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Abstract

This habilitation presents a collection of papers dealing with the automatic extraction of buildings
from Airborne Laserscanner (ALS) data, supported by aerial imagery. Building extraction consists
of two stages: the detection of buildings, essentially a classification task, and the geometrical recon-
struction of buildings in previously detected regions of interest. Both stages are dealt with in this
work.

First, a rule-based method for building detection is presented. This method can use both ALS
data and multi-spectral information in the form of a normalised difference vegetation index (NDVI).
This method can be applied in a hierarchical framework of coarse generation of a digital terrain
model by morphological filtering. The second method for building detection presented in this work
is based on the Dempster-Shafer theory for data fusion. It uses a heuristic model for the distribution
of evidence to the classes of the classification process. A thorough evaluation of that method has
shown that this model is appropriate and that most of its parameters can be determined relatively
easily from “meaningful” entities such as a minimal building height or the approximate percentage
of trees in a scene. It was shown that buildings larger than about 120 m2 can be reliably detected
using ALS data of a resolution of 1 m and an NDVI image. Buildings between 50 m2 and 120 m2 can
still largely be detected. The major influence of the NDVI was a reduction of false positive detections
of buildings smaller than 100 m2 by up to 15%.

Building reconstruction as presented in this work starts with the extraction of roof planes from
the ALS data. After that, a classification of the mutual geometrical relations between neighbouring
roof planes is carried out, with the aim of determining the boundary polygons of these roof planes.
This includes a method for the precise location of step edges in ALS data. In this process, deci-
sions are based on statistical tests rather than on simple thresholding operations, thus increasing the
robustness of the approach. These tests require rigorous modelling of the stochastic properties of
the geometric entities involved. The roof boundary polygons can be grouped to form polyhedral
building models. Finally, the parameters of these polyhedral models are estimated in a consistent
parameter estimation process that considers geometrical regularities. In this way, building models
with a planimetric accuracy in the range of the original point spacing and with a height accuracy in
the range of a few centimetres can be generated. However, the quality of the results is limited by the
sensor resolution, since the planar segmentation requires a certain minimum number of ALS points
on each plane of the roof.
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Kurzfassung

In dieser Habilitationsschrift sind mehrere wissenschaftliche Arbeiten zusammengefasst, die sich
mit der automatischen Extraktion von Gebäuden aus flugzeuggestützten Laserscannerdaten be-
fassen. Der Prozess der Gebäudeextraktion umfasst dabei zwei Arbeitsschritte: die Detektion von
Gebäuden, im Wesentlichen eine Klassifizierungsaufgabe, und die geometrische Rekonstruktion von
Gebäuden in den zuvor detektierten Interessensgebieten. Beide Themen werden in dieser Arbeit
behandelt.

Zunächst wird eine regelbasierte Methode zur Gebäudedetektion präsentiert. Diese Methode
kann sowohl Laserscannerdaten als auch multispektrale Information über den “normalised differ-
ence vegetation index” (NDVI) berücksichtigen. Sie kann auch in einem hierarchischen Kontext zur
Erzeugung eines digitalen Geländemodells durch morphologische Filterung angewandt werden. Die
zweite Methode zur Gebäudedetektion, die in dieser Arbeit vorgestellt wird, beruht auf der Theo-
rie von Dempster-Shafer zur Datenfusion. In dieser Methode wird ein heuristisches Modell für die
Verteilung der in den Daten enthaltenen Evidenz bezüglich der im Klassifizierungsprozess zu un-
terscheidenden Klassen verwendet. Eine sorgfältige Evaluierung dieser Methode hat gezeigt, dass
dieses Modell gut für die Klassifizierungsaufgabe geeignet ist und dass die meisten Parameter dieses
Modelles auf relativ einfache Weise aus “sinnvollen” Größen wie z. B. der minimalen Gebäudehöhe
oder einem geschätzten Prozentsatz von Bäumen in der Szene abgeleitet werden können. Es konnte
weiters gezeigt werden, dass Gebäude größer als ca. 120 m2 zuverlässig aus Laserscannerdaten mit
einer Auflösungvon etwa 1 m und einem NDVI-Bild abgeleitet werden können. Gebäude mit einer
Fläche zwischen 50 m2 und 120 m2 können ebenfalls weitgehend detektiert werden. Der wesentliche
Einfluss des NDVI war eine Reduktion der Anzahl der fälschlich detektierten Gebäude mit einer
Fläche kleiner als 100 m2 um bis zu 15%.

Die Rekonstruktion von Gebäuden, wie sie in dieser Arbeit verstanden wird, beginnt mit
der Extraktion von Dachflächen aus den Laserscannerdaten. Danach wird eine Klassifizierung der
geometrischen Relationen zwischen benachbarten Dachflächen durchgeführt, die das Ziel hat, die
Randpolygone dieser Dachflächen zu bestimmen. Dies inkludiert eine Methode für die genaue
Lokalisierung von Höhensprüngen in den Laserscannerdaten. In diesem Prozess werden Entschei-
dungen auf Grund von statistischen Tests getroffen anstatt auf der Basis von einfachen Schwellwert-
bildungen, wodurch die Robustheit der Methode erhöht wird. Um diese statistischen Tests durch-
führen zu können, ist eine strenge Modellierung der stochastischen Eigenschaften der involvierten
geometrischen Grös̈sen von Nöten. Die Dachrandpolygone können zu Polyedermodellen gruppiert
werden. Schlies̈slich werden die Parameter dieser Polyedermodelle auf konsistente Weise geschätzt,
wobei im Schätzprozess auch geometrische Bedingungen zur Regularisierung der Modelle berück-
sichtigt werden. Auf diese Weise können Gebäudemodelle mit einer Lagegenauigkeit erzeugt wer-
den, die in etwa dem ursprünglichen Punktabstand entspricht, während ihre Höhengenauigkeit im
Bereich von wenigen Zentimetern liegt. Allerdings wird die Qualität der Ergebnisse stark durch die
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Sensor-Auflösung limitiert, weil die Segmentierung der Dachebenen eine gewisse minimale Anzahl
von Laserpunkten in jeder Dachebene benötigt.
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Chapter 1

Introduction

Airborne laserscanning (ALS), also referred to as LiDAR (Light Detection And Ranging), has proven
itself to be a powerful technique for data acquisition for Geographic Information Systems (GIS). It
essentially delivers a 3D point cloud, as opposed to a 2D image provided by an aerial camera. It thus
not only gives direct access to the third dimension, but via an analysis of the local geometry of the
point cloud also provides information about surface parameters such as surface roughness. These
advantages of ALS data compared to aerial imagery are contrasted by a certain lack of resolution and
by the lack of multi-spectral information, which makes the fusion of these data sources an interesting
option for data acquisition for GIS. In this context, the automation of topographic object extraction
has been an important topic of research in photogrammetry, remote sensing, and computer vision for
about two decades. Among the objects that are to be mapped automatically, man-made structures
such as buildings and roads are of utmost importance. Despite the enormous efforts spent in the
past, progress can only be characterised as incremental.

This habilitiation presents the author’s scientific work in the field of building extraction from
ALS data, along with some contributions to the fusion of ALS data and aerial imagery for that pur-
pose. First, a description of the major stages of building extraction will be given in section 1.1,
followed by a description of how the individual chapters contribute to this process that will be pre-
sented in section 1.2. Except for this introductory chapter, each of the following chapters corresponds
to a scientific paper that has been previously published either in a scientific journal or in conference
proceedings. All these papers were subject to a full-paper peer-reviewing process:

• Chapter 2: Franz Rottensteiner and Christian Briese: A new method for building extraction in
urban areas from high-resolution LIDAR data. In: Proceedings of the ISPRS Commission III Sym-
posium in Graz, Austria, International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences Vol. XXXIV - 3A, pp. 295-301, 2002. Peer-reviewed conference paper, cited
in the text as [Rottensteiner and Briese, 2002].

• Chapter 3: Franz Rottensteiner, John Trinder, Simon Clode, and Kurt Kubik: Building detection
using LIDAR data and multispectral images. In: Proceedings of the APRS Conference on Digital
Image Computing: Techniques and Applications (DICTA), Sydney, Australia, Vol. II, pp. 673-682, 2003.
Peer-reviewed conference paper, cited in the text as [Rottensteiner et al., 2003]

• Chapter 4: Franz Rottensteiner, John Trinder, Simon Clode, and Kurt Kubik: Using the Demp-
ster Shafer method for the fusion of LIDAR data and multi-spectral images for building detec-
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2 CHAPTER 1. INTRODUCTION

tion. In: Information Fusion 6 (4), pp. 283-300, 2005. Peer-reviewed journal paper, cited in the text
as [Rottensteiner et al., 2005b].

• Chapter 5: Franz Rottensteiner, John Trinder, Simon Clode, and Kurt Kubik: Building detection
by fusion of airborne laserscanner data and multi-spectral images: Performance evaluation and
sensitivity analysis. In: ISPRS Journal of Photogrammetry and Remote Sensing 62(2), pp. 135-149,
2007. Peer-reviewed journal paper, cited in the text as [Rottensteiner et al., 2007].

• Chapter 6: Franz Rottensteiner: Automatic generation of high-quality building models from
LIDAR data. In: IEEE Computer Graphics and Applications 23(6), pp. 42-51, 2003. Peer-reviewed
journal paper, cited in the text as [Rottensteiner, 2003].

• Chapter 7: Franz Rottensteiner, John Trinder, Simon Clode, and Kurt Kubik: Automated delin-
eation of roof planes in LIDAR data. In: Proceedings of the ISPRS workshop on Laserscanning in
Enschede, The Netherlands, International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences Vol. XXXIV-3/W19, pp. 221-226, 2005. Peer-reviewed conference paper, cited
in the text as [Rottensteiner et al., 2005a].

• Chapter 8: Franz Rottensteiner: Consistent estimation of building parameters considering geo-
metric regularities by soft constraints. In: Proceedings of the ISPRS Commission III Symposium in
Bonn, Germany, International Archives of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences Vol. XXXIV - 3, pp. 13-18, 2006. Peer-reviewed conference paper, cited in the text as
[Rottensteiner, 2006].

All these papers are reproduced in the way they originally appeared, with a few exceptions:

• They are all formatted in a consistent way.

• Sections, equations, tables, and figures were numbered in a consistent way throughout the text.
Also, the spelling of references to equations, tables, and figures was homogenized.

• The scaling of some of the figures was changed.

• The chapters are referred to as ”chapter” (rather than ”paper” in the original papers).

• Some minor typographic errors were corrected.

• A few footnotes were added.

1.1 Stages of Building Extraction

Building extraction as it is understood in the context of this work consists of three stages:

1. Pre-processing: This stage comprises preparatory work, including aerial triangulation for the
orientation of aerial images, bias correction of the ALS point cloud, generation of orthophotos if
necessary, and the estimation of height grids from the ALS points. The latter is required because
with a few exceptions, all algorithms described in this work operate on a Digital Surface Model
(DSM) in the form of a height grid. Pre-processing does not constitute a part of this work.
Throughout this work, images are thus assumed to be oriented and/or geocoded, ALS data are
considered to be aligned with image data with sufficient accuracy, and DSM grids are supposed
to exist.
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2. Building Detection: This is essentially a classification of the original sensor data in order to
recognise buildings and to locate them in an approximate way. It is often divided into three
interrelated steps:

(a) Generation of a Digital Terrain Model (DTM): A DTM is a model of the earth surface in the
sense of the “bare earth”, without vegetation, buildings, and other objects. Sometimes,
DTM generation is considered an integral part of building detection, because it is also
essentially a classification (terrain points vs. off-terrain points). DTM generation is neces-
sary because the height of a point above the terrain is an important classification cue for
building detection.

(b) Detection of building candidate regions: In this phase, each ALS point or each grid point of
the DSM is classified independently according to whether it corresponds to a building or
to another object class. Connected segments of “building points” or “building pixels” are
considered to be initial building regions. The most important problem to be tackled in this
context is the separation of buildings and trees, especially if trees grow in the vicinity of
buildings.

(c) Final classification of building candidate regions: A second classification process is applied to
the initial building regions to eliminate regions that actually correspond to other objects,
mostly trees.

In many industrialised countries, building data do already exist in national data bases such as
the cadastre. Often these existing data are only available in 2D, but they provide precise (if not
necessarily up-to-date) information about where a building exists. If such data are available,
building detection can either be neglected, or it can be used to first detect changes that have
occurred in the period between the collection of the 2D building data and the acquisition of the
sensor data used for building extraction. However, for the algorithms presented in this work,
no existing building data are required.

3. Building Reconstruction: Building detection essentially delivers coarse building outlines, e.g.
represented as closed (2D) polygons. In the third stage of building extraction, buildings have to
be geometrically reconstructed. The outcome of building reconstruction as it is understood in
this work should be 3D models of the buildings that correctly resemble the roof structure, but
with some degree of generalisation that is caused by the limitations of the sensor resolution.
As will be pointed out several times in the subsequent chapters, there are different ways of
modelling buildings and of representing the buildings in the reconstruction process. In this
work, buildings are modelled by polyhedrons having vertical walls and no roof overhangs, and
a bottom-up strategy for building reconstruction consisting of three major stages is applied:

(a) Detection of roof planes: As stated above, ALS data give direct access to surface roughness
parameters. That means that it is possible to detect connected regions in the data that
can geometrically be described by a plane. As buildings mostly have planar roof sur-
faces, such planar segmentation algorithms can be applied to detect roof planes. In this
work, planar segmentation will be applied to DSM grids, and it will be based on local
co-planarity of grid points; alternative approaches capable of handling the original ALS
point clouds by clustering techniques have been proposed in [Peternell and Steiner, 2004]
and [Pottmann et al., 2002].

(b) Grouping and model generation: The roof planes have to be combined to consistent 3D build-
ing models. This involves the determination of the roof boundary polygons and, along
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with that, of the mutual topological relations between the roof planes. As soon as these
topological relations are known the roof planes can be grouped.

(c) Consistent estimation of the model parameters and geometric regularisation: The parameters
of the resulting models have to be estimated in a consistent way from all the available
sensor data. This problem is often overlooked, but is still essential for the generation of
high-quality building models. Regularisation means that geometrical constraints are in-
troduced where evidence supporting such a hypothesis is found. In the papers collected
in this work, regularisation is sometimes considered a separate stage of building recon-
struction. Regularisation is carried out using an expansion of the method for representing
the geometric structure of the polyhedral models in the parameter estimation process.

1.2 Contributions of the Individual Chapters to the Problem of Building
Extraction

Chapter 2 was the first of the papers collected in this work to be published. It is the only chapter in
this work contributing to both building detection and reconstruction:

1. It presents a new method for DTM generation from ALS data in densely built-up areas that is
based on a hierarchical application of robust linear prediction1.

2. Based on the DTM thus generated, rule-based classification algorithms are applied for the gen-
eration of initial building regions and for the final classification of building regions. In this con-
text, a specific way of representing surface roughness in grid-based DSMs based on the Förstner
operator for the extraction of features from digital images was applied for the first time. This
chapter also presents a technique to eliminate trees adjacent to buildings. The method is ap-
plied to a relatively complex scene. A coarse visual check of the results is carried out, and the
results are found to be satisfactory.

3. A new technique for roof plane detection is presented that is based on the same method for
representing surface roughness as building detection. The subsequent stages of building re-
construction are outlined but not yet tackled in this chapter. Preliminary results of roof plane
extraction are found to be encouraging, but no evaluation beyond a visual inspection is carried
out.

Chapter 3 deals with building detection only. The rule-based method introduced in chapter 2
is modified and expanded in several ways:

1. The rule-based classification method for building detection is expanded so that it can also use
a Normalised Difference Vegetation Index (NDVI).

2. A new hierarchical framework for building detection is introduced that no longer relies on
hierarchic robust estimation for DTM generation, but applies morphologic filtering for that
purpose. This framework considers the fact that building detection and DTM generation are
dependent on each other: in order to reliably determine a DTM, large buildings have to be
detected (and eliminated) first, whereas for building detection, a coarse DTM is essential.

1This is the contribution of my co-author Christian Briese
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3. Experiments are presented for test site of suburban characteristics, with more heterogeneous
types of development than the test site used in chapter 2. Again, no evaluation beyond a coarse
visual inspection is carried out. However, it is acknowledged that some of the thresholds for the
rule-based classification are not easily tuned and that for the initial classification, a probabilistic
method evaluating all sensor data at the same time might be a better choice for detecting smaller
buildings.

Chapter 4 introduces such a probabilistic classification method for building detection. Its con-
tributions to the overall problem are as follows:

1. It contains a thorough literature review on building detection.

2. The model for surface roughness used in all chapters throughout this work is explained in
detail.

3. The rule-based method for building detection described in chapter 3 is only used for detecting
the largest buildings in the process of hierarchical DTM generation.

4. The chapter presents a new classification method for building detection based on Dempster-
Shafer fusion of ALS data and multi-spectral imagery. In this context, heuristic models for
the stochastic properties of the sensor data are developed, using the important property of
Dempster-Shafer fusion that it can easily model insufficient knowledge about the a priori dis-
tributions of the sensor data with respect to the classes to be discerned.

5. A thorough evaluation of the classification results is carried out. In this context, a methodology
for evaluation capable of comparing two data sets of different topology is introduced. The
results show that buildings larger than 90 m2 could be reliably detected in data of a resolution
of about 1.2 m.

Chapter 5 is the final chapter on building detection in this work. Its contributions are as follows:

1. It presents the algorithm described in chapter 4 in an improved form, especially with respect
to the way surface roughness is modelled. It also presents a new way of considering the uncer-
tainty of the NDVI in shadow areas.

2. It validates the statistical models used in the Dempster-Shafer classification process using two
data sets of different sensor and scene characteristics. In this context, rules for tuning the pa-
rameters of the statistical model are discussed. The new model for surface roughness helps to
replace a parameter that cannot be chosen in an intuitive way by the user by a very “intuitive”
parameter (an estimate for the percentage of trees in the scene).

3. The evaluation of the method is expanded in order not only to provide results for optimal pa-
rameters, but also to include a sensitivity analysis to determine the influence of parameter tun-
ing on the quality of the results. The conclusion is that reasonably good results can be achieved
with parameter settings that are not optimal, but in order to exploit the full potential of the
model for buildings that are relatively small compared to the sensor resolution, the parameters
have to be tuned with care.
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4. In the evaluation of the method, the contributions of the individual cues to the quality of the
classification results are assessed. It is shown that, whereas the multi-spectral data do not help
much in the classification of large building structures, they can improve the correctness of the
results for smaller buildings by up to 15%.

Chapter 6 contributes to the topic of building reconstruction as follows:

1. It expands the method for building roof detection originally presented in chapter 2 by an itera-
tive scheme designed to avoid the selection of a single threshold for the classification of planar
surfaces, giving a statistical interpretation for the procedure.

2. It describes a strategy for the delineation of roof polygons, presenting first results. It is con-
cluded that an improved method for the classification of the mutual relations between neigh-
bouring roof planes is required.

3. It presents a generic model for the consistent estimation of building parameters, which at the
time of writing had not yet been fully implemented.

4. It presents ideas to the topic of data fusion for building reconstruction, aiming at establishing
a ”multi-sensor-grammetry”. These ideas were later worked out in [Rottensteiner et al., 2004],
but this publication is not included here because it was not peer-reviewed.

Chapter 7 is a follow-up on the method presented in chapter 6. Its focus is on the second stage
of building reconstruction, i.e. the delineation of the roof boundary polygons and grouping of roof
planes:

1. It describes a unique way of classifying the mutual relations between neighbouring roof planes
as either being intersecting in a consistent way or not intersecting, thus indicating a step edge.

2. It describes a new method for the precise location of step edges corresponding to walls in ALS
data. This method makes use of specific knowledge about the appearance of buildings in these
data to avoid false step edge elements at trees that are adjacent to buildings.

3. It describes a method for generating consistent roof boundary polygons, detecting situations
where neigbouring roof boundary polygons do not intersect in a consistent way, thus indicating
short missed step edge segments.

4. In all these processes, decisions that have to be taken are based on statistical tests and robust
estimation rather than on simple thresholding of discrepancies. For this purpose, the concept
of uncertain projective geometry as it was proposed by [Heuel, 2004] is applied to geometric
reasoning on geometric primitives derived from ALS data. In this way, the selection of user-
defined thresholds is kept to a minimum and largely replaced by the selection of a significance
level for the statistical tests.

5. Examples are given to show how the algorithm can cope with rather complex roof shapes. The
adjustment model first proposed in chapter 6 is applied manually to a few buildings, which
results in numbers for the precision of the building vertices thus derived.

Chapter 8 deals with the final stage of building reconstruction, i.e. with the consistent estima-
tion of building parameters and with the inclusion of geometric constraints:
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1. It gives a systematic overview on how geometric regularities can be considered in building
extraction.

2. The method for parameter estimation considering geometric regularities by ”soft constraints”
originally presented in chapter 6 is revised and presented in a generalised way.

3. It is shown how this method can be applied to different scenarios of building reconstruction.

4. An example is worked out in order to quantify the accuracy that can be achieved by the building
reconstruction method described in chapters 2 and 6 to 8. This evaluation shows that relatively
complex roof structures can be reconstructed using the method for roof plane delineation de-
scribed in chapter 7, with accuracies typically in the order of the point spacing in planimetry
and in the range of a few centimetres in height. The dependency of these numbers on the size of
the roof plane is evaluated, and it is shown that in most cases, the overall adjustment including
geometric constraints improve the accuracy, especially in planimetry. The example also shows
the limitations of the method: roof planes receiving too few laser strikes cannot be detected,
and step edges with a small height difference between the neighbouring roof planes cannot be
located precisely.
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Chapter 2

A New Method for Building Extraction in
Urban Areas from High-resolution LIDAR
Data

2.1 Introduction

2.1.1 Motivation and Goals

Automation in data acquisition for 3D city models is an important topic of research with the goal
of reducing the costs of providing these data at an appropriate level of detail. In addition to pho-
togrammetric techniques relying on aerial images, the generation of 3D building models from point
clouds provided by LIDAR sensors is gaining importance. This development has been triggered by
the progress in sensor technology which has rendered possible the acquisition of very dense point
clouds using airborne laser scanners. Using LIDAR data with point densities of up to one point per
square meter, it is possible not only to detect buildings and their approximate outlines, but also to
extract planar roof faces and, thus, to create models which correctly resemble the roof structures.

Building extraction is solved in two steps [Brenner, 2000]. First, buildings have to be detected
in the data, and the approximate building outlines have to be determined. Second, in the regions of
interest thus detected, the buildings have to be reconstructed geometrically, which results in 3D poly-
hedral models of the buildings. It is the goal of this chapter to present a new method for the automatic
creation of polyhedral building models in densely built-up areas from high-resolution LIDAR data
without using ground plans. Our method is unique with respect to the algorithms used for build-
ing detection because it is based on robust interpolation. In the detected building regions, planar
roof patches, their bounding polygons, and their neighbourhood relations are extracted. Grouping
of neighbouring planes has not yet been implemented. The examples presented in this chapter were
computed using the LIDAR data from a test site in the City of Vienna captured by TopoSys. The
resolution of the original point cloud is 0.1 m (in-flight) by 1 m (cross-flight). A grid of 0.5 × 0.5 m2

derived from that point cloud was used for building extraction. The test data were captured in the
course of a pilot project for the Municipality of Vienna in order to evaluate and compare various
techniques for the generation of 3D city models. Our intermediate results show the high potential of
the method presented in this chapter.

9



10 CHAPTER 2. A NEW METHOD FOR BUILDING EXTRACTION

2.1.2 Related Work

There have been several attempts to detect buildings in LIDAR data in the past. The task has been
solved by classifying the LIDAR points according to whether they belong to the terrain, to buildings
or to other object classes, e.g., vegetation. Morphological opening filters or rank filters are com-
monly used to determine a digital terrain model (DTM) which is subtracted from the digital surface
model (DSM). By applying height thresholds to the normalized DSM thus created, an initial build-
ing mask is obtained [Weidner, 1997, Ameri, 2000a]. The initial classification has to be improved in
order to remove vegetation areas. In [Brunn and Weidner, 1997], this is accomplished by a frame-
work for combining various shape cues in a Bayesian network. Our algorithm for building detection
from LIDAR points is based on the method for DTM generation by robust interpolation presented in
[Kraus and Pfeifer, 1998].

The geometrical reconstruction of the buildings in previously detected regions of interest has
been tackled in two ways. First, parametric primitives can be instantiated and fitted to the data
if sufficient evidence is found. Second, planar patches can be detected in a DSM created from the
LIDAR points, and polyhedral building models can be derived by grouping these planar patches.
As parametric primitives often have a rectangular footprint, they are especially used if 2D ground
plans giving a precise location of the building outlines are available. The polygon delineating a
building in a 2D map is split into rectangular regions. In each rectangle, the parameters of para-
metric models are determined using the DSM, and the model achieving the best fit is accepted
[Brenner, 2000, Vosselman and Dijkman, 2001]. The data driven generation of polyhedral building
models from LIDAR data only makes sense if the point density is high enough so that a sufficient
number of data points is located at least in the most relevant planes of the roofs. As the building out-
lines are difficult to be located precisely, again ground plans are often used for that purpose. Ground
plans also reduce search space for the estimation of the parameters of adjoining planar patches be-
cause the gradient direction of such planes is usually perpendicular to the adjacent polygon segment
in the ground plan [Haala et al., 1998, Brenner, 2000, Vosselman and Dijkman, 2001]. Initial planar
patches are found by a segmentation of the DSM. [Brenner, 2000] gives several methods for DSM
segmentation, e.g., the analysis of surface curvature, i.e., of changes in the surface normal vectors, or
a segmentation taking into account the directions of the polygon segments of a ground plan.

As soon as the initial planar patches have been found, neighbouring patches are grouped
[Baillard et al., 1999], and the polygons delineating the borders of planar patches have to be found.
The latter task involves finding consistent intersections at the building vertices [Moons et al., 1998].
Finally, the 3D border polygons have to be combined in order to obtain consistent building models.
At the building outlines, vertical walls, and, finally, the floor have to be added to the model. A coarse-
to-fine strategy can be applied by first searching for the most relevant structures in the data and us-
ing refined methods for modelling the buildings in regions not being “explained” sufficiently by the
initial models [Vosselman and Dijkman, 2001]. The problem of precisely determining the building
outlines has been tackled by [Weidner, 1997] by applying the minimum description length principle
for deciding on regularisations.

2.2 Work Flow for Building Extraction

The work flow for the extraction of buildings from LIDAR points is presented in figure 2.1. The first
step is the interpolation of a DSM and a DTM from the original data at an appropriate resolution. Our
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method for DTM generation which performs a classification of the original points into terrain versus
off-terrain points by robust estimation will be explained in section 2.3. From this instance onwards,
the models created by interpolation are used, no longer the original data points.

By subtracting the DTM from the DSM and by applying a threshold to the height differences,
an initial building mask is created which still contains vegetation and other objects. Binary morpho-
logical operators and an analysis of the DSM texture, i.e., of the local variations of the DSM normal
vectors, are used to eliminate these areas. The final results of building detection, i.e., the individual
building regions, are found by a connected component analysis. Building detection by comparing
the DTM and the DSM is described in section 2.4.

In the building candidate regions, a plane segmentation based on an analysis of the variations
of the DSM normal vectors is applied to find planar patches. These patches are expanded by region
growing algorithms. In the current version, the neighbourhood relations of these patches are deter-
mined, and a simple model resembling the roof structure of the building is created. In the future,
neighbouring planes will be grouped consistently before the initial building models containing the
most relevant roof structures are created. In a post-processing phase, the model has to be refined in
order to contain details originally not detected. The current state of our technique for geometrical
reconstruction of roof structures from a DSM is described in section 2.5.

LIDAR points

Interpolation

Robust estimation

DSMDTM

Height thresholding

Initial building

regions

Morphological operators

Texture analysis

Building

regions

DSM segmentation

Region growing

Initial building

models

Analysis of deviations

Model adaptation

3D building

models

Planar regions

Grouping of planes

Model generation

Figure 2.1: Work flow for building extraction from LIDAR data.
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2.3 DTM Generation from LIDAR Data in Urban Regions

An algorithm for the automatic generation of DTMs in forested regions from laser scanner data was
developed at our institute. This method is based on iterative robust interpolation of a DTM grid,
and it combines the elimination of off-terrain points and the interpolation of the DTM grid in one
process [Kraus and Pfeifer, 1998]. For the generation of a DTM in densely built-up areas, this method
has to be modified to work in a hierarchical framework [Briese et al., 2001]. With this coarse-to-fine
approach it is possible to cope with relatively large areas without terrain points (e.g., large building
blocks).

2.3.1 Robust Interpolation

In an iterative process the irregularly distributed LIDAR points are weighted in a way that the mod-
elled surface describes the terrain. The classification of the points in terrain versus off-terrain points
is performed by thresholding the discrepancies to the computed surface by user-specified tolerance
values.

In a first step, a coarse approximation of the surface is computed taking into account all avail-
able LIDAR points. Next, the discrepancies, i.e., the differences of the heights of the LIDAR points
and the interpolated surface at the planimetric positions of the LIDAR points, are computed. The
discrepancies are the parameters of a weight function which is used to assign an individual weight
to each point in the subsequent processes. The interpolation of the DTM is repeated, the weights of
the LIDAR points being modulated depending on the discrepancies of the most recent iteration. This
iterative process is terminated as soon as a stable situation or a maximum number of iterations is
reached. Two types of models are used in our algorithm, i.e., the functional model which defines the
way the surface is computed, and the stochastic model which is responsible for weighting.

The functional model: Linear prediction is used for modelling the surface. Using this model, it is
possible to compute a smooth surface considering random measurement errors [Kraus, 2000].

The stochastic model: For the generation of a DTM, high weights must be assigned to terrain points
below or on the averaging surface, and low weights have to be assigned to the non-terrain points
which are above the averaging surface. A typical weight function p(r) parameterized by the discrep-
ancies r for the generation of a DTM from laser scanner data is presented in figure 2.2. The weight
function we use is not symmetrical, and it is shifted by a value g. It has a sharp decline defined by its
half-width value h and slant s for discrepancies greater than its central point (i.e., for off-terrain points
above the estimated surface) and no decline for the terrain points. The exclusion of points from the
interpolation process is triggered by a threshold t derived from a user-specified tolerance for the size
of the discrepancies. For a comprehensive description of this algorithm see [Kraus and Pfeifer, 1998].

2.3.2 Hierarchic Robust Interpolation

The method of iterative robust interpolation relies on a “good mixture” of terrain and off-terrain
points. Therefore, this algorithm does not work in large areas without terrain points as they are
likely to exist in densely built-up areas. To provide this “good mixture” also in densely built-up
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Figure 2.2: Weight function for the generation of a DTM from laser scanner data.

areas, robust interpolation has to be applied in a hierarchic way using data pyramids (comparable to
image pyramids in image processing). The hierarchic robust interpolation proceeds as follows:

1. Create the data pyramids. This can be achieved by selecting, for instance, the lowest points in
a regular grid mesh.

2. Perform robust interpolation to generate a DTM.

3. Compare the DTM to the data of the next higher resolution and accept points within a certain
tolerance band.

Steps 2 and 3 are repeated at each resolution level of the data pyramid. The results of DTM
interpolation in the lower resolution levels are used for the computation of the surface in the next
higher resolution because only points having passed the thresholding step 3 are considered at that
level.

In [Briese, 2000], this strategy has been evaluated for the generation of a high-quality DTM of a
test site located in the City of Vienna (2.5 km2) using three data pyramid levels (5 m, 2 m and 0.5 m).
A few intermediate results of this DTM generation process are presented in the perspective views in
figures 2.3 and 2.4.

Figure 2.5 shows a perspective view of a detail of the final DTM. Further details about hierar-
chical robust interpolation, its implementation in the software package SCOP, and the results of some
further examples can be found in [Briese et al., 2001].

2.4 Building Detection

As described in section 2.3, two digital elevation models are derived by interpolation: a DTM is
computed from the points classified as “terrain points” with a high degree of smoothing, whereas
a DSM is computed from all points without smoothing (figure 2.6(a)). An initial building mask is
created by thresholding the height differences between the DSM and the DTM (e.g., by hmin = 3.5 m).
This initial building mask still contains areas covered by vegetation, and some individual building
blocks are not correctly separated (figure 2.6(b)). A morphological opening filter using a small (e.g.,
5 × 5) square structural element is applied to the initial building mask in order to erase small elon-
gated objects such as fences and to separate regions just bridged by a thin line of pixels. A connected
component analysis of the resulting image is applied to obtain the initial building regions. At this
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instance, regions smaller than a minimum area (e.g., 40 m2) and regions at the border of the DSM are
discarded (figure 2.6(c)).

Some of the remaining regions in figure 2.6(c) still correspond to groups of trees. These regions
can be eliminated by evaluating a “terrain roughness” criterion derived by an analysis of the second
derivatives of the DSM. In [Fuchs, 1998], a method for polymorphic feature extraction is described
which aims at a classification of texture as being homogeneous, linear, or point-like, by an analysis
of the first derivatives of a digital image. This method is applied to the first derivatives of the DSM
using a large (e.g., 9 × 9) integration kernel. For each initial building region, the number of “point-
like” pixels is counted. Regions containing more than 50% of pixels classified as being “point-like”

(a)

(b)

Figure 2.3: (a) DSM computed from all LIDAR points (0.5 m). (b) DSM at the lowest resolution (5 m).
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(a)

(b)

Figure 2.4: (a) DTM at the lowest resolution (5 m). (b) DSM (0.5 m) of the accepted original points
(the points within a user-defined tolerance band).

(thus, pixels being in a neighbourhood of great, but anisotropic variations of the surface normals) are
very likely to contain vegetation rather than buildings, and they are eliminated. Figure 2.6(d) shows
the results of texture classification. Note the obvious co-incidence of clusters of “point-like” pixels
displayed in black and vegetation areas such as those in the botanical gardens on the left margin of
the test site.

The terrain roughness criterion is very efficient in classifying isolated vegetation regions, but
it cannot find vegetation areas which are still connected to buildings. In a final stage of analysis, we
try to eliminate such areas. By morphological opening using a square structural element, regions just
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Figure 2.5: Final DTM (0.5 m; here: 1.0 m for better readability).

connected by small bridges are separated. The resulting binary image is analyzed by a connected
component analysis which results in a greater number of regions, and the terrain roughness criterion
is evaluated again. Pixels being in regions now classified as containing vegetation are erased in
the initial building label image. Thus, in vegetation areas originally connected to buildings, only
the border pixels remain classified as “building pixels”. Again, morphological opening helps to
erase these border pixels. The resulting building label image only contains a small percentage of
erroneously classified pixels in some backyards (figure 2.6(e)).

At a very coarse level of detail, a 3D city model can be derived by creating prismatic models
from the boundary polygons of the building regions using the average building heights computed
from the DSM. An example for such a city model with a height accuracy of about ±5 m is shown in
figure 2.6(f).

2.5 Geometrical Reconstruction of Buildings

2.5.1 Generation of Initial 3D Planar Segments

To start with model generation, initial 3D planar segments, their geometrical parameters, and their
initial border polygons have to be found in the regions of interest. This is achieved by generating
a “segment label image” defined in object space with an appropriate grid width. Each pixel of that
image is assigned the label of the planar segment it belongs to.

The framework for polymorphic feature extraction [Fuchs, 1998] is applied for the generation
of planar segments, too. Just as described in section 2.4, the framework is applied to the first deriva-
tives of the DSM, this time using a small integration kernel of 3 × 3 pixels. Pixels classified as being
homogeneous are surrounded by pixels having similar components of the normal vector, i.e., they
are in a region containing co-planar points [Brunn and Weidner, 1997]. The binary image of the ho-
mogeneous pixels is used for further processing (figure 2.7(a)). By applying a connected component



2.5. GEOMETRICAL RECONSTRUCTION OF BUILDINGS 17

(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Building detection in a test site in the City of Vienna. Original resolution: 0.1 m (in-
flight) by 1.0 m (cross-flight). (a) DSM; grid width: 0.5 × 0.5 m2; extent: 410 × 435 m2. (b) Initial
building mask (height threshold hmin = 3.5 m). (c) Initial building label image before evaluating
terrain roughness. (d) Results of texture classification. Integration kernel: 9 × 9 pixels. White:
homogeneous; grey: linear; black: point-like. (e) Final building label image. Fourteen building
regions have been detected. (f) VRML visualization of prismatic models created from the boundary
polygons of the building regions from figure 2.6(e).
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analysis to this binary image, planar patches should be detectable. However, due to classification
errors, especially at the intersections of roof planes which are almost horizontal, the regions thus de-
tected often turn out to be too large. Typically, this leads to L-shaped segments such as the one at the
upper left corner of figure 2.7(a). In order to avoid these segmentation errors, an iterative strategy is
applied for the generation of planar patches:

1. The binary image of homogeneous pixels is morphologically opened using a square structural
element before applying the connected component analysis.

2. The geometric parameters of the planar patches thus detected are derived along with their
r.m.s. errors from all points inside these patches.

3. The patches with the best fit, i.e., those with r.m.s. errors better than a certain threshold (e.g.,
±10 cm) are considered to be seed regions for region growing. These seed regions are grown
iteratively by adding neighbouring pixels to a region if their distances from the original adjust-
ing plane are below a certain threshold. In this way, the most relevant and best fitting planes
are extracted from the DSM.

4. The plane parameters are updated, and the pixels already being assigned to a planar patch are
erased in the binary image. The connected component analysis is repeated, and the parameters
of the new planar patches are evaluated.

Steps 1 to 4 are repeated with a decreasing size of the structural element for morphological
opening. Thus, smaller and smaller initial regions are found, and by only allowing well-fitting planes
to grow, it is possible to split the regions corresponding to more than one roof plane, because the
r.m.s. error of the planar fit is a good indicator for the occurrence of such situations. Figure 2.7(b)
shows the planar patches extracted in one of the building regions from figure 2.6(e).

A further analysis has to detect planes which cover too small an area for resulting in pixels
classified as being homogeneous. We search for regions not being consistent with the planar regions
detected so far (figure 2.7(c)). The borders of the buildings are typically found in that process, which
is caused by laser points on the walls and by the effects of grid interpolation. Again, we get rid of
these points by a morphological opening operation using a 3 × 3 square structural element, and a
connected component analysis is applied to the resulting image in order to create additional candi-
dates for planar patches. Figure 2.7(d) shows the final segment label image created for one of the
building regions from figure 2.6(e). The r.m.s. errors of planar adjustment varies between ±5 cm
and ±15 cm for the segments corresponding to the “homogeneous” points. The segments having a
r.m.s. error larger than ±10 cm possibly still correspond to more than one roof plane. In the planar
regions created by the analysis of the originally inconsistent points, the r.m.s. errors vary between
±25 cm and ±5 m. Some of these regions correspond to trees, and other regions still correspond to
more than one roof plane. In the future, a further analysis will split these regions into smaller ones
corresponding to even smaller planes in object space. This can be accomplished, e.g., by a height
segmentation of the DSM in these regions. Table 2.1 shows the distribution of the r.m.s. errors of the
planar fit.

2.5.2 Grouping Planar Segments to Create Polyhedral Models

To derive the neighbourhood relations of the planar segments, a Voronoi diagram based on a distance
transformation of the segment label image has to be created [Ameri, 2000a]: each pixel inside the re-
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(a) (b)

(c) (d)

Figure 2.7: (a) Pixels classified as “homogeneous” (white) for one of the building regions in fig-
ure 2.6(e). (b) Planar patches obtained by iteratively applying region growing. (c) Pixels not being
consistent to a planar patch. (d) Final segment label image for one of the building regions in fig-
ure 2.6(e).

r.m.s. error [m] Regions Pixels [%]
0.00 - 0.05 241 30.6
0.05 - 0.10 333 44.4
0.10 - 0.15 96 9.3
0.15 - 0.20 133 8.8
0.20 - 0.50 26 0.9
0.50 - 1.00 10 0.2
1.00 - 2.00 14 0.5
2.00 - 3.00 42 2.6
3.00 - 4.00 36 1.8

>= 4.00 15 0.9

Table 2.1: Distribution of the r.m.s. errors of the planar fit. Regions: number of planar regions in the
respective range of r.m.s. errors. Pixels: percentage of pixels in these regions compared to the number
of all pixels in all planar regions. 68% of the pixels in the building candidate regions are classified as
belonging to a planar region.

gion of interest not yet assigned to a planar segment is assigned to the nearest segment. The distances
of pixels from the nearest segment are computed by using a 3-4 chamfer mask. Figure 2.8 shows a
Voronoi diagram of the segment label image from figure 2.7(d). From the Voronoi diagram, the neigh-
bourhood relations of the planar segments are derived, and the borders of the Voronoi regions can be
extracted as the first estimates for the border polygons of the planar segments (figure 2.9).
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Figure 2.8: A Voronoi diagram of the label image in figure 2.7(d).

Figure 2.9: The roof polygons of the building in figures 2.7 and 2.8 back-projected to an aerial image.

After deriving the neighbourhood relations, neighbouring planar segments have to
be grouped. There are three possibilities for the relations of two neighbouring planes
[Baillard et al., 1999]. First, they might be co-planar, which is found out by a statistical test applied
to the plane parameters. In this case, they have to be merged. Second, two neighbouring planes
might intersect consistently, which is the case if the intersection line is close to the initial boundary.
In this case, the intersection line has to be computed, and both region boundaries have to be updated
to contain the intersection line. Third, if the planes do not intersect in a consistent way, there is a
step edge, and a vertical wall has to be inserted at the border of these segments. After grouping
neighbouring planes, the bounding polygons of all enhanced planar regions have to be completed.
[Moons et al., 1998] give a method for doing so and for regularizing the shape of these polygons at
building corners. Finally, the planar polygons have to be combined to form a polyhedral model, and
vertical walls as well as a floor have to be added to the model.

The tools for grouping planes and for computing intersections and the positions of step edges
have not yet been implemented. Figure 2.10 shows a VRML visualization of a 3D model created
from intersecting vertical prisms bounded by the borders of the Voronoi regions with the respec-
tive 3D roof planes. The structure of the roofs is correctly resembled, but the intersection lines of
neighbouring roof planes are not yet computed correctly. However, the visualization shows the high
potential of the method for generating roof planes from LIDAR data.
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Figure 2.10: VRML visualization of a model created from the boundary polygons of the Voronoi
diagrams of the roof planes extracted for all building regions in figure 2.6(e).

2.6 Conclusion and Future Work

We have presented a method for the extraction of buildings from high-resolution LIDAR data in
densely built-up areas. Preliminary results from a test site in the City of Vienna have shown the high
potential of the method. Future work will not only include the implementation of the modules still
missing, but also the assessment of quality parameters for the results. With respect to the building
outlines, this can be accomplished by a comparison to existing GIS data. In addition, we will perform
research work in order to improve the results of building extraction by additionally using digital
aerial images for matching of roof edges with image edges.
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Chapter 3

Building Detection Using LIDAR Data
and Multi-spectral Images

3.1 Introduction

3.1.1 Motivation and Goals

Automation in data acquisition for 3D city models is an important topic of research in pho-
togrammetry. In addition to photogrammetric techniques relying on aerial images, the genera-
tion of 3D building models from point clouds provided by airborne laser scanning, also known
as LIDAR (LIght Detection And Ranging), is gaining importance. This development has been
triggered by the progress in sensor technology which has rendered possible the acquisition of
very dense point clouds using airborne laser scanners [Kraus, 2002]. Using high-resolution LI-
DAR data, it is not only possible to detect buildings and their approximate outlines, but also
to extract planar roof faces and, thus, to create models correctly resembling the roof structure
[Brenner, 2000, Rottensteiner and Briese, 2002, Vosselman and Dijkman, 2001].

With decreasing resolution, it becomes more difficult to correctly detect buildings in LIDAR
data, especially in residential areas characterised by detached houses. In order to improve the per-
formance of building detection, additional data can be considered:

• LIDAR systems register two echoes of the laser beam, the first and the last pulse. If the laser
beam is reflected at the bare soil, first and last pulse will refer to the same object point. If the
laser beam hits a tree, a part of the light will be reflected at the canopy, resulting in the first
pulse registered by the sensor. The rest will penetrate the canopy and, thus, be reflected further
below, maybe even at the soil. The last pulse registered by the sensor corresponds to the lowest
point where the signal was reflected [Kraus, 2002].

• Along with the run-time of the signal, the intensity of the returned laser beam is registered by
LIDAR systems. LIDAR systems typically operate in the infrared part of the electromagnetic
spectrum. Unfortunately, given the footprint size of the laser beam (e.g. 2-3 dm) and the av-
erage point distance (e.g. 1-2 m), the intensity image is undersampled and, thus, very noisy
[Vosselman, 2002].

23
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• As building detection is a classification task, multi-spectral images can provide valuable informa-
tion due to their spectral content and because their resolution is still better than the resolution
of laser scanner data [Schenk and Csatho, 2002].

Apart from the problems related to sensor resolution, building detection is also made com-
plicated by the fact that buildings may have quite different appearances both with respect to their
geometric dimensions and their reflectance properties. Thus, it is often impossible to select appropri-
ate thresholds and filter sizes for various algorithms. It is a well-known strategy in image matching
to apply algorithms to data having a lower resolution first to get approximate values, refining these
results in an iterative way, in each iteration considering data of a better resolution than in the previ-
ous one, until the original resolution is reached. It is the goal of this chapter to present a new method
for the automatic detection of buildings of heterogeneous appearance from LIDAR data and multi-
spectral images making use of such a hierarchic approach. With respect to the combination, or fusion
[Klein, 1999] of these data, we currently apply heuristic rules in the detection process. In the future,
the proposed algorithm is to be used as a module giving building candidate regions for a framework
for feature based data fusion as it is described in [Lu and Trinder, 2003]. The examples presented in
this chapter were computed using the LIDAR and image data from a test site in the Fairfield (New
South Wales) covering an area of 2 × 2 km2.

3.1.2 Related Work

There have been several attempts to detect buildings in LIDAR data in the past. The task has been
solved by classifying the LIDAR points according to whether they belong to the terrain, to buildings
or to other object classes, e.g., vegetation. Morphological opening filters or rank filters are used to de-
termine a digital terrain model (DTM) which is subtracted from the digital surface model (DSM). By
applying height thresholds to the normalized DSM thus created, an initial building mask is obtained
[Weidner, 1997]. The initial classification has to be improved in order to remove vegetation areas.
In [Brunn and Weidner, 1997], this is accomplished by a framework for combining various cues in a
Bayesian network. They also use a hierarchic strategy, turning the classification results of the coarser
resolution into one of the cues for the classification in the next iteration. The problem with their ap-
proach is related the complexity of estimating the conditional probabilities required for the Bayesian
network. In [Weidner, 1997], Weidner has tackled he problem of precisely determining the building
outlines by applying the minimum description length principle for deciding on regularizations.

In [Lu and Trinder, 2003], a DSM derived by image matching and a colour image are fused on
the basis of the Dempster-Shafer theory. Fusion is carried out at feature level, the initial segmentation
being performed by a K-means unsupervised classification of the colour images, using cues such as
the normalised difference vegetation index (NDVI) and the average relative height of the feature to
distinguish buildings from other objects. In order to overcome the deficiencies of the method used to
obtain the initial segmentation, it would be desirable to have the DSM take over a more prominent
role in the process, which is even more advisable if the DSM is not created by image matching (which
involves some sort of smoothing), but derived from the LIDAR data.

In [Rottensteiner and Briese, 2002], we have presented an algorithm for building detection that
relied on DTM generation by hierarchic robust linear prediction [Briese et al., 2002], using the DTM
and DSM grids for further classification. The method has been shown to give good results in densely
built-up areas [Rottensteiner and Briese, 2002], but in more heterogeneous areas containing houses
of different sizes and also forests, tuning the parameters for DTM generation is not an easy task. In
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this chapter, we will describe how that method has been modified to consider the additional data
sources and to work in a hierarchic way without relying on hierarchic robust linear prediction.

3.2 Work Flow for Building Detection

The work flow for our method is depicted in figure 3.1. The input to our method is given by three
data sets that have to be generated from the raw data in a pre-processing step. The last pulse DSM
is sampled into a regular grid by linear prediction using a straight line as the covariance function,
so that the interpolation is carried out almost without filtering [Rottensteiner and Briese, 2002]. The
first pulse DSM is also sampled into a regular grid. The normalised difference vegetation index (NDVI)
is computed from the near infrared and the red bands of the multi-spectral images we assume to be
available [Lu and Trinder, 2003]. These image data must be geocoded.

Figure 3.1: The work flow for building detection.

We start by creating a DTM from the last pulse DSM by morphological grey scale opening us-
ing a square structural element. Initially, the size of the structural element corresponds to the size
of the largest building available in the dataset. An initial building mask, basically a binary image of
possible building pixels, is created mainly by thresholding operations. That building mask is mor-
phologically opened to eliminate spurious and strangely shaped building areas, and then connected
components of building pixels give the initial building regions. For these regions, we evaluate the
surface roughness and the average NDVI. In the first iterations, very tight thresholds are applied to
surface roughness, because we assume the largest buildings in the scene to consist of large planar sur-
faces. Thus, we obtain an intermediate set of building regions, only containing the largest and most
salient buildings (corresponding to the current state of the DTM). After that, the whole procedure
is repeated with a smaller structural element for morphological opening, but in the areas already
classified as buildings, the DTM heights of the previous iteration are substituted for the results of
the morphological filter. Thus, the buildings already detected are eliminated, whereas the smaller
size of structural element for morphological filtering helps to obtain a finer approximation for the
DTM, rendering possible the separation of smaller buildings. The whole procedure is repeated with
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a decreasing size of the structural element until a user-specified minimum size is reached. The re-
sults of the final iteration are identical to the results of building detection, basically represented by a
list of building regions and a building label image. In section 3.3, we will have a closer look at the
individual processing stages.

3.3 Stages of Building Detection

3.3.1 Morphological Filtering of the DSM

We assume the DSM to be a matrix containing the heights z(i, j), with integer matrix indices i and j.
For morphological filtering of the DSM, a structural element W , i.e., a digital image w(m,n) repre-
senting a certain shape, has to be defined. Restricting ourselves to symmetrical structural elements
having constant values, thus w(m,n) = w(−m,−n) and w(m,n) = 0 ∀[m,n] ∈ W , morphological
opening is performed by first carrying out an morphological erosion,

z(i, j) = min
[m,n]∈W

z(i−m, j − n) (3.1)

followed by a morphological dilation,

z(i, j) = max
[m,n]∈W

z(i−m, j − n) (3.2)

yielding the morphologically opened height matrix z(i, j) [Weidner, 1997]. The resulting height
matrix does not contain objects smaller than the structural element W . If W is chosen to be greater
than the largest building in the data set, all buildings are removed by morphological opening; how-
ever, if W is too large, terrain details might be removed, too. If W is chosen rather small, the results
of morphological filtering will be closer to the original height matrix and, thus, to the terrain, but
larger buildings will remain in the data set. This is the reason why we apply morphological filtering
in the hierarchical framework described in section 3.2.

3.3.2 Generation of the Initial Building Label Image

Morphological filtering provides us with an approximation for the DTM. As described in section 3.2,
for buildings already detected, the DTM generated by morphological opening in the previous iter-
ation is substituted for the results of morphological filtering, so that large buildings that would be
preserved by morphological filtering in the current iteration are eliminated beforehand. An initial
building mask is created by thresholding the height differences between the last pulse DSM and the
DTM (e.g., by hmin=2.5 m). This initial building mask still contains spurious regions, areas covered
by vegetation, and terrain structures smaller than the structural element for morphological filtering.
In addition, individual buildings might not be separated correctly.

At this instance, the additional data sources can be used to improve these results. First, a large
NDVI indicates areas covered by vegetation, so that pixels having an NDVI above a certain threshold
are erased in the building mask. Second, as pointed out in section 3.1.1, the heights from first and
last pulse data will differ mainly in areas covered by trees and if the laser beam accidentally hits the
roof edge of a building. Thus, in most cases, large height differences between first and last pulse
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data indicate trees. Pixels having a height difference larger than a certain threshold are erased in the
building mask, too.

A binary morphological opening filter using a structural element of a size corresponding to
the expected minimum size of a building part (e.g., 3 × 3 m2) is applied to the initial building mask
to erase oddly shaped objects such as fences and to separate building regions just bridged by a thin
line of pixels. A connected component analysis of the resulting image is applied to obtain the initial
building regions. Regions smaller than a minimum area are discarded.

3.3.3 Classification of Building Candidate Regions

Some of the initial building regions correspond to groups of trees or to terrain structures smaller than
the structural element. These regions can be eliminated by evaluating a surface roughness criterion
derived by an analysis of the second derivatives of the DSM. In [Fuchs, 1998], a method for polymor-
phic feature extraction is described which aims at a classification of texture as being homogeneous,
linear, or point-like, by an analysis of the first derivatives of a digital image. The thresholds required
for that classification are derived automatically from the image data. This method is applied to the
first derivatives of the DSM using an integration kernel of a size corresponding to, e.g., 5 m in ob-
ject space. Under these circumstances, “homogeneous” pixels correspond to areas of locally parallel
surface normal vectors, thus, they are situated in a locally planar neighbourhood. “Linear” pixels
correspond to the intersections of planes. Finally, “point-like” pixels are in a neighbourhood of great,
but anisotropic variations of the surface normal vectors. This is typical for building corners and for
trees. For evaluating surface roughness, the numbers of “homogeneous” and “point-like” pixels are
counted in each initial building region. Buildings are characterised by a large percentage of “ho-
mogeneous” and by a small percentage of “point-like” pixels. By comparing these percentages to
thresholds, non-building regions can be eliminated. The surface roughness criterion works well for
large buildings and with dense LIDAR data [Rottensteiner and Briese, 2002]. If the point distance of
the LIDAR data is larger than, e.g., 1 m, only few LIDAR points will be situated on small buildings,
so that the percentage of “homogeneous” pixels is reduced, whereas the percentage of “point-like”
pixels is increased. Thus, it makes sense to additionally evaluate the average NDVI for each building
region to eliminate vegetation areas.

Finally, vegetation areas still connected to buildings are eliminated. By morphological opening,
regions just connected by small bridges are separated. The resulting binary image is analysed by a
connected component analysis which results in a greater number of regions, and the terrain rough-
ness criterion is evaluated again. Pixels being in regions now classified as containing vegetation are
erased in the initial building label image. Thus, in vegetation areas originally connected to buildings,
only the border pixels remain classified as “building pixels”. Again, morphological opening helps to
erase these border pixels [Rottensteiner and Briese, 2002].

3.4 Experiments

3.4.1 Description of the Data Set

The test data set was captured over Fairfield (New South Wales) using an Optech ALTM 3025 laser
scanner. Both first and last pulses were recorded, the average point distance being about 1.2 m.
We derived DSM grids at a resolution of 1 m from these data. Intensity data were available, too.
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We used an area of 2 × 2 km2 for our test. For that area, a true colour digital orthophoto with
a resolution of 15 cm was available. The orthophoto was created using a DTM, so that the roofs
and the tree-tops were slightly displaced with respect to the LIDAR data. Unfortunately, the digital
orthophoto did not contain an infrared band. We circumvented this problem by resampling both the

Figure 3.2: The Fairfield data set. Upper row, left: The DSM (black: low areas, white: high areas).
Upper row, right: Intensity of the colour orthophoto. There are industrial buildings in the northern
and central regions and residential houses in the west and south-west. Second row, left: The “pseudo-
NDVI-image”. Second row, right: The height differences between first and last pulse data (black:
large differences). Total area: 2000 × 2000 m2.
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digital orthophoto and the (infrared) LIDAR intensity data to a resolution of 0.5 m and by computing
a “pseudo-NDVI-image” from the LIDAR intensities and the red band of the digital orthophoto.
Apart from problems with georeferencing caused by the displaced tree canopies in the orthophoto,
there were also problems with shadow areas in the orthophoto, so that the “pseudo-NDVI-image”
did not provide as valuable an information as the NDVI image was supposed to be. Still, it helped in
classification. The input data for our test are shown in figure 3.2.

3.4.2 Results

Figure 3.3 shows the results of morphological opening of the DSM in figure 3.2 using structural
elements of two different sizes (150 m and 25 m). Using the large structural element, all buildings
can be eliminated, but the terrain shape is not well preserved, so that the residential buildings in
the lower part of the scene are merged. This can be seen in figure 3.4, showing the initial building
mask derived using the left DTM in figure 3.3 (height threshold: 2 m). Using a smaller structural
element, more terrain details are preserved, but the large buildings are still contained in the data.
However, using our hierarchic approach, these buildings can be eliminated beforehand, as described
in section 3.2.

The results of texture classification are presented in figure 3.5 (filter kernel size: 3 × 3 pixels).
Note the co-incidence of clusters of “point-like” pixels and vegetation areas such as those along the
creek passing through the scene diagonally, which is used to eliminate trees. In the first iteration,
starting from the initial building mask in figure 3.4, we only accept regions larger than 2500 m2, con-
taining less than 30% of “point-like” and at least 70% of “homogeneous” pixels, thus, large regions
consisting of mostly planar roof planes. As the industrial buildings had a high reflectivity in the in-
frared part of the spectrum, the threshold for the “pseudo-NDVI” was kept at 75%. 85 mostly large

Figure 3.3: The results of morphological opening of the DSM using structural elements of
150 × 150 m2 (left) and 25 × 25 m2 (right).
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Figure 3.4: The initial building mask correspond-
ing to the left DTM in figure 3.3. The residential
buildings on a small hill at the southern border
are merged.

Figure 3.5: The classification results of polymor-
phic feature extraction. White: “homogeneous”,
light grey: “linear”, black: “point-like”.

building structures are detected in the first iteration (left part of figure 3.6).

Altogether three iterations were carried out, using structural elements of 150 m, 75 m, and
25 m. In the final iteration, regions larger than 25 m2, containing less than 85% of “point-like” and
at least 1% of “homogeneous” pixels were accepted. These relatively loose settings of the threshold
were a consequence of the LIDAR resolution, with only few points and, thus, few “homogeneous”
pixels on the roofs of the smaller buildings. 1589 buildings were detected (right part of figure 3.6).
The parameters for classification were chosen in a way to minimise the number of missed buildings,
accepting a larger rate of false alarms. Less than 1% of the buildings were not detected. 1

Figure 3.7 shows the orthophoto of a part of the test area super-imposed by the boundary
polygons of the buildings. There remain some trees in the data, and some of the buildings are still
merged, especially if the distance between them is small. However, as almost all the buildings are
contained in the data, it might be possible to improve the results of classification by considering
additional cues derived, for instance, from the colour images.

3.5 Conclusions and Future Work

We have presented a hierarchic method for building detection from LIDAR data and multi-spectral
images, and we have shown its applicability in a test site of heterogeneous building shapes. In
our test, we put more emphasis on detecting all buildings in the test data set than on reducing the

1This number does not consider small building structures such as garden sheds and is thus not comparable to the
completeness rates presented in chapters 4 and 5.
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Figure 3.6: Buildings extracted in the first (left) and third (right) iterations.

Figure 3.7: Boundary polygons super-imposed to the orthophoto. A colour version can be found on
page 129.

false alarm rate because in the future we want this method to be the module for initial segmenta-
tion in a framework using more sophisticated methods of data fusion similar to those described in
[Lu and Trinder, 2003], replacing the rather heuristic methods used up to now. In order to further
improve the segmentation results and to split building regions erroneously merged, the results of a
segmentation of the orthophoto could be considered. Using the NDVI computed from real infrared
images rather than the “pseudo-NDVI” used in this test might also help to improve the results.
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Chapter 4

Using the Dempster-Shafer Method for
the Fusion of LIDAR Data and
Multi-spectral Images for Building
Detection

4.1 Introduction

4.1.1 Motivation and Goals

Automation in data acquisition for 3D city models is an important topic of research in photogram-
metry. In addition to aerial images, point clouds generated by airborne laser scanning, also known
as LIDAR (LIght Detection And Ranging), are being used for that purpose more frequently. This
development has been triggered by the progress in sensor technology, which has rendered possible
the acquisition of very dense point clouds using airborne laser scanners [Kraus, 2002]. Problems to
be tackled in this context comprise the generation of high quality digital terrain models (DTMs) in
urban areas and the extraction of topographic objects such as buildings or trees. These problems
are closely interrelated. For computing a DTM, the LIDAR points on the tops of buildings and trees
have to be eliminated, and thus information about the positions of such objects is required, whereas
on the other hand, a DTM is required if buildings or trees are to be detected. This means that the
first step to be carried out in order to extract meaningful semantic information from LIDAR data is
a classification of data to separate points situated on the terrain from those on buildings, trees, and
other objects. With high-resolution LIDAR data, it is not only possible to perform this classifica-
tion, but also to reconstruct objects such as buildings geometrically at a relatively high level of detail
[Haala and Brenner, 1999, Rottensteiner and Briese, 2002, Vosselman and Dijkman, 2001].

With the decreasing resolution of the LIDAR data, the classification becomes more difficult,
especially in residential areas characterised by detached houses, where the appearance of trees and
buildings in the data might be similar. In order to improve the classification results, additional data
sources can be considered. First, LIDAR systems register two echoes of the laser beam, the first and
the last pulse, corresponding to the first and the last points from where the laser beam is reflected.
Differences between the first and last pulse data indicate height steps, e.g. at building boundaries,
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power lines, and, most frequently, trees [Kraus, 2002]. Second, the intensity of the returned laser
beam can be used. LIDAR systems typically operate in the infrared part of the electromagnetic
spectrum. However, these data have the disadvantage that they are under-sampled and, thus, very
noisy [Vosselman, 2002], because the footprint size of the laser beam is typically 0.2 m, while the
average point distance is 1 m. Third, multi-spectral images can provide valuable information due to
their spectral content and because their resolution is better than the resolution of laser scanner data
[Schenk and Csatho, 2002].

It is the goal of this chapter to investigate the fusion of first and last pulse LIDAR data and
multi-spectral images for building detection in densely built-up urban areas. In the course of the
building detection process, fusion will be especially helpful for improving the classification of land
cover. Although our emphasis is on the detection of buildings, we also want to distinguish three other
classes that are relevant in the context of 3D city models and for the generation of high-quality DTMs
in urban areas: trees, grassland, and bare soil. This is accomplished by first applying a hierarchical
technique for coarse DTM generation, followed by the fusion of various cues derived from the input
data for classification. Here, data fusion is based on the theory of Dempster-Shafer [Klein, 1999].
Examples are presented for a test site in Fairfield (New South Wales) covering an area of 2 × 2 km2.

4.1.2 Background

Existing classification techniques for building detection from LIDAR and/or multi-spectral data can
be characterised by the cues that are actually used for classification and by the methods used for the
data fusion. These topics will be discussed separately.

4.1.2.1 Cues for Building Detection

From the LIDAR data, a digital surface model (DSM) can be derived, for example by sampling the
data into a regular grid [Rottensteiner and Briese, 2002, Maas, 1999]. The DSM represents the surface
from which the laser pulse is reflected, that is trees, terrain surface, buildings, etc. In flat terrain,
the elevations of the DSM can be used directly to separate elevated objects from others. In the case
of undulating terrain, the elevations reflect both the terrain heights and the height differences be-
tween points on elevated objects and the terrain. That is why the classification of LIDAR data for
the automatic detection of topographic objects usually starts with the generation of a DTM, e.g. by
morphological opening filters or rank filters [Weidner and Förstner, 1995] or by hierarchical robust
linear prediction [Briese et al., 2002]. We apply a hierarchical method of morphological filtering for
DTM generation in this study [Rottensteiner et al., 2003], which will be outlined in section 4.2.3. The
DTM is subtracted from the DSM, yielding a ’normalised’ DSM, the heights of which directly reflect
the heights of objects relative to the terrain [Weidner and Förstner, 1995].

A DSM also provides information about local surface properties via an analysis of the deriva-
tives of the DSM. The maximum slope has been used for distinguishing flat roofs from tilted roofs
[Maas, 1999]. The second derivatives are more commonly used for building detection. As they are
closely related to the local curvature of the DSM, they can be used to derive measures for surface
roughness. Assuming that roofs mostly consist of planar or at least smooth surfaces, an analysis of
surface roughness can help to separate buildings from trees. Various parameters have been used in
the past to characterise surface roughness, e.g. the output of a Laplace filter applied to the DSM
[Maas, 1999, Vögtle and Steinle, 2003], local curvature [Vögtle and Steinle, 2003], or the local vari-
ance of the surface normal vectors [Brunn and Weidner, 1997]. The model for surface roughness we
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use is based on an analysis of the local variations of the surface normal vectors using the framework
of polymorphic feature extraction [Förstner, 1994]. It will be described in section 4.2.2.

Height differences between first and last pulse data have also been used to improve the results
of building detection. They can be used as an indicator of vegetation, but large differences also
occur at the edges of buildings. Until recently, laser scanners only could deliver either first or last
pulse data, and the user of the data had to select one of these scanning modes according to his or
her priorities. Modern laser scanners can deliver both first and last pulse data in the same flight. A
detailed discussion of the effects of choosing one of the two scanning modes on the results of building
detection is given in [Steinle and Vögtle, 2000]. In addition to the local characteristics described up
to now, average surface roughness parameters or the size of building candidate regions can be evaluated
to eliminate candidate regions being either oddly shaped, too large, too small, or characterised by a
large average surface roughness [Rottensteiner and Briese, 2002, Weidner and Förstner, 1995].

Schenk and Csatho [Schenk and Csatho, 2002] put forward the idea of exploiting the comple-
mentary properties of LIDAR data and aerial imagery to first achieve a more complete surface de-
scription by a feature based fusion process and then to extract semantically meaningful information
from the aggregated data. They pointed out that LIDAR data are especially useful for the detection
of surface patches having specific geometrical properties, and for deriving other properties such as
their roughness. On the other hand, aerial images can help to provide the surface boundaries and the
locations of surface discontinuities.

Haala and Brenner [Haala and Brenner, 1999] combine a normalised DSM from LIDAR data
with the three spectral bands of a scanned colour infrared (CIR) image. As the separation of trees
from buildings is the most problematic task in this context due to the relatively low resolution of
the LIDAR data, it is important to include the near-infrared band in the classification process. As
an alternative to using all bands of multi-spectral images, the normalised difference vegetation index
(NDVI) derived from the near infrared and the red portions of the spectrum can be applied for its
potential in discriminating vegetation [Lu and Trinder, 2003].

4.1.2.2 Data Fusion Techniques for Building Detection

Building detection is usually carried out in two stages:

1. Detection of building candidate segments: An initial classification is carried out on a per-pixel
level. Each pixel is classified according to whether it is a building candidate pixel or
not. The simplest way of doing so is applying a height threshold to the normalised DSM
[Weidner and Förstner, 1995], but more sophisticated classification techniques can be applied,
too. Connected components of building pixels then become building candidate regions.

2. Evaluation of the building candidate regions: For the initial regions, average parameters de-
scribing the DSM heights, the spectral characteristics, surface roughness, and the region size
are also evaluated to separate the buildings from the trees [Rottensteiner and Briese, 2002,
Weidner and Förstner, 1995, Lu and Trinder, 2003]. Again, various techniques can be applied
to combine the available cues.

The results of an object-based classification, which is applied at the second stage above,
cannot be better than the results of the initial segmentation. For instance, if trees standing
close to buildings are merged in the initial segmentation, they can no longer be separated. In
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[Rottensteiner and Briese, 2002], we have shown how the segmentation results can be improved at
a later processing stage, but in general it would be preferable to improve the initial segmentation
results by applying better fusion techniques in the first stage of classification. Some post-processing
will also be required in that case: per-pixel classifiers do not consider the local context of a pixel or
relationships with neighbouring pixels, thus there will be isolated spurious pixels. The classification
results are especially unreliable at the building boundaries [Maas, 1999].

The simplest way to combine the different cues at each pixel is to concatenate the data from
each cue to form a multi-dimensional data vector. The resultant vector can be treated as if it were
from a single source [Lee et al., 1987]. That data vector can be used in standard procedures such
as supervised maximum likelihood (ML) classification, unsupervised classification, or rule-based
classification. As an alternative, Le Hégarat-Mascle et al. [Le Hégarat-Mascle et al., 1997] name three
more sophisticated techniques: fuzzy logic, probabilistic reasoning, and the theory of Dempster-
Shafer. In the remainder of this section we want to give an overview of how these techniques have
previously been used for building detection.

Supervised ML classification is applied to the DSM heights, slopes, and the results of a Laplace
filter by Maas [Maas, 1999]. He uses sparse training regions containing the object classes ’flat roof’,
’tilted roof’, ’vegetation’, ’flat terrain’, and ’no data’, but states that the selection of training regions
might be replaced by introducing a priori knowledge about the class centres and covariance matrices
to replace the interactive selection of training regions. However, it has already been pointed out in
[Lee et al., 1987] that this may not be suitable when the various sources cannot be described by a
common “spectral” model, especially when spectral and elevation data are combined. For instance,
neither the relative heights nor the spectral characteristics of buildings can be assumed to be normally
distributed. Buildings have different heights and spectral “colours”, so that they correspond to more
than one cluster in feature space.

Unsupervised classification based on the ISODATA algorithm is applied to the three bands of a
CIR image and a normalised DSM by Haala and Brenner [Haala and Brenner, 1999]. They stress the
importance of the elevation data for the separability of the feature classes. The interpretation of the
detected feature clusters is performed interactively. Appropriate modelling of the relevant classes to
perform that interpretation automatically seems to be difficult. Lu and Trinder [Lu and Trinder, 2003]
applied a K-means algorithm to RGB images to obtain an initial segmentation and evaluate additional
sources such as the NDVI and a DSM derived from image matching to automatically assign the
feature clusters to thematic classes. The main problem with their approach is that the DSM is not
used in the original unsupervised classification, so that shadows cause relevant building parts to be
missed entirely.

Rule-based classification is based on expert knowledge about the appearance of certain object
classes in the data that are used to define rules by which the classes can be separated. These rules
often involve thresholding operations, as in the method we will outline in section 4.2.3. Selecting
“hard” thresholds properly is a critical issue. In addition, the hierarchical structure of many rule-
based approaches, where first a subset of the cues is selected to make an initial classification and then
the other cues are used to resolve any ambiguities [Lee et al., 1987], makes it impossible to recover
from previous errors in the classification process. For this reason, we believe that algorithms evalu-
ating all cues simultaneously are preferred, and even more so if the reliability of the results can be
quantified.

Fuzzy logic can be used to model vague knowledge about class assignment in order to avoid
hard thresholds as in rule-based algorithms [Binaghi et al., 1997]. In [Vögtle and Steinle, 2003], the
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membership functions for a fuzzy logic classification using various cues derived from first and last
pulse LIDAR data are described. These membership functions had to be defined for every class in a
training phase. In a second step, these membership values were combined to obtain a final decision.
This fuzzy classification is applied to previously detected building candidate segments, rather than
on a per-pixel basis, and the method was used in a supervised context.

Probabilistic reasoning aims at assigning each pixel to the class Ci ∈ {C1, . . . , CN} maximising
the a posteriori conditional probability P (Ci|xs) of Ci given the data vector xs for a pixel or feature
s. The conditional probabilities are computed using the theorem of Bayes [Gorte, 1999] which in turn
requires the modelling of the a priori probabilities P (xs|Ci) of data vector xs under the assumption
of a class Ci and P (Ci) of class Ci. The probabilities P (xs|Ci) are often modelled by a multivariate
Gaussian distribution. Initially, the prior P (Ci) is often assumed to be equal for all classes, and then
iteratively recomputed from the relative numbers of pixels in the first iteration. As stated previously,
modelling of these a priori probabilities becomes difficult if no training samples are used, especially
if the assumption of a normal distribution of the data vectors is unrealistic, e.g. for built-up areas
[Gorte, 1999]. An example of combining various cues in a Bayesian network with the goal of detect-
ing buildings was presented in [Brunn and Weidner, 1997]. A hierarchical strategy is used, turning
the classification results of the coarser resolution into one of the cues for the classification in the next
iteration. The model of the conditional probabilities relating the classification results is heuristic,
which reduces the statistical soundness of the probabilistic approach. We also doubt that the DSM
heights of the building roofs are normally distributed, but rather expect a mixture of several normal
distributions, each corresponding to a specific building type.

Dempster-Shafer theory of evidence was introduced as an expansion of the probabilistic ap-
proach that can also handle imprecise and incomplete information as well as conflict within
the data [Klein, 1999, Lee et al., 1987, Le Hégarat-Mascle et al., 1997]. A description of the ad-
vantages of the Dempster-Shafer theory, compared to probabilistic reasoning, is given in
[Le Hégarat-Mascle et al., 1997]. An important property of that theory is its capability to handle the
union of classes. In [Le Hégarat-Mascle et al., 1997], it was applied to unsupervised classification of
optical and SAR images. In the context of building detection, the Dempster-Shafer theory has been
applied for the final classification of building candidate regions, combining cues such as the NDVI
and the average relative heights to distinguish buildings from other objects [Lu and Trinder, 2003].

Even though several authors assess the advantages of the theory of Dempster-Shafer for data
fusion in classification [Klein, 1999, Lee et al., 1987, Le Hégarat-Mascle et al., 1997], to our know-
ledge, that theory has not yet been applied to a per-pixel classification of high resolution remotely
sensed data of different origin with the goal of detecting individual buildings. In this chapter, we
will show how this can be accomplished for the fusion of LIDAR data and multi-spectral images
without using training areas or assigning thematic labels to classes of feature space interactively. The
Dempster-Shafer theory is applied in two stages of the overall process, first to detect the candidate
building regions and then to eliminate false building candidates. We will describe a heuristic model
for the distribution of the evidence provided by our cues to the classes of the classification prob-
lem, exploiting the fact that the Dempster-Shafer theory can handle the union of classes, which, in
accordance with [Le Hégarat-Mascle et al., 1997], we consider to be a good alternative to other classi-
fication techniques for handling the “mixed pixel” problem. We will also evaluate our method using
reference data, showing that our method gives satisfactory results in an area of very inhomogeneous
building shapes, and that the detectability of buildings mainly depends on the building size, given
the resolution of the LIDAR data.
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4.2 Fusing LIDAR Data and Multi-spectral Images for Building Detec-
tion

4.2.1 Overview of the Process Flow

The input to our method is given by three data sets that have to be generated from the raw data
by preprocessing. The DSM corresponding to the last pulse data (DSML) is a regular height grid in-
terpolated by linear prediction using a straight line as the covariance function, thus almost without
filtering. This is accomplished by using the program SCOP developed at Vienna University of Tech-
nology [Rottensteiner and Briese, 2002]. The first pulse data are also sampled into a regular grid, and
by computing the height differences of the first and the last pulse DSMs, a grid ∆HFL of the height
differences between the first and the last pulses is obtained. The NDV I is computed from the near in-
frared and the red bands of the multi-spectral images [Lu and Trinder, 2003]. The image data must
be geocoded so that the data are already aligned for the subsequent processes.

The work flow for building detection consists of two stages. First, a coarse DTM is generated
from the input data. This DTM is used to compute a normalised DSM, which along with param-
eters of surface roughness of the DSML, the NDV I , and the height differences ∆HFL, provides
the input for the second stage, the detection of building regions by Dempster-Shafer fusion. As the
model we use for surface roughness is an important component of our method, it will be described
in section 4.2.2.

Coarse DTM generation is based on the hierarchical application of morphological grey scale
opening using structural elements of different sizes to overcome the problems caused by large build-
ings in the data set. After morphological opening, a rule-based algorithm is used to detect large
buildings in the data. That information is used in the next iteration, when a smaller structural ele-
ment is used for morphological opening, to eliminate large buildings. DTM heights computed from
the previous iteration are substituted for the results of the morphological filter. The process is fin-
ished when the minimum size for the structural element is reached. Our method for hierarchical
DTM generation is described in more detail in section 4.2.3. Note that the classification performed
here was originally used for building detection alone [Rottensteiner et al., 2003]. As this rule-based
algorithm consists of a sequence of thresholding operations, all the available information is never
evaluated jointly. Classification errors committed in one of the thresholding operations cannot be
corrected in the subsequent stages of the algorithm. Thus, we use this algorithm only to eliminate
large buildings in DTM generation (when it is also simple to select some of the thresholds because
large buildings are usually characterised by large roof planes). The more sophisticated Dempster-
Shafer fusion technique is then used in the final stages of building detection.

The work flow for building detection based on Dempster-Shafer fusion is presented in fig-
ure 4.1. First, the normalised DSM (nDSM) and two parameters describing the roughness of the
DSML, namely the strength and the directedness of surface roughness (cf. section 4.2.2) are com-
puted. Altogether, there are five data sets that contribute to a Dempster-Shafer fusion process carried
out for each pixel of the DSML grid independently. Each pixel is assigned to one of four classes,
namely building (B), tree (T), grassland (G), and bare soil (S). In the subsequent steps, the binary im-
age of the building pixels is used. Morphological filtering helps to eliminate small areas of pixels
erroneously classified as building pixels. Then, connected components of building pixels are sought,
which results in initial building regions. As the first fusion step accounts for only a very small lo-
cal neighbourhood (for the evaluation of surface roughness), we eliminate spurious initial building
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regions in a second Dempster-Shafer fusion process which utilizes the average NDVI, the average
nDSM heights, and two additional attributes derived from the surface roughness parameters. Build-
ing detection by data fusion based on the theory of Dempster-Shafer is described in section 4.2.4.

DSML DTM

DHFLNDVI

Surface roughness

Strength Directedness nDSM

Dempster - Shafer fusion Classification results

Connected component analysis, morphological filtering

Initial building regions Dempster - Shafer fusion

Final building regions

Figure 4.1: The work flow for building detection by data fusion based on the theory of Dempster-
Shafer.

4.2.2 Surface Roughness

In this section, the model for DSM surface roughness, which is based on the framework of polymor-
phic feature extraction [Förstner, 1994, Brügelmann and Förstner, 1992], is presented. In polymorphic
feature extraction, the digital image is assumed to consist of regions of homogeneous grey level vec-
tors (“segments”), line regions, and point regions, the latter two being a result of blurring effects in
the sensor. The grey level vectors g(x, y) = [g1(x, y), . . . , gK(x, y)]T are sampled in a grid (x, y); K
represents the number of bands of the image. The grey levels gi(x, y) of band i are modelled as-
suming they are affected by additive noise ni(x, y). For digital images, the noise is assumed to be
Poisson-distributed, but the distribution is approximated by a normal distribution N(0, σ2

ni) with a
signal-dependent noise variance σ2

ni [Brügelmann and Förstner, 1992]. For our application, σ2
ni cor-

responds to the variance of height differences, which can be assumed to be Gaussian.

The first task in polymorphic feature extraction is the classification of each pixel according to
whether it is situated in a homogeneous region, a line region, or a point region. With ∆gix and
∆giy denoting the first derivatives of the grey levels of band i by x and y respectively, a matrix N is
computed:

N =
K∑
i=1

1
σ2
ni

· L ?

(
∆g2

ix ∆gix ·∆giy
∆gix ·∆giy ∆g2

iy

)
(4.1)

In equation 4.1, L is a lowpass filter by which the elements of the matrix are convolved. σ2
ni is

the variance of the smoothed grey level differences ∆gix = L ?∆gix and ∆giy = L ?∆giy, which can
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be derived from σ2
ni by error propagation [Förstner, 1994]. Using the elements of N and denoting the

eigenvalues of N by λ1 and λ2, a measure R of homogeneity or texture strength and a measure D for
texture directedness can be defined [Förstner, 1994, Brügelmann and Förstner, 1992]:

R = tr(N) =
K∑
i=1

L ? (∆g2
ix + ∆g2

iy)
σ2
ni

(4.2)

D = 1−
(
λ1 − λ2

λ1 + λ2

)2

=
4 · det(N)
tr2(N)

(4.3)

Using these two measures, the classification of each pixel is performed. Using a threshold
Rmin for texture strength, a pixel is classified as being in a homogeneous region if R ≤ Rmin. If
R > Rmin, the local neighbourhood (defined by the extents of the filter L) contains significant grey
level variations, i.e., variations of a size that can no longer be explained by noise with a variance
σ2
ni. Texture directedness is used to decide whether these variations are isotropic or not. Using a

threshold Dmin, the distribution of the directions of the gradient vectors is considered to be isotropic
if D > Dmin, and the pixel is classified as being in a point-like region. If D ≤ Dmin, the gradient
vectors are supposed to be more or less parallel, which indicates that the pixel belongs to a line
region.

The selection of the threshold Rmin is very critical. If good estimates for σ2
ni are available,

e.g. derived in the way described in [Brügelmann and Förstner, 1992], R can be assumed to fol-
low a χ2 distribution, and Rmin is selected relative to the significance level of a hypotheses test
[Förstner, 1994]. In some occasions it might be convenient to select

Rmin = j ·median(R) (4.4)

By relating Rmin to the median of R, the selection of that threshold is replaced by the selection
of a multiplication constant j. Again, this is not too critical because Rmin is adaptive to the image
content (equation 4.4). The selection of the threshold Dmin for texture directedness is less critical
because D is always between 0 and 1. Dmin can be chosen to be between 0.5 and 0.7 [Förstner, 1994].

We apply the classification scheme of polymorphic feature extraction to the first derivatives of
the DSM. Assuming the DSM to be represented by a height grid z(x, y), we obtain a digital “image”
of two bands. The grey levels of this image are the first derivatives of z(x, y) by x and y, respectively:
g(x, y) = [∂z(x, y)/∂x, ∂z(x, y)/∂y]T . Under these assumptions, the matrix N can be computed from:

N =
1
σ2
x

·L?


(
∂2z
∂x2

)2 (
∂2z
∂x2

)
·
(
∂2z
∂x∂y

)
(
∂2z
∂x2

)
·
(
∂2z
∂x∂y

) (
∂2z
∂x∂y

)2

+
1
σ2
y

·L?


(
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∂y∂x

)2 (
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·
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)
(
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·
(
∂2z
∂y∂x

) (
∂2z
∂y2

)2

 (4.5)

In equation 4.5, σ2
x and σ2

y are the variances of the smoothed matrix elements. They can be
derived from an estimate of the variance σ2

z of the DSM heights by error propagation. The “grey
levels” of the original image are the components of the surface normal vectors. The elements of N are
derived from the second derivatives of the DSM and thus related to the local curvature of the DSM.
“Homogeneous” pixels are situated in neighbourhoods of homogeneous surface normal vectors and
thus in neighbourhoods of small second derivatives (equations 4.2 and 4.5). Texture strength R can
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thus be interpreted as a measure of local co-planarity, or as the strength of local surface roughness.
“Line” pixels are situated in neighbourhoods with large, but anisotropic variations of the surface
normal vectors. They correspond to surface discontinuities and surface intersection curves. Point
pixels occur in areas with large amplitude, isotropic variations of the surface normal vectors, which
is typical for building corners and for trees. In the subsequent sections, we will see how texture
strength and texture directedness, as well as the results of texture classification are used as cues for
building detection.

In our implementation, we choose L to be a Binomial filter kernel of size n × n and select
Rmin according to equation 4.4. Thus, there are three control parameters: the size n of the filter
kernel, describing the extent of the neighbourhood for which texture classification is carried out, the
multiplication constant j from equation 4.4, andDmin. We choose n in accordance with the minimum
linear extent of a roof plane we expect to be detectable, given the resolution of the DSM (e.g., n = 3).
Dmin is chosen to be 0.7. The most critical choice is the value of j. Typically, we select j to be between
1.0 and 2.0.

4.2.3 Hierarchical DTM Generation

In this section, the process of DTM generation is discussed in detail. For building detection, the
DTM should be a relatively good approximation of the terrain, so that the nDSM reflects the actual
building heights. If the DTM is to be created by morphological filtering, the size of the structural
element must reflect the size of the largest building available in the data set. That is, large structural
elements are required in the presence of large buildings. However, this means that terrain structures
smaller than the structural element, as well as large buildings, will be eliminated by morphological
filtering. Wherever this occurs, the heights of the nDSM will be systematically distorted, because by
“cutting off” the tops of small hills the heights of the nDSM may become too large. This will cause
errors in classification algorithms when the nDSM is taken as an input. As morphological filtering
using a structural element smaller than the largest buildings in the data set will not filter out these
buildings, they must be detected and then eliminated from the DTM in the hierarchical procedure
outlined earlier in section 4.2.1. In each of the iterations, initial candidate regions for large buildings
are detected by thresholding operations, and then surface roughness is evaluated to eliminate regions
corresponding to trees.

4.2.3.1 Detecting Candidate Regions for Large Buildings

The morphological filtering provides a coarse approximation for the DTM. In all iterations except the
first one, the DTM heights generated in the previous iteration are substituted for the results of mor-
phological filtering in areas where buildings have been detected. This substitution ensures that large
buildings that are preserved by morphological filtering are eliminated in the current iteration. Hence,
an initial building mask is created by thresholding the heights of the nDSM. This initial building
mask still contains singular pixels with large nDSM heights, areas covered by vegetation, and terrain
structures smaller than the structural element for morphological filtering. Pixels having an NDV I
greater than a certain threshold or a height difference ∆HFL greater than an appropriate threshold
are considered to be covered by vegetation and thus erased from the building mask. Also, a binary
morphological opening filter using a small structural element is applied to the initial building mask
to remove oddly shaped objects and to separate building regions just bridged by a thin line of pixels.
The initial building regions are obtained by a connected component analysis of the resulting image.
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Small regions are discarded, because at this stage, we only want to detect large buildings in order to
eliminate them from the DTM.

4.2.3.2 Classification of Building Candidate Regions

Some of the initial building regions correspond to groups of trees or to small terrain structures.
These regions can be eliminated by evaluating a surface roughness criterion derived by an analy-
sis of the second derivatives of the DSML, using the method described in section 4.2.2. The numbers
of “homogeneous” and “point-like” pixels are counted in each initial building region. Buildings
are characterised by a large percentage of “homogeneous” and by a small percentage of “point-
like” pixels. By comparing these percentages to thresholds, non-building regions can be elimi-
nated. The surface roughness criterion performs well for large buildings and with dense LIDAR data
[Rottensteiner and Briese, 2002]. However, if the point distance of the LIDAR data is larger, e.g. 1 m,
only a few LIDAR points are situated on small buildings, so that the percentage of “homogeneous”
pixels is reduced, while the percentage of “point-like” pixels is increased, causing the detection of
small buildings to be more difficult.

4.2.4 Building Detection Based on Dempster-Shafer Fusion

The Dempster-Shafer theory of evidence is frequently applied for the fusion of data from multiple
sensors. Unlike Bayesian probabilistic reasoning, it offers tools to represent partial knowledge about
a sensor’s contribution to the classification process. We provide an overview on that theory based on
[Klein, 1999, Lee et al., 1987, Le Hégarat-Mascle et al., 1997] in section 4.2.4.1. In section 4.2.4.2, we
present some general considerations with respect to the definition of the probability masses. Then,
we describe the application of the Dempster-Shafer theory in building detection in sections 4.2.4.3
and 4.2.4.4. Note that in section 4.2.4.1, we use the term “sensor” in the way it is done in the cited
literature, whereas in the other sections, we rather use the term “cue”, because some of the cues we
use are derived from one sensor only.

4.2.4.1 Theory of Dempster-Shafer Fusion

Let us assume a classification problem where the input data are to be classified into n mutually
exclusive classes. The set θ of these classes is called the frame of discernment. The power set of θ is
denoted by 2θ. It contains both the classes and all their possible unions. In the theory of Dempster and
Shafer, a probability mass m(A) is assigned to every class A ∈ 2θ by a sensor (a cue for classification)
such that 0 ≤ m(A) ≤ 1, m(∅) = 0, and

∑
A∈2θ m(A) = 1, with ∅ denoting the empty set.

Imprecision of knowledge can be handled by assigning a non-zero probability mass to the
union of two or more classes. Two parameters, support Sup(A) and plausibility Pls(A), can be
defined for all A ∈ 2θ:

Sup(A) =
∑
BS⊆A

m(BS) (4.6)

Pls(A) =
∑

BPL∩A6=∅
m(BPL) = 1− Sup(A) (4.7)
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In equation 4.6, the sum is taken over all classes BS ∈ 2θ with BS ⊆ A. The sum in equation 4.7
is taken over all BPL ∈ 2θ with BPL ∩ A 6= ∅. The support of a class is the sum of all masses directly
assigned to that class by a data source, whereas the plausibility sums all masses not assigned to
the complement of a class. An uncertainty interval [Sup(A), P ls(A)] with Sup(A) ≤ Pls(A) can be
defined; its length is a measure of the imprecision of knowledge about the uncertainty of class A
[Le Hégarat-Mascle et al., 1997]. A is the complementary hypothesis of A: A ∪ A = θ and A ∩ A = ∅.
Its support Sup(A) represents the degree to which the evidence contradicts a proposition. It is called
dubiety.

If p data sources are available, probability masses mi(Bj) have to be defined for each data
source i with 1 ≤ i ≤ p and for all classes Bj ∈ 2θ. The Dempster-Shafer theory allows the combina-
tion of these probability masses from several data sources to compute a combined probability mass
for each class A ∈ 2θ:

m(A) =

∑
B1∩B2...∩Bp=A

(∏
1≤i≤pmi(Bj)

)
1−

∑
B1∩B2...∩Bp=∅

(∏
1≤i≤pmi(Bj)

) (4.8)

The sum in the denominator of equation 4.8 is a measure of the conflict in the evidence. As soon
as the combined probability masses m(A) have been derived from the original ones, Sup(A), Pls(A),
and Sup(A) can be computed. Finally, a decision rule must be defined in order to determine the
accepted simple hypothesis Ca ∈ θ. There are several ways of defining such a decision rule: Ca can
be chosen to be the simple hypothesis (1) of maximum support, (2) of maximum plausibility, or (3)
of maximum support without overlapping of uncertainty intervals [Le Hégarat-Mascle et al., 1997].
We use the rule of maximum support in our application.

4.2.4.2 Definition of the Probability Masses

The definition of the probability masses is the distinguishing feature of any application of
the Dempster-Shafer theory. There are different strategies on how they can be defined. In
[Lee et al., 1987], non-zero probability masses derived from probabilities from a previous classifi-
cation are assigned to the simple hypotheses, and the only compound class receiving a non-zero
probability mass is θ, which is used to model the imprecision of the initial classifications. In
[Le Hégarat-Mascle et al., 1997] it is argued that such a definition is appropriate in cases where the in-
formation provided by the different sources is mainly redundant. The authors propose two strategies
for assigning the probability masses in cases where the information from the different sources is com-
plementary, which is particularly useful if two classes Ci and Cj cannot be distinguished by a certain
sensor. In this case, a non-zero probability mass should be assigned to Ci ∪Cj . Thus, m(Ci ∪Cj) 6= 0.
Ci and Cj can either be assigned a zero probability mass, thus m(Ci) = m(Cj) = 0, or the same mass
asCi∪Cj , thusm(Ci∪Cj) = m(Ci) = m(Cj) 6= 0. The first assignment assumes total ignorance about
the membership of a pixel to either Ci or Cj . In [Le Hégarat-Mascle et al., 1997], the second strategy
is preferred for practical reasons: the paper deals with unsupervised classification, and applying the
first strategy resulted in too many clusters in feature space.

We prefer the first strategy. Unlike the authors of [Le Hégarat-Mascle et al., 1997], we do know
the thematic classes we want to distinguish from the beginning, and their number is small. As we
shall see in the subsequent sections, the cues (sensors) we use can distinguish two complementary
subsets B1 ∈ 2θ and B2 ∈ 2θ, with B1 ∩ B2 = ∅ and B1 ∪ B2 = θ. Both B1 and B2 consist of simple
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classes Cgh ∈ θ with B1 = {C11 . . . Cm1} and B2 = {C12 . . . Ck2} , m and k being the number of
simple classes in B1 and B2, respectively. Of course, B1 and B2 can be different for different cues;
otherwise, the information provided by the sensors would not be complementary. If neither B1 nor
B2 consists of one simple class only, our ignorance about the simple classes Cgh is complete, and
we can see no reason why we should assign a non-zero probability mass to any of them. Non-zero
probability masses are thus only assigned toB1 andB2. Further, asB1 andB2 are mutually exclusive,
m(B2) = 1 − m(B1) holds true. As a consequence, the problem of defining probability masses is
reduced to defining a probability mass function Pi(x) for B1 for each sensor i with mi(B1) = Pi(x),
where x is the output of sensor i. Pi(x) can be interpreted as the probability of a certain pixel or
feature to belong to class B1 given that the output of sensor i equals x. It can also be interpreted as
the result of an initial classification using only sensor i, and distinguishing only classes B1 and B2.
In the following sections, we shall describe how the probability mass functions Pi(x) are defined.

4.2.4.3 Initial Land Cover Classification

In this process, we want to achieve a per-pixel classification of the input data into one of four classes:
Buildings (B), trees (T ), grassland (G), and bare soil (S). Five cues derived from the original input
data are used for this purpose. None of the five cues could be used individually to distinguish sharply
between the four classesB, T , G, and S. They are considered to be five data sources in the Dempster-
Shafer fusion process. Table 4.1 shows our definition of the initial probability masses according to the
guidelines developed in section 4.2.4.2 and the way they propagate to the final probability masses:

• The height differences ∆H between the DSML and the DTM can be used to distinguish el-
evated objects from the ground. In our classification scheme, the trees and the buildings are
elevated objects, whereas the other classes represent the ground. We assign a probability mass
P∆H = P∆H(∆H) to the combined class B ∪ T , and 1 − P∆H to G ∪ S. P∆H is chosen to be an
increasing function of ∆H .

• The strength R of surface roughness grows with the second derivatives of the DSM (cf. equa-
tions 4.2 and 4.5), thus with changes of the surface normal vectors. Large variations of the
surface normal vectors are typical for trees, the only object class in our classification scheme
not having a smooth surface, so that we use R to distinguish trees from other object classes. We
assign a probability mass PR = PR(R) to class T , and 1−PR to B ∪G∪S. By that assignment,
we neglect the fact thatR can also be very large at the building boundaries and at the step edges
of the terrain. PR is chosen to be an increasing function of R.

• The directedness D of surface roughness depends on the local variations of the directions of
the surface normal vectors. With trees, surface normal vectors usually do not change in an
isotropic way. That is why D is also an indicator for trees, but only if R is above a certain
threshold (because otherwise, D might be dominated by the noise in a planar area). We assign
a probability mass PD = PD(D,R) to class T , and 1 − PD to B ∪ G ∪ S. PD is chosen to be an
increasing function of D if R is greater than a certain threshold.

• The height differences ∆HFL between the first and the last pulse DSMs are used in a similar
way as the strength R of surface roughness. We neglect the large values of ∆HFL at building
boundaries and at power lines. We assign a probability mass PFL = PFL(∆HFL) to class T ,
and 1− PFL to B ∪G ∪ S. PFL is chosen to be an increasing function of ∆HFL.



4.2. FUSING LIDAR DATA AND MULTI-SPECTRAL IMAGES FOR BUILDING DETECTION 45

• The NDV I is an indicator for vegetation, thus for classes T and G. A probability mass PN =
PN (NDV I) is assigned to the combined class T ∪ G, and 1 − PN to B ∪ S. PN is chosen to be
an increasing function of the NDV I .

For modelling the probability masses Pi(x) for these five cues, we use a heuristic ap-
proach that shares some similarities to the concept of membership functions in fuzzy logic
[Vögtle and Steinle, 2003]. We have described previously why each of the cues separates two subsets
of θ in our classification scheme. For input parameters x smaller than a threshold x1, we assume the
assignment of a pixel to class B1 (cf. section 4.2.4.2) to be very unlikely, which is modelled by a small
probability mass P1. For input parameters above a second threshold x2 with x1 < x2, we assume the
assignment of a pixel to class B1 to be almost certain, which is modelled by a rather large probability
mass P2, with 0 ≤ P1 < P2 ≤ 1. For instance, if ∆H is smaller than 1.5 m, it is very unlikely that there
is a building or a tree; if it is greater than 3 m, it is very unlikely that there is grassland or bare soil.
Between x1 and x2, the probability mass function should be defined in a way that there are no step
edges (which would correspond to applying “hard” thresholds), but rather a smooth transition be-
tween the two probability levels P1 and P2. This could be a straight line, but we use a cubic parabola
with horizontal tangents (thus being differentiable) at (x = x1) and at (x = x2) (cf. figure 4.2). Thus,
the probability masses P∆H , PR, PFL, and PN are computed according to equation 4.9:

Class ∆H R D ∆HFL NDV I Combined probability mass

B 0 0 0 0 0 P∆H ·(1−PR)·(1−PD)·(1−PF L)·(1−PN )
1−C

T 0 PR PD PFL 0 P∆H ·PR·PD·PF L·PN

1−C

G 0 0 0 0 0 PN ·(1−P∆H)·(1−PR)·(1−PD)·(1−PF L)
1−C

S 0 0 0 0 0 (1−P∆H)·(1−PR)·(1−PD)·(1−PF L)·(1−PN )
1−C

B ∪ T P∆H 0 0 0 0 0
B ∪G 0 0 0 0 0 0
B ∪ S 0 0 0 0 1− PN 0
T ∪G 0 0 0 0 PN 0
T ∪ S 0 0 0 0 0 0
G ∪ S 1− P∆H 0 0 0 0 0
B ∪ T ∪G 0 0 0 0 0 0
B ∪ T ∪ S 0 0 0 0 0 0
B ∪G ∪ S 0 1− PR 1− PD 1− PFL 0 0
T ∪G ∪ S 0 0 0 0 0 0
θ 0 0 0 0 0 0

Table 4.1: The probability masses for the initial classification. Classes: buildings (B), trees (T ), grass-
land (G), and bare soil (S). ∆H : initial probability masses for the height differences in the normalised
DSML. R: initial probability masses for the strength of surface roughness. D: initial probability
masses for the directedness of surface roughness. ∆HFL: initial probability masses for the height dif-
ferences between first and last pulses. NDV I : initial probability masses for the NDV I . The conflict
C is the sum in the denominator of equation 4.8:
C = PR · (1− P∆H · PD) + PD · (1− PR) + P∆H · PR · PD · (1− PN )+

+P∆H · PN · (1− PR) · (1− PD) + P∆H · PFL · (1− PR) · (1− PD) · (1− PN )+
+PFL · PN · (1− P∆H) · (1− PR) · (1− PD) + PFL · (1− P∆H) · (1− PR) · (1− PD) · (1− PN )+
+P∆H · PR · PD · PN · (1− PFL)
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Pi(x) =


P1 ∀x|x ≤ x1

P1 + (P2 − P1) ·
[
3 ·
(
x−x1
x2−x1

)2
− 2 ·

(
x−x1
x2−x1

)3
]
∀x|(x > x1) ∧ (x < x2)

P2 ∀x|x ≥ x2

(4.9)

x

Pi(x)

x1
x2

P1

P2

Figure 4.2: The probability mass function.

A slightly different definition has to be used for the probability mass function PD because PD
is only significant if R is significant also. Thus, if R is below a threshold Rmin, PD cannot contribute
to the classification, which is modelled by assigning a probability mass of 0.5 to both T andB∪G∪S.
Otherwise, the probability mass is also modelled by equation 4.9. We choose Rmin = 5 ·median(R).
By the latter selection, the threshold is made adaptive to the average surface roughness of a scene
(cf. section 4.2.2).

We use P1 = 5% and P2 = 95%. Note that P1 6= 0% and P2 6= 100%. This is the main
difference between our functional model and the membership functions for fuzzy logic described
in [Vögtle and Steinle, 2003]. We never assume the information from a sensor to be 100% certain.
Conflicts in sensor information are expected both because the number of classes in our classifica-
tion scheme is much smaller than the number of object classes that are actually observable in the
data and the sensor data exhibit random variation. Actually, unlike other classification techniques,
the Dempster-Shafer theory gives a direct measure of that conflict. If two sensors contradict each
other and if the information of both sensors are considered to be 100% certain, that conflict cannot be
resolved: the conflict would be equal to 1.0, and equation 4.8 could not be evaluated. We do not con-
sider this to be a restriction of the Dempster-Shafer theory, but rather consider it to be an advantage
that such a situation can be clearly detected.

The values we use for (x1, x2) are listed in table 4.2. As with the value for PD, they were deter-
mined empirically, but are assumed to be generally applicable. The values (x1, x2) for PR are linked
to the median ofR and thus adaptive to the average slope variations in the data. The combined prob-
abilities are evaluated for each pixel independently, and the pixel is assigned to the class of maximum
support. In comparison to the rule-based algorithm described in [Rottensteiner et al., 2003] which is
used for hierarchical DTM generation, there are several improvements.

• All cues are evaluated simultaneously.

• No sharp thresholds are required, and the probability mass function (equation 4.9) has a smooth
transition between the two levels P1 and P2.

• We do not eliminate parts of the data during the process as not belonging to the class “build-
ing”, but we achieve an overall classification of land cover with respect to our four classes.
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∆H[m] R D ∆HFL[m] NDV I[%]
x1 1.5 2 ·median(R) 0.1 1.5 30
x2 3.0 15 ·median(R) 0.9 3.0 65

Table 4.2: The values for (x1, x2) for P∆H , PR, PD, PFL, and PN .

4.2.4.4 Final Classification of Building Regions

After the initial classification, we obtain a binary building mask of all pixels classified as “build-
ing”. As all pixels were classified independently from each other, only a small local neighbourhood
contributed to their classification (via R and D), which causes classification errors:

• There are singular “building” pixels inside larger areas of other classes, or “tree” pixels inside
building roofs.

• R and D give relatively large values for small detached houses if the resolution of the LIDAR
data is not better than or equal to about 0.5 m. This might result in classification errors that
cannot be corrected by a local analysis.

To overcome these problems, isolated building pixels are eliminated by binary morphologi-
cal opening, and a building label image is created by a connected component analysis. After that,
the Dempster-Shafer theory is applied for a final classification of the original building regions thus
detected, this time using four cues representing average values for each building region (table 4.3):

• The average height differences ∆Ha between the DSML and the DTM are used in a similar
way as ∆H in the original classification by assigning a probability mass P∆Ha = P∆Ha(∆Ha)
to B ∪ T , and (1− P∆Ha) to G ∪ S.

• The percentage H of pixels classified as “homogeneous” in polymorphic feature extraction
(cf. section 4.2.2) is an indicator for objects consisting of planar surface patches. Thus, we assign
a probability mass PH = PH(H) to class B ∪G ∪ S, and (1− PH) to class T .

• The percentage P of pixels classified as “point-like” in polymorphic feature extraction is an
indicator for trees. We assign a probability mass PP = PP (P ) to class T , and (1 − PP ) to
B ∪G ∪ S.

• The average NDV Ia is used in a similar way as in the original classification by assigning a
probability mass PNa = PNa(NDV Ia) to T ∪G, and (1− PNa) to B ∪ S.

The height differences between first and last pulses are no longer used. For the probability
masses P∆Ha, PH , PP , and PNa we again use the function described by equation 4.9, with P1 = 5%
and P2 = 95%. The values for (x1, x2) are presented in table 4.4. These values are designed to avoid
eliminating buildings erroneously, but to accept a larger false-alarm rate. The combined probability
masses are evaluated for each initial building region, and if such a region is assigned to a class other
than “building”, it is eliminated. Finally, the regions classified as buildings are grown by a few pixels
by morphological filtering to correct for building boundaries being erroneously classified as trees,
caused by the large values for R (cf. section 4.2.4.3). The advantage of this method compared to the
one described in [Rottensteiner et al., 2003] is that it considers all cues simultaneously and avoids
sharp thresholds.
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Class ∆Ha H P NDV Ia Combined probability mass

B 0 0 0 0 P∆Ha·PH ·(1−PP )·(1−PNa)
1−C

T 0 1− PH PP 0 P∆Ha·(1−PH)·PP ·PNa
1−C

G 0 0 0 0 PNa·(1−P∆Ha)·PH)·(1−PP )
1−C

S 0 0 0 0 (1−P∆Ha)·PH ·(1−PP )·(1−PNa)
1−C

B ∪ T P∆Ha 0 0 0 0
B ∪G 0 0 0 0 0
B ∪ S 0 0 0 1− PNa 0
T ∪G 0 0 0 PNa 0
T ∪ S 0 0 0 0 0
G ∪ S 1− P∆Ha 0 0 0 0
B ∪ T ∪G 0 0 0 0 0
B ∪ T ∪ S 0 0 0 0 0
B ∪G ∪ S 0 PH 1− PP 0 0
T ∪G ∪ S 0 0 0 0 0
θ 0 0 0 0 0

Table 4.3: The probability masses for the final classification. Classes: buildings (B), trees (T ), grass-
land (G), and bare soil (S). ∆Ha: initial probability masses for the average height of the building.
H : initial probability masses for the the percentage of “homogeneous” pixels. P : initial probabil-
ity masses for the percentage of “point” pixels. NDV Ia: initial probability masses for the average
NDV I . The conflict C is the sum in the denominator of equation 4.8:
C = (1−Ph) · (1−P∆Ha ·PP ) +PP ·PH +P∆Ha ·PP · (1−PH) · (1−PNa) +P∆Ha ·PH ·PNa · (1−PP )

∆Ha[m] H[%] P [%] NDV Ia[%]
x1 1.5 0 30 30
x2 3.0 60 75 65

Table 4.4: The values for (x1, x2) for P∆Ha, PH , PP , and PNa.

4.3 Experiments

4.3.1 Description of the Data Set

The test data set was captured over Fairfield (NSW) using an Optech ALTM 3025 laser scanner. It
covers an area of 2 × 2 km2. Both first and last pulses and intensities were recorded with an aver-
age point distance of about 1.2 m. We derived DSM grids at a resolution of 1 m from these data.
A true colour digital orthophoto with a resolution of 0.15 m was also available for the area. The
orthophoto had been created using a DTM, so that the roofs and the tree-tops were displaced with
respect to the LIDAR data. Thus, data alignment was not perfect. Unfortunately, the digital or-
thophoto did not contain an infrared band. We circumvented this problem by resampling both the
digital orthophoto and the (infrared) LIDAR intensity data to a resolution of 1 m and by computing a
“pseudo-NDVI-image” from the LIDAR intensities and the red band of the digital orthophoto. Apart
from problems with data alignment caused by the displaced tree canopies in the orthophoto, there
were also problems with shadows in the orthophoto, so the pseudo-NDVI-image did not provide as
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much information as expected.

A reference data set was created by digitising building polygons interactively in the digital
orthophoto. We chose to digitize all structures recognisable as buildings independent of their size.
The reference data include garden sheds, garages, etc., that are sometimes smaller than 10 m2 in
area. Such small structures cannot be expected to be detected in the LIDAR data, given their reso-

Figure 4.3: The Fairfield data set. First row, left: the DSM from last pulse data (black: low areas,
white: high areas). First row, right: the pseudo-NDVI image. Second row: a label image derived
from the reference data set. Total area: 2000 × 2000 m2
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lution. Neighbouring buildings that were joined but are obviously separate entities were digitized
as separate polygons. Thus, altogether 2385 polygons were digitized. As the aerial image used for
producing the orthophoto and the LIDAR data were captured at different epochs, there were contra-
dictions in the two data sets as some buildings were either constructed or demolished between them.
Altogether 49 polygons were detected in only one data set. Of these, all except one (an industrial
building) were larger detached houses. Smaller entities could not be checked in the LIDAR data. The
DSM and the pseudo-NDVI image as well as a label image created from the reference data set are
shown in figure 4.3.

4.3.2 Method of Evaluation

In the evaluation process, we compared two data sets: the “automatic data set” consisting of building
regions detected automatically, and the reference data set. The comparison of two spatial data sets is
not a straightforward task if their topologies are different [Ragia and Winter, 2000]. This is the case
here because the automatic building detection process cannot separate buildings that are actually
joined in object space or that are so close to each other that there are no LIDAR points between
them. We have to expect buildings to be merged in the detection process. Thus, a comparison of
the boundary polygons proposed in [Ragia and Winter, 2000] is not appropriate. Alternatively, we
compare two label images: the label image that is the output of automatic building detection, hence
called the “automatic label image”, and a label image created from the polygons of the reference
data set with the same spatial resolution as the automatic label image, hence called the “reference
label image”. Before the actual evaluation process, the areas covered by the polygons detected to be
available in one data set only are erased in both of these label images. For an evaluation of automatic
feature extraction using a reference data set, two numbers of interest are the completeness and the
correctness of the results [Heipke et al., 1997]:

Completeness =
TP

TP + FN
(4.10)

Correctness =
TP

TP + FP
(4.11)

In equations 4.10 and 4.11, TP denotes the number true positives, i.e., the number of entities
found to be available in both data sets. FN is the number of false negatives, i.e., the number of entities
in the reference data set that were not detected automatically, and FP is the number of false positives,
i.e., the number of entities that were detected, but do not correspond to an entity in the reference data
set. We are interested in determining completeness and correctness for two types of entities. First,
we want to derive them on a per-pixel level. In this context, TP is the number of pixels classified as
“building” in both label images, FN is the number of building pixels in the reference label image not
classified as “building” in the automatic label image, and FP is the number of building pixels in the
automatic label image not classified as “building” in the reference label image. The numbers thus
derived for completeness and correctness give a balanced estimate of the area that has been correctly
classified as “building”. Second, we are interested in numbers on a per-building level, showing how
many buildings could be detected and how many of the buildings detected automatically did actually
correspond to buildings. In this case, TP , FN , and FP cannot be determined easily because of the
problem of multiple and partial overlaps of building regions in the automatic and in the reference
data sets.
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We denote the sets of regions from the automatic and the reference label images by La and
Lr, respectively. For each co-occurrence of two labels la ∈ La and lr ∈ Lr, we compute the overlap
ratios par = na∩r/na and pra = na∩r/nr, where na∩r is the number of common pixels assigned to the
region la in the automatic label image and to lr in the reference label image, na is the total number
of pixels assigned to the region la in the automatic label image, and nr is the total number of pixels
assigned to lr in the reference label image. Obviously, if the two data sets were characterised by the
same topology, both par and pra would be close to 100% for all building regions, and there would be
exactly one region la ∈ La corresponding to each lr ∈ Lr and vice versa. As this is not the case, we
have to evaluate the overlap percentages par and pra further, to match corresponding regions in the
two data sets.

Initially, all tuples (la, lr) with na∩r > 0 are considered to be possible correspondences. Our
analysis starts by eliminating spurious correspondences. We define a function overlap(li, lj) classify-
ing the overlap between regions li ∈ Li and lj ∈ Lj with i ∈ {r, a}, j ∈ {r, a}, and i 6= j:

overlap(li, lj)


strong ∀i, j|pij > 80%
partial ∀i, j|80% ≤ pij < 50%
weak ∀i, j|50% ≤ pij < 10%
none ∀i, j|pij ≤ 10%

(4.12)

The function defined in equation 4.12 is not necessarily symmetric, thus we cannot expect
overlap(la, lr) to be identical to overlap(lr, la). We consider a correspondence between two regions
la ∈ La and lr ∈ Lr to be spurious if both overlap(la, lr) and overlap(lr, la) are either weak or none.
These correspondences are no longer considered. For each region la ∈ La we obtain a subsetLar ⊂ Lr
containing all regions from Lr that correspond to la:

Lar = {lr ∈ Lr | [overlap(lr, la) ∈ {strong, partial}] ∨ [overlap(la, lr) ∈ {strong, partial}]} (4.13)

In the same way, for each region lr ∈ Lr we obtain the subset Lra ⊂ La of corresponding
regions from La:

Lra = {la ∈ La | [overlap(lr, la) ∈ {strong, partial}] ∨ [overlap(la, lr) ∈ {strong, partial}]} (4.14)

Lra can be interpreted as the set of regions of the automatic data set into which a region lr of
the reference data set is split. Lar is the set of regions of the reference data set which are merged into
a region la of the automatic data set. Having found corresponding regions, the overall coverage di
for each region li ∈ Li can be computed with i ∈ {r, a}, j ∈ {r, a}, i 6= j, and na∩r = nr∩a:

di =

∑
lj∈Lij ni∩j

ni
(4.15)

Thus, di is the ratio between the sum of the number of all pixels overlapping with one of
the corresponding regions of the other data set and the total number of pixels of region li. For a
region lr ∈ Lr, dr is the percentage of the area of lr that is substantially covered by regions detected
automatically. We consider a region lr to be completely detected if dr > 80%, partly detected if 80% ≤
dr < 50%, hardly detected if 50% ≤ dr < 10%, and not detected if dr ≤ 10%. For a region la ∈ La, da
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is the percentage of the area of la that actually corresponds to regions of the reference data set. We
consider a region la to be completely correct if da > 80%, partly correct if 80% ≤ da < 50%, hardly correct
if 50% ≤ da < 10%, and not correct if da ≤ 10%. This gives us the tools for computing the numbers of
TP , FN , and FP in equations 4.10 and 4.11:

• In equation 4.10, TP is the number of building regions in the reference data set that are either
completely detected or partly detected.

• In equation 4.11, TP is the number of building regions in the automatic data set that are either
completely correct or partly correct.

• FN is the number of building regions in the reference data set that are neither completely detected
nor partly detected.

• FP is the number of building regions in the automatic data set that are neither completely correct
nor partly correct.

Note that the different definitions of TP for computing completeness and correctness is a
consequence of the fact that we consider regions that are either split or merged to be correct if
the overall coverage is sufficient. We assume a region with coverage larger than 80% to be com-
pletely detected/correct because we have to consider errors at the building boundaries, which
might comprise a considerable percentage of smaller buildings, and we believe that such errors
can be corrected in a later stage of processing if the delineations of the roof planes are searched
[Rottensteiner and Briese, 2002].

4.3.3 Results

Figure 4.4 shows the normalised DSM created by three iterations of morphological opening, using
structural elements of 150, 75, and 25 m. In the second iteration, buildings larger than 225 m2, con-
taining at least 45% of homogeneous and less than 20% of point-like pixels are detected. They are

Figure 4.4: The normalised DSM used in Dempster-Shafer classification (black: low areas, white:
high areas).
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Figure 4.5: The probability masses for the initial Dempster-Shafer classification. First row: P∆H (left),
PR (right); second row: PD (left) and PFL (right); third row: PN .
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eliminated in the third iteration of DTM generation, so that they are preserved in the nDSM in fig-
ure 4.4.

Figure 4.5 depicts the probability masses for the initial Dempster-Shafer classification. Note
that P∆H is large both for buildings and trees, whereas PR, PD and PFL give large values for trees.
PR also highlights the building boundaries. The areas in a medium grey in PD are those where PD
was set to 0.5 because the texture was not considered to be significant. In these areas, PD did not
contribute to the classification. The dominant linear structures in PFL are powerlines, which are not
considered by our approach. PN distinguishes bare soil and, less clearly, buildings from vegetation.
Note that the industrial buildings have a relatively large pseudo-NDVI. The results of Dempster-
Shafer classification are presented in figure 4.6.

Figure 4.6: The results of the initial Dempster-Shafer classification. White: grass-land (G), light grey:
bare soil (S), dark grey: trees (T ), black: buildings (B).
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After morphological opening of the binary image of the building pixels from figure 4.6 and
after eliminating building candidate regions smaller than 10 m2, the second Dempster-Shafer clas-
sification is carried out for altogether 2291 building candidate regions detected in the data. 344 of
these regions are found to belong to a class other than “building”, so that we finally obtain 1947
building regions. Figure 4.7 shows the final building label image after growing the building regions
by morphological closing to compensate for the incorrect classification of the building boundaries.
The computation time for achieving the result in figure 4.7 was about 5 minutes on a Pentium 4 PC
(2.66 GHz, 512 MB RAM).

Figure 4.7: The final building label image after the second Dempster-Shafer classification and after
growing the building regions by morphological closing.
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4.3.4 Evaluation of the Results and Discussion

By evaluating the results of the initial classification using the Dempster-Shafer technique in figure 4.6,
it is clear that the class “bare soil” mainly corresponds to streets and parking lots. Most of the trees
are situated in the valley of the river crossing the scene diagonally, along the streets in the residential
area in the south-western part of the scene, and in the backyards of the houses. Step edges at the
building boundaries are often classified as trees. Given the resolution of the LIDAR data, it was not
easy to separate trees from buildings in the residential areas, which is also the reason for the rugged
appearance of the building boundaries in these regions. A few of those residential buildings were
erroneously classified as trees, especially if the roof consisted of many small faces. Further problems
occurred with bridges because morphological filtering results in a DTM corresponding to the terrain
below the bridge. This results in large height differences ∆H that indicate the presence of a building
or a tree, whereas the surface roughness of the street and the NDV I indicate an area not covered by
trees or vegetation, so that the overall classification would assign such areas to the class “building”.
There are also isolated spots on top of the large industrial buildings that are not classified correctly,
which is mostly caused by chimneys or other objects yielding a large local variation of the surface
normal vectors. In the parking lots, there are errors where cars are parked. Of course, cars were
not considered in our classification scheme. Some dominant power lines are still partly preserved
in the data, classified as “bare soil” inside grassland areas, which is caused by the low reflectance of
the power lines in the wavelength of the laser scanner. In general, shadows in the colour orthophoto
were an error source, because no shadows appeared in the LIDAR intensity data, so that the “pseudo-
NDVI-image” gave systematically wrong NDV I values in these areas. Finally, there are also some
incorrectly classified isolated pixels inside larger areas of another class, because context was not
considered in the first classification process.

The parameter settings for the second classification seem to be more critical and more depen-
dent on the data than those for the first, because with increasing resolution of the LIDAR data, the
percentage of “homogeneous” pixels in roof planes will also increase, whereas the percentage of
“point” pixels will become smaller. This implies that the second classification stage will be more
helpful for the discrimination of buildings and trees with LIDAR data of a higher resolution than it
is in our test project. This claim is confirmed in [Rottensteiner and Briese, 2002]. Figure 4.8 shows
the results of the evaluation of the automatic building extraction process. On a per-pixel basis, the
completeness was 94%, thus 94% of the building pixels were actually detected, which is very satisfac-
tory. The missed buildings (black areas in figure 4.8) were small residential buildings, some having
roofs with high reflectance in the wavelength of the laser scanner (thus, a high pseudo-NDVI), others
having roofs consisting of many small planar faces, or they are too small to be detected given the
resolution of the LIDAR data. For a few large industrial buildings, some building parts could not
be detected due to errors in DTM generation. However all large buildings except one (at the upper
margin) were substantially detected. The correctness on a per-pixel basis was 85%, thus 85% of the
pixels classified as building pixels do actually correspond to a building. This is not quite as good as
the completeness. Figure 4.8 shows that this number is affected by errors at the building boundaries.
After enlarging the buildings using the approach described in section 4.2.4.4, the buildings seem to
be slightly too large. There are also a few larger false positives at bridges, at small terrain structures
not covered by vegetation, in areas with overseas containers, and in trailer parks.

The results of the evaluation on a per-building basis are presented in figure 4.9. The upper
diagram shows both completeness and correctness depending on the area covered by the buildings
using a class width of 10 m2, i.e., it shows completeness and correctness computed separately for all
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Figure 4.8: Evaluation of the results of building detection. Light grey: correct building pixels;
medium grey: false positives; black: false negatives.

area intervals of the abscissa. It is obvious that the quality of the results depends on the building
size: for buildings of a size larger than 90 m2, completeness is greater than 90%, but it becomes less
than 50% for buildings smaller than 40 m2. A similar trend can be observed for the correctness,
which is again not as good as completeness. For buildings larger than 130 m2, correctness is greater
than 90%. For buildings between 130 and 40 m2, correctness oscillates between 90% and 50%, and it
rapidly descends toward zero for detected building regions smaller than 40 m2. The lower diagram
in figure 4.9 shows the cumulative completeness and correctness for buildings covering an area larger
than the size shown in the abscissa. It shows that 95% of all buildings larger than 50 m2 and 90% of all
buildings larger than 30 m2 could be detected, whereas 96% of the detected building regions larger
than 120 m2 and 89% of all detected building regions were correct. The number of small buildings in
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Figure 4.9: Above: completeness and correctness of buildings depending on the building size (class
width: 10 m2). Below: cumulative completeness and correctness of buildings larger than the size
shown in the abscissa.
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the reference data set was relatively large: 570 buildings or 24% covered an area smaller than 50 m2,
296 or 12% were smaller than 30 m2. On the other hand, only 30 buildings or 1.5% of the detected
regions were smaller than 50 m2. Based on figures 4.8 and 4.9, it is clear that the main buildings
(larger than 90 m2) were detected reliably by our method. The majority of the buildings between 50
and 90 m2 could also be detected, whereas buildings smaller than 30 m2 (mostly garden sheds or
garages) could not usually be detected.

A comparison of these results with those presented in literature is difficult for two reasons:
first, the test data are not identical, so that any comparison is somewhat uncertain, and second, the
methodologies used for evaluation are not standardised and thus are often different. For instance,
most authors do not give detection rates depending on the building size, and others only give per-
pixel evaluations. In [Vögtle and Steinle, 2003], buildings were extracted from LIDAR data of 1 m
resolution in rural and urban test areas, with detection rates of 92.6% and 95.8%, respectively. No
information is given about the sizes of the buildings in the rural area (that could be compared to
ours), and we do not know how the reference data were collected. The authors also state that the
classification accuracy decreases with the building size. In [Matikainen et al., 2003], building change
detection was carried out using LIDAR data sampled at 0.6 m. The authors state that 90% of all build-
ing pixels in a reference map were correctly detected, whereas 80.3% of the detected building pixels
were also building pixels in the reference map. These numbers correspond to our completeness and
correctness numbers, and are of a similar size. The authors also give completeness and correctness
numbers separately for buildings larger than 200 m2 and smaller than that threshold. Their numbers
confirm the trend that can be seen in figure 4.9: completeness and correctness are 91.1% and 84.1%,
respectively, for buildings larger than 200 m2. For buildings smaller than 200 m2, completeness and
correctness are given by 42.1% and 34.9%, respectively. A minimum percentage of overlap of 70% is
required for a building to be correctly identified [Matikainen et al., 2003]. We believe that the results
in our tests demonstrate similar if not better results than these tests, and hence justify the approach
taken for automatic building extraction in this research.

4.4 Conclusions and Future Work

We have presented a method for building detection from LIDAR data and multi-spectral images,
and we have shown its applicability in a test site of heterogeneous building shapes. The method is
based on a hierarchical technique for DTM generation and on the application of the Dempster-Shafer
theory for classification. The results achieved were very satisfactory. 95% of the buildings larger than
50 m2 can be detected, whereas about 89% of the detected buildings are correct. The detection rates
decrease considerably with the building size: building structures smaller than 30 m2 could generally
not be detected. As a general trend, there were more false positives than false negatives. The quality
of our results is comparable to those achieved by other research groups. Although this comparison
is not conclusive because no common data set was used and because the evaluation methods are not
always comparable, it shows that the Dempster-Shafer theory is well-suited for building detection.

Future work will concentrate on the influence of the parameters of the probability mass func-
tion used in this study on the results. We are also interested in the relative contribution of the in-
dividual cues to the classification results, especially in improving the classification results by the
multi-spectral data. Another topic of future research is the replacement of the heuristic model for
the probability mass functions by an empirical one that could be derived from the original classifi-
cation results in an iterative procedure. Moreover, an investigation of the classification accuracy in
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dependence of the LIDAR resolution would be interesting. We expect the second Dempster-Shafer
classification stage to give better results with data of a higher resolution. We also expect the classifi-
cation to be better if real near-infrared data are used, which is still to be investigated. Finally, we do
not want the results of building detection as presented in this chapter to be the end of this research.
These results are a prerequisite to geometrical reconstruction of buildings from roof planes, which
we should be able to detect from building regions by fusing aerial imagery and LIDAR data. We
also want to use the results of the first Dempster-Shafer classification and the final results of build-
ing extraction to improve the quality of the DTM by eliminating points on the building roofs before
applying robust linear prediction as described in [Briese et al., 2002].
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Chapter 5

Building Detection by Fusion of Airborne
Laserscanner Data and Multi-spectral
Images: Performance Evaluation and
Sensitivity Analysis

5.1 Introduction

Point clouds generated by airborne laser scanning (ALS) are well suited for the automatic detection
of buildings. Building detection essentially requires a classification of the input data that separates
points situated on buildings from those on other objects, especially trees. In order to accomplish this
classification, cues such as the height of ALS points above the terrain or the roughness of the surface
described by the ALS points can be used. Additional information can be considered in order to over-
come problems occurring with buildings which consist of roof planes that are small in relation to the
ALS resolution. These include the height differences between the first and the last echoes of the laser
pulse and multi-spectral images of the area. The normalised difference vegetation index (NDVI),
derived from multi-spectral images, is well suited for classification in this context [Lu et al., 2006].

Various classification techniques have been applied for building detection, e.g., unsupervised
classification [Haala and Brenner, 1999], rule-based classification [Rottensteiner and Briese, 2002],
Bayesian networks [Brunn and Weidner, 1997], [Stassopoulou et al., 2000], and fuzzy logic
[Vögtle and Steinle, 2003, Matikainen et al., 2003]. The probabilistic approaches among the cited ones
face the difficulty of having to model all a priori probabilities, which is problematic if the assump-
tion of a normal distribution of the data vectors is unrealistic, e.g. in built-up areas [Gorte, 1999].
The theory of Dempster-Shafer can help to overcome these problems, because its capability to han-
dle incomplete information provides a tool to reduce the degree to which assumptions about the
distribution of the data have to be made [Klein, 1999].

Achieving good results for building detection using an algorithm demonstrates that the
method works for the particular application, but it is also important to know how the parameters
used in the algorithm are selected. For instance, if parameter selection is based on trial-and-error
only, the reproducibility of the results for another data set is questionable. We consider the evalua-
tion of algorithms to be important in order to make different approaches comparable. However, most
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authors give detection rates and false alarm rates for the detected buildings, but fail to give a more
thorough evaluation of their algorithms. Questions remaining unanswered in this context are related
to the dependency of the results on scene and sensor characteristics, the availability of different input
data sets, or on the appropriate selection of sensor models and the tuning of the model parameters.
In this chapter, we especially want to deal with the evaluation of a method of automatic building
detection. We have given an extensive overview of classification methods for building detection in
[Rottensteiner et al., 2005b]. Therefore this chapter will commence with a review of papers dealing
with the evaluation of building detection methods.

For an evaluation of automatic feature extraction using a reference data set, two numbers of
interest are the completeness and the correctness of the results [Heipke et al., 1997]:

Completeness =
TP

TP + FN
(5.1)

Correctness =
TP

TP + FP
(5.2)

In equations 5.1 and 5.2, TP denotes the number of true positives, i.e., the number of entities
found to be available in both data sets. FN is the number of false negatives, i.e., the number of
entities in the reference data set that were not detected automatically, and FP is the number of false
positives, i.e., the number of entities that were detected, but do not correspond to an entity in the
reference data set.

[Vögtle and Steinle, 2003] evaluated their method of building detection using two test data
sets of 1 m resolution and achieved detection rates of 93% and 96%, respectively. The authors
state that the classification accuracy decreases with the building size, without quantifying this ef-
fect. [Matikainen et al., 2003] used ALS data for building change detection. Their method detected
90% of all building pixels in a reference map, with a false-alarm rate of 15%. On a per-building basis,
completeness and correctness are 91% and 84%, respectively, for buildings larger than 200 m2. The
respective values for buildings between 0 and 200 m2 are 42.1% and 34.9%. A minimum percentage
overlap of 70% between a detected building and a building in the reference data set is required for
the building to be classified as a true positive.

[Vosselman et al., 2004] first separate bare earth ALS points from other points and then further
classify the other points according to whether they belong to buildings or trees. They apply their
classification to the original ALS point clouds. Their results for points on buildings correspond to a
completeness of 85% and a correctness of 92%. In their conclusions they state that using additional
colour information increased the classification accuracy for buildings by 3%.

In our previous work, we have presented a method for fusing first and last pulse ALS and
multi-spectral image data based on the theory of Dempster-Shafer. Completeness and correctness
were evaluated for a test site in Australia [Rottensteiner et al., 2005b]. The main goals of this chapter
are to present that method in its revised form and to thoroughly evaluate that method using two test
sites of different land cover and sensor characteristics. From that evaluation, we want to assess the
applicability of our method to different scenes and to data from sensors having different characteris-
tics by finding answers to questions that are not commonly investigated by other authors:

• How realistic are the model assumptions about the properties of the sensor data?

• How can the control parameters be tuned?
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• How sensitive are the results to the settings of these control parameters?

• How do the individual cues used in data fusion contribute to the quality of the classification
results?

• How do the classification results deteriorate with decreasing sensor resolution?

We start with a description of the two test data sets in section 5.2. In section 5.3, we will
give an outline of our previous work, describing the original algorithm for building detection. In
section 5.4, we will present how that algorithm has been improved. In this context, the statistical
models used for classification are evaluated and the rules for parameter tuning will be presented.
This is followed by an evaluation of the building detection results in section 5.5. We not only present
results obtained for standard parameter settings, but also include a sensitivity analysis with respect to
the input parameters and the resolution of the input data, and we assess the impact of the individual
classification cues. Section 5.6 will give the conclusions.

5.2 The Test Data Sets

We have used two test data sets. The first data set, captured over Fairfield (Australia) using an Optech
ALTM 3025 laser scanner, was also used in the earlier study. The second data set was captured over
Memmingen (Germany) with a TopoSys scanner. Both cover an area of 2 × 2 km2, and both contain
the first and the last echoes of the laser beam. The characteristics of the two test areas are quite
different. Fairfield covers a suburban area with low density of development in the southwest half
of the scene, whereas the northeast part is dominated by large industrial buildings. The trees are
mostly evergreen. Memmingen features a densely developed historic centre in the north of the scene
and industrial as well as suburban and rural areas in the remainder. The Memmingen data set was
captured at a time when the trees had minimum foliage, so that a much larger proportion of last pulse
points were reflected by the ground than in the Fairfield data set. The multi-spectral information was
also quite different for the two data sets. For Fairfield, an RGB orthophoto with a resolution of 0.15 m
was available (figure 5.1). We created a “pseudo-NDVI-image” at a resolution of 1 m, using the
red band from the orthophoto and substituting the ALS intensity values for the infrared band. For
Memmingen, geo-coded RGB (figure 5.1) and CIR (colour infrared) images with a resolution of 0.5 m
were available. The infrared bands of the two data sets thus correspond to different wavelengths,
namely 1047 µm for Fairfield and 770-890 µm for Memmingen.

The two sensors involved have a different scanning pattern. For the Optech ALTM 3025 used
for Fairfield, the scanning pattern was fairly regular with an average point separation of about 1.2 m.
It was only at the edges of the scanning swaths that the point distribution was not homogeneous.
The TopoSys scanner delivers very high point densities in the flight direction of 0.2 m, but a relatively
coarse distribution of points across the flight direction of 1.2 m. From the original ALS point clouds,
raster-based Digital Surface Models (DSMs) were interpolated for both the first and the last pulse
echoes by linear prediction using a small degree of smoothing [Rottensteiner and Briese, 2002]. The
width ∆ of the DSM grids was chosen to be ∆ = 1 m for Fairfield and ∆ = 0.75 m for Memmingen.

Reference data were captured by digitising buildings and trees in the orthophotos. We chose
to digitize all structures recognisable as buildings or trees independent of their size. Neighbouring
buildings that are joined but obviously separate entities were digitized as separate polygons. This
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Figure 5.1: Intensity bands of the orthophotos for Fairfield (left) and Memmingen (right). Both cover
an area of 2 × 2 km2.

resulted in 2424 building polygons in Fairfield1 and 2046 in Memmingen. Larger areas covered by
trees were digitised as one polygon. No information on single trees was captured. In Fairfield, the
orthophoto and the ALS data correspond to different epochs. We thus had to exclude 49 building
polygons that were only available in one data set.

5.3 The Original Algorithm for Building Detection

The input to our method comprises four data sets that have to be generated from the raw
data by pre-processing: the two DSM grids corresponding to the first and the last pulse data;
a Digital Terrain Model (DTM); and the NDVI. The DTM can be derived from the last pulse
DSM by hierarchic morphologic filtering [Rottensteiner et al., 2005b] or by robust linear prediction
[Rottensteiner and Briese, 2002]. The classification itself is based on the theory of Dempster-Shafer
for data fusion [Klein, 1999].

In Dempster-Shafer fusion, the output of a set of “sensors” is used for a classification process
in which n disjunct classes Cj ∈ θ are to be discerned. Denoting the power set of θ by 2θ, a probability
mass fulfilling certain constraints has to be assigned to every class A ∈ 2θ (i.e., also to any combina-
tion of the original classes) by each sensor. The probability masses from the individual sensors can be
combined, and from these combined probability masses, two parameters can be computed for each
class: the Support of a class is the sum of all masses assigned to that class, and the Plausibility sums up
all probability masses not assigned to the complementary class of A. The accepted hypothesis Ca ∈ θ
is determined according to a decision rule. The Dempster-Shafer theory also provides a measure for

1This number differs from the one given in chapter 4 (2385). The difference is caused by buildings that were originally
missed in the reference data set.
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the Conflict in the sensor data [Klein, 1999].

Building detection starts with a Dempster-Shafer fusion process carried out for each pixel of
the DSM grid in order to achieve a classification of the input data into one of four classes: buildings
(B), trees (T ), grass land (G), and bare soil (S), thus θ = {B, T,G, S}. In [Rottensteiner et al., 2005b],
we presented a model for the distribution of the evidence from each sensor used for classification to
the four classes, assuming that each sensor i can separate two complementary subsets subsets UCi
and UCi of θ. The probability mass Pi(xi) assigned to UCi by the sensor i depending on the sensor
output xi is assumed to be equal to a constant Pl for xi < xl. For xi > xu, it is assumed to be equal to
another constant Pu, with 0 ≤ Pl < Pu ≤ 1. Between xl and xu, the probability mass is modelled by
a cubic parabola with horizontal tangents at xi = xl and xi = xu:

Pi(x) =


Pl ∀x|x ≤ xl
Pl + (Pu − Pl) ·

[
3 ·
(
x−xl
xu−xl

)2
− 2 ·

(
x−xl
xu−xl

)3
]
∀x|(x > xl) ∧ (x < xu)

Pu ∀x|x ≥ xu

(5.3)

The probability mass [1 − Pi(xi)] will be assigned to UCi. It is one of the advantages of the
Dempster-Shafer theory that no other assumptions about the distributions of the data with respect to
the classes are required. The combined probability masses are computed for each pixel, and the pixel
is assigned to the class of maximum support or maximum plausibility. We use five “sensors” for the
original classification:

• The height differences ∆H between the DSM and the DTM help to distinguish elevated objects
from the ground, thus UC∆H = B ∪ T .

• The strength of surface roughness R is defined as the texture strength of polymorphic feature
extraction [Förstner, 1994] applied to the first derivatives of the DSM. It corresponds to the
smoothed squared sum of the second derivatives of the DSM within a small window. Large
variations of the first derivatives of the DSM are typical for trees, thus UCR = T .

• The directedness D of surface roughness, i.e. the texture directedness of polymorphic feature
extraction [Förstner, 1994], is another indicator for trees, i.e. UCD = T . However, D is only to
be used if R differs significantly from 0.

• The height differences ∆HFL between the first and the last pulse DSMs also distinguish trees
from other classes; UC∆HFL = T .

• The NDV I is an indicator for vegetation, thus UCNDV I = T ∪ G. The NDVI is used instead
of the complete multispectral information because it is directly linked to our actual problem,
i.e. the discrimination of buildings and trees, and its properties for solving that problem are
easily modelled. This is not the case for the individual bands of the multi-spectral images, be-
cause the distributions of the grey levels of the individual bands depend on surface properties.
This means for instance that there are different clusters in feature space for buildings having
different roof colours.

In [Rottensteiner et al., 2005b], we gave values for (xl, xu) for all of these five sensors without
any further discussion, assuming they were generally applicable. We will see in section 5.4.1 that
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an evaluation of the statistical model described by equation 5.3 showed more precisely how to se-
lect these parameters. This evaluation led to a reformulation of some of the rules for assigning the
probability masses.

Initial building regions are determined as connected components of “building pixels”. A sec-
ond classification based on the Dempster-Shafer theory is applied to these initial building regions,
using four cues representing average values for each building region, namely the average height
differences ∆Ha between the DSM and the DTM, the percentages H and P of pixels classified as
“homogeneous” and “point-like”, respectively, in polymorphic feature extraction, and the average
NDV Ia. The reader is referred to [Rottensteiner et al., 2005b] for further details of the method.

5.4 Evaluation of the Statistical Model and Improvements to the Algo-
rithm

In this section, we will describe changes to the models for the probability masses in the initial
land cover classification that are essential so that the models are more realistic, and a new post-
classification technique. The section also contains a discussion on the selection of the model param-
eters and an empirical validation of our theoretical models.

5.4.1 Initial Land Cover Classification

5.4.1.1 Height Differences ∆H Between DSM and DTM

∆H is used in the same way as described in section 5.3. The last pulse DSM should be used to
optimise the classification accuracy for buildings. Figure 5.2 compares P∆H(∆H) derived from the
ground truth to the theoretical model with (Pl, Pu) = (5%, 95%) and (xl, xu) = (0 m, 4 m). The
theoretical model fits quite well to the data of both Memmingen and Fairfield. The differences for
small values of ∆H correspond to pixels within the tree polygons having a last pulse return from
the terrain. The parameters (xl, xu) should be selected so that xC = (xl + xu)/2 is larger than the
minimum height expected for a building. We consider the parameter values given above (xC = 2 m)
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Figure 5.2: P∆H(∆H) for B ∪ T from ground truth compared to the theoretical model. Ab-
scissa: ∆ H [m].
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to be reasonable and meaningful, and thus we think that these parameters only require special tuning
if the buildings in a scene have different height characteristics.

5.4.1.2 Strength of Surface Roughness

As pointed out in section 5.3, R was originally chosen to correspond to the smoothed squared sum
of the second derivatives of the DSM within a small window. In [Rottensteiner et al., 2005b], we
selected (xl, xu) = [kl · median(R), ku · median(R)], using (kl, ku) = (2, 15). By making the two
thresholds dependent on the median of R, we expected them to be adaptive to the scene content;
the actual parameters to be chosen were kl and ku. However, a comparison of the theoretical model
for the probability masses to ground truth showed considerable deviations, and the shapes of the
empirical curves were heavily dependent on the scene contents. It turned out to be impossible to
find values for the parameters of the model described by equation 5.3 that are generally applicable,
and there was no easy way to estimate appropriate values for the parameters kl and ku. This situation
was improved by a re-parameterisation ofR. Rather than usingR, we characterise surface roughness
by the percentageRP (R) of pixels for which the surface roughness is smaller thanR. RP (R) is limited
to the interval [0 . . . 100%].

We assign a probability mass PR = PR(RP ) to class T , and (1−PR) toB∪G∪S, neglecting that
large values of R might also occur at the borders of buildings. Assuming that the trees correspond to
the areas of maximum surface roughness, we can use an estimate for the percentage PT of the scene
covered by trees to derive the values of the parameters of the model in equation 5.3. The PT percent
“roughest” pixels should correspond to the trees. This should be reflected by a probability mass
PR > 0.5 for these pixels, thus xl can be determined so that PR(100%− PT ) = 0.5. Using Pu = 1− Pl
and xu = 100% yields:

xl = 2 · 100%− xu − 2 · PT = 100%− 2 · PT (5.4)

In this way, we succeed in replacing the selection of the two parameters kl and ku that do not
have a physical meaning by the “meaningful” parameter PT that can be estimated in a comparably
simple way on the basis of a visual inspection of the data.

On the basis of estimates for PT , this results in xl = 70% for Fairfield and xl = 50% for Mem-
mingen. Figure 5.3 compares the distribution of PR(RP ) from ground truth with the theoretical
values thus obtained. It shows that the model fits quite well for the last pulse data in Fairfield, with
a larger deviation for first pulse data which is mainly caused by powerlines. With Memmingen, the
model fits quite well to the first pulse data, but not so well to the last pulse data. This is caused by the
high penetration rate of the laser in this data set. There are many laser strikes on the ground in the
forested areas, which means that the DSM almost corresponds to the (smooth) DTM in these areas.
As a consequence, and in contrast to the application of the algorithm described in section 5.3, we let
the user decide whether to use first or last pulse data for computing surface roughness, depending
on which data set best represents the roughness of the DSM for vegetation. In Fairfield, we use last
pulse data, in Memmingen, first pulse. The most important parameter is the estimate for for the
percentage PT of the scene that is covered by trees.
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Figure 5.3: PR(RP ) for T from ground truth compared to the theoretical model for Fairfield (above)
and Memmingen (below). LP/FP : Last / First pulse data. Abscissa: RP [%].

5.4.1.3 Directedness D of Surface Roughness

The directedness D of surface roughness is used in the same way as described in section 5.3. The
considerations with respect to using first or last pulse data described for the strength R of surface
roughness in section 5.4.1.2 also hold true for D. In order to decide whether R is significant, we have
to compare it to a threshold Rmin. Again, the re-parameterisation of R as described in section 5.4.1.2
helped to find a better way of selecting that threshold than the one described in the earlier study
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Figure 5.4: PD(R > Rmin, D) for T from ground truth compared to the theoretical model. Only DSM
Pixels with R > Rmin are considered. Rmin is derived from PT . Abscissa: D.
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[Rottensteiner et al., 2005b]. We determine Rmin so that for PT percent of the data R > Rmin; thus, D
will be considered for the PT “roughest” pixels. We select (Pl, Pu) = (10%, 70%) and (xl, xu) = (0, 1).
The lower value for Pu compensates for the fact that large values for D occur with buildings having
many small roof planes. Figure 5.4 shows the distribution of D and the theoretical values, using the
same values for PT as for R. It fits quite well for the last pulse data in Fairfield. There are some
deviations in the Memmingen data set, but the trend is correct. Again, the most important parameter
is the estimate for the percentage PT of the scene covered by trees.

5.4.1.4 Height Differences ∆HFL Between First and Last Pulse

∆HFL is used in a similar way as described in section 5.3. We found that, whereas a large value of
∆HFL certainly does give support to the hypothesis that there is a tree, a small value of ∆HFL does
not necessarily mean that there is no tree. In order to model this behaviour, we assign the probability
mass (1−PFL) according to the model described in section 5.3 to θ rather than to the complementary
class of T (i.e., B∪G∪S). We consider the values (Pl, Pu) = (5%, 95%) and (xl, xu) = (0m, 4m) to be
generally applicable. Figure 5.5 compares PFL(∆HFL) derived from ground truth to the theoretical
model. The empirical curves are not quite as steep as the theoretical one, which is caused by large
height differences between first and last pulses at building outlines. In Fairfield, the upper limit for
the probability mass seems to be 80% rather than 95%, which is caused by large values of ∆HFL at
powerlines. This mostly results in a misclassification of grass-land or bare soil as trees and thus is
not critical for our goal of detecting buildings.
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Figure 5.5: PFL(∆HFL) for T from ground truth compared to the theoretical model. Ab-
scissa: ∆ HFL [m].

5.4.1.5 NDVI

As described in section 5.3, the NDVI is an indicator for vegetation, thus for classes T and G. How-
ever, the model for the probability masses described in section 5.3 had to be improved to consider
the uncertainty of the NDVI in shadow areas.

The amount of radiation arriving at a passive sensor depends on many factors. Some of them
are characteristic for the sensor or the object, but there are also geometrical ones, namely the direc-
tion of the sun, the sensor viewing direction, and the normal vectors of the illuminated surfaces.
A slope facing the sun will appear brighter than a slope pointing away from the sun. In remote
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sensing, this is called “topographic effect”, and various methods have been proposed in the past
to eliminate it, e.g. [Hejmanowska, 1998]. In this work, rather than modelling the physical real-
ity of the light’s interaction with the surface e.g. by a Bidirectional Reflectance Distribution Func-
tion [Hejmanowska, 1998], which requires parameters such as the directional vector of the sun to be
known, we will use the observation that the uncertainty of the NDVI is larger in dark areas than in
bright ones in order to the reduce the classification bias introduced by the topographic and shadow
effects.

The NDVI is defined as the ratio between the difference and the sum of the infrared band IR
and the red band Rd, thus NDV I = 100% · (IR − Rd)/(IR + Rd). Applying the laws of error
propagation to this equation, the standard deviation σNDV I of the NDVI can be computed from the
standard deviations σRd and σIR of Rd and IR:

σNDV I =
2 ·
√
Rd2 · σ2

IR + IR2 · σ2
Rd

(IR+Rd)2
· 100% (5.5)

The standard deviations σRd and σIR are determined by analysing the first derivatives of IR
and Rd [Förstner, 1994]. Figure 5.6 shows the intensity of the CIR image, the NDVI, and σNDV I for
a part of the Memmingen data set. For buildings with a ridge in east-west direction, the NDVI is
25% in the shady roof planes and -10% in the sunny areas, with standard deviations of about ±10%
and ±2%, respectively. The NDVI suggests a strong support for classifying the roof planes in the
shade as vegetation, but this support is mitigated by the fact that it is also relatively uncertain. In
order to compensate for the bias of the NDVI in shadow areas, probability masses for the NDVI are
modulated depending on σNDV I . For σNDV I > 25%, we assign a probability mass of 1.0 to θ, i.e.,
the NDVI will not contribute to the classification. If σNDV I ≤ 25%, PNθ = 2 · σNDV I is assigned to
θ. Using P 0

N = PN (NDV I) according to equation 5.3, we assign PNDV I = (1 − PNθ) · P 0
N to class

T ∪G and PNinv = (1− PNθ) · (1− P 0
N ) to B ∪ S. Note that the problems with the uncertainty of the

NDVI did not show up with the Fairfield data set, where IR was taken from the ALS intensities to
compute a “pseudo-NDVI” (cf. section 5.2): ALS is an active sensing technique, and there are no cast
shadows in the ALS intensity. It turns out that this adaptation of the model for the probability masses
of the NDVI does not necessarily improve the detection rates of the buildings, but it does improve
the shapes of the detected buildings in the shadow areas.

Figure 5.6: Intensity of the CIR image (left), NDVI (centre) and σNDV I (right) for a part of the Mem-
mingen data set. In the σNDV I image, white areas correspond to low σNDV I .

As the classes G and S are very broadly defined, it is impossible to digitize ground truth data
for these classes in a meaningful way. We thus do not have ground truth for the classes G and S, so
that we cannot check our model for the NDVI. As the NDVI depends on the lighting conditions, on
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the predominant type of vegetation, and on the wavelength at which the infrared band was recorded,
we think that the parameters for the model have to be determined in a training phase. Here we choose
(Pl, Pu) = (10%, 90%) for both data sets. Further, we choose xl and xu to be (-30%, 30%) for Fairfield
and (-10%, 30%) for Memmingen.

5.4.2 Post-Classification and Generation of Initial Building Regions

A new rule-based technique for post-classification has been developed in order to eliminate single
building pixels and to compensate for classification errors at the building outlines. Two steps are
carried out in an iterative way until a maximum number of iterations is reached. First, we check
pixels where the classification is uncertain due to contradicting evidence as indicated by a conflict
K > 50%; the conflict measure is one of the results of the Dempster-Shafer analysis (cf. section 5.3).
For these pixels, we compute a histogram of the classes in a 5 × 5 neighbourhood. If the class C5×5

having the maximum number of occurrences is identical to the class C2 achieving the second highest
score according to the decision rule in the Dempster-Shafer fusion, the classification of the pixel is
changed to C2. In the second step, we determine the class C3×3 having a maximum number of
occurrences in a 3× 3 neighbourhood of each pixel. The classification is changed ifC3×3 is identical to
C2 or if all pixels except the central one are assigned to C3×3. A binary building image is created from
all pixels classified as “building” after the final iteration. Morphologic opening is used to eliminate
small areas of building pixels and to separate weakly connected buildings. Then, the initial building
regions are determined by a connected component analysis of the binary building image.

5.4.3 Region-based Classification

The second classification step is carried out in a similar way described in section 5.3, with three
adaptations: in computing the average NDVI (NDV Ia), the individual NDVI values are weighted
by 1/σ2

NDV I , the percentage H of pixels classified as “homogeneous” in polymorphic feature extrac-
tion is no longer used, and the threshold separating “homogeneous” from “inhomogeneous” areas
is chosen so that the percentage of the pixels that will be classified as “inhomogeneous” is identical
to the percentage PT of the scene covered by trees. Whereas for NDV Ia and for the average build-
ing height ∆Ha similar parameter settings as for the NDVI and for ∆H can be chosen, tuning the
parameters for the percentage P of pixels classified as “point-like” in polymorphic feature extraction
(cf. section 5.3) is more difficult, as P also depends on PT and on the average size of a roof plane
in relation to the ALS resolution. It turns out that the improved model for the probability masses
described in section 5.4.1 and the new post-classification technique described in section 5.4.2 have
the effect that this second classification step has almost no influence on the classification results. For
reasons of completeness, we give the values used for the statistical model given by equation 5.3 in
this study: for NDV Ia we use the same parameter settings as for the NDVI, but without the modu-
lation by the standard deviation σNDV I . For ∆Ha, the values for (xl, xu) = (1 m, 3 m) are chosen to
be a bit tighter than for ∆H . For P we selected (xl, xu) = (25%, 75%), based on a training phase.
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5.5 Results and Evaluation

5.5.1 Methodology

The methodology for evaluation is based on the technique for comparing the classification results
with a reference data set described in [Rottensteiner et al., 2005b], namely on a comparison of two
label images: the “automatic label image”, i.e. the output of the building detection algorithm, and
the “reference label image” that is generated by rasterizing the reference polygons. We are interested
in determining completeness and correctness according to equations 5.1 and 5.2 for two types of
entities. Firstly, the analysis is done on a per-pixel level and secondly on a per-building level, showing
how many buildings could be detected and how many of the buildings detected automatically did
actually correspond to buildings. In this chapter we determine TP , FN , and FP (cf. equations 5.1
and 5.2) by the same way as described in detail in [Rottensteiner et al., 2005b], especially with respect
to handling the problem of multiple overlaps for the per-building analysis.

In section 5.5.2, we present the results achieved using the standard parameter settings de-
scribed in section 5.4. In section 5.5.3, we will assess the sensitivity of the method to the param-
eter settings in the first (and most important) classification stage by systematically changing these
parameters and comparing the completeness and correctness values thus achieved. The influence
of changing sensor resolution will be determined in the same way and is presented in section 5.5.4.
Finally, in section 5.5.5 the contributions of the individual classification cues will be evaluated by
varying the input data and comparing the completeness and correctness values. The comparison of
different variants will be carried out only on a per-building basis, because it is more telling than the
per-pixel comparison.

5.5.2 Classification Results Using the Standard Parameters

Figure 5.7 shows the results of the initial Dempster-Shafer classification after post-processing, using
the modified approach as described in section 5.4. In Fairfield, 2057 building regions are detected
after region-based classification. For Memmingen, the number of buildings is 2102. Step edges at
the building boundaries are often classified as trees, an effect that is reduced but not completely
eliminated by post-classification.

In Fairfield, 87% of the building pixels were detected. In Memmingen, this number was 91%.
The missed buildings were mostly small residential buildings having roofs consisting of many small
faces, or they were too small to be detected given the resolution of the ALS data. Correctness was
somewhat better than completeness (91% in Fairfield, 92% in Memmingen). False positives mostly
occur at bridges, at small terrain structures not covered by vegetation, and at container parks. These
numbers have to be interpreted with caution because they are affected by errors in the reference
data. The orthophotos were generated using a DTM, so that buildings are shifted away from the
nadir point of the camera. In Fairfield, this shift can be up to 5 m.

Figure 5.8 shows the completeness and correctness for buildings depending on the building
size. It clearly shows how these numbers decrease with decreasing area covered by the buildings. In
the first row, completeness and correctness are given for buildings of the size shown in the abscissa.
In Fairfield, buildings larger than 110 m2 can be detected reliably, with both completeness and cor-
rectness being larger than 95%. Our algorithm could detect more than 80% of the buildings with an
area between 80 m2 and 110 m2, and the majority of buildings with an area between 40 m2 and 80 m2
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Figure 5.7: Results of the Dempster-Shafer classification after post-processing for Fairfield (left) and
Memmingen (right). White: bare soil. Light grey: grass land. Dark grey: trees. Black: buildings.

could still be detected. Buildings smaller than 30 m2 were not detectable. The results achieved for
Fairfield are somewhat better than those described in our earlier study [Rottensteiner et al., 2005b];
the improvement might be due to the improved model for the surface roughness. With Memmingen,
a greater percentage of smaller buildings could be detected, at the cost of a somewhat higher ratio of
false positives with an area of 30 m2 to 50 m2. For buildings larger than 120 m2 both completeness
and correctness were larger than 95%. Looking at the cumulative completeness / correctness in the
second row of figure 5.8, we can say that 95% of all buildings larger than 70 m2 (Fairfield) and 50 m2

(Memmingen) could be detected. In both data sets 95% of all detected buildings larger than 70 m2

were correct. These results show that the algorithm performs consistently well for:

• Scenes having different characteristics as far as building shapes and vegetation type are con-
cerned

• Data having a different original resolution

• Data having been captured by sensors of different characteristics with respect to both the way
the data are captured and the scanning pattern.

5.5.3 Sensitivity Analysis

The results presented in the previous section were achieved using the standard parameter settings as
explained in section 5.4. The most important control parameters are those used for the model of the
probability masses in the initial classification, namely the values (xl, xu) for the models of the prob-
ability masses for the height differences ∆H between the DSM and the DTM, the height differences
∆HFL between the first and the last pulse, and the NDVI, and the estimate PT for the percentage
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Figure 5.8: Completeness and correctness of the detection results as a function of the building
size [m2] for Fairfield (left) and Memmingen (right). First row: completeness and correctness for
buildings of the size given in the abscissa. Second row: cumulative completeness and correctness
computed for all buildings larger than the size given in the abscissa.

of trees in the scene, which is essential to derive the parameters for the probability masses of both
surface roughness parameters (strength R and directedness D). In this section, we will evaluate the
sensitivity of the results with respect to the setting of these parameters. Starting from the standard
settings, each of these parameters will be systematically changed, and each time completeness and
correctness will be computed, in order to assess how changes in the parameter settings affect the
quality of the results. In all cases, the completeness and correctness curves will only be shown for
buildings having an area smaller than 250 m2 because for larger buildings, the method in general
performs well in all cases.

5.5.3.1 Influence of the Parameters for the Model of the Probability Masses for ∆H and ∆HFL

Starting from the standard values (xl, xu) = (0 m, 4 m) for the height differences ∆H between the
DSM and the DTM, eleven variants were computed by changing both xl and xu by full multiples of
1 m. It turned out that completeness and correctness were very similar for all variants having an
identical centre point xC = (xl +xu)/2. That is why only four characteristic variants for Fairfield and
five for Memmingen are shown in figure 5.9. In both cases, the correctness seems to be less sensitive
to variations of the model parameters for ∆H than the completeness, and the improvement in cor-
rectness achieved by choosing parameter settings different from the standard ones are outweighed
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by the deterioration in completeness. In Fairfield, the influence of variations of the parameters for
∆H is much larger than in Memmingen. For the variant with (xl, xu) = (1 m, 5 m), thus xC = 3 m,
only about 60% of the buildings that cover an area of about 200 m2 are detected. This means that
in Fairfield, for the buildings covering an area of about 200 m2, i.e. larger residential buildings,
large building parts are lower than 3 m. In Memmingen a similar effect occurs for the variant with
(xl, xu) = (3 m, 7 m), thus xC = 5 m. This is consistent with the predominant building types. Chang-
ing xC by 0.5 m in variant (xl, xu) = (1m, 4m) has most effect on buildings smaller than 120 m2 with
both data sets. With variant (xl, xu) = (1 m, 5 m), the deterioration in completeness is already in the
range of 10% - 40% even for larger buildings.

We conclude that the parameters for the model for the probability masses for ∆H should be
known relatively precisely (up to 0.5 m). They must be selected so that xC is smaller than the heights
of the lowest buildings that should be detected in the data. The standard parameters perform well
with both data sets and thus seem to be applicable to a variety of scene characteristics, but scenes in
city centres containing only high-rise buildings might favour other parameter settings.

For ∆HFL, the same variants as for ∆H were computed. It turns out that changing the pa-
rameters hardly had any effect. This might be caused by the fact that some laser scanners can only
separate pulses if the range difference is larger than a certain threshold. For the Fairfield data set,
this threshold is about 4.6 m, whereas for the scanner used in Memmingen it is not known. In the
future, full waveform laser scanners might provide additional information for discriminating trees
from buildings.
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Figure 5.9: Completeness and correctness of the results for different settings of the parameters
(xl, xu) [m] for the model of the probability masses for ∆H as a function of the building size [m2].
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5.5.3.2 Influence of the Parameters for the Model of the Probability Masses for the NDVI

Starting from the standard values (xl, xu) = (−30%, 30%) for Fairfield and (xl, xu) = (−10%, 30%) for
Memmingen, 12 different variants were computed by changing both xl and xu by multiples of 10%.
Again it was observed that the results depended mainly on the selection of xC = (xl + xu)/2. The re-
sults for five variants are shown in figure 5.10. The standard settings seem to be a good compromise,
since good completeness values were achieved without too many false positives. In Fairfield, using
(xl, xu) = (−20%, 40%) would also have been an acceptable choice. The results are more sensitive to
changes in the parameters of the model for the NDVI in Memmingen than in Fairfield. Changes of
xC of 10% reduce the completeness results for buildings smaller than 150 m2 by 10% to 20%, without
improving completeness accordingly. On the other hand, choosing xC too large has less impact on
the results than choosing it too low. With small buildings, it is more likely that a building is misclas-
sified as a tree than vice versa: apparently, most trees have an NDVI substantially higher than xC in
the standard parameter settings. We conclude that the parameters for the model of the probability
masses of the NDVI have to be known relatively well, and they have to be determined in a training
phase.
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Figure 5.10: Completeness and correctness of the results for different settings of the parameters
(xl, xu) [%] for the model of the probability masses for the NDVI as a function of building size [m2].

5.5.3.3 Influence of the Estimate for the Percentage PT of the Scene Covered by Trees

Starting from the standard values PT = 15% for Fairfield and PT = 25% for Memmingen, several
variants were computed using values for PT differing in multiples of 5% from the standard val-
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ues, and completeness and correctness of the results were evaluated. The results are depicted in
figure 5.11. Again, the standard parameters achieve a good trade-off between completeness and cor-
rectness. With Fairfield, a value for PT between 15% and 20% might be considered optimal. Choosing
PT smaller than the estimated percentage of trees slightly improves the completeness of the results,
but correctness deteriorates by a much bigger percentage. For completeness, choosing PT too large
seems to be more critical than choosing it too small. Figure 5.11 indicates that an over-estimation
of PT by only 10% causes a deterioration of completeness by about 10%-15% for buildings of about
100 m2. We conclude that PT should be known to within 5% in order to achieve optimal results,
especially for smaller buildings, to be able to exploit the full potential of the method.
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Figure 5.11: Completeness and correctness of the results for different a priori estimates of the per-
centage of tree pixels PT [%] as a function of the building size [m2].

5.5.4 Influence of the Sensor Resolution

Figure 5.12 shows the influence of the resolution of the sensors involved on the classification results.
The variants were computed using different values for the grid width ∆ of the DSMs. It clearly
shows that the results commence to deteriorate for ∆ = 2 m. If ∆ = 3 m, they are unacceptable,
because more than 30% of the buildings covering an area of about 230 m2 (25 pixels) or smaller are
not detectable. At a sampling distance of 3 m, buildings are no longer characterised by low values of
surface roughness, because the areas used to compute surface roughness become so large that they
include both roof and terrain points. We conclude from the results presented in figure 5.12 that in
order to detect buildings of a size of 100 - 150 m2 reliably from ALS data and multi-spectral images,
the resolution of these data must be at least 1.5 m.
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Figure 5.12: Completeness and correctness of the results for different grid sizes ∆ [m] of the DSM as
a function of the building size [m2].

5.5.5 Contributions of the Individual Classification Cues

In order to evaluate the contributions of the individual sensors to the accuracy of building detection,
we apply our method for building detection to four different combinations of sensors. In the variant
LP only the three cues ∆H , R, and D are used, and they are derived from last pulse ALS data. In
variant LP + FP , we combine first pulse data with last pulse data and thus use the cues ∆H , R, D,
and ∆HFL. In variant LP +NDV I , we use last pulse data and the NDVI, thus ∆H , R, D, and NDVI.
The last variant, All, uses all available data. For Memmingen, different values for the percentage PT
of the scene covered by trees had to be used for the variants, depending on whether the first pulse
or the last pulse data were used for surface roughness. Thus, for variants LP + FP and All, the
standard value PT = 25% was used, whereas for variants LP and LP +NDV I , we used PT = 15%.

Figure 5.13 shows both completeness and correctness achieved for these four variants in both
data sets. In Fairfield, completeness is almost identical for all variants. The variants without the
NDVI perform better by about 10% for buildings with an area between 50 m2 and 70 m2. In Mem-
mingen, variant LP performs worse than the others for buildings smaller than 190 m2, with up to
30% of the buildings missing. The other variants differ by up to 10% for buildings covering an
area of 90 m2. A certain improvement is achieved by adding the first pulse data to the last pulse
data; adding the NDVI increases completeness further for buildings larger than 50 m2, whereas for
smaller buildings, variant LP + NDV I performs best. The correctness shows larger differences be-
tween the variants. In Fairfield, variants LP and LP + FP perform almost equally as well. Adding
the NDVI to LP increases correctness by about 1-3% for buildings larger than 130 m2, but by 10%
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to 20% for buildings smaller than that limit. In Memmingen, variant LP + FP performs worse than
the others, while variant LP is better, but this is contrasted by the unacceptable completeness values.
Variant LP + NDV I and the variant using all data perform almost equally well. Adding the NDVI
increases the correctness by 5% - 15%, with the increase growing with decreasing building size. To
sum up, in all variants for both data sets with the exception of variant LP for Memmingen (which
however has unacceptable completeness values), the results are almost the same for buildings larger
than 150 m2. However, as the limits of classification by ALS data are reached for smaller buildings,
the NDVI increases the correctness of the results by up to 20%.
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Figure 5.13: Completeness and correctness of the detection results of the building size [m2] for the
four variants described in the text [%]. Above: Fairfield, below: Memmingen.

5.6 Conclusion

We have presented a method for building detection based on Dempster-Shafer fusion of ALS data
and multi-spectral images. We have validated the assumptions of the model for assigning probability
masses using two data sets comprising both different sensor and scene characteristics. For the pixel-
based classification we found simple rules for setting the parameters of that model if an estimate
for the area covered by trees is known. This was made possible by a re-parameterisation of the
model for surface roughness. We have further improved the method by considering the uncertainty
of the NDVI and by post-classification. We have also evaluated the method, giving detailed quality
measures on a per-pixel and on a per-building basis. Our experiments show clearly how the results
of building detection depend on the building size. Buildings larger than 120 m2 could be reliably
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detected in both data sets. Most buildings between 50 m2 and 120 m2 are detected, whereas buildings
smaller than 30 m2 were not able to be detected.

We assessed the sensitivity of the results to the parameter settings in the classification process.
The parameters for the probability masses have to be known relatively precisely if excellent results
are to be achieved for buildings smaller than 150 m2; otherwise, good results can still be achieved, but
the full potential of the method for detecting small buildings will not be exploited. The parameters
for the NDVI have to be determined in a training phase. For the height differences between the
DSM and the DTM, and for the height differences between the first and the last laser pulses, the
standard parameter settings are well-chosen and will usually not need adaptation. The most difficult
parameter to choose is the percentage PT of trees which is used to derive the probability masses of
the surface roughness.

Our experiments also show the limitations of building detection based on the sensor resolution.
In order to achieve good results for residential buildings covering an area of about 100 m2 to 150 m2,
the sensor resolution must be at least 1.5 m. At a resolution of 3 m, only large structures can be
detected reliably. An investigation into the contributions of the individual cues showed that the
main contribution of the NDVI is to increase the correctness by up to 20% for small to medium-sized
buildings. First pulse data also help, though to a lesser degree.
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Chapter 6

Automatic Generation of High-Quality
Building Models From LIDAR Data1

6.1 Introduction

Automating data acquisition for 3D city models is an important research topic in photogrammetry. In
addition to techniques that rely on aerial images, generating 3D building models from point clouds
provided by Light Detection And Ranging (LIDAR) sensors is gaining importance. The progress in
sensor technology has triggered this development. Today, airborne laser scanners can deliver dense
point clouds with densities of up to one point per square meter. Using this information, it is possible
to detect buildings and their approximate outlines and also to extract planar roof faces and create
models that correctly resemble the roof structures.

This chapter presents a new method for automatically creating polyhedral building models
without using ground plans. The ability to group neighbouring planes is still a work in progress.
My development team (referred to in this chapter as “we” 2) computed the examples presented in
this chapter using the LIDAR data from a test site in Vienna captured by the TopoSys company. The
resolution of the original point cloud is 0.1 m (in-flight) by 0.9 m (cross-flight). From that point cloud,
we derived a regular grid for building extraction. The test data were captured in the course of a pilot
project for the municipality of Vienna to evaluate and compare various techniques for generating 3D
city models. My initial results show the high potential of this method.

The most recent achievements in the field of automated acquisition of 3D building models
are based on integrating data from two or more sources - such as LIDAR and digital aerial images
[Ameri, 2000a] - to overcome the drawbacks of specific sensor types. The trend toward combining
data from multiple sensors for automatically reconstructing topographic objects is triggered by the
fact that new sensor types have become available. In the future, the task of data acquisition for geo-
graphic information systems could be performed by “multisensor-grammetry” rather than by tradi-
tional photogrammetry. We hope this chapter contributes to the development of this “multisensor-

1 c© IEEE. Reprinted, with permission, from Rottensteiner, F., Automatic generation of high-quality building models
from LIDAR data, IEEE Computer Graphics and Applications 23(6), pp. 42-51, 2003.

2This was inserted by the journal editors, who did not like the author’s plural used throughout this chapter. The
stylistic peculiarities of this chapter compared to the remainder of this work are also the result of this editing process, since
an “active” writing style was required.
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grammetry” by describing how aerial images could be integrated into the workflow of building ex-
traction.

6.2 Recent Work on Building Extraction

There have been several attempts to detect buildings using LIDAR data. One approach is to classify
the LIDAR points according to whether they belong to the terrain, to buildings, or to other object
classes. Researchers commonly use morphological opening filters or rank filters to determine a dig-
ital terrain model that is subtracted from the digital surface model. By applying height thresholds
to the normalized surface model, researchers have obtained an initial building mask [Weidner, 1997].
The algorithm we use for building detection from LIDAR points is based on the method for terrain
model generation by robust interpolation [Rottensteiner and Briese, 2002].

Research teams have tackled the geometrical reconstruction of buildings in previously detected
regions of interest in two ways. First, you can instantiate parametric primitives and fit them to the
data if you find sufficient evidence. Second, you can detect planar segments in a surface model
created from the LIDAR points and derive polyhedral building models by grouping these planar
segments. Because parametric primitives often have a rectangular footprint, you can use them if 2D
ground plans offer a precise location of the building outlines. In these cases, you split the polygon
delineating a building in a 2D map into rectangular regions. In each rectangle, you can determine the
parameters of the models using the surface model, and then accept the model that achieves the best
fit [Brenner, 2000, Vosselman and Dijkman, 2001].

The data-driven generation of polyhedral building models from LIDAR data only makes sense
if the point density is high enough so that you can locate a sufficient number of data points at least
in the most relevant planes of the roofs. Ground plans can reduce search space for estimating the
parameters of adjoining planar segments because the gradient direction of such planes is usually
perpendicular to the adjacent polygon segment in the ground plan [Haala et al., 1998]. You can find
initial planar segments by segmenting the surface model.

One research team described four different range image segmentation algorithms that
were based on such techniques as region growing, clustering, and an analysis of scan lines
[Hoover et al., 1996]. This team developed a framework for evaluating segmentation algorithms and
applied it to the four segmentation algorithms in an extensive test with data from structured light
and laser range-finder images. The team concluded that segmentation still can be improved because
their algorithms have problems with small regions and with correctly detecting the borders of adja-
cent regions.

Another research effort applied a region-growing algorithm to LIDAR data using a similar
framework for evaluation [Geibel and Stilla, 2000]. In yet another technique, the team grouped the
neighbouring segments as soon as they found initial planar segments, which involved finding con-
sistent intersections at the building vertices [Baillard et al., 1999]. In addition, they combined the 3D
border polygons to obtain consistent building models. The approach requires adding vertical walls
and the floor to the model. They applied a coarse-to-fine strategy by first searching for the most
relevant structures in the data and using refined methods for modelling the buildings in regions not
being explained sufficiently by the initial models. After generating the building model, they project
its roof edges back to aerial images where the model edges are matched with image edges. This
technique increases the accuracy of the model, especially with respect to the building outlines. In the
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past, we have used such a model-driven technique for wire frame fitting for measuring parametric
primitives in semiautomatic building extraction [Rottensteiner, 2001]. Because it is general enough
to be applicable to any polyhedral model, we use it in the context of this work.

6.3 Method Overview

Building extraction consists of two steps: detection and reconstruction. You have to detect building
candidate regions in the digital surface model (DSM) by a classification of the LIDAR points. As a
result, you obtain regions of interest for the geometric reconstruction of the buildings. In the sub-
sequent processes, our system handles these regions of interest individually. Furthermore, in the
regions of interest thus detected, the buildings have to be reconstructed geometrically, which results
in 3D polyhedral models.

The system for building detection applies a two-step procedure for classifying LIDAR points.
First, it uses linear prediction to separate terrain points from off-terrain points hierarchically, starting
from thinned-out data. It derives two digital elevation models of identical grid width, and it com-
putes a digital terrain model (DTM) from the points classified as terrain points with a high degree
of smoothing. The system also computes a DSM from all points without smoothing, as shown in
figure 6.1(a). Second, the off-terrain points have to be classified to separate points on buildings from
points on other objects. The system performs this by thresholding the height differences to find initial
building regions. The system improves these initial results by morphologic filtering and by a texture
analysis to remove vegetation areas, as shown in figure 6.1(b). We have described this method in
more detail in [Rottensteiner and Briese, 2002].

(a) (b)

Figure 6.1: Building detection in a test site in Vienna: (a) digital surface model and (b) building
regions.

Having detected the building regions, the workflow for the geometric reconstruction of the
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buildings consists of four steps.

1. Detection of roof planes. In building candidate regions, the system applies a segmentation on the
basis of an analysis of the variations of the DSM normal vectors to find planar segments that
are expanded by region growing algorithms.

2. Grouping of roof planes and model generation. Neighbouring roof segments, being coplanar, have
to be merged. As soon as the system finds no more hypotheses for grouping planar segments,
the system completes the resulting polyhedral model.

3. Consistent estimation of the model parameters. Having generated initial building models, their ge-
ometric parameters must be improved by a consistent estimation procedure taking into account
all the available sensor information.

4. Model regularization. Finally, the system improves the models by introducing hypotheses about
geometric constraints between planes, and it repeats parameter estimation.

The resolution of the LIDAR data - which is still below the resolution of aerial images - limits
the level of detail of the building models and the accuracy of the positions of step edges.

6.4 Detection of Roof Planes

One research team describes a method for polymorphic feature extraction. This method aims at
classifying texture as being homogeneous, linear, or point-like by an analysis of the first derivatives
of a digital image [Fuchs, 1998]. That classification is based on a significance test of the squared
gradient norm of the digital images, the most important parameter being the significance level α of
that test, from which the threshold for classification is derived.

The system applies this method to the first derivatives of the DSM. Pixels classified as homo-
geneous are surrounded by pixels having similar components of the surface normal vectors. That is,
they are in a region containing coplanar points. Figures 6.2(a) and 6.2(b) show the binary image of
homogeneous pixels in one of the building regions from figure 6.1, derived by using two different
significance levels. The system applies a connected component analysis to the binary image of homo-
geneous pixels to detect seed regions for region growing. However, because of classification errors,
either too few such regions are detected (figure 6.2(a)) or the detected regions turned out to be too
large (figure 6.2(b)).

To avoid these segmentation errors, we propose an iterative strategy for roof-plane detection,
splitting the connected components of homogeneous pixels into smaller parts by morphologic filter-
ing and only allowing well-fitting planes to grow. Although the results thus achieved were already
quite satisfying, the procedure failed if the initial segments were shaped in a way that parts belonging
to different planes in object space could not be separated.

We improved the method to give it a better statistical basis. Again, the system performs roof-
plane detection iteratively, but it iterates over different significance levels in texture classification.
The system starts by texture classification using a tight threshold, and thus a high significance level.
Statistically, this means that the system accepts a large percentage of homogeneous pixels erroneously



6.4. DETECTION OF ROOF PLANES 85

classified as non-homogeneous, and a small percentage of non-homogeneous pixels erroneously clas-
sified as homogeneous. Only the pixels in the most significantly planar regions are actually classified
as homogeneous (figure 6.2(a)).

The system uses connected regions of homogeneous pixels as seed regions for region growing,
allowing only regions achieving a good planar fit to grow. New pixels adjacent to a region are added
if their distances from the adjusting plane is below a certain threshold. The system repeats this
step until no additional pixel can be added to any segment. Figure 6.2(c) shows the segment label
image derived from growing the seed regions from figure 6.2(a). The system has already assigned
about 50% of the pixels of the building region to one of these planes, each plane having an error of
planar fit better than ±15 cm. After that, the system performs the classification again using another
threshold and applying our procedure of seed region selection to connected components of pixels
now classified as homogeneous, but not yet assigned to a planar segment in the previous iteration.

In this way, the system performs a certain number of iterations, each iteration finds new planar
segments and accepts less and less significantly homogeneous areas to take part. From a practical
point of view, you can select the threshold of the first iteration so that the system uses only the most
significantly planar homogeneous pixels. Figure 6.2(b) shows the classification results of the eighth
iteration, and figure 6.2(d) shows the resulting segment label image. All the detected segments have
an error of planar fit better than ±15 cm. About 64% of the pixels in the building region are assigned
to one of these roof planes.

(a) (b)

(c) (d)

Figure 6.2: Detection of planar segments from a digital surface model in one of the building regions
from figure 6.1. (a) and (b) show classification results of polymorphic feature extraction using differ-
ent significance levels (first and last iteration). (c) Planar regions obtained by applying a connected
component algorithm and region growing to (a). (d) Segment label image after the last iteration. A
colour version of this figure can be found on page 130.

Figure 6.3(a) shows the unclassified pixels of the building region corresponding to figure 6.2(d).
Mostly, the unclassified pixels are those at the borders of the planar regions, especially at the positions
of step edges or chimneys. However, there are also larger patches of unclassified pixels correspond-
ing either to small roof structures not yet detected, to roof parts not planar, and to regions that are
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(a) (b) (c)

Figure 6.3: Postprocessing of the segmentation results: (a) unclassified pixels in the building region;
(b) segment label image after post-processing containing additional planar segments; and (c) unclas-
sified pixels after postprocessing. A colour version of this figure can be found on page 130.

not parts of the building.

We can improve this segmentation by post-processing, trying to find additional planes in the
unclassified regions, and eliminating trees and other objects not belonging to the building. First,
the system searches for connected components of unclassified pixels having a small height gradient
strength. This is motivated by the fact that the kernel size for computing the height gradient is smaller
than the size required for the texture classification described previously, so that it is possible to find
smaller seed regions. The system applies region growing to these regions, allowing larger residuals,
so that the additional planar segments have a worse planar fit than the original ones.

Thus the system might get segments generalizing the actual shape of a building part that can-
not be reconstructed with more details, given the resolution of the LIDAR data. Figure 6.3(b) shows
the final segment label image containing the additional planes. Finally, the system searches for con-
nected components of unclassified pixels having a great percentage of pixels classified as point-like
in polymorphic feature extraction, which is an indicator for vegetation areas. Figure 6.3(c) shows the
unclassified pixels after having eliminated these areas from the building region.

At this point, only DSM pixels at the borders of the planar segments remain unclassified. Ta-
ble 6.1 gives a summary of the results of roof plane detection for all the building regions detected
in the test site shown in figure 6.1. Altogether 69.9% of all pixels classified as building pixels are
assigned to a planar segment; 92.1% of these pixels (or 64.4% of all building pixels) are in a planar
segment having an error of planar fit better than ±15 cm. The remaining 7.9% of the pixels assigned
to a planar segment mostly correspond to planes added to the model in the second segmentation
phase, generalizing more detailed building shapes.

6.5 Grouping of Roof Planes and Model Generation

First, we derive the neighbourhood relations of the planar segments from a Voronoi diagram that
is based on a distance transformation of the segment label image: Each pixel inside the region of
interest not yet assigned to a planar segment is assigned to the nearest segment (figure 6.4(a)). After
finding the neighbourhood relations, coplanar segments are merged. The coplanarity test is based
on a Fisher test comparing the root mean square (RMS) errors of planar fit obtained by applying
two different mathematical models: two separate planes versus one compound plane. Figure 6.4(b)
shows the Voronoi diagram after merging coplanar segments.
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RMS [m] Planes [%] All [%]
0.00-0.05 19.5 13.6
0.05-0.10 57.3 40.1
0.10-0.15 15.3 10.7
0.15-0.20 6.5 4.5
0.20-0.25 0.8 0.7
0.25.0.30 0.3 0.2
0.30-0.35 0.2 0.1
0.35-0.40 0.0 0.0
0.40-0.45 0.1 0.0

Table 6.1: Distribution of the root mean square errors of the planar fit.

(a) (b)

Figure 6.4: (a) Voronoi diagram of the label image in figure 6.3(b) and (b) Voronoi diagram after
merging coplanar segments. A colour version of this figure can be found on page 130.

We then analyze the neighbourhood relations of the remaining segments. The boundary poly-
gons of the Voronoi regions give a first estimate for the planimetric positions of the segment outlines
(figure 6.5(a)). We need to classify each portion of the boundary separating two planar segments
according to the geometric configuration of these segments. There might be an intersection, a step
edge, or both an intersection and a step edge.

The system computes all the intersection lines. For a pair of neighbouring planar segments,
the system checks whether the error of the original border polygon is below a certain threshold with
respect to the intersection line. If this is the case, the intersection line acts as the actual border between
these planar segments, and the system updates the border polygons of the two planar segments to
contain that intersection line. If this is not the case, the system assumes a step edge. It tries to locate its
planimetric position precisely by searching for the maximum of the gradient strength of the LIDAR
DSM in the direction of the normal vector of the original border polygon in that area. In the third
case, not yet considered by the current implementation of this method, the border polygon between
two planar segments has to be split into smaller parts.

Having improved the shapes of the border polygons of the roof segments, the polyhedral mod-
els have to be created. The planar segments become the roof faces of the model, the vertices of the
boundary polygons become the building vertices, and the edges of these polygons become the edges
of the polyhedral model. A vertical face corresponding to a wall is inserted for each polygon edge
classified as a step edge.

The modules for grouping and model generation are still works in progress. Figure 6.5(b)
shows preliminary results of computing intersections and step edges. We must improve the search
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(a) (b)

Figure 6.5: Part of the roof polygons of the building in figures 6.2, 6.3, and 6.4 superimposed on the
digital surface model: (a) the original pixel chains from figure 6.4(b) and (b) after finding intersections
and step edges.

strategy for step edges, implement the third case of mutual relations between planar segments, and
improve the boundary polygons at the building vertices, because there are still short polygon edges
not part of an intersection line or getting weak support from step edge detection.

Figure 6.6 shows the reconstructed roof polygons superimposed to an aerial image of scale
1:7000. We could not reconstruct smaller roof details, such as the chimneys, given the resolution of
the LIDAR data. There are still planimetric offsets in the images that correspond to about five image
pixels. We did not consider short polygon segments for step edge detection, which leads to their
somewhat ragged appearance. Figure 6.7 shows a visualization of a 3D model created from verti-
cal prisms bounded by the roof polygons and the floor. These preliminary results are encouraging
because they show the potential of high-resolution LIDAR data for building extraction.

Figure 6.6: Roof polygons of the building in figures 6.2, 6.3, and 6.4 back projected to an aerial image.
Ground sampling distance: 17 cm.

6.6 Consistent Estimation of the Model Parameters

In the previous phases of building reconstruction, we determined the parameters of the planar seg-
ments individually. We determined the building vertices from the intersections of adjacent planes or
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Figure 6.7: VRML visualization of a model created from vertical prisms bordered by the boundary
polygons and the floors.

by step-edge extraction. An overall adjustment including all available sensor information is impor-
tant to get geometrically consistent building models and to consider geometric constraints.

We use our hybrid adjustment program ORIENT, for estimating the model parameters
[Kager, 1989]. Our method finds a mapping between the boundary representation (B-rep) of a build-
ing and a system of shape observations (referred to as GESTALT observations) representing B-rep
and the geometric constraints imposed by that modeling technique. In this model, a GESTALT obser-
vation is the observation of a point P situated on a polynomial surface. The polynomial is parame-
terised in an observation coordinate system (u, v, w) related to the object coordinate system by a shift
P0 and three rotations Θ = (ω, ϕ, κ)T . The actual observation is a fictitious observation of the largest
component of the distance vector to be 0. Using the shorthand (uR, vR, wR)T = RT (Θ) · (P − P0),
with RT (Θ) a transposed rotational matrix parameterized by Θ, and restricting ourselves to ver-
tical planes for walls and generally tilted planes for roofs, there are three possible formulations of
GESTALT observation equations:

0 + ru = mu · uR + a00 + a01 ·mv · vR (6.1)
0 + rv = mv · vR + b00 + b10 ·mu · uR (6.2)
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0 + rw = mw · wR + c00 + c10 ·mu · uR + c01 ·mv · vR (6.3)

In equations 6.1, 6.2, and 6.3, ri are the corrections of the fictitious observations of coordinate i
and mi ∈ {−1, 1} are mirror coefficients. A GESTALT is a set of GESTALT observations for all vertices
neighbouring one specific face of the building’s B-rep. The GESTALT is the representation of that face
in adjustment, its surface parameters (either ajk, bik, or cij) being the parameters of the planar face,
and the GESTALT observations connect these parameters with the coordinates of the vertices P.

For each face of the B-rep of the building model, such a GESTALT is defined and parameterized
in one of the three ways shown in equations 6.1-6.3, either equation 6.1 or 6.2 being used for walls
and equation 6.3 for roof faces. Note, however, that an application is free to decide which of the
parameters in equations 6.1-6.3 (P, P0, Θ, surface parameters ajk, bik, or cij) are to be determined in
adjustment and how to parameterise a surface. In addition, different GESTALTs can refer to identical
transformation or surface parameters. You can use these properties - and a proper selection of the
mirror coefficients - to enforce geometric constraints.

The estimation of building parameters from sensor data by representing the B-rep of build-
ings in adjustment by a system of GESTALTs has originally been applied to parametric primitives
in semiautomatic building extraction [Rottensteiner, 2001]. Figure 6.8 shows a building primitive re-
sembling a saddleback roof. Table 6.2 provides an overview of the parameterization of the seven
GESTALTs corresponding to the seven faces of the primitive. The primitive is modeled to be sym-
metric with respect to the vw-plane and to have a rectangular footprint. All GESTALTs refer to the
same observation coordinate system centred in the center of the floor and having a vertical w-axis,
thus ω = ϕ = 0. Although the building is modelled in B-rep, only four pose (P0 and κ) and four
shape parameters (bf00, ar00, cr00, cr10) have to be determined from sensor data. By properly selecting
the parameterisations of the GESTALTs, we succeeded in reducing the number of parameters to a
minimum, thus imposing geometric constraints to the primitive.

wR
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vR|c |00

r

|b |00

f

|a |00

r

a
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Figure 6.8: Saddleback roof and its parameters.

For building extraction from LIDAR, we don’t want to use parametric primitives be-
cause doing so could reduce the applicability of the algorithm to rectangular buildings
[Vosselman and Dijkman, 2001]. Thus, we use the more general equations for the parameterization of
the GESTALTs, introducing geometric constraints only where evidence for their occurrence is found.
As in equation 6.1, there are dependencies between the constant parameters and P0 and between
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Face Number Face Face Equation Symmetric Face Number mi

1 Floor 0 + rw = wR - -
2 Front wall 0 + rv = vR + bf00 - -
3 Rear wall 0 + rv = −vR + bf00 2 mv

4 Right wall 0 + ru = uR + ar00 - -
5 Left wall 0 + ru = −uR + ar00 4 mu

6 Right roof 0 + rw = wR + cr00 + cr10 · uR - -
7 Left roof 0 + rw = wR + cr00 − cr10 · uR 6 mu

Table 6.2: Overview of the parameterization of the seven GESTALTs. mi is the mirror coefficient that
equals -1.

the linear terms and the rotational angles, we declare both P0 and Θ to be constant. For numerical
reasons, we situate P0 inside the building. The rotations are set to 0, which means that the tilts of the
planes are modeled by the linear terms of equations 6.1-6.3.

As described previously, for each face of the B-rep of the building model, we define a set of
GESTALT observations, taking equations 6.1 and 6.2 for walls and equation 6.3 for roofs. The un-
knowns are the object coordinates of each point P and the plane parameters (ajk, bik, cij). As each
building vertex is neighboured by at least three faces, the object coordinates of the vertices can be
determined from GESTALT observations for these vertices. We use the sensor data to determine the
unknown plane parameters for all the planes of the building. We assign LIDAR points to roof planes.
For each LIDAR point, we introduce one GESTALT observation as well as three direct observations
for the point’s LIDAR coordinates to avoid singularities with respect to the object coordinates P.

We introduce direct observations for the planimetric coordinates of building vertices at step
edges to make the parameters of the wall faces determinable. These direct observations are the results
of step edge detection. They are situated at the positions of the maximum gradient strength of the
DSM.

Using this mathematic model, we get a highly redundant adjustment system. It is possible to
apply robust estimation to eliminate false or contradicting observations. The weights of the observa-
tions depend on their a priori standard deviations. The stochastic model’s most important parameter
is the a priori standard deviation of the GESTALT observations. Typically, we select it in the range of
a few centimetres.

6.7 Model Regularization

Up to now, we have not yet used any information concerning geometric regularities to improve the
quality of the building model, which leads to irregular shapes. In the future, we will develop a
constraint generator that has to analyze the polyhedral model and introduce geometric constraints
where sufficient evidence for their occurrence is found. If two neighbouring planes ε1 and ε2 are
found to fulfil a geometric condition, we will add GESTALT observations, taking advantage of spe-
cific definitions of the observation coordinate system and specific parameterisations of the planes.
Figure 6.9 shows three such constraints.

In all cases, one of the axes of the observation coordinate system is the intersection of ε1 and ε2

and one of the vertices of the intersection line is the reference point P0 of both planes. The rotations
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Figure 6.9: Three possible geometrical constraints between two planes ε1 and ε2. Left: a horizontal
ridge; centre: two orthogonal walls; right: a horizontal eave.

ω and ϕ are 0 and constant, but there is one additional unknown rotational angle κ. For each vertex
vi of the planes, we add GESTALT observations for ε1 and/or ε2. We parameterize these planes in
specific ways:

• The intersection of two planes is a horizontal ridge: ε1 : 0 + rw = wR + c1
01 · vR and ε2 : 0 + rw =

wR − c1
01 · vR. There is only one tilt parameter c1

01. Symmetry is enforced by selecting mv = −1
for ε2.

• Two walls are perpendicular: ε1 : 0 + ru = uR, ε2 : 0 + rv = vR. There is no additional surface
parameter to be determined.

• A wall and a roof plane intersect in a horizontal eave: ε1 : 0+rw = wR+c1
01 ·vR and ε2 : 0+rv =

vR. There is an additional unknown roof tilt c1
01.

The a priori standard deviations of the GESTALT observations describe the stochastic model of
these constraints. After creating these additional observations, the estimation of the model parame-
ters has to be repeated.

6.8 Integration of LIDAR and Aerial Images

The quality of the building models derived from LIDAR data is restricted by the LIDAR sensor’s
ground resolution. As the geometric resolution of aerial images is still much better than that, it
would be best to integrate aerial images into the workflow of building extraction. As we have seen in
the previous sections, the most relevant roof structures can be extracted well from LIDAR data. There
are two stages where the aerial images can help improve the quality of the resulting models. They
can help detect additional planar segments in model generation and they can be used to improve the
geometric quality of the model edges by matching these model edges with grey level edges extracted
in the digital images.

6.8.1 Detection of Planar Segments

There are still some unclassified pixels, and in the post-processing phase we have accepted segments
having RMS errors planar fit that indicate that small roof structures have been generalized. In both
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cases, it’s possible to improve the segmentation results using the information provided by the aerial
images.

We use polymorphic feature extraction for segmenting the digital images. This technique re-
sults in a set of segments of homogeneous grey levels for each image. Figure 6.10 shows one of
the areas containing unclassified pixels in the LIDAR DSM, segmentation results in a corresponding
aerial image, and a sketch of the actual roof structure. In the LIDAR DSM, that area has a width of
about five pixels. It is impossible to separate the two roof planes obviously connecting two larger
building parts on the upper and the lower margins of the figure because the sizes of the filters in-
volved in seed region selection limit the size of detectable planes. However, in both aerial images,
the grey level segmentation gives two segments corresponding to two roof planes. Thus, figure 6.10
shows that it makes sense to use the image segmentation results in the areas where no planes can be
detected in the LIDAR data.

(a) (b) (c)

Figure 6.10: (a) Small portion of the DSM in one of the unclassified areas in figure 6.3(a), (b) segmen-
tation results of the same area in an aerial image, and (c) sketch of the roof structure.

It is possible to project the image segments to the DSM to get a first estimate for the plane
parameters. In addition, homologous segments from different images can be matched, so that the
segmentation results from different images can be combined. In the future, the most significant
segments (those obtaining support in multiple images) will be selected for further processing. They
can be added directly to the list of planar segments or be used as new seed regions for region growing
in areas where no such regions could be derived from the LIDAR data alone due to the restrictions
imposed by the sizes of the involved filters.

6.8.2 Wire Frame Fitting

Wire frame fitting is a good approach for improving the geometric quality of the polyhedral models
created from LIDAR data. Unlike LIDAR data, you can extract the grey level edges corresponding
to the building outlines precisely in the images. Projecting the polyhedral model back to the images
(figure 6.6), the frame’s edges can be matched with image edges. In each image, the projected position
of an object edge gives us a region of interest, and we search for image edges inside that region of
interest that are almost parallel to the projected object edge.

Image edges fulfilling this condition are supposed to be matching candidates, and they are
considered in the estimation of the model parameters by an expansion of the adjustment model. In
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addition to the observations described there, the image coordinates of the end points of the image
edge segments are assigned to a roof edge. For each end point, we get two image coordinates and
two GESTALT observations - one for each face that’s an object edge neighbour - and three additional
unknown object coordinates P.

Whereas we search for matching candidates for all roof edges independently in all images, we
perform parameter estimation in an overall robust process in a hybrid adjustment of the GESTALT
observations representing the object model, the LIDAR points, the positions of the step edges, and the
image coordinates of image features. We apply robust estimation to determine false matches between
image and object edges. We first used this model-fitting algorithm for automatically measuring para-
metric building models in a system for semiautomatic building extraction from aerial images. In a
test project in the context of semiautomatic building extraction, we have shown that results with an
accuracy range of a few centimetres can be achieved using that method [Rottensteiner, 2001] (cf. fig-
ure 6.11).

(a) (b) (c) (d)

Figure 6.11: Wire frame fitting of a building primitive resembling a saddleback roof in two images
at two resolution levels of the image pyramids. Blue is the extracted image edges, red is the edge
segment end points accepted as matches, yellow is the false matches, and cyan is the final positions
of the wire frame. A colour version of this figure can be found on page 131.

6.9 Conclusions

This technique can handle polyhedral buildings of arbitrary shape. Unlike other techniques, it
doesn’t require assumptions about rectangularity of the footprint, nor a priori information about
the building outlines. The segmentation algorithm used for roof plane detection belonging to the
group based on seed-region selection and region growing. The preliminary results from a test site in
Vienna showed the method’s high potential: All buildings in the test area could be detected, although
their outlines had a rather complex shape. The reconstructed models resembled the roof shapes well
according to a visual inspection.

We have also discussed the issue of integrating aerial images into the workflow to obtain better
results by what could be called “multisensor-grammetry”. In that way, we could try to overcome the
problems associated with trying to detect small planar segments in the LIDAR data caused by the
limited resolution of the LIDAR sensors. The system described here is still work in progress. Pla-
nar segmentation and the mathematic model of hybrid adjustment including GESTALT observations
do already exist. We have implemented wire frame fitting and tested the technique for parametric



6.9. CONCLUSIONS 95

primitives. Whereas the mathematical model for creating geometric constraints has already been
elaborated, the module for analyzing the shape of the models for introducing such constraints has
not yet been implemented. Future work will include the implementation of the modules still missing
and the assessment of quality parameters for the results.
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Chapter 7

Automated Delineation of Roof Planes
from LIDAR Data

7.1 Introduction

7.1.1 Motivation and Goals

LIDAR data offer a high potential for automated building extraction. Buildings consist of reg-
ular surfaces that can be extracted from LIDAR data making use of surface properties such as
local co-planarity. One approach to reconstruct buildings from LIDAR data is to segment the
data into planes and then to combine these planes to obtain a polyhedral model [Vosselman, 1999,
Vögtle and Steinle, 2000, Rottensteiner, 2003, Alharty and Bethel, 2004]. Alternatively, buildings can
be reconstructed by parametric primitives, e.g. [Brenner, 2000]. Using parametric primitives reduces
the level of detail that can be achieved as the number of primitives is usually small and most have
a rectangular footprint. The greatest problem encountered with generic methods for reconstructing
polyhedral models is the delineation of the roof plane boundaries. These boundaries correspond to
edges in the LIDAR data. In contrast to edges corresponding to the intersection of neighbouring roof
planes that can be determined very precisely, step edges are poorly defined. As step edges occur
at building outlines, 2D GIS data are often used in combination with LIDAR data to alleviate this
problem, e.g. [Brenner, 2000].

If no GIS data are available, the roof boundaries have to be determined from edges extracted
from the LIDAR data. The approximate positions of such edges are given by the boundaries of
the planar segments that have been extracted from a Digital Surface Model (DSM) created from the
LIDAR data. As these positions are not very precise, the determined polygons appear very ragged
and regularisation techniques need to be applied. Some algorithms rely on assumptions with respect
to the roof shapes, e.g. on all corners being right-angled [Vosselman, 1999], which reduces the level
of detail of the resulting models. Another common feature of such algorithms is that they rely on
comparing distances to user-defined thresholds for taking decisions regarding geometric constraints.
Of course, the setting of such thresholds is a critical issue. Another problem is that the quality of the
outlines of the planar segments will also tend to be poor in areas where other objects occlude parts
of the roof planes [Alharty and Bethel, 2004].

The goal of this chapter is twofold. First, we want to describe a method for roof plane de-
lineation that eliminates user-defined thresholds as far as possible. This is achieved by making all

97
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decisions dependent on statistical reasoning, relying on the framework of uncertain projective ge-
ometry [Heuel, 2004] and on robust estimation [Kager, 1989]. Second, we want to describe a new
algorithm for the detection of step edges for delineating roof polygons, taking into account domain
specific information in order to eliminate disturbances caused by trees adjacent to buildings.

7.1.2 Related Work

[Vosselman, 1999] described a method for the reconstruction of buildings by polyhedral models from
LIDAR data. His algorithm for planar segmentation operates on a Delaunay triangulation of the
original LIDAR points. The initial roof boundaries are given by the edges of the outmost triangles
of the roof planes. Two planes are considered to intersect if the distance between their outlines is
small. Step edges are assumed to be either parallel or orthogonal to the main direction of the build-
ing, and a merging algorithm is used to obtain sequences of boundary points belonging to the same
straight line segment. By these assumptions, the algorithm is restricted to buildings only having
right-angled corners at their outlines. [Vögtle and Steinle, 2000] determine step edges as roof plane
outlines of significant elevation difference and estimate the position of these edges by an adjustment
procedure taking into account the maximum gradient of the DSM in the vicinity of the edge. The
authors do not describe how they determine the shapes of more complex step edges. Relying on
the maximum gradient of the DSM is critical at building outlines. This is also acknowledged by
[Alharty and Bethel, 2004]. They thin out the initial roof boundary polygons derived from the out-
lines of the planes by subsequently eliminating points that are determined not to contribute signifi-
cantly to the polygon. This results in isolated polygons for each roof plane, which are not necessarily
connected. Neighbouring polygon segments are aligned if their 2D distance is below a threshold,
and vertices are merged if their 3D distance is small. No adjustment of the vertices is carried out
apart from computing their average position.

[Sze et al., 1998] and [Jiang and Bunke, 1999] described edge extraction algorithms from range
images. These algorithms detect edges at discontinuities of both height and slope. In the context of
building reconstruction, step edges extracted by a generic edge extractor would have to be matched
with the approximate roof outlines. In the case of trees adjacent to buildings, the edge extractor is
likely to determine the outline of the trees rather than the building outline. In [Rottensteiner, 2003], it
was shown how planes can be detected in a LIDAR DSM. Edge pixel candidates were determined at
positions of maximum height gradient. Again, this resulted in problems where trees were adjacent
to buildings. In order to overcome such problems, we propose to use a specific step edge extraction
technique that takes into account domain specific information for detecting edge candidate pixels.

7.2 Background

7.2.1 Workflow for Automated Building Reconstruction

In this work, we assume the locations of buildings to be known. We use the algorithm described
in [Rottensteiner et al., 2005b] for building detection. The building outlines are only known with an
accuracy of up to 1 - 3 m. The accuracy of a LIDAR point is given by the standard deviations σP and
σZ of a planimetric co-ordinate and the height. We chose σP = ±25 cm and σZ = ±7.5 cm. First, the
LIDAR data are sampled into a DSM in the form of a regular grid of width ∆ by linear prediction. For
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the examples in this chapter, the point spacing of the LIDAR data was 1.2 m, and we chose ∆ = 0.5 m.
The work flow for the geometric reconstruction of buildings consists of four steps:

1. Detection of roof planes based on a segmentation of the DSM to find planes which are ex-
panded by region growing.

2. Grouping of roof planes and roof plane delineation: Co-planar roof segments are merged,
and hypotheses for intersection lines and/or step edges are created based on an analysis of the
neighbourhood relations.

3. Consistent estimation of the building parameters to improve these parameters using all avail-
able sensor data.

4. Model regularisation by introducing hypotheses about geometric constraints into the estima-
tion process.

In this chapter we will focus on the second stage, describing a new algorithm for step edge
detection and showing how statistical tests and robust estimation can be applied to make decisions
in the reconstruction process.

7.2.2 Representation of Geometric Entities

In this work, we represent geometric entities by their homogeneous co-ordinates and by the variance-
covariance matrices of these co-ordinates [Heuel, 2004]. Each vector consists of a homogeneous
part and Euclidean part; a Euclidean representation (which is essentially required for graphical out-
put) can be achieved by dividing the vector by the norm of the homogeneous part. The variance-
covariance matrix of the Euclidean representation can be derived by error propagation. To avoid
numerical problems, the centre of the co-ordinate system is shifted to the centre of the building.

• With 2D and 3D points, we generally use the Euclidean representation: X2D = (X,Y, 1)T and
X3D = (X,Y, Z, 1)T . For the variance-covariance matrix QX of the LIDAR points we assume
qXY = qXZ = qY Z = 0, qXX = qY Y = σ2

P and qZZ = σ2
Z .

• 2D lines are represented by L2D = (A,B,W )T , where the homogeneous part (A,B)T is the
normal vector of the line. The rank of the variance-covariance matrix QL2D is 2. 2D edge
segments, i.e. polygon segments at step edges, are represented by L2D, QL2D, their endpoints
X2D

1 and X2D
2 , and their centre point X2D

C . L2D and QL2D are estimated from the edge candidate
points assigned to the edge segments by minimising the squared sum of the distances of these
points from the line.

• 3D planes are represented by vectors P = (A,B,C,W )T , where the homogeneous part
(A,B,C)T is the normal vector of the plane. The rank of the variance-covariance matrix QP

is 3. We also store the centre point X3D
C of the plane. P and QP are estimated from the DSM

points assigned to the plane by minimising the squared sum of the distances of these points
from the plane.

• 3D lines are represented by vectors L3D = (L1, L2, L3, L4, L5, L6)T , where the homogeneous
part (L1, L2, L3)T is the directional vector of the line. If the line is constructed from two points
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X3D
1 and X3D

2 , the vector (L4, L5, L6)T can be interpreted as the cross-product of X3D
1 and X3D

2 .
The rank of the variance-covariance matrix QL3D is 4. 3D edge segments are represented by
L3D, QL3D, and their endpoints X3D

1 and X3D
2 . L3D and QL3D are derived by the intersection

of two planes.

7.2.3 Testing of Geometric Relations

In order to test whether two geometric entities N and M fulfil a certain geometric relation, a distance
metric dNM and its variance-covariance matrix QNM can be computed:

dNM = A (N) ·M = B (M) ·N
QNM = A (N) ·QM ·AT (N) + B (M) ·QN ·BT (M) (7.1)

In equation 7.1, A (N) and B (M) are matrices depending on N and M, respectively. Table 7.1
sums up the definitions of A and B for the relations that are of interest in the context of our work.
The definitions of the construction matrices used in table 7.1 are given by equations 7.2 [Heuel, 2004].

Relation N M A (N) B (M) dof

Identity L2D
1 L2D

2 S
(
L2D

1

)
−S

(
L2D

2

)
2

Incidence X3D P
(
X3D

)T
PT 1

Incidence L3D X3D ΓT
(
L3D

)
ΠT

(
X3D

)
2

Table 7.1: Definitions of the matrices A and B in equation 7.1 [Heuel, 2004]. dof : Degrees of freedom
of the test.

Π
(
X3D

)
=



0 −Z Y 0
Z 0 −X 0
−Y X 0 0
1 0 0 −X
0 1 0 −Y
0 0 1 −Z



S
(
X2D

)
=

 0 −1 Y
1 0 −X
−Y X 0

 (7.2)

Γ
(
L3D

)
=


0 L3 −L2 −L4

−L3 0 L1 −L5

L2 −L1 0 −L6

L4 L5 L6 0


The dimension of the distance vector dNM according to table 7.1 and equations 7.1 and 7.2

might be higher than the degree of freedom (dof ) of the test, resulting in a singular variance-
covariance matrix QNM . Thus, dof rows of A (N) and B (M) have to be selected in order to obtain a
reduced distance vector d′NM :
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d′NM = A′ (N) ·M = B′ (M) ·N
Q′NM = A′ (N) ·QM ·A′T (N) + B′ (M) ·QN ·B′T (M) (7.3)

A′ and B′ are the reduced matrices. From d′NM , a quantity tNM following a χ2
dof distribution

can be derived:

tNM = d
′T
NM ·Q

′−1
NM · d

′
NM (7.4)

Using a significance level α, a hypothesis is accepted if tNM is smaller than the (1− α) - quan-
tile χ2

1−α;dof of the χ2
dof distribution with dof degrees of freedom. Hypotheses Hi about geometri-

cal relations can be ranked according to the ratios between the test statistics tiMN and the quantiles
χ2

1−α;dof(i).

7.3 Roof plane delineation

7.3.1 Detection of Roof Planes

For roof plane detection we use the iterative scheme of seed region detection and region growing
described in [Rottensteiner, 2003]. In region growing, each point X3D of the DSM adjacent to the
seed region has to be tested whether or not it belongs to the plane P. In order to speed up the
computation, the variance σ2

d of the distance of X3D from P is computed only once for a fixed point
at a certain distance from P’s centre point X3D

C , so that in the region growing process the distance of
each point has to be compared to a fixed threshold dmax:

dmax =
√
χ2

1−α;1 · σd (7.5)

This is justified by the fact that σ2
d is dominated by the uncertainty of X3D and the Euclidean

part of P. After each iteration, the roof plane parameters are recomputed and a decision is taken on
whether or not a detected segment actually corresponds to a plane. This is done by comparing the
r.m.s. error σ0 of unit weight of the planar adjustment to a user-defined threshold σPmax. It could,
however, be replaced by a test of σ0, comparing it to the accuracy of a LIDAR point. Here, we choose
σPmax = 2 · σZ .

Our iterative scheme of seed region selection and region growing yields an oversegmentation
of the DSM [Rottensteiner, 2003]. Co-planar neighbouring planes have to be merged after segmenta-
tion. For each pair of neighbouring planes Pi and Pj we compute the parameters of the combined
plane as well as its r.m.s. error of unit weight σc. The ratio F = σ2

c/σ
2
s between σc and the r.m.s. er-

ror of unit weight σs of a separate adjustment of the two planes follows a Fisher distribution with
fc = ni + nj − 3 and fs = ni + nj − 6 degrees of freedom, where ni and nj are the numbers of DSM
points assigned to Pi and Pj , respectively. In order to compare hypotheses about the co-planarity of
planes, we compute the ratio rij = F/Ffc,fs,1−α = σ2

c/(σ
2
s · Ffc,fs,1−α), where Ffc,fs,1−α is the (1− α)

- quantile of the Fisher distribution. Two planes Pi and Pj are considered to be co-planar if rij < 1.
As this turned out to be too pessimistic, we introduced a second criterion, accepting planes to be
co-planar if σc is below a certain threshold. All co-planar pairs Pi and Pj are ranked according to
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rij . The pair receiving the minimum value of rij is merged, and the co-planarity ratios rij are re-
computed for the remaining planes. This process is repeated until no further planes can be merged.
The upper part of figure 7.1 shows the planar segmentation for a simple roof partly occluded by trees,
whilst the lower part shows a more complex industrial building.

P
f

Figure 7.1: Orthophoto (left) and planar segments (right) for two buildings. Width of upper window:
60 m; lower window: 115 m. Plane Pf will be eliminated later.

7.3.2 Classification of Neighbourhood Relations

Once the roof planes have been detected, their boundary polygons are determined. We create a
Voronoi diagram of the planar segments. The boundaries of the planes Pi in the Voronoi diagram
deliver approximate values for the boundary polygons pi of these planes. By using the Voronoi dia-
gram for approximations, we overcome segmentation problems such as gaps between neighbouring
planes (e.g. caused by chimneys), or incomplete planes due to occluding trees. The heights of the
vertices of pi are computed using the parameters of the plane Pi. The polygons pi are split into an
ordered set of polygon segments pi,j,k, where each segment pi,j,k separates plane Pi from its neigh-
bouring plane Pj . (The index k refers to the sequential position of pi,j,k within pi, whereas the index
j denotes the neighbouring plane. Unlike j, k can thus only occur once in pi). Then, each polygon
segment pi,j,k is classified according to whether it corresponds to a step edge or to an intersection
line. This classification has to take into account the uncertainty of the planes Pi and Pj and of the
approximate positions of the vertices Xl

i,j,k of pi,j,k. We test all vertices of pi,j,k whether they are
co-incident with the intersection line L3D of Pi and Pj , in the way described in section 7.2.3. The
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standard deviation of a planimetric co-ordinate σP of Xl
i,j,k has to reflect the fact that the boundaries

of the Voronoi diagram are more uncertain for roofs having a small tilt δ. σP also depends on the
distance di of the point from the nearest point actually assigned to the plane Pi:

σP =
√

[σZ · cot (δ)]2 + d2
i (7.6)

For small δ, we limit σP by a threshold σPmax. If all vertices of pi,j,k are found to be incident
with the intersection line L3D, pi,j,k is classified as an intersection. If pi,j,k is an outer boundary or if no
vertex is found to be on L3D, pi,j,k is classified as a step edge. If some vertices of pi,j,k are determined
to be on L3D and others are not, pi,j,k will be split up into several new segments, each having a
different classification. Of these new segments, any segment smaller than 2 · ∆ and intersection
segments whose average distance from the approximate polygon is larger than the segment length
are discarded.

A further consistency check is carried out for intersection segments. The planimetric positions
of the boundaries between neighbouring roof planes are very uncertain especially with flat roofs. In
the lower building of figure 7.1, the roof planes have a tilt of about 2o, and the initial boundaries are
about 2.5 m from the intersection line. Replacing the original boundaries by the intersection line will
cause many points originally assigned to plane Pi to be within the boundary of Pj and vice versa
(figure 7.2). Therefore, we compute the planar parameters of the cut-off segments Pij and Pji. If
Pji is co-planar with Pi\Pij (i.e. Pi without the points belonging to Pij) and if Pij is co-planar with
Pj\Pji, then the hypothesis that L3D is the boundary between Pi and Pj is accepted; otherwise, a
step edge is assumed. The left part of figure 7.3 shows the results of the classification of the segments
pi,j,k for the two buildings in figure 7.1. 1

P
i

P
j

L
3D P

ij

P
ji

Figure 7.2: Two planes Pi, Pj . Pij is cut off Pi by the intersection line L3D, and Pji is the part of Pj

cut off by L3D.

7.3.3 Detection of Step Edges

7.3.3.1 Detection of Candidate Points

Step edges correspond to the positions of maximum height changes. However, this is only true where
no other objects interfere with the roof planes. That is why we include knowledge about the nature
of roof planes into the extraction process. This process is different for step edges at outer boundaries
and those separating two roof planes (figure 7.4). The original polygons pi,j,k are sampled at ∆. For
each vertex of pi,j,k, we try to determine one edge candidate point by analysing a profile of the DSM
that is orthogonal to pi,j,k and passes through that vertex. The profiles should be long enough to
make sure that they partly cover Pi. All profiles are ordered from the interior of Pi to its exterior.

1The left part of the figure only contains intersections as final polygon segments (red), since the final positions of the
step edges have not yet been determined.
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Figure 7.3: Blue dashed lines: approximate boundary polygons. Green: original step edges. Red:
final polygon segments. Left: before generalisation of step edges. Right: after improving the planar
segmentation. A colour version of this figure can be found on page 131.
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Figure 7.4: Left: Step edge detection at building outlines. X1: the first point on the profile outside the
tolerance band of width dmax. Xmax: point of maximum height gradient. Right: a step edge between
two planes. X1 and X2: the first points outside the tolerance bands.

At outer boundaries, we look for the first point on the profile that is not on the plane Pi, i.e.
for the first point X1 having a distance larger than dmax (cf. equation 7.5) from Pi. If no such point is
found, the profile is supposed not to contain the step edge. Otherwise, the point Xmax of maximum
height difference is searched for on the profile starting from X1. The height difference between
neighbouring points must be negative, because the terrain has to be lower than the roof. The search
for a maximum is thus stopped if the height difference becomes positive, which happens if the roof
boundary is occluded by a high tree. A further criterion is that the point Xmax must be below the
roof plane, otherwise it is discarded. By this criterion we eliminate points on low vegetation next to a
roof. Where no candidate point is found, the step edge is thus assumed to be a straight line between
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the two closest step edge points visible to the sensor, which is exactly what a human operator would
do in such a situation. For instance, in the upper building of figure 7.3, all corners are close to and
partly occluded by trees. Building detection has included the group of trees in the right lower corner
to the building. No incorrect edge points are determined.

With step edges separating two roof planes, we search for the first points X1 and X2 that are
inconsistent with the two planes in a similar way. If the order of X1 and X2 is reversed, no step edge
point can be determined; otherwise the position Xmax of the step edge is determined as the position
of the maximum height difference between X1 and X2.

7.3.3.2 Step Edge Generalisation

The detected edge polygons appear very noisy (figure 7.3) and need to be thinned out in a suit-
able manner. Again, we will mostly rely on statistical tests. However, we require one user-specified
threshold which describes a degree of generalisation: the maximum length lmax of a polygon segment
that can be discarded. We chose lmax to be 2 m and thus about two times the original point distance.
First we eliminate points having a distance larger than lmax from both their predecessor and succes-
sor in the edge pixel chain. These outliers occur at profiles that belong to short segments of pi,j,k
corresponding to noise. The remaining edge pixel chain is split into 2D segments L2D

n by a simple
recursive splitting algorithm. The parameters of L2D

n are computed from an adjustment considering
all edge points assigned to them. Segments containing less than three edge points are discarded.
Then we test each pair of neighbouring 2D segments whether they are identical in the way described
in section 7.2.3. We merge the pair possessing the best test statistic tL2DL2D (equation 7.4) and recom-
pute that test statistic for the neighbours of the merged segment. This procedure is repeated until
no further segments can be merged. It turned out to be advantageous to replace the r.m.s. error of
unit weight of the 2D segments by a fixed value equal to the original point spacing of the LIDAR
data because the actual estimates derived in the adjustment were too optimistic. We also consider
segments with a combined r.m.s. error of unit weight smaller than ∆ to be candidates for merging. In
a second merging step we search for segments L2D

n shorter than lmax. For those segments, we check
whether their neighbours L2D

n−1 and L2D
n+1 are identical. If this is the case, L2D

n is eliminated, and L2D
n−1

and L2D
n+1 are merged. Finally, the vertices of the polygon segment corresponding to the step edge are

determined by intersecting neighbouring 2D segments. If the segments are nearly parallel, replacing
the segment endpoints by the intersection point might change the direction one of these segments. If
this is the case, or if more than 30% of one segment were cut off by the intersection, the neighbouring
end points are connected by a polygon edge.

7.3.3.3 Improving the Planar Segmentation

Now that the step edges have been determined precisely, the roof polygons pi are obtained inde-
pendently by a concatenation of their respective segments. The polygons are shifted with respect
to their original positions. This affects the original segmentation and thus also the neighbourhood
relations. That is why, after generating the roof polygons pi, all pixels inside pi assigned to a plane
other than Pi and all pixels assigned to Pi outside pi are eliminated from their respective planes. This
is followed by a new iteration of region growing, where first the regions are only allowed to grow
within their polygons pi. Thus an improved segmentation is obtained. Small segments such as the
plane Pf in figure 7.1 might be eliminated in this process. Having improved the segmentation, the
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boundary classification and step edge detection are repeated. The right part of figure 7.3 shows the
final positions of all segments pi,j,k for the buildings in figure 7.1.

7.3.4 Combination of Roof Polygon Sections

Until now, all polygon segments pi,j,k were handled individually. Therefore, having determined the
positions of these segments, consistency checks have to be carried out. First, the internal consistency
of each polygon pi is checked. If there are two consecutive segments pi,j,k and pi,l,k+1 classified as
intersections, we have to check whether the corresponding intersection lines themselves intersect. If
replacing the segment endpoints X2,k and X1,k+1 by the intersection point I changes the direction of
one of the segments, a new step edge has to be inserted between X2,k and X1,k+1 (figure 7.5). Second,
we have to ensure that for each segment pi,j,k belonging to the boundary of plane Pi, but not to the
building outline, there is a matching opposite segment pj,i,l of the same type belonging to plane Pj .
If no such segment is found, it has to be inserted. With step edges, the 2D segments making up pi,j,k
and pj,i,l have to be matched. We evaluate two measures between two 2D segments L2D

m ∈ pi,j,k and
L2D
n ∈ pj,i,l: the test statistic tmn (equation 7.4) and the overlaps between the segments, i.e. the lengths

of the projections of L2D
m to L2D

n and vice versa. We determine that L2D
m and L2D

n match if the overlap
is more than 50% for one of the segments and if a statistical test shows the 2D lines to be identical.
Edge pixel chains of matching segments are merged. Segments without a match are discarded.
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Figure 7.5: Checking consistency of pi,j,k and pi,l,k+1.

Having obtained consistency of the polygon segments both within their polygons and with
respect to their neighbouring planes, the polygon segments have to be combined. This involves
an adjustment of the vertices X at the transitions between consecutive polygon segments pi,j,k and
pi,j,k+1. First, all polygon segments intersecting at one planimetric position have to be found. Fig-
ure 7.6 shows an example involving three planes of which two intersect. There are altogether three
polygon segments. One of them is the intersection line L3D, and the other two are step edges. Of
the polygon segments corresponding to the step edges, the two 2D segments L2D

13 and L2D
23 closest to

the intersection point are considered. There are two intersection points X1 and X2 having the same
planimetric position but different heights. For adjustment, we consider all the planes in the vicinity
of the vertices X1 and X2, i.e. the roof planes (P1, P2, P3) and the walls corresponding to the step
edge segments (L2D

13 , L2D
23 ). For each plane, we observe the distance between the plane and the point

Xi = (X,Y, Zi)
T to be 0. In order to model the uncertainty of the planes and step edges, we introduce

approximate values X0
i =

(
X0, Y 0, Z0

i

)T and compute the weights of the distance observations from
the standard deviations σi of the distances between the approximate position X0

i and the respective
plane. The observation equations for a roof plane u giving support to height Zi and for a wall w look
as follows:
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0 + vui = Au ·
(
X0 + δX

)
+Bu ·

(
Y 0 + δY

)
+ Cu ·

(
Z0
i + δZi

)
+Wu

0 + vw = Aw ·
(
X0 + δX

)
+Bw ·

(
Y 0 + δY

)
+Ww (7.7)
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Figure 7.6: Vertex adjustment.

In equations 7.7, v denotes the correction of the observation. Equations 7.7 are used in an
iterative least squares adjustment. After each iteration, the approximate co-ordinates are improved
by the estimates (δX, δY, δZi), and the weights are re-computed. This model assumes that all walls
intersect in one vertical line. Due to errors in step edge extraction, small step edge segments might
have been missed and the extracted step edge segment might pass by the intersection point at (X,Y ).
To find such segments, we compute the normalised corrections vnw = vw/σw of the wall observations
after each iteration and exclude the wall with a maximum value of vnw if vnw > 3.5. For all excluded
walls, a new step edge segment is introduced between the original end point of the step edge and the
adjusted position of the vertex. The left part of figure 7.7 shows the resulting roof boundaries.

7.3.5 Regularisation and Adjustment

After the vertices have been adjusted, a consistent polyhedral model in boundary representation is
created. Only local information was used for the adjustment of the vertices. In an overall adjustment,
all observations (original LIDAR points, 2D positions of step edges) should be used to determine the
parameters of all planes and vertices simultaneously. The model can then be checked for geometrical
regularities. Where evidence for such regularities is found, they can be considered in a final adjust-
ment. In [Rottensteiner, 2003] we have presented the adjustment model and the way such regularities
can be considered. The adjustment module has been implemented but has not yet been integrated
into the algorithm. The “constraint generator” checking for geometric regularities has not yet been
implemented. The right part of figure 7.7 shows the adjusted roof polygons with manually added
constraints back-projected to an areal image of the area.

7.4 Results and Discussion

Figures 7.7 and 7.8 show some buildings extracted from the LIDAR data in our test data set. In gen-
eral, the roof structure is well preserved in the models. Corners are not forced to be right-angled. The
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Figure 7.7: Left: roof polygons after adjustment of vertices. Right: after overall adjustment with
constraints (colours selected for visibility).

outline of the buildings still looks a bit ragged, and in some cases as in figure 7.8(c) the regularisation
would improve the extracted model considerably. Figure 7.7d shows the limits of the plane extrac-
tion method: even though the general roof shape has been captured, the rightmost plane actually
merges a smaller protruding building part consisting of two planes; the larger of these planes has
six LIDAR hits, the smaller one has none. The industrial (lower) building in figure 7.7 is in general
correctly reconstructed; however, an outlier in the LIDAR data caused a “hole” in the DSM which
resulted in one of the corners on the right edge of the building being cut off. Figure 7.7 shows how
the visual appearance is improved by the regularisation and the overall adjustment. The basis for
such an adjustment is a topologically correct model, which can be systematically scanned for geo-
metrical regularities. The industrial buildings in our examples (lower part of figure 7.7, figures 7.8(a)
and 7.8(b)) are not easily reconstructed by primitives having a rectangular footprint. The r.m.s. error
of planar fit is in the range of ±5 cm to ±10 cm for all planes. The internal precision of the adjusted
building vertices in figure 7.7 is in the range of ±5 cm to ±30 cm in planimetry (depending on the
intersection geometry, the geometric constraints, and the number of detected edge pixels for step
edges) and ±2 cm to ±3 cm in height.

7.5 Conclusions

We have presented a method for roof plane delineation from LIDAR data that aims at the reconstruc-
tion of buildings by polyhedral models. No 2D GIS data were required, and our examples show
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(a) Width = 150 m (b) Width = 110 m

(c) Width = 34 m (d) Width = 42 m (e) Width = 44 m

Figure 7.8: Five buildings extracted from the LIDAR data.

that models of a high level of detail can be reconstructed. Our method includes a new approach
to step edge detection which should make the determination of building outlines less vulnerable to
effects of adjoining trees. In the reconstruction process, most decisions are taken based on statistical
tests or robust estimation, which is an important step towards making the reconstruction of build-
ings from LIDAR data more robust. The resulting building models are topologically correct if not
yet regularised. Preliminary results using geometric constraints generated manually, based on visual
inspection, show that using our method it is feasible to generate high-quality building models from
LIDAR data alone.
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Chapter 8

Consistent Estimation of Building
Parameters Considering Geometric
Regularities by Soft Constraints

8.1 Introduction

The shapes of buildings and other man-made objects, despite being very complex in realistic scenes,
are often characterised by certain geometrical regularities. At a level of detail typical for topographic
mapping (mapping scales 1:500 to 1:10000) most buildings can be modelled by polyhedrons. This
implies that all vertices belonging to a face must be situated on a plane in object space. Apart from
that, other geometrical regularities include perpendicular walls, horizontal roof edges, or symmetry
between roof faces.

It is the goal of automatic building reconstruction to generate 3D building models from sensor
data in previously detected regions of interest. In this context, model regularisation by consider-
ing geometric constraints is essential for achieving high quality building models. Besides result-
ing in a more regular visual appearance, considering geometric regularities helps to improve the
geometric accuracy of the models, especially if the sensor geometry is weak. There are two gen-
eral strategies for building reconstruction, differing in the way buildings are represented in the
reconstruction process and thus also in the way geometric regularities are considered. The first
strategy is based on a bottom-up process. The sensor data are segmented in order to obtain 3D
features such as edges and planes. These features are combined to obtain a polyhedral model,
e.g. [Rottensteiner et al., 2005a]. Alternatively, buildings can be reconstructed by parametric prim-
itives in a top-down process, e.g. [Brenner, 2000]. In the first case, assumptions on geometric reg-
ularities may or may not be used in order to select the 3D features and group them; they can and
should be considered as additional information in a final parameter estimation process yielding con-
sistent and regularised building models. In the second case, assumptions about regularities, e.g.
rectangular footprints, are an implicit part of the description of the primitives. Using parametric
primitives reduces the level of detail that can be achieved as the number of primitives is usually
small and most have a rectangular footprint. This can be avoided by using “adaptive primitives”
[Rottensteiner and Schulze, 2003], i.e. primitives having an adaptive parameterisation. However, the
bottom-up strategy seems to be more flexible with respect to handling geometric regularities. They
are not an implicit part of the building model, but rather are added as additional information to the

111
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estimation of the building parameters and thus only have to be considered where enough evidence is
found in the data. From the point of view of parameter estimation, this can be handled in two ways.
First, geometric regularities can be considered in the adjustment by constraint equations. This strat-
egy will result in models precisely fulfilling these “hard” constraints. Brenner [Brenner, 2005] has
given an overview about the ways such constraints can be handled in object modelling. The alterna-
tive is to add “soft constraints”, i.e. direct observations for entities describing a geometric regularity,
to the adjustment of the sensor-based observations. In this case, the constraints will not be fulfilled
exactly, but there will be residuals to the observations. The degree to which the constraints are ful-
filled depends on the stochastic model. Using the second strategy, robust estimation techniques can
be applied to the soft constraints to determine whether a hypothesis about a geometric regularity fits
to the sensor data or not.

Vosselman [Vosselman, 1999] proposed an algorithm for building reconstruction from airborne
laser scanner (ALS) data that determined building outlines under the assumption of all neighbouring
walls intersecting at right angles. He addressed the necessity of adding constraints to the estimation
of the model parameters without doing so himself. Vögtle and Steinle [Vögtle and Steinle, 2000]
reconstruct buildings from ALS and spectral data. The coordinates of their building vertices are es-
timated by local adjustment only, and no geometric regularities are considered. Alharty and Bethel
[Alharty and Bethel, 2004] describe two methods for roof outline detection. The first method relies
on the existence of a dominant roof direction and the neighbouring walls being orthogonal. The
second does not require such assumptions, but no overall adjustment is carried out, and no geo-
metric regularities are considered. Ameri [Ameri, 2000b] describes a general adjustment model for
building reconstruction from image data. Geometric constraints are considered. For instance, for
two orthogonal building edges a direct observation of the inner product of the directional vectors
is introduced. The weighting of such an algebraic observation seems to be somewhat critical. A
method for fitting building models to multiple aerial images using “hard” constraints was presented
in [Vallet and Taillandier, 2005]. [McGlone, 1996] describes the mathematical basis for handling geo-
metrical constraints both as (“hard”) condition equations and as “soft” constraints, using this basis
for improving the results of multiple-image point matching under the assumption of certain object
regularities.

In [Rottensteiner et al., 2005a] we have presented a method for automatic building reconstruc-
tion from ALS data that is based on the detection and combination of roof planes. The final step
of building reconstruction is an overall adjustment of all observations to determine the model pa-
rameters consistently. The adjustment model was originally presented in [Rottensteiner, 2003], but
implemented only recently. It is the first goal of this chapter to present this adjustment model in its
improved and revised form and to show how it can be used as a tool for consistent estimation of
building parameters for different types of available sensor data. Special emphasis is laid on the way
geometric regularities can be considered. The second goal of this chapter is to evaluate the results of
building reconstruction from ALS data by comparing automatically derived building models to ref-
erence data. This comparison should also show how effective the overall adjustment is in improving
the geometric quality of building models.

8.2 Workflow for Building Reconstruction

Our algorithm for building reconstruction requires ALS points and a coarse approximation of
the building outlines. The ALS data are sampled into a Digital Surface Model (DSM) in the
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form of a regular grid of width ∆ by linear prediction. The work flow consists of three steps
[Rottensteiner et al., 2005a]:

1. Detection of roof planes based on a segmentation of the DSM. These planes are expanded by
region growing.

2. Grouping of roof planes and roof plane delineation: Co-planar roof planes are merged, and
hypotheses for intersection lines and/or step edges are created based on an analysis of the
neighbourhood relations of the roof planes.

3. Consistent estimation of the building parameters to improve these parameters using all avail-
able sensor data and considering geometric constraints.

In step 2, the boundary polygons of the roof planes are determined as a combination of roof
plane intersections and step edges, the step edges being located in the DSM by an edge extraction
technique taking into account specific information about buildings. Decisions in the determination
of the shapes of the roof polygons are based on hypothesis tests and robust estimation. We use
the concept of uncertain projective geometry [Heuel, 2004] for consistent modelling of the stochastic
properties of all geometric entities. In this chapter, we will focus on the final step of the reconstruction
process.

8.3 The Adjustment Model

The adjustment problem we want to solve can be described as follows. We assume to have given a
polyhedral building model in boundary representation (B-rep). The model consists of planar faces,
loops, edges, and vertices. Each edge is the intersection of two neighbouring faces, and each vertex
is the intersection of at least three planes of the model. All vertices belonging to the boundary of
a face have to lie in the face’s plane. The faces of the model are labelled as being a roof face, a
wall, or the floor. Walls are modelled to be strictly vertical. The topology of the model and some
meaningful initial values for its parameters are assumed to be known. The initial model can be the
outcome of the bottom-up strategy for building reconstruction (cf. section 8.2). In this case it is an
approximate version of the final model, and its initial parameters are already derived in some way
from the sensor data. The coarse model has to be analysed for geometric regularities, which can be
done automatically or based on the interaction of a human operator, and the model parameters have
to be estimated. For that purpose, we use five categories of observations:

1. Observations representing the topology of the model

2. Observations corresponding to geometric regularities

3. Sensor and sensor-derived observations

4. Observations linking the sensor observations to the model

5. Direct observations for unknowns to avoid singularities.

They are used to determine four categories of unknowns:
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1. The co-ordinates of the model vertices

2. The parameters of the model planes

3. Transformation parameters, e.g. the unknown angle for each pair of perpendicular walls
(cf. section 8.3.2)

4. Additional unknowns, e.g. unknown object co-ordinates for each ALS point (cf. section 8.3.3.2).

Our method for handling the model topology and geometric regularities is independent not
only from the types of sensor data that are used, but also from the way in which the original model
was created. The adjustment model is based on the program ORIENT for hybrid photogrammetric
adjustment, especially on its concept of handling object space constraints by “GESTALT” observa-
tions [Kager, 2000].

8.3.1 Observations Representing Model Topology

It is the idea of our method to find a mapping between the B-rep of the polyhedral model and a
system of GESTALT observations representing the model topology in adjustment. GESTALT ob-
servations are observations of a point P being situated on a polynomial surface [Kager, 2000]. The
polynomial is parameterised in an observation co-ordinate system (u, v, w) related to the object co-
ordinate system by a shift P0 and three rotations ΘT = (ω, ϕ, κ)T . The actual observation is P’s
distance from the surface which has to be 0. Using (uR, vR, wR)T = RT (Θ) · (P−P0), with RT (Θ)
being a transposed rotational matrix parameterised by Θ, and restricting ourselves to vertical planes
for walls and tilted planes for roofs, there are three possible formulations of GESTALT observation
equations:

ru =
mu · uR + a00 + a01 ·mv · vR√

1 + a2
01

(8.1)

rv =
mv · vR + b00 + b10 ·mu · uR√

1 + b210

(8.2)

rw =
mw · wR + c00 + c10 ·mu · uR + c01 ·mv · vR√

1 + c2
10 + c2

01

(8.3)

In equations 8.1 - 8.3, ri are the corrections of the fictitious observations of co-ordinate i and
mi ∈ {−1, 1} are mirror coefficients. An application is free to decide which of the parameters (P, P0,
Θ, ajk, bik, cij) are to be determined in adjustment and how to parameterise a surface. In addition,
different GESTALTs can refer to identical transformation or surface parameters, which will be used to
handle geometric regularities (cf. section 8.3.2). Here, we declare the rotations to be 0 and constant.
P0 is a point situated inside the building and constant. For each face of the B-rep of the building
model, we define a set of GESTALT observations, taking one of equations 8.1 and 8.2 for walls and
equation 8.3 for roofs. The unknowns to be determined are the object co-ordinates of each vertex
P and the plane parameters (ajk, bik, cij). As each vertex is neighboured by at least three faces, the
co-ordinates of the vertices are determined from these GESTALT observations and thus need not be
observed directly in the sensor data. Further, these observations link the vertex co-ordinates to the
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surface parameters and thus represent the building topology in the adjustment. They do already en-
force geometric constraints by modelling walls as being strictly vertical and by declaring all vertices
of a face to lie in the same plane. The stochastic model of these GESTALT observations is described
by the a priori standard deviation σT of the fictitious distance between a point and the plane.

8.3.2 Observations Representing Geometric Regularities

Geometric regularities are considered by additional GESTALT equations, taking advantage of spe-
cific definitions of the observation co-ordinate system and specific parameterisations of the planes.
Geometric regularities can occur between two planes or between two vertices of the model. In the
current implementation, we restrict ourselves to regularities involving planes or vertices being neigh-
bours of one edge. In all cases, the observation co-ordinate system is centred in one vertex P1 of that
edge and the w-axis is vertical, thus ω = ϕ = 0 = const. Four types of geometric regularities are
considered (figure 8.1). The first type, a horizontal roof edge, involves the edge’s end points: Its two
vertices P1 and P2 must have identical heights. The two points are declared to be in a horizontal
plane εh that is identical to the (u, v) - plane of the observation co-ordinate system. One observation
is inserted for P2: rw = wR = Z2 − Z1.

The other cases involve the two neighbouring planes of an edge. One of the axes of the ob-
servation coordinate system is defined to be the intersection of these two planes ε1 and ε2. There is
one additional unknown rotational angle κ describing the direction of the u-axis. For each vertex Pi

of the planes, GESTALT observations are added for ε1 or ε2. For the edge’s second vertex P2 two
observations (one per plane) are added. The GESTALT observations for ε1 and ε2 are parameterised
in a specific way:

• The edge is the intersection of two horizontal and symmetric roof planes ε1 and ε2. There is
only one tilt parameter c1

01. Symmetry is enforced by selecting mv = −1 for ε2:

ε1 : rw =
wR + c1

01 · vR√
1 +

(
c1

01

)2 ; ε2 : rw =
wR − c1

01 · vR√
1 +

(
c1

01

)2 (8.4)

• The edge is the intersection of two perpendicular walls: ε1 : ru = uR, ε2 : rv = vR. There is no
additional surface parameter to be determined.

• Two walls are identical and the edge does not really exist in the object: ε1 : rv = vR, ε2 : rv = vR.
There is no additional surface parameter. P1 and/or P2 might become undetermined, so that
direct observations for one of the co-ordinates of these vertices have to be generated.

The stochastic model of these GESTALT observations is described by their a priori standard
deviations σC . The “soft constraints” thus modelled will only be fulfilled up to a degree depending
on σC . The GESTALT observations corresponding to the geometrical constraints can be subject to
robust estimation for gross error detection. If the sensor observations contradict the constraints, the
respective GESTALT observations should receive large residuals, which can be used to modulate the
weights in an iterative robust estimation procedure [Kager, 1989]. Thus, if the GESTALT observations
describing a geometric constraint are eliminated in adjustment, this means that the hypothesis about
a constraint was wrong.
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Figure 8.1: (a) Horizontal edge; (b) horizontal and symmetric edge; (c) perpendicular walls; (d) Iden-
tical walls.

Whether or not a hypothesis about a constraint is introduced can be decided in several ways.
For instance, the coarse model can be analysed whether the angles between neighbouring walls
differ from 90o by less than a threshold εα, and a constraint about perpendicular walls can be in-
serted if this is the case. More sophisticated methods can take into account the stochastic proper-
ties of the coarse model. In a semi-automatic working environment, geometric constraints can be
inserted (and enforced) by the user. The principle can be expanded to the definition of paramet-
ric primitives by generating more complex systems of constraints between the planes of a building
[Rottensteiner and Schulze, 2003].

8.3.3 Sensor Observations and Observations Linking the Sensor Data to the Model

The observations described so far link the plane parameters to the vertices or to the parameters of
other planes. In order to determine the surface parameters, observations derived from the sensor
data are necessary. ORIENT can handle a large variety of sensor models. Any of these sensors or any
combination of them can be used in adjustment. Here we will restrict ourselves to image and ALS
data.

8.3.3.1 Image co-ordinates

Points measured in images are related to object space by the perspective equations. We assume the
orientation parameters of the images to be known and constant. An observed image point has to
be assigned to an entity of the object model to contribute to the determination of the model param-
eters. Two cases can be distinguished. First, an image point can be assigned to a building vertex,
which yields two perspective observation equations for that vertex. Second, the image point can be
assigned to a model edge. As such a point is not a part of the model, its object co-ordinates have
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to be determined as additional unknowns; however, each point assigned to an object edge yields
four additional observations: its two image co-ordinates and two GESTALT observations (one for
each object plane intersecting at the object edge). The stochastic model of an image co-ordinate is
described by its standard deviation σI . Depending on the way the image points were determined,
σI can describe the accuracy of manual measurement, or it can be the result of a feature extraction
process.

8.3.3.2 ALS data

ALS points give support to the determination of the roof plane parameters. As an ALS point is
not a part of the model, its object co-ordinates have to be determined as unknowns. Each ALS
point gives four observations, namely its three co-ordinates and one GESTALT observation for the
roof plane the point is assigned to. As the walls only receive few laser hits, their parameters have
to be determined from other observations. Walls correspond to sections of step edges in the DSM
[Rottensteiner et al., 2005a]. Each step edge section is derived from “edge points” in the DSM (e.g.
points of maximum height gradient). In order to determine the walls, these edge points have to be
used as observations in a way similar to the original ALS points: Each edge point gives three obser-
vations (its X and Y co-ordinates and one GESTALT), but two additional unknowns (again X and
Y ). The ALS observations can be modelled in two different ways: They can be introduced as “control
point” observations, i.e. as direct observations for the object co-ordinates, or they can be introduced
as “model points”. In the latter case, the ALS points are linked to the object co-ordinate system by a
rigid motion, and the six parameters of that rigid motion are estimated in the adjustment. Using this
variant, local shifts and rotations of the ALS co-ordinate system with respect to the object co-ordinate
system that might be the result of systematic GPS and INS errors of the ALS system can be compen-
sated. This only makes sense if additional data, e.g. aerial images, are available. Otherwise, the ALS
and the object co-ordinate systems are assumed to be identical. The stochastic model of an ALS point
is described by two standard deviations: σXY for its planimetric co-ordinates and σZ for its height.
The edge point co-ordinates are introduced with a standard deviation σE .

8.3.4 Overall Adjustment

All observations are used in an overall adjustment process. The weights of the observations are deter-
mined from their a priori standard deviations. Correlations between the observations (e.g. between
the x and y image co-ordinates of an image point) are not considered. Robust estimation is carried out
by iteratively re-weighting the observations depending on their normalised residuals in the previous
adjustment [Kager, 2000]. The reweighting scheme is only applied to the sensor observations and to
the observations modelling geometric constraints, in order to eliminate gross observation errors and
wrong hypotheses about geometric regularities. The surface parameters and the vertex co-ordinates
determined in the adjustment are used to derive the final building model.
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8.4 Evaluation

8.4.1 The Test Data

For our test, we selected 8 buildings of different size and complexity out of a larger test area in
Fairfield (NSW). They were chosen to highlight the method’s potential to handle buildings of both
regular and irregular shapes. Both ALS and image data were available for that test site. The ALS
data were captured using an Optech ALTM 3025 laser scanner with a nominal average point distance
of 1.25 m. As our test buildings were at the edge of a swath, there was a relatively irregular point
density, with point distances of about 0.5 m in flight direction and 1.5 - 2 m across flight direction.
The aerial images were a stereo pair taken at a scale of 1:11000 (focal length f = 30 cm). They were
scanned at a resolution of 15 µm, which corresponds to a ground sampling distance of 0.17 m.

8.4.2 Generating Reference Data

The aerial images were used to determine the reference data for the test. In a semi-automatic work-
ing environment, the roof polygons were digitised in the images and hypotheses about geometric
regularities were introduced by the human operator. The adjustment model described in section 8.3
was used to determine the parameters of the reference buildings, taking into account the GESTALT
observations, the image co-ordinates of the building vertices, and ALS points to improve the height
accuracy of the reference models. The ALS points were necessary because of the weak configura-
tion of the images. Figure 8.2 shows an upright projection of a reference building resembling a hip
roof and the ALS points. Three variants are shown: the results of photogrammetric plotting with and
without geometric constraints and the results achieved by combining photogrammetric plotting with
geometric constraints and ALS data. For the variant without geometric constraints the RMS values
of the height differences of the horizontal eaves is ±0.25 m. In the constrained version, the eaves are
horizontal, but the figure reveals that the heights of the eaves derived from the ALS data are about
50 cm lower. The ALS points were introduced as model co-ordinates; the shift was about 15 cm in X
and Y and about 5 cm in Z. The precision of the building vertices was about ±17 cm in X and Y ,
and about ±5 cm in Z.

0.1 m

Figure 8.2: Upright projection of a hip roof (heights enlarged by a factor 2) generated from images
without constraints (dotted lines); images with constraints (broken lines); images with constraints
and ALS points (full lines). Circles: ALS points.
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8.4.3 Results and Discussion

From the ALS data, a DSM with a grid width of ∆ = 0.5 m was generated. From the DSM, roof planes
were extracted, and the roof boundary polygons were determined as a combination of intersection
lines and step edges in the way described in [Rottensteiner et al., 2005a]. These initial roof boundary
polygons are shown super-imposed to the DSM in figure 8.3.

1

105 m 86 m

2

120 m

3

31 m

4

6

44 m97 m

5

19 m

7

9 m

8

Figure 8.3: Initial roof boundary polygons for the eight buildings superimposed to the DSM. The
buildings are shown in different scales, according to the extents shown in the figure.

In general the models look quite good except for building 8, which is partly occluded by trees.
There is some noise in the outlines of buildings 1 and 2. Buildings 4, 6, 7, and 8 and the main part of
building 3 should have a rectangular footprint, which is not entirely preserved in the initial models;
geometric constraints should help to overcome this situation. The initial models, the original ALS
points, and the step edge points provide the input for the overall adjustment. Soft constraints were
introduced just on the basis of a comparison of angles/height differences to thresholds. Table 8.1
gives an overview about the stochastic model for the individual groups of observations in adjust-
ment. Robust estimation was applied to the soft constraints and to the ALS and step edge points. In
the current implementation this had to be done in a supervised way. It turned out that with some
larger buildings the stochastic model had to be changed to make false hypotheses on geometric con-
straints detectable. Using σC = ±0.05 m and σE = ±0.25 m turned out to be a good choice. However,
the final adjustment without the eliminated observations was carried out using the values given in
table 8.1. They were confirmed by a variance component analysis.
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Topology Constraints ALS XY ALS Z Step Edge
σT [m] σC [m] σXY [m] σZ [m] σE [m]
±0.01 ±0.015 ±0.25 ±0.075 ±0.5

Table 8.1: A priori standard deviations of the observations.
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Figure 8.4: Final roof boundary polygons (red, broken lines) and reference data (blue). A part of
building 2 is missing in the reference data since it only occurs in the ALS data. A colour version of
this figure can be found on page 132.

Figure 8.4 gives the final results of building reconstruction and a comparison to the reference
data. Compared to figure 8.3, the building models appear to be more regular. For buildings 1-6 the
number of extracted roof planes was correct. The intersection lines are very accurate, and step edges
are in general determined quite well, too. Some small roof structures are generalised, e.g. the outline
of the smallest roof plane of building 1 or of roof plane a of building 2. The step edge between that
plane and its neighbouring plane b was not determined very precisely, either. The problem was that
roof plane a was horizontal, its western vertex being higher and its eastern vertex lower than the
corresponding vertices of roof plane b; the maximum height difference was only 0.3 m, so that the
step edge was poorly defined. Building 7 was reconstructed as being flat. The intersection of the two
roof planes is only 0.15 m lower than the eaves, which is the reason why the two planes were merged.
Building 8 was also reconstructed as a flat roof. It was the smallest building in the sample with only
a few ALS points on the roof planes, and both ends occluded by trees. The outlines at the occluded
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ends are not very well detected either. Apart from the visual inspection of the building models, a
numerical evaluation of these results was carried out. RMS values of the co-ordinate differences of
corresponding vertices in the reconstruction results and the reference data were computed for each
roof plane:

RMSXY =

√∑
(∆X2 + ∆Y 2)

N
and RMSZ =

√∑
(∆Z2)
N

(8.5)
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Figure 8.5: Left: RMSXY [m], right: RMSZ [m], both depending on the roof area [m2].

In equation 8.5, N is the number of corresponding points in the respective roof plane. If no
matching vertex was found, the closest point on the corresponding roof boundary polygon was used
instead. For buildings 7 and 8 only the outlines were evaluated. Figure 8.5 shows a graph ofRMSXY
and RMSZ depending on the roof area. RMSXY is smaller than 3.1 m for all roof planes. For most
roofs it is in the range between ±0.5 m and ±1.5 m, which is better than the point density across the
flight direction. The largest values occur for roof planes smaller than 100 m2, with the exception of
roof plane a and b of building 2, for reasons discussed above. RMSZ is much smaller than RMSXY
because heights are better defined in ALS data than step edges. RMSZ becomes smaller with in-
creasing area roof planes because more ALS points give support to large planes. Intersections are
more accurately determined than step edges. RMS values computed for intersection lines are only
±0.35 m in planimetry and ±0.07 m in height.

B P RMSXY [m] RMSZ [m] ∆XY [m] ∆Z [m]
1 5 0.76 0.12 0.24 0.01
2 5 2.27 0.20 0.00 -0.02
3 3 0.82 0.10 0.07 0.16
4 2 0.60 0.02 0.13 0.03
5 2 1.31 0.08 -0.08 -0.02
6 4 0.48 0.09 0.36 0.17
7 2 1.43 0.14 0.44 0.03
8 O 2.74 - -0.02 -

Table 8.2: B: Building; P : Number of planes; RMSXY , RMSZ : Combined RMS values in planime-
try / height; ∆XY , ∆Z : improvement of RMSXY / RMSZ .
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Table 8.2 gives combined RMS values for all the test buildings. The large value for RMSXY
for building 2 of ±2.27 m is caused by the erroneous step edge; the combined value without that
edge would be±1.43 m. For most buildings, RMSXY is better than the average point distance across
flight direction. Apart from problems with low step edges, errors occurred at the outlines of some
of the larger building due to occlusions: as the test area was at the edge of the swath, the positions
of the step edges were very uncertain there. The height accuracy is good, with the largest value of
±0.20 m occurring at building 2, again at the problematic step edge. Table 8.2 also gives the impact
of the overall adjustment to the RMS values. With building 5, the RMS values get worse by a small
value after adjustment, but in most cases the RMS values are improved by the overall adjustment.
The improvement can be up to 45 % (building 6).

8.5 Conclusion

In this chapter we have described a model for the consistent estimation of building parameters that
is part of a method for the automatic reconstruction of buildings from ALS data. The adjustment
model can consider geometric regularities by “soft constraints”, and it can handle different sensor
data. It was used not only in the reconstruction process, but also for the generation of reference data
for a test project. In the test project, the roof boundary polygons extracted from the ALS data were
compared to the reference data. The accuracy was determined to be in the range of or better than the
average point distance in planimetry, and about ±0.1 m - ±0.2 m in height. The improvement of the
model co-ordinates caused by the geometric constraints can be up to 45%.
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Appendix: Colour Figures

Figure 3.7: Boundary polygons super-imposed to the orthophoto.
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(a) (b)

(c) (d)

Figure 6.2: Detection of planar segments from a digital surface model in one of the building regions
from figure 6.1. (a) and (b) show classification results of polymorphic feature extraction using differ-
ent significance levels (first and last iteration). (c) Planar regions obtained by applying a connected
component algorithm and region growing to (a). (d) Segment label image after the last iteration.

(a) (b) (c)

Figure 6.3: Postprocessing of the segmentation results: (a) unclassified pixels in the building region;
(b) segment label image after post-processing containing additional planar segments; and (c) unclas-
sified pixels after postprocessing.

(a) (b)

Figure 6.4: (a) Voronoi diagram of the label image in figure 6.3(b) and (b) Voronoi diagram after
merging coplanar segments.
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(a) (b) (c) (d)

Figure 6.11: Wire frame fitting of a building primitive resembling a saddleback roof in two images
at two resolution levels of the image pyramids. Blue is the extracted image edges, red is the edge
segment end points accepted as matches, yellow is the false matches, and cyan is the final positions
of the wire frame.

Figure 7.3: Blue dashed lines: approximate boundary polygons. Green: original step edges. Red:
final polygon segments. Left: before generalisation of step edges. Right: after improving the planar
segmentation.
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Figure 8.4: Final roof boundary polygons (red, broken lines) and reference data (blue). A part of
building 2 is missing in the reference data since it only occurs in the ALS data.
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