. 
 
The partial derivatives of the estimation parameters, arising from the observational model, 
i.e. the clock offsets 𝛿𝑡𝑘  and the ambiguity parameters 𝑏𝑗 , are given by 

𝜕𝜑𝑙

𝜕𝑐𝛿𝑡𝑘
=  

1     ; 𝛿𝑡𝑘  active in 𝜑𝑙

 0     ; else 
  ,      (4.94) 

and 

𝜕𝜑𝑙

𝜕𝑏𝑗
=  

1     ; 𝑏𝑗  active in 𝜑𝑙

 0     ; else 
  .      (4.95) 

Now, these partial derivatives are inserted into the design matrix and the adjustment can be 
started. However, an appropriate order of the estimation parameters may lead to a normal 
equation matrix, of a certain structure, that can be inverted with considerable efficiency. In 
addition, for both the pulses or piecewise constant accelerations, the partial derivatives may 
be expressed as linear combinations of the derivatives with respect to the initial conditions. 
Therefore the entire orbital arc was devided into subintervals, with the matrices 𝑨𝑖  
containing the partial derivatives with respect to the initial conditions 𝒑 =  𝑝1, … , 𝑝6 𝑇  and 
the matrices 𝑩𝑖  containing the coefficients of the linear combinations. Additional estimation 
parameters can be added to the overall design matrix separately or they may be introduced 
directly into the matrices 𝑨𝑖 . In the following, the clock offsets and bias parameters will be 
added separately and the dynamical parameters will be introduced into the matrices 𝑨𝑖 . 
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Therefore, the estimation parameters are grouped into a  6 + 𝑛𝑄 + 𝑛𝐴 − 1  – dimensional 

vector 

𝑿 =  𝒑, 𝒒, 𝒂  ,  (4.96) 

with 𝒒 =  𝑞1, … , 𝑞𝑛𝑄
 

𝑇

and 𝒂 =  𝑎1, … , 𝑎𝑛𝐴−1 
𝑇

, which stands either for the pulses or for 

piecewise constant accelerations, a  𝑛𝐵  – dimensional vector 

𝑪 =  𝑏1 , … , 𝑏𝑛𝐵
  ,  (4.97) 

containing the ambiguity parameters, and a  𝑛𝑇  – dimensional vector 

𝑻 =  𝑐𝛿𝑡1, … , 𝑐𝛿𝑡𝑛𝑇
  ,   (4.98) 

with the epoch-wise clock offsets. 
 
Accordingly, a linearization about initial values for the estimation parameters yields 

𝑿 = 𝑿0 + ∆𝑿 ,      

𝑪 = 𝑪0 + ∆𝑪 ,      

𝑻 = 𝑻0 + ∆𝑻 .      

(4.99) 

The normal equation system is given by 

 
𝜕𝚽

𝜕 𝑿0, 𝑪0 , 𝑻0 
 

𝑇

𝑾  
𝜕𝚽

𝜕 𝑿0, 𝑪0 , 𝑻0 
  

∆𝑿
∆𝑪
∆𝑻

 =  

=  
𝜕𝚽

𝜕 𝑿0, 𝑪0, 𝑻0 
 

𝑇

𝑾 𝒛 − 𝚽 𝑿0, 𝑪0 , 𝑻0     ,      

(4.100) 

where the vector 𝚽 contains the functions 𝜑𝑙  and the actual measurements are captured in 
𝒛. The entire design matrix is split up into 

 
𝜕𝚽

𝜕 𝑿0, 𝑪0 , 𝑻0 
 =  𝑨𝑋 , 𝑨𝐶 , 𝑨𝑇 ,   .      (4.101) 

According to (4.94) a particular line of matrix 𝑨𝑇  pertaining to the observation 𝜑𝑙  of epoch 𝑘 
reads 

𝜕𝜑𝑙

𝜕𝑻
=  0(1), … ,0(𝑘−1), 1(𝑘), 0(𝑘+1), … ,0(𝑛𝑇)  ,      (4.102) 

where only the element related to the active clock offset is non-zero. Here no difference is 
made between the code or carrier phase measurements. In a similar way the corresponding 
line of the matrix 𝑨𝐶  is set up for the carrier phases, according to (4.95), 
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𝜕𝜑𝑙

𝜕𝑪
=  0(1), … ,0(𝑗−1), 1(𝑗 ), 0(𝑗+1), … ,0(𝑛𝐵)  .      (4.103) 

For all code observations the lines of 𝑨𝐶  are becoming 𝑛𝐵  – dimensional null vectors 
because of no ambiguity bias being involved. And finally, the elements of a line in matrix 𝑨𝑋  
related to observation 𝜑𝑙  is written as 

𝜕𝜑𝑙

𝜕𝑿
=  

𝜕𝜑𝑙

𝜕𝑝1
, … ,

𝜕𝜑𝑙

𝜕𝑝6
,
𝜕𝜑𝑙

𝜕𝑞1
, … ,

𝜕𝜑𝑙

𝜕𝑞𝑛𝑄

,
𝜕𝜑𝑙

𝜕𝑎1
, … ,

𝜕𝜑𝑙

𝜕𝑎𝑖
, 0(𝑖+1), … , 0(𝑛𝐴−1)  .      (4.104) 

Here, the assumption was made, that 𝜑𝑙  was measured during the time interval 𝑖, as 
specified in sections 4.3.1 or 4.3.2.  
 
In order to set up the matrix 𝑵𝑋𝑋  efficiently and exploit the linear dependencies of the 

partials 
𝜕𝜑𝑙

𝜕𝑎𝑖
 on the partials 

𝜕𝜑𝑙

𝜕𝑝𝑗
, as described in sections 4.3.1 or 4.3.2, all submatrices 𝑨𝑖  have 

to be expanded by 𝑛𝑄 columns for the partial derivatives with respect to the dynamical 

parameters, which is written 

𝑨𝑖
+ ≐  

𝜕𝚽𝑖

𝜕𝒑

𝜕𝚽𝑖

𝜕𝑞1
…

𝜕𝚽𝑖

𝜕𝑞𝑛𝑄

 =  𝑨𝑖

𝜕𝚽𝑖

𝜕𝑞1
…

𝜕𝚽𝑖

𝜕𝑞𝑛𝑄

   ,      (4.105) 

[Beutler et al., 2005] where the 𝚽𝑖  contains the observations pertaining to the subinterval 𝑖. 
The matrices 𝑩𝑖  have to be expanded by 𝑛𝑄 lines, yielding 

𝑩𝑖
+ ≐

 

 
 

𝑩𝑖

𝟎𝑇
(1)

⋮
𝟎𝑇

(𝑛𝑄)
 

 
 

=

 

 
 
 
 
 
 
 

𝛽𝑖1,1 𝛽𝑖2,1 𝛽𝑖3,1

𝛽𝑖1,2 𝛽𝑖2,2 𝛽𝑖3,2

𝛽𝑖1,3 𝛽𝑖2,3 𝛽𝑖3,3

𝛽𝑖1,4 𝛽𝑖2,4 𝛽𝑖3,4

𝛽𝑖1,5 𝛽𝑖2,5 𝛽𝑖3,5

𝛽𝑖1,6 𝛽𝑖2,6 𝛽𝑖3,6

0(1) 0(1) 0(1)

⋮ ⋮ ⋮
0(𝑛𝑄 ) 0(𝑛𝑄 ) 0(𝑛𝑄) 

 
 
 
 
 
 
 

  . (4.106) 

In the case of piecewise constant accelerations the matrices 𝑨 𝑖  do not have to be changed. 
The introduction of dynamical orbit parameters is completed by exchanging the matrices 𝑨𝑖  
and 𝑩𝑖  in sections 4.3.1 or 4.3.2 by the matrices 𝑨𝑖

+ and 𝑩𝑖
+. By way of example, the matrix 

𝑨𝑋  in the case of piecewise constant accelerations reads, according to equation (4.90), 

𝑨𝑋 =

 

 
 
 
 

𝑨0
+ 𝑨 0 𝟎 ⋯ 𝟎 𝟎

𝑨1
+ 𝑨1

+𝑩1
+ 𝑨 1 ⋯ 𝟎 𝟎

𝑨2
+ 𝑨2

+𝑩1
+ 𝑨2

+𝑩2
+ ⋯ 𝟎 𝟎

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑨𝑛−2

+ 𝑨𝑛−2
+ 𝑩1

+ 𝑨𝑛−2
+ 𝑩2

+ ⋯ 𝑨 𝑛−2 𝟎

𝑨𝑛−1
+ 𝑨𝑛−1

+ 𝑩1
+ 𝑨𝑛−1

+ 𝑩2
+ ⋯ 𝑨𝑛−1

+ 𝑩𝑛−1
+ 𝑨 𝑛−1 

 
 
 
 

  . (4.107) 
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Now, the design matrices 𝑨𝐶  and 𝑨𝑇 , related to the ambiguity biases and clock offsets, are 
included according to (4.101), yielding the final normal equation system  

 

𝑨𝑋
𝑇𝑾𝑨𝑋 𝑨𝑋

𝑇𝑾𝑨𝐶 𝑨𝑋
𝑇𝑾𝑨𝑇

𝑨𝐶
𝑇𝑾𝑨𝑋 𝑨𝐶

𝑇𝑾𝑨𝐶 𝑨𝐶
𝑇𝑾𝑨𝑇

𝑨𝑇
𝑇𝑾𝑨𝑋 𝑨𝑇

𝑇𝑾𝑨𝐶 𝑨𝑇
𝑇𝑾𝑨𝑇

  
∆𝑿
∆𝑪
∆𝑻

 =  

𝑨𝑋
𝑇𝑾𝒚

𝑨𝐶
𝑇𝑾𝒚

𝑨𝑇
𝑇𝑾𝒚

   . (4.108) 

The terms 𝑨𝑋
𝑇𝑾𝑨𝑋  and 𝑨𝑋

𝑇𝑾𝒚 are computed in exactly the same way as described in (4.73) 
for the case of pulses, or as (4.91), if piecewise constant accelerations are employed. All 
remaining terms where the matrices 𝑨𝐶  and 𝑨𝑇  are involved, can be set up very easily 
because these matrices only contain the elements 0 or 1. Thus, only particular lines or 
columns have to be taken from the intermediate products which occur when setting up 
𝑨𝑋

𝑇𝑾𝑨𝑋  and 𝑨𝑋
𝑇𝑾𝒚 with the efficient algorithms. Furthermore, constraints for the empirical 

parameters may be imposed, as described in sections 4.3.1 or 4.3.2, by adding the weights 
𝑾   𝑖  and the artificial observations 𝒚 𝑖  to the terms 𝑨𝑋

𝑇𝑾𝑨𝑋  and 𝑨𝑋
𝑇𝑾𝒚.  

 
In this context, dynamical modeling represents a special case of reduced-dynamic orbit 
modeling, i.e. when no pseudo-stochastic parameters are set up. In this case, the first sub-

interval can be considered as the only, overall, subinterval. No matrices 𝑩𝑖
+ and 𝑨 𝑖  occur, 

and the matrix 𝑨𝑋  results in 

𝑨𝑋 = 𝑨0
+  . (4.109) 

The final system (4.108) can formally be written in reduced form, as 

 
𝑵𝑋𝑋 𝑵𝑋𝐶 𝑵𝑋𝑇

𝑵𝐶𝑋 𝑵𝐶𝐶 𝑵𝐶𝑇

𝑵𝑇𝑋 𝑵𝑇𝐶 𝑵𝑇𝑇

  
∆𝑿
∆𝑪
∆𝑻

 =  

𝒏𝑋

𝒏𝐶

𝒏𝑇

  .      (4.110) 

The structure of the resulting normal equation system now contains the diagonal matrices 
𝑵𝐶𝐶  and 𝑵𝑇𝑇 , see Figure 4.9, and the matrices 𝑵𝑋𝐶 , 𝑵𝑋𝑇 , 𝑵𝐶𝑇 , which are rather sparse 
matrices, populated to a large extent with zeros. 
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  Figure 4.9:  Structure of the normal equation matrix for reduced-dynamic  
           orbit determination (example) 

 
 
The matrices 𝑵𝑋𝐶 , 𝑵𝑋𝑇 , 𝑵𝐶𝑇  clearly show the correlations between the estimation 
parameters. Matrix 𝑵𝑋𝑋  is fully populated, therefore it was justified to introduce the 
dynamical estimation parameters directly into 𝑨𝑋 . 
 
The solution of the normal equation system (4.110) can be achieved most efficiently by 
exploiting the simple invertibility of the diagonal matrix 𝑵𝑇𝑇 . Therefore, the parameters 𝑿 
and 𝑪 are grouped together as 

𝒀 =  
𝑿
𝑪

  , (4.111) 

[Kroes, 2006], and the system is rewritten accordingly in the form  

 
𝑵𝑌𝑌 𝑵𝑌𝑇

𝑵𝑇𝑌 𝑵𝑇𝑇
  

∆𝒀
∆𝑻

 =  
𝒏𝑌

𝒏𝑇
  .      (4.112) 

According to equation (4.17), pre-elimination of ∆𝒀 yields 
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∆𝒀 =  𝑵𝑌𝑌 − 𝑵𝑌𝑇𝑵𝑇𝑇
−1𝑵𝑇𝑌 −1 𝒏𝑌 − 𝑵𝑌𝑇𝑵𝑇𝑇

−1𝒏𝑇  .  (4.113) 

The solution ∆𝒀 is subsequently back-substituted to obtain the corrections ∆𝑻 of the clock 
offsets, given by 

∆𝑻 = 𝑵𝑇𝑇
−1 𝒏𝑇 − 𝑵𝑇𝑌𝒏𝑌  .  (4.114) 

However, yet another part of the arising calculations can be performed more efficiently. 
Therefore, the submatrices of the term 𝑵𝑌𝑌 − 𝑵𝑌𝑇𝑵𝑇𝑇

−1𝑵𝑇𝑌  in (4.113) which has to be 
inverted is considered in detail,  

 
𝑵𝑋𝑋 𝑵𝑋𝐶

𝑵𝐶𝑋 𝑵𝐶𝐶
 −  

𝑵𝑋𝑇

𝑵𝐶𝑇
 𝑵𝑇𝑇

−1 𝑵𝑇𝑋 𝑵𝑇𝐶 = 

=  
𝑵𝑋𝑋 − 𝑵𝑋𝑇𝑵𝑇𝑇

−1𝑵𝑇𝑋 𝑵𝑋𝐶 − 𝑵𝑋𝑇𝑵𝑇𝑇
−1𝑵𝑇𝐶

𝑵𝐶𝑋 − 𝑵𝐶𝑇𝑵𝑇𝑇
−1𝑵𝑇𝑋 𝑵𝐶𝐶 − 𝑵𝐶𝑇𝑵𝑇𝑇

−1𝑵𝑇𝐶

 ≐  
𝑷 𝑸

𝑸𝑇 𝑺
  . 

(4.115) 

It can be seen that the matrix 𝑺 attains the structure of a band matrix, with the size of the 
band being determined by the number of simultaneously active ambiguity parameters. Se-
veral algorithms for matrix inversion, such as the LU-decomposition, can be adapted for 
band matrices [Press et al., 1989]. In the case of the band being very small compared to the 
dimension of the matrix 𝑺, i.e. the orbit is estimated over a long time interval, the band-
inversion is much more efficient and faster. The band-inversion of 𝑺 can be exploited by 
inverting the whole system as 

 
𝑷 𝑸

𝑸𝑇 𝑺
 

−1

=  
𝑷 𝑸 

𝑸 𝑇 𝑺 
  , (4.116) 

[Staudinger, 2003], with 

𝑷 =  𝑷 − 𝑸𝑺−1𝑸𝑇 −1   , 

𝑸 = − 𝑷 − 𝑸𝑺−1𝑸𝑇 −1 𝑸𝑺−1   , 

𝑺 = 𝑺−1 +  𝑺−1𝑸𝑇  𝑷 − 𝑸𝑺−1𝑸𝑇 −1 𝑸𝑺−1   , 

𝑸 𝑇 =  𝑸  
𝑇

  . 

(4.117) 

Usually, a continuous tracking pass, with a constant ambiguity parameter, overlaps with 
about 20 other bias parameters while being active. Hence, only about 𝑛𝐵 × 20 elements of 
𝑺 are non-zero. Thus, in the case of long data arcs, e.g. 24 hours with a typical number of 
𝑛𝐵 = 500 phase biases, the inversion of the band matrix is by far more efficient. 
 
The total number of parameters, that are estimated in the dynamic or reduced-dynamic 
approaches, are usually much less than for kinematic orbit determination. If pseudo-
stochastic parameters are set up every ten minutes, the number of these parameters over a 
one day arc results in 435. With six initial conditions, and only three dynamical parameters 
to be estimated, i.e. the constant accelerations in radial, along and cross-track direction, the 
total number of estimation parameters amounts to about 3800 or 9600, in the cases of 10 
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or 30 seconds data sampling, respectively. This is more than three times less than for the 
kinematic strategy. 
 
The estimation process is iteratively repeated until convergence yields the final trajectory 
and the final estimations of all involved parameters. This is usually achieved after 3 
iterations. 
 
For the sake of completeness, the stochastic properties of all estimated parameters are 
captured in the covariance matrices, as described in section 4.1.1. For the covariances of 𝒀, 
which are given by 

𝑸𝑌𝑌 = 𝑠0
2 𝑵𝑌𝑌 − 𝑵𝑌𝑇𝑵𝑇𝑇

−1𝑵𝑇𝑌 −1 , (4.118) 

the inversion has already been performed. The covariances of the clock offset estimates are 
easily calculated by 

𝑸𝑇𝑇 = 𝑠0
2 𝑵𝑇𝑇

−1 +  𝑵𝑇𝑇
−1𝑵𝑇𝑌 𝑸𝑌𝑌 𝑵𝑇𝑇

−1𝑵𝑇𝑌 𝑇  .  (4.119) 

 
Finally, it has to be stated, that the elaborated procedure for orbit determination can also be 
performend with code observations only. This can be motivated by the faster computation 
times, if a loss in accuracy resembles acceptable. In this case, all terms that are related to the 
ambiguity parameters are omitted. This is possible, because the phase observations only 
contribute to the small-scale shape of the orbit. Due to the ambiguity biases, the phase 
measurements only imply position differences and do not determine the absolute position 
and orientation of the trajectory. The positioning is accomplished by the pseudoranges, 
which makes the estimation system non-singular. Using only phase data, would lead to a 
singular normal equation matrix, where the clock offsets can not be separated from the 
ambiguity biases. In order to extract the maximum information from the highly accurate 
carrier phases, the phase data should be given much weight for the estimation. By this 
means, the determination of the shape of the orbit is widely left to the phase 
measurements. Whereas the absolute positioning and orientation of the trajectory can still 
be accurately achieved by the weak, but numerous, code observations, due to the averaging 
effect. 
 
An alternative to the use of raw code and carrier phase data would be posed by using code-
smoothed data [Dach et al., 2007]. Here, the ambiguity parameters are pre-eliminated over 
each continuous tracking pass, by fitting the phase observations to the mean of the code 
ranges. The difference of code-smoothing to the combined data processing is, that in the 
first case the ambiguity parameters are (pre-)determined by only the pseudoranges of the 
according pass, whereas in the second case, the biases are estimated using the whole code 
data set. The combined use of code and phase data, thus, preserves the utmost information 
from the measurements and is much more robust. In this context, the combined use of zero 
differenced code and carrier phase data for the estimation of the ambiguity parameters is 
often referred to as float ambiguity resolution. 
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4.5 Data Editing 

 
The quality of the GPS data is of crucial relevance for precise orbit determination. The data 
used for this research is obtained from high quality geodetic-type spaceborne receivers. Yet, 
the data can be subject to systematic errors, like multipath. Therefore, adequate data 
screening is necessary to detect possible outliers and bad measurements. In addition, when 
the receiver loses lock of the signal, a new ambiguity parameter has to be introduced for the 
phase measurement. For this purpose, the carrier phase observations have to be scanned for 
sudden “phase-breaks” or “phase-jumps”. Furthermore, a minimum signal strength for the 
accepted observations can be set, as well as the elevation angle of the incoming signal with 
respect to the receiver horizon might be evaluated to exclude measurements below a 
predefined cut-off angle. In the following the data editing procedures that are used for this 
research are described. 
 
Prior to the search for erroneous data, measurements that are taken below a user-defined 
elevation are excluded. Hereby, the position and attitude of the spacecraft is determined 
from the intermediate trajectory solution. Because the concerned receivers might even track 
GPS satellites below the instant horizon, a minimum cut-off angle of 0 degrees should be 
used for POD. However, an elevation mask of 5 degrees is usually advisable to discard bad 
measurements.  
 
In addition, the Signal to Noise Ratio (SNR) can be used as an indicator for observations with 
a high noise level. The SNR is provided for all measurements in the data files of the 
employed BlackJack receivers [Gurtner, 1994]. For these receivers, the carrier to noise 
density ratio 𝐶 𝑁0  is related to the SNR by [Montenbruck and Kroes, 2003], 

𝐶 𝑁0 = 20 ∙ 𝑙𝑜𝑔10  
𝑆𝑁𝑅

 2
  . (4.120) 

An SNR value of 5 corresponds to a 𝐶 𝑁0  of about 11 dB-Hz. This value has been found as 
an appropriate limit to exclude measurements with a high noise level of about 1 m for the P-
codes and 3 mm for the carrier phases [Montenbruck and Kroes, 2003]. After the SNR and 
elevation-based data screening the remaining observations are scanned for outliers and 
phase-breaks. 
 
In order to detect erroneous observation data, the post-fit residuals with respect to the 
current orbit solution and receiver clock offsets are calculated for all code and carrier phase 
measurements. It can be assumed, that the intermediate trajectory is always smooth 
enough, so that the residuals can reliably be used as an indicator of the data quality. The 
residuals are obtained by forming the differences between the observed values and the 
calculated quantities, given by 

∆𝑃𝐼𝐹 𝑡𝑟 = 𝑃𝐼𝐹 𝑡𝑟 − 𝑃𝐼𝐹0
 𝑡𝑟  ,  

∆𝐿𝐼𝐹 𝑡𝑟 = 𝐿𝐼𝐹 𝑡𝑟 − 𝐿𝐼𝐹0
 𝑡𝑟  . 

(4.121) 
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In this research, erroneous code data is detected by absolute and relative limit checks. In a 
first run, measurements with residuals exceeding an absolute value are excluded. In a 
second run, the residuals of all measurements of each tracking pass are taken and their 
mean value ∆𝑃    

𝐼𝐹  and standard deviation 𝜎∆𝑃𝐼𝐹
 is determined by 

∆𝑃    
𝐼𝐹 =

1

𝑛
 ∆𝑃𝐼𝐹

𝑃𝑎𝑠𝑠

 ,  (4.122) 

and 

𝜎∆𝑃𝐼𝐹
=  

1

𝑛 − 1
  ∆𝑃𝐼𝐹 − ∆𝑃    

𝐼𝐹 2

𝑃𝑎𝑠𝑠

 . (4.123) 

Here, the tracking pass comprises all pseudoranges that are obtained while the GPS satellite 
is in view. This tracking pass is not interrupted by data gaps of some epochs and is 
independent from phase-lock. It ranges from the ascension of a GPS satellite to its setting. 
The standard deviation of the involved residuals is required to fall below a user-defined 
treshold. If it exceeds the treshold, the measurement whose residual shows the largest 
deviation from the mean is excluded. This procedure is repeated until the standard deviation 
does not exceed the given treshold. This code data screening method quite effectively 
eliminates outliers, which are mainly caused by multipath effects. In order to achieve a 
statistical significance to some extent, only tracking passes with a minimum length of five 
minutes are accepted. 
 
The data editing of the carrier phase measurements is achieved by a rather simple 
procedure. It is intended to search for outliers and also phase breaks. The detection of phase 
breaks is necessary for the correct introduction of the ambiguity parameters. Therefore, 
phase residuals of continuous tracking passes are investigated for sudden jumps. If the 
difference of consecutive phase residuals surpasses a certain limit 𝐿𝜀 , a phase break is 
assumed to be encountered, 

 ∆𝐿𝐼𝐹 𝑡𝑟−1 − ∆𝐿𝐼𝐹 𝑡𝑟    
 < 𝐿𝜀  
 > 𝐿𝜀

  
 pass;   
break.

 (4.124) 

The treshold 𝐿𝜀  must be set very low to make sure that all jumps are detected. This is 
possible because of the low noise of the carrier phase measurements. In contrast to the 
code data screening, the carrier phase data screening accepts the residuals to exhibit a 
trend. This can occur, if in the iteration process the intermediate trajectory is not yet very 
accurate. Thus, statistical tests, like the standard deviation of the residuals, resembled not 
appropriate for the screening of carrier phase data.  
 
In addition, a continuous tracking pass must consist of more than one phase measurement, 
because the ZD carrier phase measurements only imply relative information between 
consecutive epochs. Therefore, such single phase measurements have to be excluded. By 
this requirement, also outliers are widely removed. This is due to the fact, that, unless 
several consecutive measurements are affected by a constant systematic effect, a phase 
break is detected immediately before and afterwards, and thus isolating the observation. 
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And if a series of measurements is biased by a constant error, this is largely compensated by 
the pertaining ambiguity parameter. 
 
After editing the data the measurements are introduced to the next iteration of the 
adjustment process. The whole data editing process has to be repeated prior to every 
iteration. Every time the whole data set has to be screened. Previously excluded 
measurements are possibly accepted in the next data screening run, where an updated 
trajectory is used. This holds for the code and carrier phase data screening as well as for the 
elevation cut-off. As the orbit solution becomes more and more accurate with each 
iteration, the tresholds can be set smaller for each screening run. This ensures, that for the 
final orbit solution the data editing is performed with the most possible sensibility, 
eliminating a maximum of outliers and detecting all phase-jumps. As already mentioned, 
even for the initial orbit determination a coarse data screening is performed, to keep the 
number of iterations low. 
 
 



 

 
 

5 The Software ORBIT 

 
In order to apply the previously elaborated techniques for precise orbit determination, a 
dedicated software has been developed for LEO POD. Subsequently, the structure and all 
relevant features of the software are explained.  
 
To establish a software for dynamic and reduced-dynamic orbit determination, at first, the 
core feature of any orbit computing program, a propagator for a spacecraft within a force 
field, was implemented. The propagation is based on the numerical integration of the 
established force model. As an integrator the highly accurate collocation method has been 
implemented. It achieves the best possible numerical solution of the equations of motion. 
For all applications and results presented here, the order of integration is 12 and the step 
size for integration, i.e. the length of the polynomials, is 60 seconds. This holds for the 
solution of the trajectory and of all variational equations. The integration involves an 
inversion of a 15 × 15 matrix, which is achieved using either the Gauss-Jordan algorithm or 
the LU decomposition [Press et al., 1989]. 
 
The dynamical force model is especially designed for LEOs, see section 4.2.1. The 
implemented forces are listed in Table 5.1. Each of the given perturbations can individually 
be switched off, so that its impact on the dynamical trajectory can be assessed. 
 

           Table 5.1:  The dynamical model components employed  
                    in the software ORBIT for LEOs 

 

Perturbation Model 

Earth Gravity Field Selectable model from ICGEM (degree/order selectable) 
[ICGEM, 2009] 

Lunar Attraction Analytical series expansion [Montenbruck and Gill, 2000] 
Solar Attraction Analytical series expansion [Montenbruck and Gill, 2000] 
Solid Earth Tides IERS Conventions 1996 [McCarthy, 1996] 
Polar Tides IERS Conventions 1996 [McCarthy, 1996] 
General Relativity IERS Conventions 2003 [McCarthy and Petit, 2004] 
Atmospheric Drag Canonball model in along-track direction (adjustable) 
Radiation Pressure Canonball model in direction towards the Sun (adjustable) 

 
 
For the Earth gravity field several models, i.e. lists of geopotential coefficients, are available. 
The models are publicly available at the International Centre for Global Earth Models 
(ICGEM) [ICGEM, 2009] in a common data format [Barthelmes and Förste, 2006]. Thus, any 
of these models can be downloaded and readily be used for POD. The software allows for 
the truncation of the spherical harmonics expansion at a user-defined degree and order. By 
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truncating the expansion of the inhomogeneous Earth gravity field the influences of higher 
order terms on a satellite’s orbit can be investigated. If the terms higher than a given degree 
and order are considered to be negligible, the truncation enables to save computation time 
significantly. Table 5.2 lists some notable models that can be obtained from the ICGEM.  
 

         Table 5.2: Selected gravity field models from the ICGEM 
 

Gravity field model Year Degree Reference 

GGM03C 2009 360 [Tapley et al., 2007] 
EIGEN-5C 2008 360 [Förste et al., 2008] 
EGM2008 2008 2190 [Pavlis et al., 2008] 
EIGEN-GL04C 2006 360 [Förste et al., 2006] 
GGM02C 2004 200 [Tapley et al., 2005] 
EIGEN-CHAMP03S 2004 140 [Reigber et al., 2004] 
EIGEN-GRACE02S 2004 150 [Reigber et al., 2005] 
GGM01S 2003 120 [Tapley et al., 2003] 
EGM96 1996 360 [Lemoine et al., 1998] 

 
 
In addition to the deterministic dynamical model, up to four constant forces (and, 
accordingly, accelerations) in designated directions can be estimated, see Table 5.3. These 
empirical forces are offered in the radial, along-track and cross-track directions and in the 
direction towards the Sun. The forces in along-track and Sun direction can be regarded as 
canonball models for atmospheric drag and radiation pressure. Nevertheless, these constant 
empirical forces are a first step towards reduced-dynamic orbit modeling.  
 
However, for reduced-dynamic orbit determination the software offers two different types 
of pseudo-stochastic orbit models, see Table 5.3. The concepts of pseudo-stochastic pulses 
and piecewise constant accelerations are implemented. For both techniques the highly 
efficient algorithms, as outlined in sections 4.3.1 and 4.3.2, are implemented. The pulses and 
piecewise constant accelerations are set in the radial, along-track and cross-track directions. 
The number of empirical parameters, and thus the subinterval length, can be freely chosen. 
Individual a priori weighting of the three components is possible. The parameters are 
constrained to zero, which yields white noise characteristics for the parameter sequence. 
With these features the software is capable to execute the whole range from dynamic to 
highly reduced-dynamic orbit determination. 
 

  Table 5.3: The reduced-dynamical model options with the software ORBIT 
 

Constant empirical forces (accelerations) radial 

along-track 
 cross-track 

 Sun direction 

Pseudo-Stochastic orbit models 
Instantaneous velocity changes (pulses) 

Piecewise constant accelerations 
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The GPS measurements are introduced in the undifferenced mode. The underlying 
observational model is described in section 3.3. For the CHAMP and GRACE missions, the 
measurement data is publicly provided in the Receiver-Independent Exchange (RINEX) 
format [Gurtner, 1994]. It contains both the pseudorange and carrier phase measurements 
on the two frequencies, L1 and L2, as well as the respective SNR values. The software uses 
the data editing and screening procedures as outlined in section 4.5. All orbit determination 
approaches can be carried out using pseudorange and carrier phase data, or using 
pseudorange data only. 
 
For the processing of the GPS data the required GPS ephemeris and clock data is obtained 
from various sources, as described in section 3.1.1. The GPS satellite orbits are given in the 
Standard Product 3 orbit format (SP3) [Remondi, 1991 and Hilla, 2007]. This data format also 
contains GPS clock offsets at the given epochs. If the clock offsets are required at a higher 
sample rate, separate data in the clock RINEX format can be introduced [Ray and Gurtner, 
2006]. 
 
The least-squares adjustment is accomplished in the batch mode. This method was chosen 
because it delivers the most accurate estimation and is most robust. Thus, the computation 
of the orbits has to be accomplished ex post. Real-time applications are not of special 
interest for this research. However, the observations are processed sequentially and are 
directly mapped into the normal equation system. This is done still in accordance with the 
highly efficient methods of sections 4.3.1 and 4.3.2. By this means, the CPU memory is kept 
low and consequently very long arcs can be solved for. Additionally, the processing speed is 
significantly improved. For the inversion of the normal equation matrix, or its submatrices, 
the LU-decomposition algorithm has been implemented for fully populated matrices and for 
band matrices [Press et al., 1989]. 
 
The produced orbit solutions can be evaluated with respect to external solutions. These orbit 
solutions are provided in various data formats. In the following, all comparisons will show 
the residuals split up in the components of the accompanying satellite system. The display of 
the residuals in this system is usually most conclusive. The residuals are always computed 
following the calculated minus external regime. This kind of validation assesses the quality of 
the absolute orbit position. 
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In summary, the developed software is a comprehensive tool for state of the art precise 
orbit determination of LEO spacecraft. Figure 5.1 displays the whole processing scheme for 
LEO POD with the software ORBIT. An overview of the graphical interface and of the main 
functions of the software is given in Appendix A.4. 
 
 

Figure 5.1: The processing scheme for LEO POD with the software ORBIT 
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6 Results for CHAMP and GRACE POD 

 
In this chapter the previously elaborated techniques for precise orbit determination are 
applied to the CHAMP and GRACE satellites. Furthermore, POD will be demonstrated using 
different settings for the orbit model, the input data and for data editing. The results will be 
evaluated with external precise orbit solutions. 
 

6.1 CHAMP POD 

 
In this chapter the achievable accuracy of the established precise orbit determination 
procedures will be assessed for the CHAMP satellite. This is accomplished by comparison 
with precise orbit solutions of other institutions. By this means, the applied POD strategies 
can be evaluated in comparison to other techniques. However, this may not be seen as a 
rigorous quality assessment, but rather as an exemplary demonstration of the applied POD 
capabilities. In addition, the impact of some features of the employed POD procedure will be 
investigated. 
 
The GPS data for CHAMP is publicly available at the Global Environmental and Earth Science 
Information System (GENESIS) of the JPL [GENESIS, 2009] and at the Information System and 
Data Center (ISDC) of the GFZ Potsdam [ISDC, 2009]. The GPS measurements are provided in 
the RINEX format [Gurtner, 1994], with a sample rate of 10 seconds. In addition, these two 
institutions also provide orbit solutions. 
 
In a first step, purely dynamic POD will be evaluated. As will be shown, dynamic LEO POD is 
only possible for comparatively short periods of about 1 hour to 90 minutes, which 
corresponds to not more than one revolution. For longer time intervals the deficiencies of 
the dynamic force model accumulate rapidly and force the solution to diverge heavily. 
Nevertheless, for short arcs dynamic POD may be an appealing alternative for applications 
where empirical parameters are not desirable. Figure 6.1 shows the residuals of a 90 minute 
orbital arc with respect to a solution of UPC [Ramos-Bosch, 2008b] on 11 July 2006. As for all 
subsequently presented examples the EIGEN-GL04C gravity field model [Förste et al., 2006], 
up to degree and order 360, has been employed.  
 
However, according to Figure 6.1, a purely dynamic model can very well serve for precise 
orbit determination. The residuals of the three components remain at the sub-dm level and 
the overall accuracy shows an RMS of 6 cm. Therefore, it can be concluded that dynamic LEO 
POD is in principal possible for periods of up to 90 minutes. For intervals of longer duration 
purely dynamic orbit determination proved not qualified for POD. However, it must be noted 
that orbit determination over short data arcs is highly prone to erroneous data or data gaps. 
The benefits of the averaging effect and the bridging of data gaps become effective only for 
much longer intervals. Thus, dynamic LEO POD has to be performed with caution. 
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 Figure 6.1:  CHAMP dynamic orbit solution over 90 minutes (approx. one revolution) 
w.r.t UPC (6 cm RMS); t0 = 10 July 2006, 0:00:00 

 
Although dynamic orbits do not fulfil the accuracy requirements for POD, they serve as a 
basis for reduced-dynamic orbits. Therefore, in order to generate a long orbit which 
incorporates pseudo-stochastic pulses or piecewise constant accelerations, a dynamic 
solution of good quality must be available. Figure 6.2 displays the residuals of the dynamic 
solution with respect to the precise orbit of UPC [Ramos-Bosch, 2008b] over 24 hours. The 
solution shows an overall deviation of the position of about 5.6 meters RMS. Thus, over long 
time intervals the dynamic orbit determination delivers a priori solutions of yet very high 
accuracy. Therefore, it can be concluded that modern dynamic force models for LEO 
satellites are already very advanced. 
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 Figure 6.2:  CHAMP dynamic orbit solution over 24 Hours w.r.t UPC (5.6 m RMS);                      
t0 = 10 July 2006, 0:00:00 

 

In a next step, the quality of the developed reduced-dynamic POD techniques will be 
investigated. As a basis the more refined method of piecewise constant accelerations is 
applied. The parametrization, weighting settings and the employed GPS data products are 
summarized in Table 6.1. The displayed settings have been found to deliver the most 
accurate results. 
 

Table 6.1: Parametrization, weighting settings and data products for CHAMP POD 
 

Standard Deviation of the Observations  
 𝝈𝑷   𝒎  ± 0.50 
 𝝈𝑳   𝒎  ± 0.03 
  

Data Screening and Editing  
 𝝈∆𝑷𝑰𝑭

   𝒎  ± 0.70 

 𝑳𝜺         𝒎  0.03 
 Elevation cutt-off angle   °  5 
  

Data Products  
 Ephemeris data CODE 15 min [CODE, 2009a] 
 Clock data  CODE High-rate 30 s [CODE, 2009b]  
  

Piecewise constant Accelerations  
 Spacing  𝒔  300 
 𝝈𝒂𝑨𝒍𝒐𝒏𝒈

   𝒏𝒎 𝒔𝟐   ± 200 

 𝝈𝒂𝑹𝒂𝒅𝒊𝒂𝒍
   𝒏𝒎 𝒔𝟐   ± 50 

 𝝈𝒂𝑪𝒓𝒐𝒔𝒔
   𝒏𝒎 𝒔𝟐   ± 100 
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Figure 6.3 and Figure 6.4 show the residuals of a 24 hour arc (10 July 2006) with respect to 
orbit solutions of the UPC [Ramos-Bosch, 2008b] and JPL [GENESIS, 2009], respectively. Over 
this period the CHAMP satellite performs approximately 16 revolutions around the Earth. 
The applied batch orbit estimation is very well suited for overcoming data gaps. However, if 
these data outages occur at, or close to, the boundaries the bridging might not be optimal. 
Therefore, in order to generate an orbit solution over a certain period, the orbit is actually 
calculated over a longer time interval exceeding the desired period. An additional processing 
of 3 hours at the beginning and end of the period has been found adequate. Thus, to obtain 
a 24 hour orbit solution the data of 30 hours must be processed. This procedure was 
performed with the presented orbit solutions.  
 

 

 Figure 6.3:  CHAMP reduced-dynamic orbit solution with piecewise constant 
accelerations over 24 hours w.r.t UPC (5 cm RMS);  

          t0 = 10 July 2006, 0:00:00 
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 Figure 6.4:  CHAMP reduced-dynamic orbit solution with piecewise constant  
          accelerations over 24 hours w.r.t JPL (18 cm RMS); 
          t0 = 10 July 2006, 0:00:00 

 
For the concerned orbit over 30 hours a total of 1080 accelerations (360 triples) were 
introduced and 834 ambiguity parameters had been set up. The GPS data rate of 10 seconds 
requires the solution of 10800 epoch-wise receiver clock offsets. Together with 9 dynamical 
parameters an overall number of 12723 unknown parameters were to be solved for. The 
number of accepted code and phase observations amounted to 44637.  
 
As can be seen in Figure 6.3 and Figure 6.4, the attained orbit solution shows a varying 
agreement with the two external solutions. While the RMS of the total displacement 
amounts to just 5 cm with respect to the solution of the UPC, it reaches to 18 cm compared 
to the JPL orbit. The comparatively weak accordance with the latter solution may be 
attributed to the fact that the published JPL solutions are not of the utmost accuracy 
[GENESIS, 2009].  
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Additionally, CHAMP POD solutions have been compared to precise solutions of the 
Technical University of Munich (TUM) [Švehla, 2004]. Figure 6.5 shows the comparison of an 
24 h orbit on 31 August 2003 with an agreements of 7.5 cm RMS. Thus, it can be concluded, 
that the applied POD strategy delivers fairly competitive results. 
 

 

 Figure 6.5:  CHAMP reduced-dynamic orbit solution with piecewise constant 
          accelerations over 24 hours w.r.t TUM (7.5 cm RMS); 
          t0 = 31 August 2003, 0:00:00 
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The setting of pseudo-stochastic parameters, i.e. their temporal spacing and weighting, is 
quite critical. It determines the character of the reduced-dynamic solution. Putting weaker 
constraints on the along-track component of the empirical accelerations has been found 
appropriate, see Table 6.1. In order to assess the difference between the different kinds of 
pseudo-stochastic parameters, the trajectory was fitted to the same measurements but 
employing pulses. The pulses were set up with the same spacing and a corresponding 
weighting. Figure 6.6 shows the residuals of the orbit using pulses with respect to the 
solution with piecewise constant accelerations.  
 

 

 Figure 6.6:  CHAMP reduced-dynamic Orbit Solution with instantaneous velocity 
          changes w.r.t solution with piecewise constant accelerations  
          (2 mm RMS); t0 = 10 July 2006, 0:00:00 

 
The difference in position of only 2 mm RMS of these two types of empirical modeling is very 
small. Thus, the two methods yield similar orbit accuracies and are both appropriate for 
precise LEO orbit determination. In both cases the selection of the employed gravity field 
model is of minor relevance. For most POD applications the series expansion up to degree 
and order 100 is sufficient. The truncation of higher order terms is easily compensated by 
the empirical parameters, and thus only marginally affects the positioning of the spacecraft. 
Figure 6.7 and Figure 6.8 display the estimated pseudo-stochastic parameters.  
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        Figure 6.7:  The estimated piecewise constant accelerations;  
                 t0 = 10 July 2006, 0:00:00 

 

 
         Figure 6.8:  The estimated instantaneous velocity changes;  
                  t0 = 10 July 2006, 0:00:00 
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For all LEO POD strategies using zero difference GPS observations the use of high-rate GPS 
clock products is of strong importance. Figure 6.9 demonstrates the difference between the 
solutions using high-rate (30 seconds) GPS clocks [CODE, 2009b] and GPS clock data with a 
lower (5 minutes) rate [IGSCB, 2008]. Here, the along-track component is most affected. 
Thus, the use of high-rate GPS orbit and clock data products is advisable for LEO POD. 
 

 

       Figure 6.9:  The impact of different GPS clock offset data (25 cm RMS); 
                t0 = 10 July 2006, 0:00:00 
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On the other hand, a rather small degradation of the orbit accuracy is encountered by 
processing the GPS observations at a sample rate of only 30s. The resulting difference is 
shown in Figure 6.10. Again, the along-track component exhibits the biggest deviation. 
However, by processing only every third observation epoch the number of observations as 
wells as receiver clock offsets is drastically reduced. Thus, the computation times for data 
screening and editing and orbit estimation are accordingly much shorter. While an iteration 
run for a 30h orbit takes typically 15 minutes for processing GPS observations at a 10s 
sample rate, the calculation is performed in about 5min when using 30s GPS observations. 
The data screening procedure takes about a third of the computation times. Usually, POD is 
achieved after 3-4 iteration runs. Therefore, incorporating the GPS measurements at a 30s 
sample rate may be attractive for many POD applications, yielding considerably faster 
computation times with only a slight loss of accuracy. 
 

 

   Figure 6.10:  The impact of different GPS observation sampling rates (2 cm RMS);          
             t0 = 10 July 2006, 0:00:00 
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In order to demonstrate the influence of the GPS carrier phase measurements, the trajectory 
has been determined using code data only. Figure 6.11 shows the difference of the orbits 
using code and phase data and using code data only. By not incorporating the information of 
the phase measurements the accuracy of the solution was considerably degraded and shows 
a deviation of 23 cm RMS. However, the computation time is reduced significantly due to the 
fact that no ambiguity biases are estimated and only about the half of the measurements 
have to be processed.  
 

 

  Figure 6.11:  Orbit difference between using code plus phase data w.r.t. using  
            code data only (23 cm RMS); t0 = 10 July 2006, 0:00:00 
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6.2 GRACE POD 

 
In this chapter, the accuracy of single spacecraft POD will be assessed for the GRACE 
satellites in a similar way as for CHAMP. The GPS data for the GRACE satellites is freely 
available from the Information System and Data Center (ISDC) of the GFZ Potsdam [ISDC, 
2009] and from the Physical Oceanography Distributed Active Archive Center (PODAAC) of 
the JPL [PODAAC, 2009]. The code and carrier phase measurements are available in the 
RINEX format [Gurtner, 1994], with a 10 seconds spacing. In addition, precise orbit solutions, 
generated by the JPL, can be obtained from the two institutions.  
 
As already noted, purely dynamic POD for LEOs with sufficient accuracy is solely possible for 
periods up to 90 minutes. Figure 6.12 displays a dynamic orbit over 90 minutes for GRACE A 
on 4 January 2006 with respect to the JPL solution. The achieved solution shows deviations 
of up to 11 cm compared to the reference. 
 

 

  Figure 6.12:  GRACE A dynamic orbit solution over 90 minutes (approx. one  
            revolution) w.r.t JPL (11 cm RMS); t0 = 4 January 2006, 0:00:00 
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The capabilities of reduced-dynamic POD for GRACE will be demonstrated using piecewise 
constant accelerations. The features, e.g. weighting settings and data screening, of the 
applied POD technique differ slightly from those for CHAMP and are outlined in Table 6.2.  
 

Table 6.2: Parametrization, weighting settings and data products for GRACE POD 
 

Standard Deviation of the Observations  
 𝝈𝑷   𝒎  ± 0.40 
 𝝈𝑳   𝒎  ± 0.02 
  

Data Screening and Editing  
 𝝈∆𝑷𝑰𝑭

   𝒎  ± 0.40 

 𝑳𝜺         𝒎  0.02 
 Elevation cutt-off angle   °  5 
  

Data Products  
 Ephemeris data CODE 15 min [CODE, 2009a] 
 Clock data  CODE High-rate 30 s [CODE, 2009b]  
  

Piecewise constant Accelerations  
 Spacing  𝒔  300 
 𝝈𝒂𝑨𝒍𝒐𝒏𝒈

   𝒏𝒎 𝒔𝟐   ± 100 

 𝝈𝒂𝑹𝒂𝒅𝒊𝒂𝒍
   𝒏𝒎 𝒔𝟐   ± 25 

 𝝈𝒂𝑪𝒓𝒐𝒔𝒔
   𝒏𝒎 𝒔𝟐   ± 50 

 
 
As specified in Table 6.2, the slightly better performance of the of the GRACE GPS receivers 
is accounted for in the smaller observation standard deviations and also in the more rigorous 
settings for data screening.  
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Figure 6.13 displays the residuals of a 24 hour orbit (4 January 2006) of GRACE A with 
respect to an orbit solution generated by the JPL. Again, the orbit was actually calculated 
over a 30 hour period and subsequently truncated to 24 hours. The introduction of empirical 
accelerations at a 5 minute spacing results in a total of 1080 accelerations. For the respective 
time interval 693 ambiguity parameters were introduced. Although the data screening was 
set more rigorous as for CHAMP, the number of ambiguity parameters is usually much less. 
This can be attributed to the better tracking performance of the receiver. In addition, the 
number of accepted measurements of 75519 is much higher than for CHAMP. This is mainly 
due to considerably less multipath effects because of the less complex structure of the 
GRACE spacecraft [Kroes, 2006]. 
 
The RMS of the total position difference with respect to the JPL solution amounts to 4.5 cm, 
whereas in the radial component the RMS is even at the 2 cm level. 
 

 

   Figure 6.13:  GRACE A reduced-dynamic orbit solution with piecewise constant  
             accelerations over 24 hours w.r.t JPL (4.5 cm RMS); 
             t0 = 4 January 2006, 0:00:00 
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Additionally, Figure 6.14 shows the same orbit compared to the solution of the UPC. The 
attained RMS also amounts to 4.5 cm. In general, for GRACE A the agreement of the position 
of the generated orbit solution is about the same with respect to the references of the JPL 
and UPC. The general accuracy of UPC orbits with respect to JPL solutions is reported to be 4 
to 5 cm for GRACE A [Ramos-Bosch, 2008b]. Thus, the quality of the generated orbits is quite 
comparable to these external solutions.  
 

 

   Figure 6.14:  GRACE A reduced-dynamic orbit solution with piecewise constant 
             accelerations over 24 hours w.r.t UPC (4.5 cm RMS); 
             t0 = 4 January 2006, 0:00:00 
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The agreement of the solution for GRACE B compared to the JPL orbit is slightly worse for 
the considered period. Figure 6.15 shows a deviation of 5.5 cm RMS. No orbit solutions of 
GRACE B from the UPC were available for this period. 
 

 

    Figure 6.15:  GRACE B reduced-dynamic orbit solution with piecewise constant 
              accelerations over 24 hours w.r.t JPL (5.5 cm RMS); 
              t0 = 4 January 2006, 0:00:00 
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Finally, the impact of the number of introduced empirical parameters is assessed. Figure 
6.16 displays the difference between a solution using piecewise constant accelerations over 
100 seconds with respect to a solution with the accelerations over 300 seconds. Both 
solutions are adjusted to the same set of observations. The difference of the highly reduced-
dynamic orbit solution with respect to the reduced-dynamic solution amounts to 2 cm RMS. 
 

 

   Figure 6.16:  The residuals of an orbit solution employing piecewise constant 
             accelerations over 100 seconds with respect to the solution with  
             accelerations over 300 seconds (2.0 cm RMS);  
             t0 = 4 January 2006, 0:00:00 

 
The presented results clearly demonstrate that the established strategies are highly qualified 
for precise LEO orbit determination. Compared to external solutions, position accuracies of 
about 10 cm RMS and below are attained with all employed techniques. For all tested LEO 
spacecraft, purely dynamic precise orbit determination could be carried out successfully. 
However, dynamic POD solutions are limited to orbital lengths of about 90 minutes and care 
must be taken concerning data reliability. The employment of instantaneous velocity 
changes or piecewise constant accelerations for reduced-dynamic orbit determination 
proved highly applicable for LEO POD. The introduction of empirical parameters enables the 
generation of POD solutions of extremely good quality over much longer time intervals. 
Orbital arcs of 30 hours or more can be processed without any difficulty, attaining accuracies 
of up to 5 cm RMS. Thus, the established reduced-dynamic strategies are extremely well 
suited for LEO POD. In addition, the impact of key features of the POD process has been 
assessed. As has been demonstrated, if not the most stringent orbit accuracy is required, the 
orbit solutions can be generated even much faster by introducing the GPS measurements at 
a lower sampling rate or by using low rate GPS ephemeris and clock data or by using GPS 
code data only. 



 

 
 

7 Conclusion and Outlook 

 
The objective of this work was to establish, implement, test and validate methods for precise 
orbit determination of satellites in low Earth orbits using GPS. For this purpose a complete 
standalone software had to be created that generates orbits of LEO satellites. The applied 
strategies should be efficient, robust, fast and flexible. It was intended to reach an accuracy 
with respect to solutions of other well-established methods at the sub-dm level. Based on 
the results that were presented in the previous chapters, all these aims have been achieved. 
Tested for CHAMP and GRACE, the applied POD strategies attain accuracies well below the 
dm level compared to external orbit solutions. 
 
The chosen concepts of dynamic and reduced-dynamic orbit determination proved highly 
adequate for the use of GPS for navigation. The combination of advanced models of 
spacecraft dynamics and the precision of GPS measurements provides a powerful synergy. 
The introduction of GPS data in the ionosphere free linear combination at the zero 
difference level requires a minimum of external data. ZD measurements are very accurate 
and can be implemented quite simply. 
 
As has been demonstrated, the use of a purely dynamic orbit model is in principle capable 
for LEO POD. The accuracy of most components of the dynamic force field, especially of 
recently developed Earth gravity field models [ICGEM, 2009], is very well advanced. 
However, due to insufficient knowledge of some remaining perturbations, essentially the 
atmospheric drag, dynamic POD is limited to comparatively short orbital lengths. Orbital arcs 
over 90 minutes have been found to be the maximum possible length for dynamic POD. Both 
for CHAMP and GRACE, orbits of 90 minutes can be determined with an accuracy of one 
decimeter or less with respect to external solutions, see sections 6.1 and 6.2. However, due 
to this limitation the process of orbit determination becomes severely susceptible to 
erroneous data or data gaps. Thus, purely dynamic precise orbit determination is possible 
but not very robust. Adequate quality control of the generated dynamic orbit solutions, e.g. 
by validation with reduced-dynamic orbits over much longer time intervals, is therefore 
highly advisable. 
 
The deficiencies of dynamic POD have been successfully overcome by the two presented 
methods of reduced-dynamic orbit determination. The additional introduction of empirical 
parameters allows for a simultaneous exploitation of the advantages of the elaborate 
dynamics and the precision of the GPS measurements. With an optimal number and 
weighting of the pseudo-stochastic parameters the reduced-dynamic POD methods achieve 
position agreements of up to 4.5 cm RMS compared to external precise solutions, see 
sections 6.1 and 6.2. The difference between the two employed techniques of instantaneous 
velocity changes (pulses) and piecewise constant accelerations is of only very little relevance 
(2 mm RMS). 
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The presented algorithms for POD using pulses or piecewise constant accelerations proved 
to be extremely efficient and yield considerably reduced calculation times and memory 
requirements. In addition, the widely similar structure of the respective algorithms allows 
for a rather convenient implementation of both techniques into a computer program. 
Although the more realistic model of piecewise constant accelerations will be the first choice 
for most POD applications, the comparison to the pulse model is of scientific interest and 
useful for quality control. In summary, the presented state-of-the-art techniques for 
reduced-dynamic POD are highly competitive against other well-established POD strategies. 
The attained orbit solutions can be used for almost all applications related to POD. 
 
Furthermore, with the highly flexible software the impact of several key features of the POD 
process has been assessed. It could be shown that the sampling rate of the GPS data (30 s 
with respect to 10 s) is of only minor importance for the attained orbit accuracies. Here, a 
further reduction in computation time can be gained. On the other hand, by ignoring the 
phase measurements and using code data only, the resulting orbit accuracy is severely 
degraded. A similar loss of accuracy is encountered by employing GPS clock products with a 
low sampling rate. Nevertheless, for space applications which do not demand the most 
stringent accuracy but require extremely fast calculation times these strategies might be 
appealing. 
 
Finally, it has been observed that appropriate GPS data screening and editing is of crucial 
importance for LEO POD. The established techniques, along with optimal values for the 
respective thresholds and limits, provide an effective, robust and reliable tool for data 
screening and editing. Usually, POD is achieved after 3 to 4 iteration runs.  
 
It can be concluded from the results, that the envisaged aim, to establish competitive 
routines for LEO POD and implement them in a software, has been achieved. However, the 
accuracy of the orbit solutions can still be further improved. Especially for CHAMP, GRACE 
and GOCE various additional data is available which would be worthwhile to be introduced. 
This comprises the data of the attitude sensors, the measurements of the accelerometers 
and information about thruster firings. Although the concerned satellites are very closely 
kept to their nominal attitude, the center of mass correction can be performed more 
accurately and robustly with precise attitude information. The incorporation of 
accelerometer data might be useful in many ways. The accelerations are measured in the 
radial, along-track and cross-track components. Thus, these directions very much coincide 
with the directions of the estimated piecewise constant accelerations. The validation of the 
estimated with the measured accelerations would yield highly valuable information about 
the applied parameter constraints. By this means, the necessary amount of empirical 
parameters and optimal weighting settings can be assessed. Moreover, the accelerometer 
data can be employed as additionally observational data to further strengthen the orbit 
accuracy, especially its shape.  
 
The above presented recommendations especially apply for geodetic missions like CHAMP, 
GRACE and GOCE which carry the according sensor types onboard. However, a large number 
of spacecraft are equipped with laser retro-reflectors for Satellite Laser Ranging (SLR). Highly 
accurate ranges between ground stations and the spacecraft are deduced from the two-way 
travelling time of laser pulses. Again, these measurements may be used for an independent 
validation of the orbits and as additional measurements.   
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Regarding the input information, i.e. the force models and the GPS ephemeris and clock 
data, more or less the most advanced models and data have been employed in this work. 
However, a refinement of the dynamic model, especially of the atmosphere, would be very 
much appreciated for LEO POD. Accordingly, advanced spacecraft specific models of the air 
drag, as well as of the solar radiation pressure, would be very beneficial. On the other hand, 
the availability of GPS ephemeris and clock data of an ever increasing precision at higher 
sampling rates is expectable [Bock et al., 2009 and Griffiths and Ray, 2008]. High-rate GPS 
clock products with a sampling rate of up to 1 Hz would be strongly desirable for precise 
orbit determination of the GOCE satellite, because the GPS receiver of GOCE collects the 
data at a sample rate of 1 Hz [Bock et al., 2007]. 
 
The established software ORBIT provides a profound basis for many kinds of POD and POD 
related applications. It can be modified very flexibly and its design is suitable for the 
implementation of various other spaceborne GPS applications.  
 
A very ambitious challenge resides in the precise relative positioning of formation flying 
spacecraft. The fundamental task is the determination of the relative state between two, or 
more, spacecraft within a formation. Most prominently, this involves the determination of 
the baseline between the two satellites of the GRACE mission. Instead of the orbit of a single 
LEO spacecraft, a baseline in space has to be estimated. In this case, the GPS observations 
need to be introduced in the doubly differenced mode to accurately resolve the ambiguities. 
The modeling of the variations of the baseline could be performed using pseudo-stochastic 
parameters in a similar way as for single LEO POD [Kroes, 2006]. Precise relative spacecraft 
positioning is a key technology with increasing importance. Some existing space missions, 
such as GRACE or TerraSAR-X and TanDEM-X [Montenbruck et al., 2007], and many planed or 
proposed upcoming missions, especially in geodesy [Wiese et al., 2009], require extremely 
accurate knowledge of the relative position and velocity of the involved satellites.  
 
Eventually, the POD capabilities of the developed software may be extended to POD of GNSS 
satellites. Here, the measurements of a GPS or another GNSS satellite are attached to a 
global network of ground stations to estimate the trajectory of the satellite. The involvement 
of ground stations requires to also account for tropospheric effects. In addition, an adapted 
force model and procedures for data screening are necessary. However, the main difference 
between LEO POD and GNSS POD lies in the fact that instead of the motion of a receiver the 
motion of an emitter has to be estimated. In the case of an emitter, measurements are not 
made at coincident epochs. Therefore, the estimation of the clock offset of the GNSS 
satellite has to be treated slightly different. 
 
In summary, the developed methods are highly capable for the precise orbit determination 
of satellites in a low Earth orbit. The established software is a comprehensive and powerful 
tool for this application. However, it provides a perfect basis for further space applications 
and research. 
 
 
 
 



 

 
 

Appendix 

 

A.1 The Light Time Equation 

 
For processing the GPS observation equations as described in section 3.2, the exact emission 
time and the position and clock offset of the GPS satellite at this epoch is required for all 
measurements. For any given reception time 𝑡𝑟  with the corresponding receiver position 
𝒙𝑟 𝑡𝑟  and a given trajectory 𝒙𝑠 𝑡  of the respective GPS satellite, the signal travelling time 
𝜏 𝑡𝑟 , and thus the emission time 𝑡𝑒 , are fully determined by assuming the signal travelling 
with the speed of light 𝑐. The emission epoch is thus a function of the (a priori) receiver 
position and clock offset. The light time equation can be solved iteratively because both the 
receiver and the GPS satellite are moving much slower than the speed of light. Within the 
iteration the emission time is always updated with the newly evaluated distance 𝜌 between 
the receiver and GPS satellite, given by 

𝑡𝑠
0 ∶= 𝑡𝑟  

𝑡𝑒
1 ∶= 𝑡𝑟 −

𝜌 𝑡𝑟 , 𝑡𝑒
0 

𝑐
 

𝑡𝑒
1 ∶= 𝑡𝑟 −

𝜌 𝑡𝑟 , 𝑡𝑒
1 

𝑐
 

       ⋮ 

(A.1) 

with 

𝜌 𝑡𝑟 , 𝑡𝑒
𝑖  =  𝒙𝑟 𝑡𝑟 − 𝒙𝑠 𝑡𝑒

𝑖    . (A.2) 

After sufficient convergence has been reached, the iteration yields the emission time 𝑡𝑒  and 
the signal travelling time 𝜏 𝑡𝑟 = 𝑡𝑟 − 𝑡𝑒 . The position and clock offset of the GPS satellite 
have to be evaluated for 𝑡𝑒 , yielding 𝒙𝑠 𝑡𝑒  and 𝛿𝑠 𝑡𝑒  respectively.  
 
For the solution of the light time equation the signal velocity is throughout assumed to be 
the speed of light in vacuum. As described in sections 3.2.1 and 3.2.2, this is not precisely the 
case for GPS observations, due to several delays caused by, e.g., the atmosphere or 
relativity. However, these delays in time only result in a sub-mm position difference for the 
GPS satellites, and thus can be neglected. The same holds for the center of mass corrections 
of the GPS satellite and of the LEO satellite. 
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A.2 Keplerian Ephemeris Calculation 

 
In the presence of a pointlike mass the orbit of a satellite (of negligible mass) follows an 
ellipse and can be conveniently described by the Keplerian, or classical, elements [Vallado, 
2007]. The six elements are the semimajor axis a, the eccentricity e, the inclination i, the 
right ascension of the ascending node Ω, the argument of perigee ω and the true anomaly ν, 
see Figure A.1. Additionally, the time of perifocal passage is denoted as T. 
 

 
 
 

 
In the following the calculation of the Keplerian elements from the position and velocity of a 
satellite at a particular epoch and vice versa is given [Battin, 1999]. 
 
 

A.2.1 Keplerian Elements from the Position and Velocity Vectors 

 
Given the position 𝒙 and the velocity 𝒗 of a spacecraft at epoch 𝑡, the orbital plane is 
assessed by its normal vector 𝒉, given by 

𝒉 = 𝒙 × 𝒗 . (A.3) 

𝛺 

𝛺 

𝜔 

𝑥 
𝑦 

𝜈 

𝑧 

Perigee 

Satellite 

𝑖 

Geocenter 

Equator 

𝒙 𝑡  

𝒗 𝑡  

𝒉 𝑡  

     Figure A.1: The Keplerian (or classical) elements 
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The vector 𝒉 is also defined by the right ascension of the ascending node Ω and the 
inclination i, 

𝒉 =  
1

2

3

 =  ∙  
   sin 𝑖 ∙ sin Ω
− sin 𝑖 ∙ cos Ω

cos 𝑖
  . (A.4) 

Therefore, accounting for the quadrant rule, the elements Ω and i can be calculated by 

tan 𝛺 =
   1

−2
 , (A.5) 

and 

tan 𝑖 =
 1

2 + 2
2

3
 . (A.6) 

To assess the shape and orientation of the ellipse in the orbital plane, the polar equation of 
the ellipse 

𝑟 =
𝑝

1 + 𝑒 ∙ cos 𝑣 
 , (A.7) 

with the parameter 𝑝 

𝑝 =
2

𝐺𝑀𝐸  
 , (A.8) 

has to be rearranged yielding the parameter 𝑒𝑐𝜈  

𝑒𝑐𝜈 ≐ 𝑒 ∙ cos 𝑣 =
𝑝

𝑟 
− 1 . (A.9) 

Additionally, the equation for the parameter 𝑒𝑠𝜈  is given by 

𝑒𝑠𝜈 ≐ 𝑒 ∙ sin 𝑣 =  
𝑝

𝐺𝑀𝐸  
∙

1

𝑟
∙  𝒙 ∙ 𝒗  . (A.10) 

Now the eccentricity e, the true anomaly ν and the semimajor axis a can be obtained by 

𝑒 =  𝑒𝑠𝜈
2 + 𝑒𝑐𝜈

2  , 

𝜈 = tan−1  
𝑒𝑠𝜈

𝑒𝑐𝜈
   , 

𝑎 =
𝑝

1 − 𝑒2
 . 

(A.11) 

In a coordinate system that lies in the orbital plane and whose x-axis is pointed towards the 
ascending node Ω, the position 𝒙𝑃𝑙𝑎𝑛𝑒  of the satellite is given by the transformation 
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𝒙𝑃𝑙𝑎𝑛𝑒 = 𝑅1 𝑖 ∙ 𝑅3 Ω ∙ 𝒙 . (A.12) 

Expressing this vector in polar coordinates, 

𝒙𝑃𝑙𝑎𝑛𝑒 =  

𝑥𝑃,1

𝑥𝑃,2

𝑥𝑃,3

 = 𝑟 ∙  
cos 𝑢
sin 𝑢

0
  , (A.13) 

yields the polar angle 𝑢, which is the sum of the true anomaly ν and the argument of perigee 
ω. Thus, ω is obtained by  

𝜔 = 𝑢 − 𝜈 , (A.14) 

where 

𝑢 = tan−1  
𝑥𝑃,2

𝑥𝑃,1
  . (A.15) 

Finally, the time of perifocal passage T is calculated by 

𝑇 = 𝑡 −
𝐸 − 𝑒 ∙ 𝑠𝑖𝑛 𝐸

 𝐺𝑀𝐸

𝑎3

 , 
(A.16) 

where the eccentric anomaly E is given by 

𝐸 = 2 ∙ tan−1   
1 − 𝑒

1 + 𝑒
∙ tan

𝜈

2
  . (A.17) 

 
 

A.2.2 Position and Velocity Vectors from the Keplerian Elements 

 
The inverse problem of the Keplerian ephemeris calculation is to find the position and 
velocity vectors at any epoch t from given Keplerian elements and time of perifocal passage 
T. Therefore, at first the mean angular motion n has to be calculated by  

𝑛 =  
𝐺𝑀𝐸

𝑎3
 . (A.18) 

The mean anomaly M is defined by 

𝑀 = 𝑛 ∙  𝑡 − 𝑇  . (A.19) 

M is related to the eccentric anomaly E in Kepler’s equation, which is given by 
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𝐸 − 𝑒 ∙ sin 𝐸 = 𝑀 . (A.20) 

Equation (A.20) has to be solved iteratively for E. Now the true anomly 𝜈 and the radial 
distance r follows as 

𝜈 = 2 ∙ tan−1   
1 + 𝑒

1 − 𝑒
∙ tan

𝐸

2
  , (A.21) 

and 

𝑟 = 𝑎 ∙  1 − 𝑒 ∙ cos 𝐸  . (A.22) 

The quadrant of 𝜈 has to be determined from the relations 

sin 𝜈 =
𝑎 ∙ sin 𝐸 ∙  1 − 𝑒2

𝑟
 , (A.23) 

and 

cos 𝜈 =
𝑎 ∙  cos 𝐸 − 𝑒 

𝑟
 . (A.24) 

The position vector of the satellite in the orbital plane can now be calculated from the polar 
coordinates as  

𝒙𝑃𝑙𝑎𝑛𝑒 =  
𝑟 ∙ cos 𝜈
𝑟 ∙ sin 𝜈

        0        
  . (A.25) 

The time derivation of the position vector yields the velocity vector, given by 

𝒗𝑃𝑙𝑎𝑛𝑒 =  
𝐺𝑀𝐸

𝑎 ∙  1 − 𝑒2 
∙  

− sin 𝜈
𝑒 + cos 𝜈

0
  . (A.26) 

Finally, the two vectors have to be transformed into the inertial coordinate system by 

𝒙 = 𝑅3 −𝛺 ∙ 𝑅1 −𝑖 ∙ 𝑅3 −𝜔 ∙ 𝒙𝑃𝑙𝑎𝑛𝑒  , 

𝒗 = 𝑅3 −𝛺 ∙ 𝑅1 −𝑖 ∙ 𝑅3 −𝜔 ∙ 𝒗𝑃𝑙𝑎𝑛𝑒  . 
(A.27) 
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A.3 The partial Derivatives of the dynamic Force Model 

 
The differential equation system (4.38) describing the orbital motion of a spacecraft is a non-
linear differential equation system of second order. For its solution with the collocation 
method a linearized differential equation system must be available. For the linearization the 
partial derivatives of all force model components with respect to the coordinates of the 
position 𝒙 and velocity 𝒙  have to be formed. This also holds for the establishment of the 
variational equations where the same partial derivatives with respect to the position and 
velocity but also with respect to dynamical parameters are required. In this section the 
relevant partial derivatives of the presented force model components with respect to 𝒙 and 
𝒙 , where 

𝒙 =  
𝑥
𝑦
𝑧
  , (A.28) 

and 

𝒙 =  
𝑥 
𝑦 
𝑧 

  , (A.29) 

are given. 
 
 
Central-Body Term 
 
The most important gravity field component is the central-body term described by (4.35). Its 
partial derivatives with respect to the position coordinates are given by   

𝜕𝑥 

𝜕𝑥
= −

𝐺𝑀

𝑟3
 1 − 3

𝑥2

𝑟2
  , 

𝜕𝑥 

𝜕𝑦
= 3

𝐺𝑀

𝑟5
𝑥𝑦 , 

𝜕𝑥 

𝜕𝑧
= 3

𝐺𝑀

𝑟5
𝑥𝑧 ,  

𝜕𝑦 

𝜕𝑥
= 3

𝐺𝑀

𝑟5
𝑥𝑦 , 

𝜕𝑦 

𝜕𝑦
= −

𝐺𝑀

𝑟3
 1 − 3

𝑦2

𝑟2
  , 

𝜕𝑦 

𝜕𝑧
= 3

𝐺𝑀

𝑟5
𝑦𝑧 , (A.30) 

𝜕𝑧 

𝜕𝑥
= 3

𝐺𝑀

𝑟5
𝑥𝑧 , 

𝜕𝑧 

𝜕𝑦
= 3

𝐺𝑀

𝑟5
𝑦𝑧 , 

𝜕𝑧 

𝜕𝑧
= −

𝐺𝑀

𝑟3
 1 − 3

𝑧2

𝑟2
  . 

The partial derivatives of the central-body term with respect to the velocity components are 
zero because the attraction is independent from the motion of the spacecraft. This is the 
case for all gravitational forces. 
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The inhomogeneous Earth Gravity Field 
 
According to (4.44), the partial derivatives of the perturbation acceleration of the 
inhomogeneous gravity field are formed by  

𝜕𝒙 𝑇𝑒

𝜕𝒙𝑒 ,𝑘
=

𝜕

𝜕𝒙𝑒 ,𝑘

 𝐷 ∙ ∇𝑠𝑝𝑒𝑟𝑒 𝑇 =
𝜕𝐷

𝜕𝒙𝑒 ,𝑘
∙ ∇𝑠𝑝𝑒𝑟𝑒 𝑇 + 𝐷 ∙

𝜕

𝜕𝒙𝑒 ,𝑘

 ∇𝑠𝑝𝑒𝑟𝑒 𝑇 ;   𝑘 = 1,2,3 (A.31) 

with 

𝜕𝐷

𝜕𝒙𝑒 ,𝑘
=

 

 
 
 
 

𝜕2𝑟

𝜕𝑥𝑒𝜕𝒙𝑒 ,𝑘

𝜕2𝛩

𝜕𝑥𝑒𝜕𝒙𝑒 ,𝑘

𝜕2𝜆

𝜕𝑥𝑒𝜕𝒙𝑒 ,𝑘

𝜕2𝑟

𝜕𝑦𝑒𝜕𝒙𝑒 ,𝑘

𝜕2𝛩

𝜕𝑦𝑒𝜕𝒙𝑒 ,𝑘

𝜕2𝜆

𝜕𝑦𝑒𝜕𝒙𝑒 ,𝑘

𝜕2𝑟

𝜕𝑧𝑒𝜕𝒙𝑒 ,𝑘

𝜕2𝛩

𝜕𝑧𝑒𝜕𝒙𝑒 ,𝑘

𝜕2𝜆

𝜕𝑧𝑒𝜕𝒙𝑒 ,𝑘 

 
 
 
 

 . (A.32) 

The three matrices 𝜕𝐷 𝜕𝒙𝑒 ,𝑘  contain the second derivatives of the spherical coordinates 

with respect to the cartesian coordinates.  
 

Arranged as column vectors, the three terms 𝜕 ∇𝑠𝑝𝑒𝑟𝑒 𝑇 𝜕𝒙𝑒 ,𝑘  can be obtained 

simultaneously by 

 
𝜕

𝜕𝑥𝑒

 ∇𝑠𝑝𝑒𝑟𝑒 𝑇 
𝜕

𝜕𝑦𝑒

 ∇𝑠𝑝𝑒𝑟𝑒 𝑇 
𝜕

𝜕𝑧𝑒

 ∇𝑠𝑝𝑒𝑟𝑒 𝑇  = ∇𝑠𝑝𝑒𝑟𝑒  ∇𝑠𝑝𝑒𝑟𝑒 𝑇 ∙ 𝐷𝑇  (A.33) 

where 

∇𝑠𝑝𝑒𝑟𝑒  ∇𝑠𝑝𝑒𝑟𝑒 𝑇 =
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𝜕2𝑇

𝜕𝑟𝜕𝛩

𝜕2𝑇

𝜕𝛩2

𝜕2𝑇

𝜕𝛩𝜕𝜆
𝜕2𝑇

𝜕𝑟𝜕𝜆

𝜕2𝑇

𝜕𝛩𝜕𝜆

𝜕2𝑇

𝜕𝜆2  

 
 
 
 

 . (A.34) 

The matrix contains the second partial derivatives of 𝑇 with respect to the spherical 
coordinates which are given by 

𝜕2𝑇

𝜕𝑟2
=

𝜇

𝑟
  𝑛 + 1  𝑛 + 2 

𝑎𝑛

𝑟𝑛+2
  𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 + 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙ 𝑃𝑛𝑚  𝑐𝑜𝑠 𝛩 

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 , 

𝜕2𝑇

𝜕𝛩2
=

𝜇

𝑟
  

𝑎

𝑟
 

𝑛

  𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 + 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙
𝜕2𝑃𝑛𝑚  𝑐𝑜𝑠 𝛩 

𝜕𝛩2

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 , 

𝜕2𝑇

𝜕𝜆2
=

𝜇

𝑟
  

𝑎

𝑟
 

𝑛

 𝑚2 ∙  −𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 − 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙ 𝑃𝑛𝑚  𝑐𝑜𝑠𝛩 

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 , 

(A.35) 
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𝜕2𝑇

𝜕𝑟𝜕𝛩
=

𝜇

𝑟
 − 𝑛 + 1 

𝑎𝑛

𝑟𝑛+1
  𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 + 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙

𝜕𝑃𝑛𝑚  𝑐𝑜𝑠𝛩 

𝜕𝛩

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 , 

𝜕2𝑇

𝜕𝑟𝜕𝜆
=

𝜇

𝑟
 − 𝑛 + 1 

𝑎𝑛

𝑟𝑛+1
 𝑚 ∙  −𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 − 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙ 𝑃𝑛𝑚  𝑐𝑜𝑠 𝛩 

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 , 

𝜕2𝑇

𝜕𝛩𝜕𝜆
=

𝜇

𝑟
  

𝑎

𝑟
 

𝑛

 𝑚 ∙  −𝐶𝑛𝑚 𝑐𝑜𝑠 𝑚𝜆 + 𝑆𝑛𝑚 𝑠𝑖𝑛 𝑚𝜆 ∙
𝜕𝑃𝑛𝑚  𝑐𝑜𝑠 𝛩 

𝜕𝛩

𝑛

𝑚=0

𝑛𝑚𝑎𝑥

𝑛=2

 . 

The derivation of the associated Lengendre polynomials and their first and second 
derivatives can be found in Swatschina [2004] and Hofmann-Wellenhof and Moritz [2006]. 
 
Finally, the partial derivatives of the perturbation acceleration has to be transformed into 
the inertial reference system according to (4.25) by 

𝑱𝐼𝐶𝑅𝐹 = 𝑼𝑇 𝑡 ∙ 𝑱𝐼𝑇𝑅𝐹 ∙ 𝑼 𝑡   , (A.36) 

where 

𝑱𝐼𝑇𝑅𝐹 =  
𝜕𝒙 𝑇𝑒

𝜕𝑥𝑒

𝜕𝒙 𝑇𝑒

𝜕𝑦𝑒

𝜕𝒙 𝑇𝑒

𝜕𝑧𝑒

   , (A.37) 

and 

𝑱𝐼𝐶𝑅𝐹 =  
𝜕𝒙 𝑇𝑖

𝜕𝑥𝑖

𝜕𝒙 𝑇𝑖

𝜕𝑦𝑖

𝜕𝒙 𝑇𝑖

𝜕𝑧𝑖

   . (A.38) 

 
Third-Body Perturbations 
 
The partial derivatives of the third-body perturbations (4.47) are given by 

𝜕𝒙 𝐶
𝜕𝑥

= −𝐺𝑀𝐶 ∙  
1

 𝒙𝐶 − 𝒙 3
∙  

1
0
0
 − 3

𝑥𝐶 − 𝑥

 𝒙𝐶 − 𝒙 5
∙  𝒙𝐶 − 𝒙    , 

𝜕𝒙 𝐶
𝜕𝑦

= −𝐺𝑀𝐶 ∙  
1

 𝒙𝐶 − 𝒙 3
∙  

0
1
0
 − 3

𝑦𝐶 − 𝑦

 𝒙𝐶 − 𝒙 5
∙  𝒙𝐶 − 𝒙    , 

𝜕𝒙 𝐶
𝜕𝑧

= −𝐺𝑀𝐶 ∙  
1

 𝒙𝐶 − 𝒙 3
∙  

0
0
1
 − 3

𝑧𝐶 − 𝑧

 𝒙𝐶 − 𝒙 5
∙  𝒙𝐶 − 𝒙    . 

(A.39) 
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Solid Earth tides 
 
The partial derivatives of the perturbation (4.48) of the mean part of the solid Earth tides is 
given by 

𝜕𝒙 𝑆𝑇,𝐶

𝜕𝑥
= −

5𝑥

 𝒙 2
∙  𝒙 𝑆𝑇,𝐶 +

𝑘2

2
∙
𝐺𝑀𝐶

 𝒙𝐶 3
∙

𝑎5

 𝒙 5
∙  (A.40) 

  3 − 15
 𝒙 ∙ 𝒙𝐶 2

 𝒙 2 ∙  𝒙𝐶 2
 ∙  

1
0
0
 − 30

 𝒙 ∙ 𝒙𝐶  𝑥𝐶 −  𝒙 ∙ 𝒙𝐶 ∙ 𝑥 

 𝒙 4 ∙  𝒙𝐶 4
∙ 𝒙 + 6

𝑥𝐶

 𝒙𝐶 2
∙ 𝒙𝐶  , 

𝜕𝒙 𝑆𝑇,𝐶

𝜕𝑦
= −

5𝑦

 𝒙 2
∙  𝒙 𝑆𝑇,𝐶 +

𝑘2

2
∙
𝐺𝑀𝐶

 𝒙𝐶 3
∙

𝑎5

 𝒙 5
∙  

  3 − 15
 𝒙 ∙ 𝒙𝐶 2

 𝒙 2 ∙  𝒙𝐶 2
 ∙  

0
1
0
 − 30

 𝒙 ∙ 𝒙𝐶  𝑦𝐶 −  𝒙 ∙ 𝒙𝐶 ∙ 𝑦 

 𝒙 4 ∙  𝒙𝐶 4
∙ 𝒙 + 6

𝑦𝐶

 𝒙𝐶 2
∙ 𝒙𝐶  , 

𝜕𝒙 𝑆𝑇,𝐶

𝜕𝑧
= −

5𝑧

 𝒙 2
∙  𝒙 𝑆𝑇,𝐶 +

𝑘2

2
∙
𝐺𝑀𝐶

 𝒙𝐶 3
∙

𝑎5

 𝒙 5
∙  

  3 − 15
 𝒙 ∙ 𝒙𝐶 2

 𝒙 2 ∙  𝒙𝐶 2
 ∙  

0
0
1
 − 30

 𝒙 ∙ 𝒙𝐶  𝑧𝐶 −  𝒙 ∙ 𝒙𝐶 ∙ 𝑧 

 𝒙 4 ∙  𝒙𝐶 4
∙ 𝒙 + 6

𝑧𝐶

 𝒙𝐶 2
∙ 𝒙𝐶  . 

 

 
 
Atmospheric Drag 
 
The presented model for atmospheric drag (4.52) does not depend on the position of the 
spacecraft. It only depends on the velocity and on dynamical parameters. The derivatives 
with respect to the velocity coordinates are given by  

𝜕𝒙 𝐷
𝜕𝑥 

= −
1

2
𝐶𝐷

𝐴

𝑚
𝜌 ∙  𝑥 ∙

𝒙 

 𝒙  
+  

1
0
0
 ∙  𝒙     , 

𝜕𝒙 𝐷
𝜕𝑦 

= −
1

2
𝐶𝐷

𝐴

𝑚
𝜌 ∙  𝑦 ∙

𝒙 

 𝒙  
+  

0
1
0
 ∙  𝒙     , 

𝜕𝒙 𝐷
𝜕𝑧 

= −
1

2
𝐶𝐷

𝐴

𝑚
𝜌 ∙  𝑧 ∙

𝒙 

 𝒙  
+  

0
0
1
 ∙  𝒙     . 

(A.41) 
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Direct Solar Radiation Pressure 
 
Finally, the partial derivatives of the perturbation model of the direct Solar radiation 
pressure (4.53) are formed by 

𝜕𝒙 𝑆𝑅

𝜕𝑥
= −

𝐶𝑆𝑅𝐴𝑒
2

2

𝑆

𝑐

𝐴

𝑚
∙  

4

3
∙

𝒙 − 𝒙𝑆

 𝒙 − 𝒙𝑆 6
∙  𝑥 − 𝑥𝑆 +  

1
0
0
 ∙

1

 𝒙 − 𝒙𝑆 3
   , 

𝜕𝒙 𝑆𝑅

𝜕𝑦
= −

𝐶𝑆𝑅𝐴𝑒
2

2

𝑆

𝑐

𝐴

𝑚
∙  

4

3
∙

𝒙 − 𝒙𝑆

 𝒙 − 𝒙𝑆 6
∙  𝑦 − 𝑦𝑆 +  

0
1
0
 ∙

1

 𝒙 − 𝒙𝑆 3
   , 

𝜕𝒙 𝑆𝑅

𝜕𝑧
= −

𝐶𝑆𝑅𝐴𝑒
2

2

𝑆

𝑐

𝐴

𝑚
∙  

4

3
∙

𝒙 − 𝒙𝑆

 𝒙 − 𝒙𝑆 6
∙  𝑧 − 𝑧𝑆 +  

0
0
1
 ∙

1

 𝒙 − 𝒙𝑆 3
   . 

(A.42) 
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A.4 User Interface of the Software ORBIT 

 
This section provides an overview of the graphical interface of the main functions of the 
software ORBIT.  
 
Figure A.2 displays the start screen of the program. 
 

 

 
           Figure A.2: Welcome screen of the software ORBIT 
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       Figure A.3: Definition of the collocation parameters with ORBIT 

 
 
After starting the program, the overall time interval and the collocation parameters have to 
be defined, see Figure A.3. The definition of the collocation parameters comprises the entry 
of the number of subintervals, the degree of the polynomials, the distribution of the node 
points and the expansion point and the transition to the next interval. 
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           Figure A.4: Definition of the force field with ORBIT 

 
 
Figure A.4 shows the interface for the definition of the force field. Any gravity field model 
can be chosen and employed up to a user defined degree and order. The gravitational 
perturbations can be included or excluded individually. The non-gravitational perturbations 
can be defined manually. The entered values for the non-gravitational forces can be kept 
fixed or be used as a priori values for the subsequent adjustment. 
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               Figure A.5: Import of GPS data with ORBIT 

 
 
In a next step the GPS measurement data has to be imported, see Figure A.5. Therefore, the 
according satellite and the desired GPS orbit and clock data has to be chosen.  
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               Figure A.6: Propagation settings with ORBIT 

 
 
After the definition of the force field and the collocation parameters and the import of the 
GPS data, initial orbit determination can be performed, see Figure A.6. Here, it can be 
defined which variational equations have to be solved along with the propagation of the 
orbit. 
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Figure A.7: Orbit determination settings with ORBIT 

 
 
After initial orbit determination, the actual orbit determination can be performed, see Figure 
A.7. Here, the estimation parameters have to be defined. Additionally, the type of the 
pseudo-stochastic parameters has to be chosen along with the spacing and weighting of the 
empirical parameters. Finally, the thresholds for data screening and editing have to be set. 
After the definition of all these features the adjustment can be executed. 
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       Figure A.8: Definition of the reference orbit solution with ORBIT 

 
 
In order to compare the calculated solution an external solution has to be chosen, see  
Figure A.8. 
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Figure A.9: Display of the attained results with ORBIT 

 
 
Finally, the attained results can be displayed. Besides the residuals of the calculated solution 
with respect to an external solution (see Figure A.9), also the pseudo-stochastic parameters, 
the measurement residuals, the receiver clock solution and the orbit itself can be displayed. 
 
In general, the user may switch quite freely between the various interface screens to adjust 
or change most of the settings and definitions at any time. 
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