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“The universe cannot be read until we have learnt the language and 
become familiar with the characters in which it is written. It is 
written in mathematical language, and the letters are triangles, 
circles and other geometrical figures, which means it is humanly 
impossible to comprehend a single word.” Galileo Galilei 
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Abstract 

Before its final plunge into the planet Jupiter in September 2003, the NASA spacecraft 
GALILEO made a last ‘visit’ to one of Jupiter’s smaller inner moons – Amalthea. This 
concluding flyby of the spacecraft’s successful mission occurred on November 5, 2002.  

Radio tracking of a spacecraft during planetary body encounters in general allows for the 
characterisation of planetary atmospheres, surfaces, mass, gravity fields, etc. In the case of 
GALILEO the Amalthea flyby was dedicated to the latter two.  

In order to obtain Amalthea’s gravity field and its moments of gravitation, based on various 
interior models of the moon, the method for numerically integrating infinitesimal volume 
elements has been applied. Latter have been derived from the scale factors of a three-axial 
ellipsoid (elliptic coordinates) because of Amalthea’s non-spherical shape. The computer 
programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft 
Trajectory) has been developed within the frame of the present thesis to facilitate the required 
calculations. GRASP applies the second method of Neumann to obtain the harmonic 
coefficients of Amalthea’s gravity field which have been derived up to degree and order six, 
for both homogeneous and reasonable heterogeneous cases. The normalised quadrupole 
moments of gravitation lie in the order of 0.038 for J2 and -0.053 for J22.  

Based on GALILEO’s state vector at closest approach to Amalthea (provided by the Jet 
Propulsion Laboratory, NASA) and the moon’s various gravity field models, a number of 
spacecraft flybys have been calculated through the numerical integration method of Runge-
Kutta. Assessments of the diverse trajectories yield velocity perturbations which have been 
compared to existing Doppler data from the Amalthea flyby. For the reason of a failure 
caused by an improper carrier frequency only low accuracy one-way Doppler data from 
GALILEO tracking was available. It was thus merely possible to obtain Amalthea’s mass and 
mean density (~860 kg/m³), whereas the harmonic coefficients of the moon’s gravity field are 
buried deep in the data noise.  

Nevertheless, predictions for future flybys in the scope of the Jovian system exploration can 
be made. In order to get more valuable information about the gravity field of this tiny rocky 
moon (mean radius 83.45 km), a much closer flyby than that of GALILEO should be 
anticipated, preferable in the order of 80 km flyby altitude. Another possibility and option to 
derive interior structure data of Amalthea would be a space mission dedicated to in-situ 
seismic and geological measurements.   
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Zusammenfassung 

Die Raumsonde GALILEO der amerikanischen Weltraumorganisation NASA vollbrachte 
nach fast 13 Jahren erfolgreicher Erkundung des Jupitersystems am 5. November 2002 ihre 
letzte wissenschaftliche Mission: ein Vorbeiflug am Jupitermond Amalthea. Die Analyse von 
Radiosignalen der Raumsonde gestattete Aufschluss über Masse und Dichte dieses kleinen 
Mondes (mittlerer Radius 83,45 km).  

Basierend auf unterschiedlichen Modellen des inneren Aufbaus konnten die langwelligen 
Anteile des Gravitationsfeldes von Amalthea berechnet werden. Die angewandte Methode 
integriert numerisch infinitesimale Volumenelemente, die aufgrund von Amaltheas 
unregelmäßiger Form anhand der Geometriefaktoren elliptischer Koordinaten bestimmt 
wurden. Um die erforderlichen Berechnungen durchzuführen, wurde das Computer 
Programm GRASP („Gravity Field of a Planetary Body and its Influence on a Spacecraft 
Trajectory“, zu deutsch „Gravitationsfeld eines planetaren Körpers und dessen Einfluss auf 
die Bahn einer Raumsonde“) im Rahmen dieser Arbeit erstellt. Eine Routine in GRASP 
wendet die zweite Methode von Neumann zur Kalkulation der Massefunktionen an. Letztere 
wurden bis zum sechsten Grad und Ordnung ermittelt, basierend auf homogenen und 
realistischen heterogenen Modellen von Amalthea. Die normalisierten Massefunktionen 
zweiten Grades liegen in der Größenordnung von 0,038 für J2 und -0,053 für J22.  

Die Position und die Geschwindigkeit von GALILEO zum Zeitpunkt der größten Annäherung 
zu Amalthea wurde vom Jet Propulsion Laboratory, NASA, zur Verfügung gestellt. Anhand 
dieser Daten und der Gravitationsfeldmodelle des Mondes konnte mit GRASP eine Vielzahl 
von Bahnen der Raumsonde während des Vorbeifluges berechnet werden. Die hierfür 
angewandte Methode basiert auf dem numerischen Integrationsverfahren von Runge-Kutta. 
Die Analyse der Bahnen liefert Geschwindigkeitsänderungen, hervorgerufen durch 
Amalthea’s Form und Massenverteilung, die mit vorhandenen Doppler-Daten des 
Vorbeifluges verglichen wurden. Aufgrund einer fehlerhaften Trägerfrequenz standen 
allerdings nur einfache Doppler-Messungen („1-way Doppler data“) von der Überwachung 
der Raumsonde zur Verfügung, die nicht genügend Genauigkeit aufweisen, um das 
Gravitationsfeld von Amalthea zu bestimmen – die Massefunktionen liegen innerhalb des 
Rauschens der Daten. Es war lediglich möglich, die Masse des Mondes zu errechnen und 
daraus folgend die mittlere Dichte (~ 860 kg/m³). 

Die in der vorliegenden Arbeit berechneten Modelle von Amalthea können zur Planung von 
zukünftigen Weltraummissionen zum Jupitersystem herangezogen werden. Um nützliche 
Informationen über das Gravitationsfeld des Mondes zu erlangen, sollte ein wesentlich 
näherer Vorbeiflug als bei GALILEO angepeilt werden. Dieser sollte vorzugsweise in einer 
Höhe von 80 km über der Oberfläche und über einem Pol entlang der größten Achse von 
Amalthea erfolgen. Eine geringere Höhere würde noch bessere Resultate liefern, wäre aber 
aufgrund von Navigationsungenauigkeiten der Raumsonde riskant. Eine weitere Möglichkeit, 
Daten über den inneren Aufbau von Amalthea zu erlangen, wäre eine Mission, die in der Lage 
wäre, seismische und geologische Experimente vor Ort auszuführen.  
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0 Introduction 

“To confine our attention to terrestrial matters would be to limit the human spirit.” 
Stephen W. Hawking 

It lies in the nature of humans to strive for further evolution and development, to go beyond 
frontiers and explore unknown shores in any field – including space. It is not only the urge for 
exploration, its challenge, glory and gratification, which got man to leave the Earth and go to 
outer space, but also the curiosity to learn about our origin – and fate; to explore new 
resources, strive for advanced medical development, improve our daily life on Earth, and, in a 
certain way, make it more comfortable. Space exploration is thus a term including many 
issues and endeavours. 

The present work wants to touch an aspect of space exploration: the improvement of 
spacecraft navigation by means of enhanced planetary interior model derivation. The better 
the bodies in our solar system are known and modelled, the more accurately (and safely) a 
spacecraft can be navigated. In addition, the information about the internal structure of a 
planet, moon or any other planetary body can be used in arguments for different theories of 
solar system evolution.  

In order to get more insight on the implementation of a spacecraft mission, the author was 
invited to spend a year as a research fellow at the Jet Propulsion Laboratory (JPL). JPL, a 
division of the California Institute of Technology in Pasadena, California, manages among 
other things space science missions for the National Aeronautics and Space Administration’s 
(NASA) Office of Space Science, Washington D.C. The space project in the context of the 
present work is GALILEO, a mission dedicated to explore the Jovian system in great detail.  

After years of successful exploration GALILEO’s final experiment was the flyby of Jupiter’s 
small inner moon Amalthea on November 5, 2002. It was anticipated to analyse two-way 
Doppler data with respect to Amalthea’s gravity field, and thus interior structure. 
Unfortunately, but a considered risk common to space missions, the experiment was only 
partly successful: it was merely possible to receive one-way Doppler data which does not 
have sufficient accuracy to serve as input for the gravity field analysis. Nevertheless, 
information about the mass of Amalthea could be derived and data from the spacecraft closest 
approach to the moon is available for further analysis.  

The focus of this work lies in a new approach for modelling the gravity field of small 
planetary bodies: the implementation of complex ellipsoidal coordinates for irregularly 
shaped bodies that cannot be represented well by a straightforward spheroidal approach, as it 
is the case for Amalthea. Because of the above stated difficulties the gravity field models of 
Amalthea have not been implemented into the analysis of the Doppler data but serve to a 
reverse approach of analysing GALILEO’s trajectory. In order to carry out the required 
calculations the computer programme GRASP (Gravity Field of a Planetary Body and its 
Influence on a Spacecraft Trajectory) has been developed. As the name implies, GRASP 
furthermore allows deriving the impact of the body’s gravity field on a spacecraft trajectory 
and thus permits predictions for further space mission flybys.  

0.1 Structure of the Introduced Thesis 

Space exploration is a complex term and involves various issues; as well are the single issues 
multifaceted. In order to comprehend the interplay of the different aspects of space missions, 
a basic knowledge of space studies is essential. There are a couple of good space books and a 
lot of specialised papers on various space topics, but the actual implementation of specific 
knowledge and experience on the performance of a space mission, especially with regard to 
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its observations, is seldom written down. In addition to the above mentioned objective the 
present work tries to summarise and give basics of background information, as well as 
instructions, which play a part to the scope of the work; especially in thought of readers who 
are not familiar with space exploration.  

The first part (‘Discoveries in Space: The Jovian System’) of the thesis thus gives an 
overview of the Jovian system, its origin and exploration, with emphasis on Jupiter’s moon 
Amalthea and its discoveries until November 2002.  

The second part (‘Space Exploration: GALILEO as a Successful Example’) focuses on the 
mathematical and physical explanations and expressions regarding a spacecraft trajectory and 
spacecraft tracking. The GALILEO mission and its achievements are described in chapter 5. 
Chapter 6 supplies the basics of orbital mechanics with respect to the trajectory of a 
spacecraft. The approximation of the trajectory is considered in GRASP. The field of Radio 
Science and its application for spacecraft communication and tracking, including Doppler 
data for planetary gravity field determinations, is explained in chapter 7. Chapter 8 is 
dedicated to GALILEO’s flyby of Amalthea, the problems that occurred and the evaluation of 
the spacecraft data.  

The third part (‘Amalthea Models: Preparatory Derivations’) deals with the mathematical 
expressions needed for the derivation of Amalthea’s interior structure and gravity field 
models, and their influence on a spacecraft trajectory. In order to describe the location of 
points and their variations in space the definition of coordinate systems is necessary – given 
in chapter 9 for planetary bodies, including ellipsoidal coordinates, and in chapter 10 with 
respect to an inertial system in our solar system. Based on coordinate systems and Newton’s 
law of gravitation, the gravitational potential of a planetary body can be derived, which is 
stated in chapter 11 and computed within GRASP. Chapter 12 explains GRASP, the 
computed expressions (taken over from the previous chapters), input and output options, and 
the optimisation of the programme. 

Finally, the fourth part (‘Amalthea Models: Gravity and Trajectory’) of the present work deals 
with the models of Amalthea and their analysis, as well as the impact on a spacecraft 
trajectory. Various interior and resulting gravity field models of Amalthea, based on the 
current knowledge of the moon’s composition and derived with GRASP, are stated in 
chapter 13. At last, in chapter 14, the impact of Amalthea’s presence on a spacecraft trajectory 
is analysed and recommendations for future flybys are given. Conclusions, chapter 15, 
summarise the objective and the results. 
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1 A Historical Overview 

Since the evolution from primitive mammals the human race is interested in its further 
development, its growing, in getting to know where it came from and where it is going – and 
in reaching for the stars! Humans not only have been (and are) fascinated about their 
surrounding, but also about the sky above them.  

First, little was known about the Earth, the Moon, the Sun or other planets and the stars – 
mystery laid upon them and mythology was playing a big part. But soon people started to 
understand the nature of these objects and astronomy became a renowned science.  

1.1 Ancient Times 

Historical documents reveal that peoples around the world named the bright stars in the sky, 
and the constellations played a big role in their myths and their lives, originated as a reaction 
to social and psychological needs – created to explain natural phenomenon, but also to give 
reasons for old traditions or to dramatically enrich the life of gods. Especially the old Greek 
mythology, adopted by the Romans, is a complex structure, involving stories about characters, 
which found a ‘place in the sky’. The naming of extraterrestrial objects (carried out by the 
International Astronomical Union, IAU) is still based and continued after the old myths, 
although a mixture of Arabic, Greek, Roman, Indo-Germanic, etc. nomenclature is present . 

Soon it became clear that some of the stars were moving against the background stars and 
were therefore named after the Greek word ‘planitis’ for wanderer – planets. Only five of 
them are visible to the naked eye and named after the Roman gods for trade, love, war, 
weather and agriculture – Mercury, Venus, Mars, Jupiter, and Saturn.  

 
Figure 1.1: Jupiter (Zeus) – Ceiling at the Frederiksborg Museum in Copenhagen, Denmark.  

Jupiter – most of the time the brightest object in the sky, besides our Moon and the Sun, and 
visible in our night sky for most of the year – was given the name for the lord of the sky. He 
was the god for weather (responsible for rain, snow, hail and thunderstorm), therefore living 
on Mount Olympus, and called ‘father of all gods and humans’. Every aspect of the universe 
and world matter was under his trial and he protected cities, foreigners and travellers. But he 

                                                 
 The origin of the individual names is not included and explained throughout the document.  



A Historical Overview 

- 5 - 

was also a ‘womaniser’ – married to a couple of goddesses until his lasting marriage to Hera, 
to whom he nevertheless was unfaithful [12]. 

The predictability of the planet’s cycle and the brilliance relative to nearby stars suggested 
control and dominance and implies how this planet came to be named for the Roman god 
Jupiter. As more became known about the physical nature of the planets, Jupiter lived up to its 
name. 

1.2 Galileo Galilei and the 17th Century  

Until the 16th century it was believed that the Earth was the centre of the universe – the 
Ptolemaic model. In the year of his death, Nicolaus Copernicus (1473-1543) published his 
“De Revolutionibus Orbium Caelestium (On the Revolutions of the Celestial Spheres)”, 
placing the Sun at the centre of the solar system. His work stimulated a series of scientific 
accomplishments which led to an understanding of gravitational forces and eventually to 
planetary exploration.  

More than 50 years later, after renowned astronomers like Tycho Brahe (1546-1601) and 
Johannes Kepler (1571-1630) further studied the motions of the planets, the Italian 
astronomer Galileo Galilei (1564-1642) was the first to use a telescope and observed Jupiter 
as a disk in January 1610 [35]. Although his telescope was constructed with small, simple 
lenses made of poor quality glass, he was able to see Jupiter’s four largest satellites that now 
bear his name. The small star-like objects revolved around Jupiter in the equatorial plane at 
distances 6 to 26 times the planet’s radius. Because the periods of revolution ranged from 1.8 
to 16.7 days, the shifting positions of the small objects relative to each other and to the centre 
of the visible disk of the planet made it readily apparent that this was a system where small 
bodies orbited around a larger body. This discovery demonstrated that orbital motion can take 
place about a centre other than the Earth! 

 
Figure 1.2: Galileo Galilei – Portrait by Justus Sustermans (1636). 

The actual discovery was not without controversy, since Galilei’s contemporary, the German 
Simon Marius (1573-1624), claimed precedence. However, Galilei published first and no 
proof exists of Marius’ earliest sightings, so credit is generally assigned to Galilei. 
Nevertheless, Marius did suggest the names of the satellites now in use: Io, Europa, 
Ganymede and Callisto – all lovers of Zeus/Jupiter in Greek/Roman mythology. Because of 
his discoveries and scientific efforts, Galilei was a defender of the Copernican model, which 
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eventually led to two condemnations through the inquisition where he had to abjure his 
theories. Nevertheless, he secretly continued his scientific work.  

In the second half of the 17th century Sir Isaac Newton (1643-1727) was formulating the 
theory of gravitation (chapter 6.1.1) and Giovanni Domenico Cassini (1625-1712) measured 
the distance between Earth and Mars. The timing of eclipses of the Galilean moon Io led to 
the first measurement of the velocity of light (214,000 km/s), carried out by Olaf Römer 
(1644-1710) in 1676. The dimensions of the solar system had thus been determined by the 
end of the 17th century and it was possible to convert the angular measurements within the 
Jovian system to actual distances. Furthermore, the volume and the mass of Jupiter could be 
derived and thus his density, revealing that the planet was a giant and that it could not have 
the same internal constitutions or composition as the Earth but must instead be composed of 
low-density material.  

1.3 Amalthea  

In the 18th century larger telescopes were constructed with mirrors in place of lenses that 
could be used to observe faint objects. In 1781 Sir Friedrich William Herschel (1738-1822) 
discovered the seventh planet – Uranus, named after the Greek god who was given birth by 
(and later married to) Gaia, ‘mother Earth’. Urbain Jean Joseph Leverrier (1811-1877) and 
John Couch Adams (1819-1892) determined the eight planet’s position independently, based 
on disturbances in the orbit of Uranus. As a result astronomers Johann Gottfried Galle 
(1812-1910) and Heinrich Louis D’Arrest (1822-1875) detected Neptune, god of sea and 
water, in 1846. 

Nearly three centuries after the sighting of the Galilean satellites another Jovian satellite was 
discovered. In the late 19th century Edward Emerson Barnard (1857-1928) used the 36-inch 
Lick telescope in California, designing a way to cover the bright disk of the planet to detect 
faint nearby objects. On September 9, 1892, he found a small satellite orbiting Jupiter inside 
the orbit of Io – Amalthea, named after the nymph or goat that nursed Jupiter. He soon 
ascertained that the period of revolution of the new satellite was slightly less than 12 hours 
[3].  

By 1951 seven more satellites of Jupiter were discovered, the thirteenth only 24 years later in 
1975, just before the first spacecraft would arrive at Jupiter. The IAU has named all of them 
after lovers of Jupiter.  

 
Figure 1.3: Edward Emerson Barnard. 
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2 Modern Exploration 

As technologies evolved our understanding of the universe has grown. Now, with space 
exploration and robotic spacecraft coming into its sixth decade an enormous amount of data 
has been gathered and analysed, revealing fascinating facts about distant ‘worlds’ and the 
origin of our universe. Nevertheless, there are still mysteries in this endless wideness of space 
that want to be discovered. 

2.1 Earth Based Observations 

E. E. Barnard not only discovered Amalthea, he also utilised the refractors at the Yerkes and 
Lick observatories to measure the sizes of the Galilean satellites. Although these 
measurements of mass and diameter had uncertainties about 20 %, they permitted the first 
estimate of bulk density, revealing that the inner satellites were apparently composed of 
denser materials than the outer. In the first decades of the 20th century larger telescopes and 
modern techniques of photometry, polarimetry, and spectrophotometry exposed new 
information about the Galilean satellites and their properties with respect to colour, albedo, 
surface composition, atmospheres, etc.  

With the beginning of space exploration by means of robotic spacecraft and space based 
telescopes in the 1970s and its advantage of observing outside the atmosphere’s turbulences, 
Earth based techniques became less important. Nevertheless, the big observatories around the 
world are still used to observe the planets in our solar system, as they are in general cheaper 
than space missions and permanently available. A science group at the Planetary Radar at 
Arecibo Observatory, Puerto Rico, uses delay-Doppler mapping of the Galilean satellites to 
determine the surface properties and to look for different radar properties of the various 
terrain types. Another group at the Mauna Kea Observatory, University of Hawaii, is studying 
the small outer satellites of Jupiter using wide field CCD surveys. Within the last four years 
they have discovered 45 new irregular satellites of Jupiter and are still looking for new ones 
[41].  

2.2 Robotic Spacecraft 

The launch of the Russian satellite Sputnik I on October 4, 1957, marked the beginning of the 
space age – an era full of fascinating discoveries, which still goes on. 

In the 1970s technologies were already so advanced that plans by the United States’ National 
Aeronautics and Space Administration (NASA) were formulated to explore the outer solar 
system by means of robotic spacecraft, the prime target being Jupiter. Two pairs of spacecraft, 
Pioneer 10 and 11 and Voyager 1 and 2 have now flown by Jupiter and the other giant 
planets. The Pioneers operation terminated in 1997 and 1995 respectively, but the Space 
Projects Division Operations Center continued to track Pioneer 10 on occasion as part of an 
experiment in chaos theory. The last signal was received on January 23, 2003, as the 
spacecraft’s radioisotope power source has decayed [46].  

The Voyagers are still heading away from the Sun, sending weak signals of their position in 
outer space. Flight controllers believe both spacecraft will continue to operate and send back 
valuable data until at least the year 2020 [47]. 
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2.2.1 Pioneer and Voyager 

 
Figure 2.1: Positions of Pioneer 10 & 11 and Voyager 1 & 2 in 2001. 

Pioneer and Voyager represent two different types of spacecraft [19]. The primary objectives 
of the Pioneer project were not so much to investigate the Jovian system as to demonstrate 
that spacecraft could be sent successfully to the outer solar system. Launched in 1972, and 
1973 respectively, the Pioneer spacecraft arrived at the Jovian system in 1973, and 1974, 
sending back to Earth a few low-resolution images and new information about the 
temperature and pressure within Jupiter’s atmosphere, as well as improved masses for all four 
Galilean satellites. 

The Pioneers served as pathfinders for a more ambitious NASA project: Voyager. Launched 
in 1977 and arriving at Jupiter in 1979, the two spacecraft began one of the most successful 
harvests of spatially resolved astronomical information. Because of the more sophisticated 
designed spacecraft and better communication link, data could be collected more easily and in 
higher quality. Just to name a few achievements, the Voyagers detected a faint ring about 
Jupiter’s equator, sent back to Earth the first pictures of the small moon Amalthea 
(Figure 4.2), revealed Io’s volcanic activity and the icy structure of Europa. For the first time 
it was possible to see the Jovian satellites as individuals! 

2.2.2 GALILEO and Cassini 

Encouraged by the success of the Voyager-Jupiter encounters, NASA continued its efforts to 
carry out the GALILEO Mission (chapter 5) to explore the Jovian system in more detailed. 
Launched in 1989 and arriving at Jupiter in 1995 the GALILEO spacecraft very successfully 
gained high-resolution data and revealed detailed information about Jupiter, the Galilean 
satellites and some smaller satellites in an extended mission which terminated with a 
spectacular plunge of the spacecraft into Jupiter on September 21, 2003.  

On its way to Saturn the Cassini/Huygens spacecraft, a joint mission of NASA and the 
European Space Agency (ESA), passed by Jupiter in December 2000. Observations and 
measurements by GALILEO and Cassini were coordinated to examine Jupiter’s huge 
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magnetosphere and other parts of the Jovian system in ways that neither spacecraft could have 
done alone. 

 
Figure 2.2: Cassini’s distant flyby of Jupiter (artist impression) [Courtesy NASA/JPL-Caltech]. 

2.2.3 Future Exploration 

GALILEO discovered new worlds that now raise even more questions; in particular regarding 
the icy moons Europa, Callisto and Ganymede, which might have subsurface oceans, as 
current models imply. Life on Earth has been discovered at great ocean depths, beyond the 
penetration of sunlight, thriving on up-welling chemical nutrients from the interior of the 
planet. If liquid water were to exist on the Galilean moons, it would not be unreasonable to 
speculate on the existence of life there, perhaps forming near undersea volcanic vents.  

NASA is developing plans for an ambitious mission to orbit these three planet-sized moons of 
Jupiter. The Jupiter Icy Moons Orbiter (JIMO) would orbit each of the moons for extensive 
investigations of their makeup, their history and their potential for sustaining life [45]. The 
mission would be launched sometime in the next decade.  

 
Figure 2.3: Europan life clusters around a hot vent, similar to the 'black smokers' found near Earth's ocean 

trenches (artist impression by David Hardy). 
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3 Origin and Structure of the Jovian System 

The origin of our universe is still under debate but it is assumed that everything started in an 
out-rushing of material, called the Big Bang, some 12 to 16 billion years ago. After millions 
of years, enough heavy elements were formed to allow the aggregation of galaxies or huge 
masses of typically 1011 stars. Our own galaxy, the ‘Milky Way’, formed about 10 to 
12 billion years ago.  

The stars within those aggregations form in clusters from nebular concentrations of 
interstellar material – huge clouds of atoms, molecules and dust grains. Extreme rotation of 
the contracting cloud could lead to the formation of a flat disc: a star emerging from the 
central part and planet-forming particles from the heavier elements concentrated in the 
surrounding dust. Our solar system began to form from such a cloud about 4.6 billion years 
ago [13].  

3.1 Our Solar System 

The solar system is commonly said to have nine planets, as shown in Figure 3.1. All the 
planets revolve around the Sun in one direction counter clockwise when viewed from north, 
in just about one plane called the ecliptic plane. In order from the Sun, they are Mercury, 
Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto.  

 
Figure 3.1: The nine planets of our solar system and their obliquity (sizes and distances are not to scale) 

[Courtesy Calvin J. Hamilton].  

The first four planets are sometimes called the terrestrial planets because of their nearness to 
Earth and the similarity of their rocky, metallic composition. The next four planets are 
sometimes called the giant or gaseous planets. Today, many astronomers tend to classify 
Pluto as an asteroid rather than a planet as it is in contrast to the other outer planets a small 
and rocky body with a very elliptical and inclined orbit around the Sun.  

3.1.1 Small Bodies 

Furthermore, the solar system is populated by a variety of small bodies ranging from 
microscopic dust particles to meteoroids and asteroids, with masses of up to about 1020 kg. 
Most asteroids, called after their faint star like images, reside in the main asteroid belt 
between the orbits of Mars and Jupiter. Other asteroid groups populate the inner and outer 
solar system, e.g. the Trojan asteroids (named after characters in Homer’s Trojan War epics) 
which move in the same orbit as Jupiter but in average 60° ahead or behind the planet, 
identified as the Lagrangian points [13]. 

Meteoroids are located in various orbits around the Sun and are mainly the fragments of 
asteroids that collided.  

Comets are low-density icy bodies, which primarily occupy the space at the very periphery of 
the solar system in the Oort cloud in about 150,000 AU (=astronomical unit, 1 AU equals the 
distance Sun-Earth) from the Sun, and possibly also in a closer disk-shaped space beyond the 
orbit of Neptune, called the Kuiper Belt (about 50-500 AU from the Sun).  
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In recent years, astronomical work has thrown up several big icy objects in the Kuiper Belt 
region, the latest discovery being Sedna – the most distant object found orbiting the Sun. 
Observations from the research team at the California Institute of Technology that found the 
body, show that Sedna is similar in size to Pluto and a mixture of rock and ice. This new 
discovery will probably reignite the debate about what constitutes a planet [5]. 

3.1.2 Formation 

The solution to the mystery of the origin of the solar system is an ongoing detective story. 
Nevertheless, some theories are well accepted but await confirmation through the actual visit 
of a planetary system in formation. 

In short, our solar system originated the following way: when a cloud of interstellar material 
acquires a high density of gas, gravity begins to dominate the balance of forces and the gas 
eventually forms a rotating disk, called the solar nebula, with a central spherical condensation 
for the proto sun. While the proto sun evolves into a star the rest of the solar nebula, 
consisting of microscopic grains and gas, aggregates into larger bodies, so called 
planetesimals. These bodies formed the pool of material from which the planets were 
accreted. In the final stage of the formation of our solar system, swarms of the planetesimals 
interact gravitationally and planet-sized bodies grow. Their composition and size depended on 
their distance from the star and the density and composition of the proto-planetary nebula: in 
the outer solar system ices complemented the planetesimal mass supply, and still larger bodies 
formed. Gas was accumulated around the giant planets because of their size and therefore 
higher gravity. The bodies in the asteroid belt, the Kuiper belt and the Oort cloud are believed 
to be remnants of the formation process [15].  

3.2 Jupiter and its Satellites 

 
Figure 3.2: Image composite of parts of the Jovian system [Courtesy Calvin J. Hamilton]. 

The Jovian system is regarded as a ‘mini-solar system’, with many features in common with 
the larger system, including a clear change in the composition of the satellites with distance 
from Jupiter. The discoveries of GALILEO revealed that the Jovian system is remarkably 
diverse in its physical and chemical structure. The observations have provided valuable clues 
to the conditions under which this system formed. It is believed that Jupiter, the Galilean 
satellites and the innermost satellites were formed by a local self-gravitational condensation 
of the nebular matter analogous to the solar system. All other outer satellites are assumed to 
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be captured in the very early days of the formation process, and are probably remnants of a 
larger body [10].  

3.2.1 Jupiter 

Jupiter is the largest planet of our solar system (71,400 km radius), having more mass than all 
the other planets put together (1.8986 x 1027 kg). It revolves around the Sun in 11.86 years at 
a mean distance of 5.203 AU [34]. The planet is a rotating gas-giant, consisting mostly of 
molecular hydrogen (79 % by mass) and helium (19 %), and trace amounts of water vapour, 
methane, and ammonia. Below an atmospheric cloud the pressure increases rapidly with 
depth, compressing the gases more and more until the material behaves more like a liquid 
(metallic hydrogen). It is believed that Jupiter has a dense liquid or solid core of about 
14 Earth masses compressed to 22,000 kg/m³ and a radius of 1.5 Earth radii (Figure 3.3).  

 
Figure 3.3: Jupiter’s interior [Courtesy Calvin J. Hamilton]. 

Convection of the metallic hydrogen shell causes the strong magnetic field of Jupiter. It is the 
largest of the planetary magnetospheres – its great expanse could envelope the Sun and much 
of its corona. This size, the rapid rotation of the planet (9h 55m 27.3s) and the volcanoes of the 
moon Io conspire to produce the richest array of magnetospheric phenomena in the solar 
system.  

Clouds, arranged in dark belts and bright zones parallel to the equator, cover the planet and 
numerous thunderstorms concentrate in specific zones above and below the equator. A long-
lived feature is the Great Red Spot, probably first seen in 1665 by Giovanni Cassini, a giant 
whirlpool storm that can reach four Earth diameters.  
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3.2.2 Inner satellites 

 
Figure 3.4: Jupiter’s ring system and the four inner satellites [Courtesy NASA/JPL-Caltech]. 

The innermost group of small rocky moons, consisting of Metis, Andrastea, Amalthea, and 
Thebe, orbit Jupiter within the orbit of Io at distances smaller than 3.5 planetary radii and are 
part of the planet’s faint ring structure. They are irregular shaped fragments possibly from a 
larger body that was disrupted in the past. As the emphasis of this work is on Amalthea, more 
details on this moon and its creation are given in chapter 4. 

3.2.3 Galilean satellites 

The Galilean satellites revolve around Jupiter in nearly circular orbits in the equatorial plane 
of the planet. Their orbits are located within 6 to 26 planetary radii of the centre of the planet 
and the inner three are locked in resonance. During the process of their formation the Jovian 
heat led to an almost complete escape of ice from the nearest, Io, and an almost complete 
retention of ice on the farthest, Callisto [6]. 

 
Figure 3.5: Galilean satellites – Io, Europa, Ganymede, Callisto (top to bottom)  

[Courtesy NASA/JPL-Caltech]. 
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Io (1821 km radius) is the only place in the solar system besides the Earth that has volcanic 
activity, which is continually modifying the surface. It is caused by tidal interaction through 
Io’s elliptical orbit around Jupiter, and the gravitational influence of the other moons. The 
composition of the hot lavas may be more similar to a type of volcanism that occurred on the 
Earth more than three billion years ago. Like Europa (1565 km radius) and Ganymede, Io has 
a metallic core. 

Evidence supports a theory that liquid oceans exist under Europa’s icy surface. There are 
places on the surface where recognizable features that once were whole have been separated 
from each other by new, smooth ice. Indications also show volcanic ice flows, with liquid 
water flowing from Europa’s volcanoes. These discoveries are particularly intriguing, since 
liquid water is a key ingredient in the process that may lead to the formation of life! 
GALILEO’s magnetic data provides information that liquid saltwater layers under ice also 
exist, farther below the surface, on Ganymede and Callisto. 

Ganymede, the largest moon in the solar system (with 2634 km radius even bigger than the 
planet Mercury), generates a magnetic field, just as Earth does, and is the first moon of any 
planet known to possess an intrinsic magnetic field. The moon has a very thin hydrogen 
atmosphere and its rock-ice surface shows high tectonic activity, with faulting and fracturing. 

The composition of the more distant moon Callisto (2403 km radius) is fairly uniform 
throughout, indicating it did not follow the same evolutionary path as the other three moons. 
Callisto’s rock-ice surface shows evidence for extensive, though still mysterious, erosion that 
smoothes out features on the heavily cratered surface. 

3.2.4 Outer satellites 

The inner and the Galilean satellites are also called regular satellites. The other outer satellites 
are irregular satellites as they orbit Jupiter in a retrograde orbit, meaning they revolve about 
the planet in a direction opposite to the planets rotation [3]. Only one satellite has a prograde 
orbit with an orbital radius of about 100 Jupiter radii. The other irregular outer satellites form 
two sets with elliptical and inclined orbits. One group consists of five small satellites that 
revolve about the planet at average distances of 150 planetary radii, their names ending with 
the letter a. The other group has names ending with the letter e and orbit Jupiter at distances 
around 300 planetary radii. In the last four years dozens of these small objects have been 
discovered mainly by researches at the University of Hawaii, bringing the total of known 
Jupiter satellites to 63. 
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4 Amalthea: Discoveries until November 2002 

The following chapter contains a collection of the discoveries and properties of Jupiter’s 
moon Amalthea, derived before the GALILEO flyby on November 5, 2002. After a brief 
Greek myth, emphasis is given on the shape, structure and origin of the moon, with respect to 
the objective of this work.  

4.1 Greek mythology and History 

To save the life of her last unborn child Zeus for fear that her husband Kronos would devour 
it like the other children, Rhea gave birth to it on the Greek island Crete [12]. The nymphs on 
the island took care of the baby and nursed it with milk from the goat Amalthea, while the 
priests where dancing and making a lot of noise to distract the father and cover the cries of 
Zeus (Figure 4.1).  

 
Figure 4.1: The upbringing of Jupiter - Joachim von Sandrart (17th century),  

National museum Nürnberg, Germany. 

Jupiter’s moon Amalthea was discovered by Edward E. Barnard on September 9, 1892, using 
the 0.9 m Lick-refractor in California, USA. Observations by him and others immediately 
after the discovery established the satellite’s orbit to be approximately circular, with a period 
of 11.92 hours and a semi-major axis of 2.55 Jupiter radii [19].  

4.2 Observations 

Amalthea is an extremely difficult object to observe from Earth due to scattered light from 
nearby Jupiter. Consequently little was known about the moon until the Voyager flybys in 
1979. Voyager 1 passed within 420,000 km of Amalthea, and Voyager 2 came within 
560,000 km, which resulted in images with a spatial resolution of about 10 km [3]. These first 
pictures revealed an irregular potato-shaped body with a cratered surface (Figure 4.2). 
Analysis of the Voyager data with respect to shape and surface features of Amalthea are 
discussed in detail by Stooke [28].  
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Figure 4.2: First image of Amalthea, taken by Voyager 1 on March 5, 1979  

[Courtesy Calvin J. Hamilton]. 

More than 15 years later, the Solid State Imaging (SSI) camera on board the GALILEO 
spacecraft has imaged the four small inner Jovian satellites (Figure 4.3) on nearly every orbit 
of the nominal tour in sufficient detail, regarding shape, colour and photometric information. 
75 % of the data on Amalthea were taken through GALILEO’s ninth orbit in June 1997, 
where the best image resolution was 5.4 km/pixel [30]. In total, 23 images of Amalthea were 
returned.  

 
Figure 4.3: The best Galileo images of the four small inner Jovian satellites, north is up  

[Courtesy NASA/JPL-Caltech].  

4.3 Geometry and Surface Properties  

Amalthea’s orbital and ellipsoidal parameters are specified in Table 4.1. The definition of the 
parameters is given in chapter 6.1 (Table 6.1), respectively 9.4; for the local coordinate 
system parameters refer to chapter 10.2 (10-1).  

As already mentioned, Amalthea revolves around Jupiter in about 12 hours. Tidal forces due 
to the planet’s gravitational field have slowed the moon’s rotation rate so that it is 
synchronously locked.  

orbital parameters ellipsoidal parameters [km] local coordinate system 

semi-major axis 181.3 x 10³ km a  125 ± 2 α0   268.05 – 0.009 x T[°] 

orbital period = 
rotational period 

0.498179 days b 73 ± 2 δ0  64.49 + 0.003 x T[°] 

eccentricity 0.003 c 64 ± 2 W 231.67 + 722.631456 x d  

inclination 0.4° mean radius 83.45 ± 2.4  

Table 4.1: Amalthea’s orbital, ellipsoidal and coordinate system parameters [34] [30] [8]. 
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Amalthea’s irregular shape cannot be represented well by a triaxial ellipsoid. The values 
given in Table 4.1 describe a best-fit ellipsoid, which is derived from the GALILEO images 
using specific evaluation techniques (chapter 9.5). The volume estimate from these data 
amounts to 2.43 ± 0.22 x 1015 m³ [42]. 

Using the GALILEO images, Peter Thomas and his team from Cornell University have 
calculated a shape model for Amalthea, giving the surface radius in 5° x 5° steps (latitude, 
western longitude), which is graphically represented in Figure 4.4.  

 
Figure 4.4: Amalthea’s shape [data courtesy by P. Thomas, Cornell University] 

The moon is heavily cratered and several craters have diameters that approach the satellite’s 
mean radius. The largest crater with a diameter of 90 km and a depth of at least 8 km has been 
named Pan by the IAU. This intense bombardment that Amalthea has undergone must have 
produced abundant loose material for a regolith surface, which depths could reach more than 
one kilometre. 

Amalthea is not only deep within the gravity field of Jupiter but also in a very intense part of 
its magnetosphere. Charged particle bombardments and micro-meteoritic impacts contaminate 
and alter the surface of the moon [30]. The low reflectivity of its surface and the dark-red 
colour could be due to sulphur-rich material expelled from nearby Io.  

Consequently, the surface composition, the colour and reflectivity do not reveal anything 
about the nature of Amalthea’s interior.  

4.4 Origin and Internal Composition 

Two scenarios exist, which describe the origin of Amalthea. In one scenario the moon would 
have accreted near its present orbit during the formation of the Jovian system. Immediately 
after Jupiter’s formation, the planet extended far beyond Amalthea’s current position and did 
not become smaller until some hundred thousand years later. Therefore, the formation of 
Amalthea began much later than the Galilean satellites. Depending on the temperature of the 
nebula the composition of the moon varies. It could contain highly refractory, rocky materials 
like refractory oxides, nickel-iron, and possibly pyroxene, which would lead to a mean 
density of more than 3000 kg/m³ [10].  

In the other scenario Amalthea is assumed to be a captured body, with a composition similar 
to that of the Trojan asteroids in Jupiter’s orbit. Such an object would consist of carbonaceous 
minerals, which probably formed in a reasonably cold part of the solar system and thus retains 
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high substances of volatile compounds, such as water or gas. It could be compound e.g. of 
graphite grains, silicon carbide, iron sulphide, and clay minerals and consequently have a low 
density, probably less than 2000 kg/m³ [13].  

Jupiter’s strong tides act on Amalthea, elongating it towards Jupiter and compressing it 
normal to its orbital plane. Nevertheless, tidal distortion did not form an ellipsoid, as can be 
clearly seen by simply considering the significant asymmetry along the major axis of the 
moon and the straight-line ridge crests which are obvious in the images. Amalthea’s heavily 
cratered surface and its degree of irregularity are evidence in favour of the argument that the 
moon is a collisional fragment, left over from the destruction of an older, larger body. In 
favour of this theory are as well the ratios of the moon’s axis a/b and a/c [19].  

Furthermore, considering the above statements, it can be concluded that Amalthea must have 
more than zero internal shear strength; otherwise it would have been crushed into a spheroidal 
shape by its own gravity. This corresponds to the low temperature profile within the interior 
of small bodies, due to the high surface-volume ratio, and thus internal strength towards 
extended shear tension. The central pressure of a sphere with Amalthea’s size and low density 
would be only ~10 bars [40].  

Two possibilities arise out of that: Amalthea is a single strong object, or it is a relatively weak 
one reassembled by the agglomeration of smaller objects (Figure 4.5). In the latter case, the 
form of the satellite is determined by the shape and size distribution of the fragments, not by 
the satellite’s density [6].  

 
Figure 4.5: Schematic cross section of a heavily cratered satellite with reaccumulated large fragments and some 

small fragments that slightly smooth the resulting one. 

4.4.1 Porosity 

In order to specify the interior of such a fragmented object with pore spaces, which could not 
be closed due to the low interior pressure, the degree of porosity Φ needs to be defined – 
considering a body with volume τ and icy, rocky and empty (void) components [17]: 
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with ρm being the mean density of the whole body and ρ0 the density of the material or the 
rock-ice composition, represented by the rock concentration C: 
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A non porous uniform material, or body, would thus be characterised by Φ = 0. 
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For simplicity it is assumed that density increase towards the centre of the body is only due to 
the reduction of porosity, neglecting material compression as a result of self-gravitation.  

Other planetary bodies in the same general size range like Amalthea (below a volume of about 
107 km³) appear to have large porosities (e.g. asteroids Mathilde and Eugenia with Φ ~ 0.5 if 
made of carbonaceous material, Saturn’s satellites Janus and Epimetheus with Φ ~ 0.3 if 
made only of water ice). Smaller bodies may have even larger porosities (e.g. Pandora and 
Prometheus at Saturn) but the mass determinations for the Saturn satellites are indirect and 
may contain errors which the observation of the space mission Cassini will hopefully sort out. 
All in all a porosity of Φ = 0.3 to 0.5, even if regarded as very high a few years ago, seems 
reasonable in line with recent observations. A porosity of this value would still result in a 
sample density of only 1500 kg/m³ or less, which leads to the conclusion that there must be 
some ice content within the body interior even in the presence of high porosities [40].  
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5 Mission to Jupiter – GALILEO  

The GALILEO mission evolved from studies in the early- and mid-seventies designed to 
develop outer solar system mission concepts to follow the Pioneer and Voyager flybys. As the 
nearest and largest of the giant planets, Jupiter was regarded as the logical first target of the 
next stage of exploratory missions. As a Jovian orbiter and probe was approved by NASA, it 
was fitting that it be named after the first explorer of the Jovian system, the Italian astronomer 
Galileo Galilei. After years of planning, designing, building, and rebuilding, GALILEO was 
launched in October 1989 and sent on its voyage via Venus and the Earth (twice) and arrived 
at Jupiter in December 1995. GALILEO was an international effort, with Germany providing 
propulsion modules and two major instruments, and science experiments carried out by more 
than 100 scientists from the United States, Great Britain, Germany, France, Canada and 
Sweden.  

After twelve years of pre-launch development and planning, six years of interplanetary cruise, 
and nearly eight years in orbit, the exciting quarter-century odyssey of GALILEO came to an 
end. It circled the solar system’s largest planet 35 times, travelled 4,631,778,000 kilometres 
on 925 kilograms of propellant, returned over 30 gigabytes of data (including 14,000 pictures) 
and finally disintegrated in Jupiter’s dense atmosphere on September 21, 2003, at 
6:57 p.m. UTC [39].  

5.1 The Role of the Jet Propulsion Laboratory 

In 1936, after a couple of small explosions in the rocket test facility at the California Institute 
of Technology, a group of hobby rocket scientists, supported by Theodore von Kármán 
(1880-1963), was forced to leave the campus and seek another place for their tests. They 
moved to the Arroyo Seco, a dry canyon wash a couple of miles northwest of the university, 
where they leased land from the city of Pasadena. From this modest beginning, the Jet 
Propulsion Laboratory (JPL) would begin to take form.  

 
Figure 5.1: Jet Propulsion Laboratory (JPL). 

Until the 1950s JPL coordinated the development and manufacturing of missiles and rockets 
for the military [23]. After the launch of the first orbiting spacecraft, the Russian Sputnik I, 
JPL quickly built an Earth satellite to go atop an Army-supplied booster rocket – and America 
joined the Space Age nearly four months later with the successful launch of this so called 
Explorer I on January 31, 1958. By 1959 the Lab got almost wholly out of the propulsion 
business when it discontinued missile work in favour of creating robotic probes for NASA. 
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Since then JPL was, and still is, responsible for the development and implementation of 
unmanned spacecraft missions to the Moon, Venus, Mars, Jupiter, other planets, and small 
objects. Furthermore, it is active in the exploration of our home planet, as well as the deeper 
universe, and manages the Deep Space Network (DSN), a network of antenna stations located 
in Spain, Australia and Southern California, that tracks spacecraft and captures its data 
(chapter 7.1.1). GALILEO was one of the most successful but also challenging missions 
carried out at JPL.  

5.2 Mission Objectives 

GALILEO is not a ‘Jupiter mission’ in the traditional sense of a focused space mission to a 
given target. It is rather an integrated project addressing multidisciplinary objectives 
concerning the entire Jovian system. The system is important both for the insights it gives 
about conditions in the early solar nebula, 4.5 billion years ago, and for the understanding of 
the bewildering array of processes and phenomena which have affected the evolution of the 
planets and which control their environments and futures.  

The scientific objectives of the mission are given in detail in Appendix A [25]. A particular 
interest was the atmosphere of Jupiter, as the planet is essentially a transitional object between 
terrestrial planets and stars, being composed primarily of hydrogen and helium in 
approximately solar proportions, with an internal heat source from ancient accretionary 
heating and gravitational collapse. A second principal interest was the regular satellite and 
ring system. Not only because it is regarded as a ‘mini-solar system’, but also because each of 
the planet-sized Galilean satellites is an unique and fascinating object to explore. 
Furthermore, the understanding of the structure, composition and dynamics of the huge Jovian 
magnetospheric environment was a major goal.  

5.3 Spacecraft and Instruments 

 
Figure 5.2: View of the GALILEO orbiter. 

The GALILEO spacecraft design reflects the very demanding objectives of the mission. It 
consisted of an orbiter and an atmospheric entry probe, which was carried by the orbiter and 
deployed 150 days prior to Jupiter encounter. As the first dual-spin planetary spacecraft the 
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GALILEO orbiter combined in-flight stabilisation by a spinning section around a major axis 
and a non-spinning section for a fixed orientation for cameras and other remote sensors 
(Figure 5.2). Its weight was 2,223 kilograms at launch and it measured 5.3 metres from the 
top of the low-gain antenna to the bottom of the descent probe. The orbiter’s spinning section 
carried instruments to study charged particles and magnetic fields (including magnetometer 
sensors mounted on an 11-meter-long boom to minimise interference from the spacecraft’s 
electronics).  

The orbiter included a telecommunications system, a propulsion system, and an attitude and 
articulation control subsystem. The scientific payload, consisting of 11 imaging instruments 
and detectors, was connected to the command and data system. For the gravitational 
experiments the antennas and the radio system of the telecommunications unit were used 
(chapter 7). 

5.4 Mission Achievements 

Before GALILEO arrived at Jupiter, a testing of the high-gain antenna failed – it stuck 
partway open, rendering it useless. To still achieve the goals of the mission, the less-capable 
low-gain antenna was used in combination with new data compression software and 
adaptations to the ground antennas of the DSN. The efforts solving the problem paid off after 
the spacecraft began orbiting Jupiter. Originally planned for a mission of two years, 
GALILEO withstood the radiation exposure, generated by Jupiter, much longer than expected 
and three extension of the primary mission could be carried out, one of them being dedicated 
to the moon Europa [44]. 

5.4.1 Asteroid flybys 

GALILEO became the first spacecraft ever to encounter an asteroid when it passed close by 
Gaspra on October 29, 1991. Pictures and other data revealed a cratered, complex, irregular 
body of about 20 kilometres, with a possible magnetic field. On August 28, 1993, GALILEO 
flew by a second asteroid, this time a larger, more distant asteroid named Ida. Scientists made 
a dramatic discovery when they found that Ida has its own moon, Dactyl, making it the first 
asteroid known to have a natural satellite. 

 
Figure 5.3: Asteroid 243 Ida and moon Dactyl on August 28, 1993 [Courtesy NASA/JPL-Caltech]. 
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5.4.2 Comet event 

 
Figure 5.4: Luminous night-side impact of fragment W of Comet Shoemaker-Levy 9 on July 22, 1994  

[Courtesy NASA/JPL-Caltech]. 

The discovery of Comet Shoemaker-Levy 9 in March 1993 provided an exciting opportunity 
for GALILEO’s science teams and other astronomers. The comet was breaking up as it 
orbited Jupiter and was headed to dive into the giant planet’s atmosphere in July 1994. The 
GALILEO spacecraft, approaching Jupiter, was the only observation platform with a direct 
view of the impact area on Jupiter’s far side and was therefore able to obtain spectacular 
images of the comet impacts.  

5.4.3 Jupiter and its satellites 

GALILEO’s encounters of Jupiter and its satellites were much closer than those performed by 
the Voyager spacecraft, extending our knowledge of the Jovian system enormously 
(chapter 3.2). It was the first spacecraft ever to measure Jupiter’s atmosphere directly with a 
descent probe, and the first to conduct long-term observations of the Jovian system from orbit 
around Jupiter. A key science finding was the evidence that a liquid ocean has existed and 
probably still exists beneath Europa’s icy surface.  
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6 Orbits and Interplanetary Travel 

In order to exactly describe the motion of a spacecraft or any other body in space, it is 
necessary to take into consideration the attraction of all bodies in the solar system. But there 
is no single, general analytical solution that describes multi-body motions, not even a three-
body problem, e.g. the Sun-Earth-Moon-System, can be solved uniquely. Therefore 
simplifications to the problem need to be made. In some cases a solution for a two-body 
problem is sufficient, e.g. the motion of a planet around the Sun or the Moon around the 
Earth. If more than two bodies are involved, the prediction of motions is usually derived by 
numerical integration, where the problem can be solved with any required accuracy.  

In addition to the gravitational disturbances, a spacecraft is exposed to other perturbing forces 
that affect its orbit and its orientation within. It is therefore not possible to describe the motion 
of a spacecraft with a single orbit or trajectory, but with the summation of small orbital 
sections. This chapter will give an overview of the above mentioned problematics.  

6.1 Orbital Motion and Classical Orbital Elements 

6.1.1 Kepler’s and Newton’s Laws 

In 1610, based on planetary observations by Tycho Brahe, Johannes Kepler formulated the 
empirical rules that describe how the planets move. Kepler’s laws can be stated as follows 
[13]: 

  Each planet moves in an ellipse with the Sun at one focus. 
  ‘Law of areas’: the line between the Sun and planet sweeps out equal areas in equal 
amounts of time. 

  ‘Harmonic law’: the ratio of the cube of the semi-major axis to the square of the period is 
the same for each planet. 

Kepler’s laws describe how the planets move, but not why. Isaac Newton realised that if any 
body is not moving in a straight line, some force must be acting on it to deflect it from a 
straight-line motion. In the case of the planets, the principal force is gravity, the force by 
which any mass attracts any other mass. Newton determined that the gravitational attraction 
between the Sun and a planet must be proportional to the mass of the Sun (m1) and to the 
mass of the planet (m2) – Newton’s law of gravitation, 1687:  

2
21

12 r
mmGF =       (6-1) 

with r being the distance between the two bodies and G the gravitational constant 
(G = 6.672 x 10-11 m³/s²kg).  

His work showed that Kepler’s laws apply to any situation in which a small body revolves 
around a much more massive body.  

6.1.2 Classical Orbital Elements 

Integration of Newton’s law of gravitation gives the mathematical formulation of Kepler’s 
laws and the motion of a spherical body around another spherical body, e.g. a 
spacecraft/satellite around the Earth (Figure 6.1), neglecting all other influences of 
gravitational forces, non-spherical shape, and the satellite’s mass.  
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Figure 6.1: Elliptical motion of a satellite. 

Kepler’s first law can be stated as follows [4]:  

υcos1 e
pr

+
=       (6-2) 

with ν being the true anomaly, the angle from perigee (closest point to Earth) to the satellite’s 
position and 
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with a for the semi-major axis, b for the semi-minor axis and e for the eccentricity of the 
orbit. Depending on the value of e (e < 1, e = 1, e > 1) the orbit becomes elliptical, parabolic 
or hyperbolic, respectively.  

The velocity v of a satellite can be derived through the energy theorem:  
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⎛ −=

ar
GMv 12²      (6-5) 

with M being the mass of the gravitating body. The parabolic velocity, also called escape 
velocity, for a certain body can be calculated by setting a to infinity (the satellite’s orbit is not 
closed anymore and it leaves the body) and r to the body’s radius. For the Earth (r = 6371 km, 
GM = 3.986 x 1011 km³/s²) the escape velocity is 11.2 km/s.  

The values a and e describe the orbit size and shape; ν determines the body’s position within 
the orbit and is the only orbital element which will change with time as the satellite moves 
around its orbit. Three more orbital elements are required to define the orientation of the orbit 
with respect to the central body (Figure 6.2, Table 6.1).  
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Figure 6.2: Classical orbital elements. 

The inclination i of a satellite is defined as the angle between its orbital plane and the Earth’s 
equatorial plane. The ascending node is the point where the satellite goes from below the 
equator (southern hemisphere) to above the equator (northern hemisphere). The longitude of 
the ascending node Ω describes the angle measured (eastward) in the equatorial plane 
between the vernal equinox direction and the ascending node. The vernal equinox  defines 
the intersection of the ecliptic plane with the equator where the Sun is located during the 
spring equinox and is crossing the equator from south to north. The argument of perigee ϖ is 
the angle measured in the direction of the satellite’s motion from the ascending node to 
perigee [15].  

The position vector of a spacecraft Sr
r  as seen from the Earth centre can thus be formulated as:  
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element name description range of values definition of … 

a semi-major axis orbital size depends on conic section 

e eccentricity orbital shape 0 for circle, 0 < e < 1 for 
ellipse, e = 1 for parabola, 
e > 1 for hyperbola 

form of orbit  

i inclination tilt, angle between the orbit 
plane and the equatorial plane 

0 ≤ i ≤ 180° 

Ω longitude of 
ascending node 

swivel, angle from vernal 
equinox to ascending node 

0 ≤ Ω ≤ 360° 

orbital position  

ω argument of 
perigee 

angle from ascending node to 
perigee 

0 ≤ ω ≤ 360° 

ν true anomaly  angle from perigee to satellite 
position 

0 ≤ ν ≤ 360° 

orientation of 
ellipse in orbital 
plane  

Table 6.1: Classical orbital elements and their description [15]. 



Orbits and Interplanetary Travel 

- 28 - 

6.2 Perturbations 

In reality there are no such simple bodies and motions as stated above. Each body in the solar 
system is non-spherical and is affected not only by the Sun but also by the planets, other 
smaller bodies and, with respect to an artificial body, by forces acting on the spacecraft itself.  

In mathematical terms it is assumed that the body is moving in an elliptic orbit whose 
elements change at each instant. The variation of elements in time results e.g. in the 
regression of the nodes about the polar axis, in constantly changing inclinations, in variations 
in the size and shape of the ellipse [22]. If at a moment, called the instant of osculation, all 
disturbing forces were removed, the body would travel in an elliptical orbit described by the 
instantaneous or osculating elements. The perturbations are the differences between the 
Keplerian elements of the orbit at some starting epoch and those at the instant of osculation. 
They may be periodic (varying smoothly between limits) or secular (rending to change in a 
certain direction) and may be divided into two groups: gravitational and non-gravitational 
effects.  

6.2.1 Example I: Satellite in Earth Orbit 

The largest gravitational perturbations for low orbiting satellites are caused by the fact that the 
Earth is not spherical. These forces alter all orbital elements, specifically they change the 
longitude of the ascending node Ω and move the argument of perigee ω. By observing the 
perturbations certain gravitational parameters may be determined which in turn yield 
information on the shape and mass distribution of the Earth.  

Of the non-gravitational perturbations the largest (in the case of low-flying satellites) is 
caused by the atmospheric drag, which takes energy away from the orbiting body in the form 
of friction on the satellite, causing a decrease of speed and consequently lowering of altitude 
[15]. 

Other perturbing forces are usually much smaller than the above mentioned but, depending on 
the required accuracy of the orbit predictions and the altitude of the spacecraft, satellite 
planners may have to anticipate their effects. These forces include third-body effects (due to 
Moon, Sun, planets, etc. which can perturb orbits at high altitudes), different electromagnetic 
effects, solar radiation pressure (which can cause long-term orbit perturbations and unwanted 
rotation of the satellite), and effects caused by the satellite itself (e.g. thrusters firings).  

6.2.2 Example II: Spacecraft within the Jovian System 

In other words it could be said that the perturbations cause an acceleration (positive or 
negative) of the spacecraft and consequently changing its orbit. A programme used at JPL for 
the determination of GALILEO’s and other interplanetary spacecraft’s trajectory, called the 
Double-Precision Orbit Determination Program or DPODP (chapter 7.3.2), takes the 
following acceleration forces, with respect to the trajectory, into account [21]:  

  all bodies of the solar system, treated as point masses 
  perturbative general relativity 
  oblateness of Jupiter and a nearby moon  
  solar radiation pressure 
  small forces originating in the spacecraft, such as from operation of the attitude control 
system and from gas leaks 

  firing of thrusters (motor burn) 

If the position of a spacecraft is known at any time through e.g. tracking techniques 
(chapter 7), the extent of the perturbations can be calculated. On the other hand, when using 
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the information of the gravitational perturbations from a nearby planetary body 
(chapter 11.4.3), interior models of the gravitating body can be derived as well.  

6.3 Spacecraft Trajectory Approximation 

As the equations of motion cannot be solved analytically if more than two bodies are 
involved, and the various perturbations change the orbit of a planetary body or spacecraft at 
any time, it is necessary to calculate trajectory sections through numerical integration 
techniques. A very common method of numerically integrating differential equations is the 
fourth-order Runge-Kutta or midpoint method.  

The Runge-Kutta-Method takes a value at a starting point, e.g. ( )itxr , and calculates an 
approximation at a brief time later, ( )1+itxr . It uses a weighted average of approximated values 
at several times within the interval (Figure 6.3). In each step the function is evaluated four 
times – once at the initial point, twice at trial midpoints, and once at a trial endpoint. From 
these derivatives the final function value (shown as a filled dot) is calculated. 

 
Figure 6.3: Fourth-order Runge-Kutta method.  

The formula is given by [18]: 
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This method is reasonable simple and robust and gives good accuracy if a small realistic 
interval is used. Within the frame of this work the trajectory of GALILEO around closest 
approach to Amalthea has been calculated by means of the Runge-Kutta-Method based on the 
equations of motion (chapter 12.3). 
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6.4 Flyby Geometries and Trajectories 

Each space mission is a unique project. Depending on the objective of the mission, the 
scientific observations and other constraints (e.g. fuel consumption and data relay back to 
Earth), not only the structure of the satellites is designed but also the orbit of the spacecraft. 
To put a spacecraft into an interplanetary transfer trajectory is an extension of the basic orbital 
transfer problem and much more complicated, because four bodies (the spacecraft, Earth, Sun, 
and the target planet) are involved. To simplify the problem the trajectory is separated into 
regions that are solved independently and then put together to get a final solution (Figure 6.4).  

 
Figure 6.4: Gravitational forces acting on an interplanetary spacecraft.  

After the launch of a spacecraft and its release from the rocket it is generally placed into a 
parking orbit around the Earth. To set the space probe on its trip to another body in the solar 
system, or any other point, its velocity and thus energy needs to be changed, usually through 
impulsive burns of rocket thrusters. Before further actions are taken for the spacecraft’s 
scientific operation, it is placed into another parking orbit at the target planet [15].   

6.4.1 Gravity Assist 

To reach other bodies in the solar system using this so called ‘Hohmann Transfer 
manoeuvres’, a tremendous amount of rocket propellant is required, which significantly 
increases the mission’s cost. ‘Free’ velocity changes can be obtained through gravity assist 
techniques where the planet’s gravitational field and orbital velocity are used to catapult the 
spacecraft, changing its velocity (in magnitude and direction) and its plane if necessary. 

After leaving the Earth’s gravity field the space probe is sent into an elliptical orbit around the 
Sun heading toward the destination planet. The planet does not interact with the spacecraft 
until it approaches close enough for the planet’s gravity to be stronger than that of the Sun’s. 
This region is called the ‘sphere of influence’ (Figure 6.5).  
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Figure 6.5: Planet’s sphere of influence and spacecraft (s/c) velocity change. 

Near the planet the path of the spacecraft is a hyperbolic orbit rather than an elliptic one, and 
its centre of motion is the planet (Figure 6.6). The hyperbolic orbit is due to the fact that the 
spacecraft’s velocity is higher than the escape velocity of the planet. Once the probe leaves 
the planet’s sphere of influence, it will again be in an elliptical orbit around the Sun – but 
different from the one before [27].  
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Figure 6.6: Hyperbolic orbit and formulas. 

Depending on the path of the spacecraft, passing behind or in front of the planet with respect 
to its motion around the Sun, it is pulled in the direction of the planet’s motion and thus gains 
velocity with respect to the Sun or, respectively, it is pulled in the opposite direction, slowing 
the spacecraft down and lowering its orbit (Figure 6.5). To give an example for the magnitude 
of the velocity change ∆v, consider Voyager 2 on its way to explore the outer solar system. In 
order to move outward and exceed the solar system escape velocity, the spacecraft gained up 
to 20 km/s speed during the various planet flybys (Figure 6.7). 
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Figure 6.7: Voyager 2 gravity-assist velocity changes [Courtesy Steve Matousek, NASA/JPL]. 

6.4.2 GALILEO’s Trajectory 

The gravity-assist-technique was also used with GALILEO, which trajectory consisted of a 
Venus flyby (∆v = 2.0 km/s) and two Earth flybys (∆v1 = 5.2 km/s, ∆v2 = 3.7 km/s) before it 
could reach its final destination Jupiter (Figure 6.8).  

 
Figure 6.8: Galileo’s trajectory until 2001 [Courtesy NASA/JPL-Caltech]. 
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The same principle applies within the Jovian system, where Jupiter is the main influence of 
gravity and its moons can be used as gravity assists. In the case of GALILEO, the gravity of 
the massive Galilean moons was used to modify the orbiter’s course during each highly 
elliptical revolution about Jupiter. This simultaneously sent the spacecraft towards the next 
encounter and provided extremely close, targeted approaches to the satellites for scientific 
measurements, called a ‘tour’. While it is relatively easy to design a tour to satisfy any 
individual science requirement, it is difficult to design a single tour that suits all the science 
requirements, because the trajectories needed to satisfy individual science requirements tend 
to be dissimilar. Therefore, strategies are developed to maximise the satellite tour science and 
different encounters are often dedicated to specific science investigations, e.g. GALILEO’s 
encounter with Amalthea (chapter 8).  
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7 Radio Science for Orbit and Gravity Field 
Determination 

The field of Radio Science improves our knowledge of the solar system through radio 
frequency experiments performed between a spacecraft and an Earth-based radio science 
system. These experiments allow scientists to characterise planetary atmospheres and 
planetary surfaces, confirm general relativity, search for gravitational waves, characterise 
planetary gravity, and determine the mass of the planets, moons and asteroids. In the case of 
GALILEO’s encounter with Jupiter’s moon Amalthea the flyby was dedicated to the latter 
two.  

7.1 Spacecraft Communication and Tracking 

A space mission’s communications network relates to the exchange of command and 
engineering data between spacecraft and ground controllers, as well as the processing and 
transmission of data from the payload to the users. It contains three elements: the satellite as 
the space- borne part of the system, the ground stations with Earth-based antennas and 
receivers, and the control centre that controls the satellite and all other elements in the 
network (Figure 7.1). In some cases an additional satellite might be integrated, which links 
the primary satellite with the ground stations [15].  

 
Figure 7.1: Communications network. 

Communication across space is based on radio waves. In principle, a ground station 
broadcasts a carrier signal at some specific allocated frequency. The message being sent is 
superimposed on top of the carrier signal using some type of modulation scheme. The radio 
signal travels out from the ground station’s antenna and is received by the antenna on the 
satellite. The same principle applies for a spacecraft generated signal. 

7.1.1 The Deep Space Network 

Managed by JPL, the Deep Space Network (DSN) provides radio communications for all of 
NASA’s interplanetary spacecraft and for some Earth-orbiting spacecraft in high-Earth orbits, 
and a selected group of satellites in low-Earth orbits. It is also utilised for radio astronomy 
and radar observations of the solar system and universe [43]. 

The current structure of the DSN consists of three Deep Space Communications Complexes, 
located around the world, approximately 120 degrees apart in longitude to compensate for the 
Earth’s daily rotation and therefore providing continuous communications to the spacecraft. 
Situated near Canberra (Australia), Madrid (Spain), and Barstow (California), far away from 
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heavily populated areas, they consist of several deep space stations equipped with large 
parabolic reflector antennas (Figure 7.2) and ultra-sensitive receiving systems to detect the 
weak signals of the remote spacecraft. For the GALILEO mission arraying (the combination 
of signals from more than one antenna) was utilised to get higher data rates from the low-gain 
spacecraft antenna, necessitated by difficulties with the spacecraft’s high-gain antenna 
(chapter 5.4).  

 
Figure 7.2: Front view of the 70m antenna at Goldstone, California/USA [Courtesy NASA/JPL-Caltech]. 

This sophisticated Earth-based communications system is an essential component for 
controlling a spacecraft’s operation modes, loading and reprogramming its computers, 
navigating it to its destination, and sending scientific data back to Earth. The scientific data 
are then transferred via landlines, terrestrial microwave links, or communications satellites to 
the Deep Space Operations Center at JPL. Here the raw spacecraft and ground system data are 
processed into usable products for real-time delivery to mission control operators and mission 
scientist and engineers.  

7.2 Doppler and Ranging Measurements 

7.2.1 The Doppler Effect 

The Doppler effect or Doppler shift, named after the Austrian physicist Christian Doppler 
(1803-1853), denotes the difference between the frequency/wavelength of the radiation 
received at an observing point and the frequency/wavelength of the radiation at its source, 
when observer and source are moving with respect to each other [26]. For simplicity only the 
case where observer and source are moving along a straight line is considered. Motion of the 
radiation source along the line of sight away from the observer causes an increase of the 
wavelengths (red-shifts), and motion along the line of sight toward the observer causes a 
decrease of the wavelengths (blue-shifts). The wavelength shift (∆λ) due to the Doppler effect 
is directly proportional to the velocity of recession or approach (v), as long as the relative 
velocity is much less than the velocity of light (c):  

v
c

0λλ =∆       (7-1) 

where λ0 is the wavelength of the radiation produced by the source.  
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Observation techniques based on the Doppler principle are widely used in science and 
technology for the determination of velocities. In practice, the Doppler shift is determined 
from the difference between the transmitted (fT) and the received frequency (fR) within a given 
time interval (T), where the time of observation (tO) is associated with the middle of the 
interval. In addition, the cycle count between the two times is normalised by the length of the 
interval. Therefore, the actual Doppler observable (F), that is available for further 
calculations, is given by: 
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The representation of the Doppler observable for purposes of velocity changes of a spacecraft, 
and hence orbital elements, requires [1]: 

  a knowledge of the transmitter frequency 
  the count time and the observation time 
  a mathematical model for the integral as a function of the relative motions of the Earth and 
spacecraft and the propagation effects through particulate matter, which will advance the 
phase of a radio signal (e.g. Earth’s atmosphere and ionosphere, interplanetary medium) 

The acceleration of the spacecraft, and consequently the acceleration due to gravitational 
forces (e.g. nearby planetary bodies), is obtained through the variation of the Doppler 
observable with time. Based on these measurements the gravitational potential, given through 
the moments of gravitation (chapter 11.4.3), of a planetary body can be derived and thus 
interior structure models designed.  

In general, different techniques can be used to derive the Doppler observables: 

  1-way Doppler measurements: an electromagnetic signal is transmitted continuously from 
the spacecraft and received by the tracking station on Earth 

  2-way Doppler data: the signal is transmitted continuously from a tracking station on Earth, 
received and retransmitted by the spacecraft, and received continuously by the same 
tracking station 

  3-way Doppler observable: as the 2-way but the signal is received by a different tracking 
station  

As the reference and received frequency for the 2-way Doppler data are derived from the 
same atomic frequency standard, the 2-way Doppler gives the most accurate measure of the 
Doppler frequency shift and thus the range rate from the tracking station to the spacecraft.  

7.2.2 Spacecraft Ranging 

To obtain range data from a spacecraft, a phase modulation is placed on the signal being used 
for the Doppler data. This modulation, which is called the ranging code, is carried to the 
spacecraft and back to Earth at a frequency equal to the transmitter frequency fT on the up leg 
of the transmission and at a frequency on the down leg that is slightly Doppler-shifted by the 
motion of the spacecraft. When the phase shift is such that the correlation of the received and 
transmitted codes is at a maximum, the number of cycles of phase shift yields the time delay 
between the transmitted and received signals.  
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This time delay constitutes the range observable (R):  

[ ])()( 13 STtSTtcR −=     (7-3) 

where t3(ST) and t1(ST) are the reception and transmission times, respectively, recorded on the 
station (ST) clock [20].  

A ranging measurement will be a function of the relative positions of the Earth and the 
spacecraft, as well as a function of propagation effects of the signal through charged and 
neutral particles. In contrast to the Doppler signal the scattering from free electrons will retard 
the ranging signal.  

7.3 Orbit and Gravity Field Determination 

For the determination of precision orbits of interplanetary spacecraft, radar and optical 
sightings from Earth-based stations can be used, or radar and optical sightings of celestial 
bodies can be made from the spacecraft itself. Accurate spacecraft orbits on the other hand are 
required in order to determine the gravity fields of the planets and their satellites. 

With respect to the GALILEO mission, in general only ground-based data was used for the 
radio science experiments, in particular two-way coherent range and Doppler data of the 
DSN. Because of the failure of the high-gain antenna, the investigations had to be carried out 
with the radio S-band (Earth-spacecraft uplink: 2215 MHz or 14.17 cm wavelength [25]) 
using the low-gain antenna of the satellite.  

7.3.1 Accuracy 

To represent the spacecraft data it is necessary to carry at least as many digits in the numerical 
computation as are required to achieve full accuracy in the data themselves. In the case of 
Doppler data, the limiting accuracy is determined by the stability of the frequency standard, 
which is stated by the Allan variance (σy) [36]. This is a widely used statistic for assessing the 
performance of oscillators and clocks over a specified time interval, meaning how well an 
oscillator maintains a particular frequency or how well a clock keeps time.  

For two-way Doppler data the relation between the range rate ρ& and the frequency shift ∆f is 
approximately [1]: 
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Thus, the error of the range rate for an appropriate interval of time of several seconds, over 
which the standard deviation (σf) of the frequency standard is clearly defined, is given by 
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The DNS’s frequency and timing system is based on hydrogen-maser frequency standards; 
therefore the instrumental error (or Allan variation) in measuring the Doppler shift will be 
between 10-12 and 10-15 for the S-Band, depending on the length of observation. The 
corresponding measurement of velocity will be accurate in the range of ±10-4 to ±10-7 m/s, 
and ±0.1 m for the range observable.  
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The basic limitations on the accuracy of the above mentioned computed observables are the 
inaccuracies in the troposphere and ionosphere corrections, as well as space plasma 
corrections, which can deteriorate the accuracy to a factor of 10.  

7.3.2 Data Evaluation 

At JPL the Double-Precise Orbit Determination Program (DPODP) is used to determine 
values of the parameters that specify the spacecraft trajectory for planetary missions, both for 
real-time and post-flight reduction of the tracking data. The DPODP differentially corrects a 
priori estimates of injection parameters, physical constants, manoeuvre parameters, and 
station locations to minimise the sum of weighted squares of residual errors between observed 
and computed quantities [21]. The programme was developed from 1964 to 1968 and is still 
in use for various spacecraft missions, such as e.g. GALILEO.   

The parameters whose values may be estimated by the DPODP through least square 
techniques are e.g.: 

  parameters that affect the relative position and velocity of the Sun, planets and the Moon 
(gravitational constants GM, osculating orbital elements, etc.)  

  the harmonic coefficients Jn, Cnm, Snm which describe the gravitational field of a body 
  parameters affecting the acceleration of the spacecraft due to solar radiation pressure 
  coefficients for small acceleration acting along each spacecraft axis (due to gas leaks and 
small forces arising from operation of the attitude control system) 

  parameters affecting the transformation from universal time to ephemeris time due to e.g. 
relativistic effects  

  station parameters 
  spacecraft transmitter frequency for 1-way Doppler  

Given the a priori estimate of the parameter vector q, the programme integrates the spacecraft 
acceleration using numerical integration methods to give position and velocity at any desired 
time. Using the spacecraft ephemeris along with the pre-computed ephemeris for the other 
bodies within the solar system, and the parameter vector q, the programme computes values 
for each observed quantity (normally Doppler shift, range, or angles) and forms the observed 
minus computed residuals.  

In addition to integrating the acceleration of the spacecraft to obtain the spacecraft ephemeris, 
the programme integrates the partial derivative of the spacecraft acceleration with respect to 
the parameter vector q to give the partial derivative of the spacecraft state vector and 
furthermore the partial derivative of each computed observable. In combination with the 
residuals, the weights applied to each residual, the a priori parameter vector and its covariance 
matrix, the programme computes the differential correction ∆q to the parameter vector, which 
serves as input for a new integration. This process is repeated until convergence is obtained 
and the sum of weighted squares of residual errors between observed and computed quantities 
is minimised.  

These techniques and their mathematical formulation are discussed in detail by Moyer [21]. 

 

 

 



GALILEO Amalthea Flyby 

- 39 - 

8 GALILEO Amalthea Flyby 

GALILEO’s last and final flyby of its mission, a close encounter with Jupiter’s small inner 
moon Amalthea, took place on November 5, 2002. The following chapter explains the 
planned scientific observations with respect to the gravity field of Amalthea, the problems 
that occurred during the flyby and the efforts of the radio science team to recover some of the 
data.  

 
Figure 8.1: Artist impression of GALILEO’s flyby at Amalthea [Courtesy Michael W. Carroll]. 

8.1 Flyby Geometry and Science Investigations 

8.1.1 Planned Flyby 

The flyby of Amalthea was mainly dedicated to the observation of its gravity field, thus the 
orbit designed to fulfil this objective. In order to get a strong Doppler signal, which includes 
information about the quadrupole moments of Amalthea’s gravity field (chapter 11.4.3), it 
was anticipated for the flyby to occur approximately within the Jupiter-Amalthea equatorial 
plane and the Earth line of sight (which would result almost above the longest axis of the 
moon).  

 
Figure 8.2: The solar system as seen from Amalthea on November 5, 2002, 6:18 UTC. 
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Because of Amalthea’s small dimensions, and thus mass, and the spacecraft’s high velocity, it 
has not been expected to get a detectable signal much outside of one minute about closest 
approach [37]. The data sample interval therefore needed to be high – one point per second. 
With an estimated Allen variation (σy) of 10-12 over this short period, the Doppler error for the 
2-way Doppler signal (7-5), and thus measurement accuracy, amounts to ±0.15 mm/s.  

The acceleration noise 

T
c y

a

σ
σ

2
1

=      (8-1) 

per sample interval (T = 1 second) totals ±0.15 mm/s² and the total acceleration error floor 
over 60 seconds is ±2.5 x 10-3 mm/s².  

Derived from equation (11-47), chapter 11.4.3, the axis a, b, c of Amalthea, and the flyby 
radius r the maximum signal level a2 for the expected quadrupole moments of gravitation can 
be plotted (Figure 8.3): 

( ) ( ) ( )[ ]222222222222
62 222
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3 cbazcbaycbax

r
GMa +−−+−+−+−−=  (8-2) 

Considering Amalthea’s figure and values for a polar flyby (x = y = 0), the flyby would have 
had to occur below an altitude (= r - a) of ~800 km to get any gravity signal, but unfortunately 
the signal is buried in the data noise above an altitude of ~220 km. A flyby altitude of e.g. 
380 km would have given already a gravity error of about 10%, higher altitudes deteriorating 
the results of the experiment even more. The values for an equatorial flyby (y = z = 0) are 
slightly better and considering the gravity errors, a flyby altitude (or respectively radius at 
closest approach) of ~150 km (~280 km, respectively) has been anticipated.  

For completeness it should be stated that no range data was available for the experiment.  
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Figure 8.3: Maximum signal level for expected quadrupole gravity moments. 
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8.1.2 Flyby Sequence 

The science observation sequence for GALILEO’s final satellite encounter began on Monday, 
October 21, 2002, and lasted for three weeks. In addition to the gravity field experiments the 
following instruments participated in data collection for Jupiter’s environment: the Dust 
Detector, the Energetic Particle Detector, the Heavy Ion Counter, the Magnetometer, the 
Plasma Subsystem and the Plasma Wave Subsystem. All other instruments, unfortunately 
including the SSI camera for obtaining optical images of Amalthea, had to be shut down 
because of Jupiter’s immense radiation [38]. 

  
Figure 8.4: GALILEO’s position (as seen from the north, direction of the sun points up) and Jupiter (as seen 

from the spacecraft) about a week before the flyby [Courtesy NASA/JPL-Caltech]. 

At 9:02 pm UTC, November 4, 2002, 10 hours before the closest approach, the Radio Science 
team began the experiment to measure the gravity field of Amalthea, which should have 
lasted 20 hours. This long period of observation would have given enough information about 
the moon’s gravitational tug on GALILEO and thus the determination of the mass and the 
gravity field of Amalthea. For more details on all of the planned science observations and 
timeline of the encounter refer to Appendix B.  

  
Figure 8.5: GALILEO’s position (as seen from the north, direction of the sun points up) and Jupiter (as seen 

from the spacecraft) shortly before closest approach [Courtesy NASA/JPL-Caltech]. 

At 6:19:45 a.m. UTC, November 5, 2002, GALILEO reached its closest point to Amalthea, 
attaining a speed of 18.4 km/s with respect to the moon. At that time, GALILEO’s radio 
signals took 44 minutes to travel between the spacecraft and Earth.  



GALILEO Amalthea Flyby 

- 42 - 

8.2 Problems and Solutions 

About five hours to closest approach it was anticipated to switch radio transmission from 
1-way Doppler mode to 2-way Doppler to provide continuous coverage for the gravity 
measurements. Unfortunately the radio receiver on board GALILEO failed to phase lock to 
the uplink radio carrier transmitted by the DSN tracking station near Madrid, Spain, and 
therefore could not send back the signal. This failure was caused by an improper carrier 
frequency, which was outside the bandwidth of the spacecraft’s receiver. As GALILEO is 
moving very fast near Jupiter, it is difficult to predict the Doppler-shifted frequency the 
spacecraft will receive. The prediction that was made was just not good enough for the 
20-year-old receiver, which has been exposed to Jupiter’s radiation more than four times the 
radiation dosage it was designed to take [2].  

However, it was possible to receive 1-way Doppler data, generated from the spacecraft’s 
crystal oscillator. Unfortunately it does not have sufficient accuracy to serve as a standard for 
precise Doppler and range transmissions and thus the gravity field of Amalthea cannot be 
determined from it alone. Nevertheless, the combination of both pre and post encounter 2-way 
Doppler data, attained a couple of days before and a day after encounter, in addition to the 
1-way data can be used to derive at least the mass of the moon to a certain degree of 
precision. 

8.2.1 Actual Data from the Flyby 

The yearlong experience of the JPL Radio Science team enabled the scientists to analyse and 
interpret the Doppler data with means of the DPODP (chapter 7.3) and derive a mass 
estimation for Amalthea of M = 2.083 x 1018 kg (GM = 1.39 ± 0.1 x 108 m³/s² [16]). In 
combination with the volume of the moon (chapter 4.3) a mean density of 
ρm = 860 ± 60 kg/m³ can be determined. This low density was unexpected for most Jupiter 
system models inside Io’s orbit (chapter 4.4). In order to assess the material (or mineral) 
density of the body, a possible range of porosity Φ needs to be estimated (4-1). Because of 
Amalthea’s shape it is unlikely that the moon consists solely of ice with Φ ~ 0. The most 
likely range lies between Φ ~ 0.5 with a low density rock or rock/ice mixture and Φ ~ 0.7 
with high density rock or rock/ice combination. Both assumptions indicate that Amalthea is 
probably a rubble pile with many volatile, icy and empty components. In contrast to the two 
accretion scenarios mentioned in chapter 4.4 there could also be the possibility that the rings 
and Amalthea formed much later in a different environment from the Galilean satellites, 
which generates difficulties for all theoretical modellers of the Jovian satellite formation at 
the moment, if the Amalthea results are correct [40]. 

In the frame of this work, these values have been used for the development of interior models 
and gravity field of Amalthea and further evaluations (chapter 13 and 14).  

The various spacecraft data at closest approach with respect to the trajectory can be found in 
Appendix C. The actual flyby geometry is shown in Figure 8.6; the radius of closest 
approach (c/a) amounted to 254853.910 m . The spacecraft’s trajectory lies nearly parallel to 
Amalthea’s longest axis, but approximately 200 km south of the Jupiter-Amalthea equatorial 
plane. With respect to the geometry of the trajectory the flyby would have been quite optimal 
for the gravity field experiment (chapter 14.2), if not for the data itself.  

                                                 
 Results from the latest JPL analysis show a flyby radius of 233.3 km (Anderson, J.D., et al: Amalthea’s 

Density is Less Than the Density of Water, in preparation).   
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Figure 8.6: Galileo flyby geometry. 

For completeness it should be stated that GALILEO placed itself in a standby precautionary 
mode after its closest approach to Amalthea, caused by the intense radiation of Jupiter. No 
further science investigations could be made, but the scientists where able to restore some of 
the gathered data and could make sure that the spacecraft was in good condition and on its 
right trajectory for the final impact on Jupiter on September 21, 2003.  
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Part III  
Amalthea Models:  
Preparatory Derivations 
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9 Geometry of a Planetary Body 

Although for a first order approximation spherical symmetry of planets and large moons can 
be assumed, in reality, a planetary body departs from that because of e.g. oblateness caused 
by body rotation, and asymmetric mass distribution. In order to get a more precise description 
of planetary bodies either a spheroid or general (triaxial) ellipsoid is applied. In some cases 
(e.g. small irregular objects) even an ellipsoidal approach is not sufficient and the shape of the 
body needs to be implemented. The following chapter gives the mathematical formulation of 
ellipsoidal equations with respect to planetary bodies.  

9.1 Curvilinear Coordinates 

Sometimes it is necessary, or convenient, to derive various physical laws or solve problems in 
coordinates other than rectangular (Cartesian) coordinates. In Cartesian coordinates, the 
position of a point P is determined by the three coordinates x, y, z, which can be expressed 
through three new generalised coordinates u1, u2, u3, called curvilinear coordinates 
(Figure 9.1):  
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In general, only orthogonal curvilinear coordinate systems, in which the three coordinate 
surfaces intersect at right angles, are of interest.  

 
Figure 9.1: Curvilinear coordinates u1, u2, u3.  
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analogous with h2 and h3 [24].  
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The values h1, h2, h3 are called scale (or geometry) factors and are functions of the curvilinear 
coordinates: 

( ) ( ) ( )321333212232111 ,,,,,, uuuhhuuuhhuuuhh ===   (9-3) 
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The incremental distance ds between those two points can be written as: 
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Analogous the incremental volume element dτ can be found. The components of rdv  form an 
infinitesimal rectangular parallelepiped which volume equals: 

321321 dududuhhhd =τ      (9-6) 

9.2 Spherical or Polar Coordinates 

In spherical coordinates the position of a point P is determined by the three curvilinear 
coordinates r, ϕ, λ, where r is the radius vector, ϕ the latitude and λ the longitude. In most 
cases the polar angle ϕϑ −= 90  is used instead of the latitude (Figure 9.2).  

 
Figure 9.2: Polar coordinates r, ϑ, λ. 

The three orthogonal coordinate surfaces are concentric spheres about the origin (r = const.), 
right circular cones with apex at the origin and axis along the z-axis (ϑ = const.), and half-
planes through z (λ = const.), respectively. The position of a point P is given through:  
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correspondingly  
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The scale factors for spherical/polar coordinates become: 
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and thus the infinitesimal volume element: 

λϑϑλϑτ dddrrdddrhhhd sin²321 ==  (9-10) 

In some formulas the derivatives of the polar coordinates with respect to the Cartesian 
coordinates are needed and stated as: 
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9.3 Spheroidal Coordinates 

A spheroid is a surface of revolution obtained by rotating an ellipse about an axis (depending 
on whether c < a or c > a it is called an oblate spheroid or prolate spheroid, respectively). In 
the case of planetary bodies, the major axis a lies in the body’s equatorial plane (and in 
general is equated with the x-axis) and the minor axis c coincides with the axis of rotation (z-
axis). The y-axis is perpendicular to the x-axis and oriented counter clockwise (Figure 9.3).  

The fundamental equation of a spheroid with axis a = b > c is defined as: 
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Figure 9.3: Spheroid and axis. 

For the determination of the position of a point P the curvilinear coordinates u, ϑ, λ are used, 
where u is the minor axis and eae ⋅=  the constant linear eccentricity [32]:  
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The major axis a equals ²² eu + , ϑ is the reduced polar distance, and λ the longitude 
(Figure 9.4).   

 
Figure 9.4: Spheroidal Coordinates. 

Elimination of ϑ and λ (u = const.) gives confocal spheroids with minor axis u and constant 
linear eccentricity e :  
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Elimination of u and λ (ϑ =const) gives one-sheeted hyperboloids with constant focal circle 
²²)²( eyx =+ : 
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The third surface (λ = const.) are planes through the rotational axis and are given by: 

λtanxy =  (9-16) 

The scale factors for spheroidal coordinates become: 
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The incremental volume element is calculated through:  
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The above system turns into spherical (or polar) coordinates for 0=e . The spheroidal 
coordinates are a special case of the general ellipsoidal coordinates.  

9.4 Ellipsoidal Coordinates 

Ellipsoidal coordinates can be related in various ways to the Cartesian coordinates. They are 
defined with respect to a fundamental ellipsoid of semi-axis a > b > c: 
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If a constant γ is added to the semi-axis, the resulting quadric is a surface whose principal 
sections have the same foci as before – a surface confocal with the original [33]: 
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For ²c−>γ  the surface is an ellipsoid, for ²² bc −>>− γ  the surface is an elliptic 
hyperboloid of one sheet, and for ²² ab −>>− γ  the surface is an elliptic hyperboloid of two 
sheets (Figure 9.5). Calling the parameters γ in order of magnitude λ, µ, ν  a set of orthogonal 
curvilinear coordinates is defined – the ellipsoidal coordinates. The coordinate λ (not to 
mistake for the longitude of a sphere or spheroid!) is often called the ‘elliptic radius’ by 
analogy with the spherical radius r.  
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Figure 9.5: Ellipsoidal coordinates λ, µ, ν.  

The equations for the quadrics can therefore be written as: 
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For every point P(x,y,z) there is a unique set of ellipsoidal coordinates. However, a set of 
(λ,µ,ν) specifies eight points symmetrically located in octants. Solving the above system for 
x, y and z gives: 
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In the same manner as before the scale factors can be found: 
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as well as the infinitesimal volume element:  
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9.5 Shape Approximation 

The satellite systems of the outer planets include many members that are small (mean radius 
< 150 km) which are usually described as irregularly shaped as they are generally been 
considered to be remnants of collisional fragmentation. Most of the asteroids in our solar 
system fall within this category as well. The data of the shape of these small bodies is 
obtained through limb coordinate measurements from spacecraft images which allow for a 
much more scientifically useful application, with respect to e.g. body formation, cratering 
history, interior structure, and relationship to planetary rings [29].  

Coordinates of limb points are measured to sub-pixel accuracy from the raw digital images 
using empirically derived criteria for detection of high contrast edges. They are corrected for 
electronic distortion of the image and scaled to the object, using the camera focal length and 
the distance from spacecraft to target. The limb data is usually specified in longitude, latitude 
and radius. The limb coordinates can furthermore be fit by ellipses, which allow an accurate 
measurement of the volume of these irregular objects. Ellipses fit to limb data taken from 
several different orientations and the volume estimate can be combined to solve for an 
ellipsoidal description of the body with axes a, b and c (for Amalthea’s shape data and axes 
see chapter 4.3) 

A full description of these measurement and calculation techniques is given in Dermott and 
Thomas [9].  
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10 Definition of Coordinate Systems 

The orbital parameters (chapter 6.1) and positions of planetary bodies and spacecraft in our 
solar system have to refer to appropriate coordinate systems, e.g. local body-fixed (chapter 9) 
or inertial coordinate systems. Depending on the problem, a mathematical formulation of the 
relationship between those systems is of importance.  

10.1 Inertial Coordinate System 

Within the Newton’s mechanics an inertial system is characterised as a system where the 
1st Newton axiom is valid – such a system is without motion or moves uniformly in a straight 
line without rotation. In small scales like in our solar system this assumption is sufficient, 
though in some cases small corrections because of relativistic effects need to be made.  

The IAU has kinematically defined an International Celestial Reference System (ICRS) with 
origin in the barycentre of our solar system, which lies within the Sun. The ICRS is based on 
the directions to extra-galactic radio sources, called quasars [7].  

As measurements are derived on Earth (or from artificial satellites orbiting the Earth), the 
origin of the ICRS is usually moved to the Earth’s centre of gravity, the geocentre. 
Barycentric and geocentric time scales differ by small periodic terms. Because of the 
variability of the Earth’s equatorial and ecliptic planes with time, it is necessary to define 
coordinates with respect to a given date, called epoch – e.g. the J2000.0 coordinate system has 
the standard epoch of January 1, 2000, 12pm UTC.  

10.1.1 Orientation 

The diameter of the Earth is insignificantly small with respect to the distance to the stars, thus 
all directions from the Earth to a star are parallel. Furthermore, the stars seem to be positioned 
on a sphere with the Earth in its centre. If the radius of this sphere is set to unity, the direction 
to a star can be described by means of two angles, latitude and longitude, as long as a 
reference plane and an origin (prime meridian) are defined.  

In mathematical and geodetic terminology, the terms ‘latitude’ and ‘longitude’ refer to a right-
hand coordinate system in which latitude is defined as the angle between a vector and the 
equatorial plane, and longitude is the angle between the vector and the plane of the prime 
meridian measured in an eastern direction [8]. 

Within the ICRS the reference plane lies close to the Earth equator of J2000.0. The latitude, 
called declination δ, is measured north and south of the equator; north latitudes are designated 
as positive. The Non-Rotating Origin (NRO), which lies close to the vernal equinox ( ) 
J2000.0, defines the origin for the measurement of the longitude, also called right 
ascension α, which is measured eastwards from 0 to 24 hours, respectively 0°-360° 
(Figure 10.1).   
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Figure 10.1: Inertial equator system (ε … ecliptic obliquity). 

As the proportions of our solar system are insignificantly small with respect to the distances 
in the universe, the NRO is also used as a reference point for other planetocentric coordinate 
systems.  

10.2 Planetary Coordinate Systems 

The coordinates described in chapter 9 are local body-fixed coordinates with the origin 
usually located in the centre of mass. The position of a spacecraft can be expressed within 
such a planetocentric coordinate system as well. In order to associate the local coordinate 
system with the inertial the following definitions have been made by the IAU/IAG/COSPAR  
Working Group on Cartographic Coordinates and Rotational Elements of the Planets and 
Satellites [8] (Figure 10.2): 

  Planetary coordinate systems are defined relative to their mean axis of rotation and various 
definitions of longitude depending on the body. In the absence of other information, the 
axis of rotation is assumed to be normal to the mean orbital plane. 

  The longitude systems of most of the bodies in our solar system with observable rigid 
surfaces have been defined by references to a surface feature such as a crater. In cases of 
small planetary satellites the prime meridian coincides with the direction to the main planet.  

  The north pole is that pole of rotation that lies on the north side of the invariable plane of 
the solar system. 

  The direction of the north pole is specified by the value of its right ascension α0 and 
declination δ0, which are usually given in function of Julian centuries T from the standard 
epoch.  

  The location of the prime meridian is specified by the angle W that is measured along the 
body’s equator (in an easterly direction with respect to the planet’s north pole) from the 
node Q.  

                                                 
 International Astronomical Union (IAU), International Association of Geodesy (IAG), Committee on Space 

Research (COSPAR) 
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Figure 10.2: Reference system used to define the orientation of a planet. 

Because the prime meridian is assumed to rotate uniformly with the planet, W accordingly 
varies linearly with time, which is stated in the expression of W as: 

WdWW += 0  (10-1) 

where d is the interval in days from the standard epoch. For Amalthea’s data refer to 
chapter 4.3. 

If W increases with time, the planet has a prograde rotation and if W decreases with time, the 
rotation is said to be retrograde. 

10.3 Transformations  

The transformation of a point P (given through the coordinate vector xr ) from the inertial 
coordinate system (index i) to a body-fixed coordinate system (index B) is in general given 
through a displacement of the origin, up to three rotations and a change of scale. In the case of 
the Earth and the variability of its equatorial plane, the transformation needs to consider 
Earth-rotation, displacement of the pole, nutation and precession.   

In the scope of this work, and with respect to Amalthea, the coordinate systems are 
orthogonal, the origin of both systems is placed in the centre of the body, and the scale is 
identical. The transformation therefore reduces to:  

iB xRx rr
=  (10-2) 

where R defines the orthogonal rotational matrix. 

R is compound of three rotational matrixes with angles εx, εy, εz about the coordinate axis 
x, y, z, and can be stated as [4]:  
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Vice versa the rotational angles can be derived: 
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Because of the orthogonal characteristics the transposed matrix results to: 
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and hence the back transformation from body-fixed to inertial: 

B
T

i xRx rr
=  (10-7) 

The components a11, a12, a13 of the orthogonal matrix can be expressed through: 

312232211333213123123223332211 aaaaaaaaaaaaaaa −=−=−=  (10-8) 

Only two identical points in both systems are necessary in order to derive the components of 
the matrix or the rotational angles, nevertheless three points are used in general for a better 
determination.  

In the frame if this work it is as well necessary to transform velocities and accelerations from 
one system into the other. Consequently the derivates of the transformation equation need to 
be formed: 

iiiB

iiB

xRxRxRx

xRxRx

&&&r&r&&&&r
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+=

2
 (10-9) 

The products ixRr&&  and ixR&&  can be numerically neglected, and thus the transformation of the 
acceleration vector results to: 

iB xRx &&r&&r =      and     B
T

i xRx &&r&&r =  (10-10) 
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11 Potential Theory and Gravity Fields 

According to Newton’s law of gravitation two masses attract each other with a force that is 
proportional to the product of the masses and conversely proportional to the square of their 
distance (chapter 6.1). The effect of the gravitation can be described by means of the gradient 
of a scalar function – the potential (Joseph-Louis Lagrange, 1777). With respect to the 
purpose of this work, the following chapter explains the fundamentals of potential theory, 
including the basics of spherical harmonics. A more detailed derivation can be found in 
Heiskanen and Moritz [14]. 

11.1 Potential of Gravitation 

For simplicity the attracted mass (m2) in Newton’s law of gravitation (6-1) is set to unity:  

2r
GMF =

r
 (11-1) 

If the force ( )zyxF ,,
r

 can be linked to a scalar function V(x,y,z) through 
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V is called the potential of gravitation: 

r
GMV =  (11-3) 

respectively F
r

 is called the gradient of the potential V:  

F
r

 = grad V (11-4) 

The potential V is continuous throughout the whole space and vanishes at infinity. The first 
derivatives of V, the force components, are also continuous throughout space, but not so the 
second derivatives. At points where the density changes discontinuously (e.g. inside an 
attracting body) the potential satisfies Poisson’s equation:  
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Outside the attracting body, in empty space where the density ρ is zero, the potential satisfies 
the Laplace equation: 

0=∆V  (11-6) 

Its solutions are called harmonic functions. Hence the potential of gravitation is a harmonic 
function outside the attracting mass (but not inside).  

The harmonic function V is uniquely determined by its values on the surface of the attracting 
body. However, there are infinitely many mass distributions which have the given harmonic 
function V as exterior potential. It is therefore impossible to determine uniquely the 
generating masses from the external potential, e.g. the interior structure of a planetary body 
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cannot be defined exclusively by the potential of gravitation. To determine the problem more 
completely, additional information, like geology or seismic measurements, is necessary.  

11.2 Spherical Harmonics 

The most important harmonic functions are the so-called spherical harmonics. In order to 
solve Laplace’s equation for the potential of a spherical body, the variables r, ϑ, λ need to be 
separated by means of the trial substitution: 

),()(),,( λϑλϑ YrfrV =  (11-7) 

Solutions are given by the functions: 
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r
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As the sum of these results is also a solution, the potential V can now be written as: 
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where the second case yields the external potential. Physical significant solutions are given 
only for integer values of n. To determine the so-called surface harmonics Yn(ϑ,λ) a second 
trial substitution needs to be implemented: 

( ) ( ) ( )λϑλϑ hgYn ⋅=,  (11-10) 

with solutions: 

( ) ( ) ( ) ( )ϑϑλλλλ cossincos nmPgmhmh ===   (11-11) 

The ( )ϑcosnmP  are called Legendre functions and will be considered in some detail in the 
next section. The general expression for the surface harmonic of degree n now reads (Anm and 
Bnm are arbitrary constants): 
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Physical evocative solutions are provided only for m ≤ n. 
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respectively with abbreviations  
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gives the general solution of Laplace’s equation for the external potential.  
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11.2.1 Legendre Functions of the First Kind 

It is convenient to transform the Legendre equation by the substitution 

ϑcos=t  (11-15) 

and hence the solutions can be written as: 
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For m = 0 the functions are called Legendre polynomials and denoted as ( )tPn . 

Higher order polynomials can be obtained more simply by the recursion formula: 
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The associated Legendre functions can easily be deduced from the Legendre polynomials by 
means of the equation: 
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For the use in computer programming the following expression is more convenient:  
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where r is the greatest integer 
2

mn −
≤ ; e.g. r is 

2
mn −  or 

2
1−− mn , whichever is an integer.  

The derivates of the Legendre functions are given through: 
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The first few Legendre polynomials, associated Legendre functions and derivates are given in 
Appendix E.1. 
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11.3 Expansion of a Function into Spherical Harmonics 

A general function f on the surface σ of the sphere (r set to unity) can be expanded into a 
series of surface spherical harmonics:  
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In order to determine the coefficients Anm and Bnm the orthogonality relations are needed, 
which mean that the integral over the unit sphere of the product of any two different functions 
Cnm and Snm is zero and the product of two equal functions is given through: 
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The solutions for the coefficients Anm and Bnm can be stated as: 
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In general, the function f(ϑ,λ) is not given analytically but through observables, e.g. 
temperature, atmospheric pressure, heights, and gravity. The degree of expansion depends on 
the quantity of observables – each observable defines one equation and thus (n+1)² equations 
are needed for the number of coefficients up to degree n. If the data is given on specific 
latitudes and equidistant longitudes, the derivation of the coefficients Anm and Bnm becomes 
much easier (Franz Neumann, 1798-1895).  

11.3.1 Second Method of Neumann 

For an expansion up to degree n the values for f(ϑ,λ) at the intersection of 2n equidistant 
meridians with 2n+1 ‘optional’ almucantarates are required, which amounts to 2n(n+1) values 
[32].  

Initially, n+1 auxiliary quantities 1321 ,...,,, +naaaa  need to be determined: 
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with 1321 ,...,,, +ntttt  being the roots of ( ) 01 =+ tPn , and thus the latitudes. The values of a and t 
for degree 4, 5 and 6 are given in Appendix E.2.  
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Further, the quantity 02
2 λππ

==
nn

 is set and new coefficients cmj and smj are introduced: 
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with nm ≤≤0 , and ( )0, λϑ kf j  being the data values.  

Finally, the coefficients of the spherical expansion can be written as:  
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11.4 Gravitational Potential of a Planetary Body 

In order to develop the gravitational potential V at a fixed point P outside an attracting mass 
the effect of a variable mass element dM needs to be determined. Therefore, V is denoted as:  

∫∫∫=
body l

dMGV  (11-28) 

with l being the distance between P and dM (Figure 11.1). The expansion of the reciprocal 
distance into zonal harmonics can be written as:  
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Figure 11.1: Reference geometry for the expansion of the gravitational potential at P.  

Since the mass element is (compare to chapter 9.2 (9-10)): 

λϑϑρ ′′′′′= ddrdrdM sin2  (11-30) 

the coefficients Anm and Bnm become:  
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11.4.1 Moments of Inertia 

The first few harmonics Cnm and Snm can be interpreted with simple mechanics. They read in 
Cartesian coordinates: 
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Substituting these functions into the expressions for Anm and Bnm, they yield:  
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It is known from mechanics that  
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are the rectangular coordinates of the centre of gravity. If the origin of the coordinate system 
coincides with the centre of gravity, all first-degree terms in the spherical harmonic expansion 
vanish!  

The moments of inertia A, B, C can be expressed through: 
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Furthermore, the products of inertia F, G, H are defined as: 

∫∫∫∫∫∫∫∫∫ ′′=′′=′′= dMyxHdMxzGdMzyF  (11-36) 

They are zero if the coordinate axes coincide with the principal axes of inertia. Since the 
z-axis of a body is usually identical with the mean rotational axis, which coincides with the 
axis of maximum inertia C, the products of inertia F and G must vanish, respectively all 
harmonics of degree 2 and order 1. For a spheroidal body the term B22, which is proportional 
to the product of inertia H, would vanish as well.  

The expansion of the gravitational potential V up to the second degree in Cartesian 
coordinates can now be written as: 
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11.4.2 Mass Functions 

In connection with satellite dynamics, the potential V is often written in the form: 
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where R is the (mean) equatorial radius of the gravitating body. Taking into account the above 
mentioned assumptions, the summation actually begins with n = 2. For 0≠n  the following 
relations exist: 
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Jnm and Knm are the so-called mass functions (or moments of gravitation). They can be related 
to the moments and products of inertia and stated as:  
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The second degree mass coefficients are also called “quadrupole moments of gravitation”. For 
0=m  they describe the flattening of the body; terms of higher degree contribute to a better 

adjustment. Mass coefficients of second order take into consideration the non-spheroidal (e.g. 
3-axial) shape. Furthermore, the coefficients can be interpreted with respect to the mass 
distribution within the body. But as stated earlier, a uniquely determination cannot be 
achieved. 

Coefficients of higher degree can be neglected for larger distances; for planetary distances 
even the first term of the gravitational potential, which represents the potential of a point 
mass, is generally sufficient.  

11.4.3 Gravitational Disturbances in Cartesian Coordinates 

In order to e.g. calculate the trajectory of a spacecraft influenced by a nearby gravitating 
body, the gravitational disturbances need to be derived in Cartesian coordinates and 
implemented into e.g. a numerical integration method. For this purpose the gravitational 
potential V can be written as:  
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where T denotes the disturbed potential. The gradient of V is obtained by: 
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The disturbed acceleration d
ix&&r  of the spacecraft in an inertial coordinate system (index i) is 

given through [31]: 
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If T is defined within a body-fixed coordinate system (index B) the derivatives cannot be 
derived directly.  

At first, the acceleration vector d
Bx&&r  within the local system has to be calculated and later 

transformed into the inertial system: 
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The first derivatives of the disturbed potential are stated as: 
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For further reference (chapter 8.1.1), the quadrupole acceleration a2 in Cartesian coordinates 
is given: 

( ) ( ) ( )[ ]CBAzCBAyCBAx
r
Ga 222

2
3 222

62 +−−+−+−+−−=  (11-47) 

11.5 Application 

With respect to this work the ellipsoidal coordinates and scale factors (chapter 9.4) are applied 
in order to obtain the individual mass elements dM of a body. Their effect on the Neumann 
points (lying on a circumscribed sphere with radius equal to the body’s major axis a) gives the 
body’s potential of gravitation, which leads to the derivation of the moments of gravitation 
(mass coefficients) by the second method of Neumann. Based on these coefficients the 
gravitational disturbances (accelerations) acting on a spacecraft can be calculated and thus its 
trajectory. The approach is described in the following chapters.  
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12 ‘GRASP’ 

The main focus of this work lies in the derivation of Amalthea’s gravity field, based on 
different interior models of the moon (chapter 13), which have in return a direct impact on a 
spacecraft trajectory (chapter 14). In order to carry out the required calculations the computer 
programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft 
Trajectory) has been developed. GRASP is coded in the computer language Borland Delphi 
Professional, Version 3.0, the Windows-based version of Borland Pascal, to ensure an user-
friendly product.  

With GRASP it is possible to: 

  derive the volume of any spherical, spheroidal or ellipsoidal body, 
  calculate the potential of gravitation, the mass coefficients, and the moments of inertia of 
these bodies, and 

  analyse the effect of the body’s gravity field on a spacecraft trajectory. 

All these aspects are taken care through various numerical integration methods.  

 
Figure 12.1: GRASP – start page.  

The calculation times for GRASP given in the following sections refer to a notebook with a 
1.6 GHz Intel Pentium processor and 504 MB RAM. 

12.1 Volume of a Planetary Body 

GRASP provides options to calculate the volume of a body through a spheroidal or ellipsoidal 
approach, which is derived by the summation of infinitesimal volume elements dτ 
(chapters 9.3 and 9.4, respectively equations (9-18) and (9-24)); the smaller the elements the 
better the volume approximation – selectable through the number of sections that indicate the 
thickness of the spheroidal/ellipsoidal shells. The body axes have to be provided through a 
data file (‘DataBody.txt’), as well as the rotational period of the body that is needed for the 
calculation of a spacecraft trajectory (Figure 12.2). Furthermore, the density ρ or the mass M 
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of the body can be entered, which is essential for supplementary computations of the gravity 
field.  

  
Figure 12.2: GRASP – data input for volume calculation. 

The coded algorithms are stated in Appendix F.1. 

12.1.1 Spheroidal approach 

In addition to the above mentioned inputs the spheroidal calculation of the infinitesimal 
volume element requires the length of the longitudinal and latitudinal steps (Figure 12.3).  

 
Figure 12.3: GRASP – data input for volume element. 

In order to optimise computation time and output accuracy, the volume calculation was tested 
through various input options (number of sections, longitudinal and latitudinal steps) and 
compared to the reference volume of a sphere, respectively spheroid:  

πτ 3

3
4r=          πτ ca 2

3
4

=  (12-1) 

with r being the radius of the sphere, respectively a and c the axes of the spheroid.  
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The results for a spheroid of axes a = 125 km and c = 64 km, which stand for any spheroid, 
are shown in Figure 12.4. The implementation of more sections gives a better volume 
approximation, although no significant improvement can be derived with more than 
1000 sections. In comparison to 5° steps slightly better values are obtained for 1° steps; steps 
of 30’ and less give no upgrading but increase the calculation time. It is therefore 
recommended to use 1° steps and 1000 sections for the calculation of the volume, which 
results in an accuracy of about ±0.04 %. The computation time on the above mentioned 
notebook amounts to approximately one minute.  
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Figure 12.4: Volume approximation by variation of input parameters.  

12.1.2 Ellipsoidal approximation 

Most of the smaller bodies in our solar system cannot be approximated well by a sphere or 
spheroid, but with an ellipsoid, as it is the case with Jupiter’s moon Amalthea. It is therefore 
necessary to calculate the volume with means of ellipsoidal coordinates.  

In order to maximise the output accuracy, a similar test as for the spheroidal approach was 
carried out, comparing the output volume to the reference volume of an ellipsoid with same 
axes a, b, and c: 

πτ abc
3
4

=  (12-2) 

The results for an ellipsoid of axes a = 125 km, b = 73 km and c = 64 km (values for 
Amalthea), which stand for any ellipsoid, are shown in Figure 12.5. As expected, the 
implementation of more sections gives a better volume approximation; the accuracy for 
5000 sections results to roughly ±1.2 %. But because of the complex algorithms for this 
approach, the computation time amounts to ~24 hours (!) for 5000 sections on the above 
mentioned notebook, which is not feasible for further calculations. It is therefore 
recommended to use 500 or 1000 sections, resulting in a volume accuracy of better than 
±4 %, but a calculation time of only one, respectively twelve minutes.   
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Figure 12.5: Volume approximation for an ellipsoid. 

12.1.3 Shape implementation 

For very irregular bodies not even an ellipsoidal volume approximation is sufficient, which 
actually would be the case for Amalthea. As mentioned in chapter 4.3 shape data of the moon 
exist (Figure 12.6) that can be implemented into GRASP. Based on the ellipsoidal approach, 
the coordinates of the current volume element are calculated, transferred into polar 
coordinates and the radius of this point compared to the radius of the shape model. If latter is 
smaller, the volume element is not added to the total volume.  

 
Figure 12.6: Data file with shape information of body (latitude, longitude, and radius). 

This method lacks precision, but for a first order assessment of its feasibility the approach is 
sufficient. In order to analyse the method’s accuracy, the shape information of various 
ellipsoids was implemented and tested in comparison to the normal ellipsoidal approximation.  

As the ellipsoidal axes of the data file are used to give a reference ellipsoid, the approach does 
not take into consideration any volume elements which might lie outside. It would therefore 
be obvious to apply a larger reference ellipsoid. Unfortunately, a larger reference ellipsoid 
involves larger volume elements, thus a poor approximation and a too large volume, as can be 
seen in Figure 12.7: the task was to derive the volume of an ellipsoid with axes a = 125 km, 
b = 73 km and c = 64 km, which was given as shape data in 5° steps. The red line gives the 
reference volume as stated in the previous section. The blue line refers to a reference ellipsoid 
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with the same axes – demonstrating the same volume as derived through the normal 
ellipsoidal approximation. The other two lines denote larger reference ellipsoids and thus 
larger volumes.  
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Figure 12.7: Shape implementation with various reference ellipsoids.  

The computation times for this approach are already enormous, and even higher for 1° step 
shape data, which do not give better values. 

Consequently it can be stated that the above mentioned method as such gives no valuable 
results. A more precise derivation of volume element coordinates and comparison algorithms 
would only increase computation time and was therefore not considered. There are of course 
different approaches for including the shape data, e.g. [11], but they cannot be exploited for 
the calculation method of the gravity field used in this work.  

However, one valuable conclusion of the tests can be made for the volume of Amalthea 
(Figure 12.8): it is certainly smaller than the one derived by its axis, although the exact value 
cannot be determined. The blue line refers to a reference ellipsoid with axes a = 125 km, 
b = 73 km and c = 64 km (similar to Figure 12.7). Because of Amalthea’s irregular shape, the 
reference ellipsoid does not cover the whole body – it is not fully filled and parts of the moon 
lie outside, which are thus not calculated. The results expectedly show a smaller volume 
compared to Figure 12.7. The yellow line denotes a larger reference ellipsoid that entirely 
covers the moons shape but, concluding from the previous calculations, gives a too large 
volume. Amalthea’s actual volume must thus amount to a value between those two lines. This 
result lies well within the volume accuracy derived by P. Thomas (chapter 4.3). 
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Figure 12.8: Amalthea’s shape based on different reference ellipsoids.  

12.1.4 Conclusions and Data Output 

Considering the above results and conclusions for the ellipsoidal approach and shape 
implementation, the fact that Amalthea’s shape data is given only in an interval of 5°, and the 
computation times, the volume approximation for Amalthea with the ellipsoidal approach is 
sufficient using 500 sections. These volume calculations serve as a basis for the further 
derivation of the body’s gravity field.  

Sample output data files are given in Figure 12.9:  

 
Figure 12.9: GRASP – data output for volume calculations. 

12.2 Gravity Field 

The determination of the mass coefficients for a planetary body is implemented in GRASP 
through the second method of Neumann (chapter 11.3.1). Depending on the degree of the 
gravity field expansion the correct input for the data file of the Neumann coefficients needs to 
be given (e.g. ‘Neumann6.txt’, Figure 12.10). Based on the Neumann coefficients t and the 
degree of expansion GRASP computes the coordinates of the required Neumann points (lying 
on a circumscribed sphere with radius equal to the body’s major axis a) in which the potential 
of gravitation will be calculated.   
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Figure 12.10: GRASP – data input Neumann coefficients a and t. 

In addition to the Neumann data file the number of sections needs to be indicated, as well as 
in case of a heterogeneous body the number of layers, their thickness and mean density 
(Figure 12.11). The thickness and mean density of the outer layer result from the body’s 
shape and overall mean density; latter has been derived in the course of the volume 
calculation.  

 
Figure 12.11: GRASP – data input for gravity field determination (heterogeneous body).  

The potential of each Neumann point V(ϑ,λ) is derived through the summation of the effect of 
each infinitesimal mass element dM(ϑ’,λ’): 

( ) ( ) ( ) ( )∑∑∑
′′

=
′′

=′′=
l

dG
l

dMGdVV ρλϑτλϑλϑλϑ ,,,,  (12-3) 

with l being the distance between P and dM (compare with Figure 11.1) and ρ the density of 
the current layer.  

Thus the values/functions needed for the implementation of the second method of Neumann 
are given; and based on the coefficients of the spherical expansion Anm, Bnm (11-39) the mass 
functions of gravitation can be calculated:  

nmnmnmnm B
GM

aKA
GM

aJ −=−=  (12-4) 

Furthermore, GRASP uses the same approach of summation to derive the moments of inertia 
(chapter 11.4.1). The computation time for a spheroidal approach (1° steps, 1000 sections) 
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amounts to 30 minutes, for an ellipsoidal approach (500 sections) already to 8 hours, 
respectively 15 hours depending on the degree of the coefficients.  

12.3 Trajectory 

GRASP offers two options to calculate the trajectory of a spacecraft (s/c) influenced by a 
nearby body, provided that a starting point (e.g. closest approach c/a) and a starting velocity 
of the spacecraft are given: 

  s/c trajectory in a local, body-fixed coordinate system 
  s/c trajectory in the inertial J2000, body centred coordinate system 

For the latter the coordinates of three points (e.g. planets) need to be known in both inertial 
and local coordinate systems (Figure 12.12), in order to derive the rotation angles εx, εy, εz, 
which are needed for the transformation between these two coordinate systems.  

 
Figure 12.12: Data input for spacecraft coordinates and velocity at starting point. 

 
Figure 12.13: GRASP – data input for trajectory calculation. 
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Further input options include (Figure 12.13): 

  the main body’s gravity field (point mass only, homogeneous respectively heterogeneous 
interior), based on the calculations described in the previous section 

  an additional nearby disturbing body, treated as point mass 
  the integration steps for the s/c trajectory and the time interval 
  a different flyby radius as stated in the input file 

12.3.1 Algorithms 

The gravity field of a body influences the path of a spacecraft permanently. Depending on the 
current position of the spacecraft within the body’s local coordinate system the gravity field 
disturbances accelerate or decelerate the spacecraft. Based on the equations in chapter 11.4.3 
GRASP determines the disturbing accelerations d

Bx&&r  and, if indicated, adds an additional 
gravitational tug from another nearby body.  

If the calculations are derived within an inertial coordinate system (index i), the accelerations 
need to be transformed into the inertial system ( d

ix&&r , see chapter 11.4.3 for the detailed 
expressions). The body rotation of Amalthea ωz is thereby taken into consideration as 
supplement to εz. 

The computed algorithms for the above mentioned expressions are stated in Appendix F.2 and 
F.3. 

 

The spacecraft trajectory is calculated through the numerical integration method of Runge-
Kutta (chapter 6.3). As this method can only be used to solve differential equations of first 
order, but the equations of motion are of second order, the method needs to be applied twice 
within one step. The two differential equations of motion read: 

dxx
r

GMvxvx &&rr&r&&r&r −−=== 3  (12-5) 

And thus the expanded expressions for the Runge-Kutta: 
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with jxr  denoting the starting point (e.g. closest approach), jvr  its velocity, d
jx&&r  the disturbing 

acceleration, and h the integration step in e.g. seconds.  
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Coordinates and velocity of the next trajectory point read: 
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13 Model Calculations for Amalthea 

In order to derive the mass coefficients Jnm and Knm for Amalthea, reasonable models for the 
interior structure of the moon need to be defined. Based on the current controversial 
knowledge of Amalthea’s composition (chapters 4.4 and 8.2.1) and the vague interpretations 
of the moon’s formation, two basic model assumptions are taken into account within the 
present work. They have been analysed with respect to each other, serve as a basis for further 
interpretations of Amalthea’s interior and have been implemented into the analysis of a 
nearby spacecraft trajectory (chapter 14). 

13.1 Explanations 

The two basic model types for Amalthea are based on two different assumptions of the 
moon’s mass (Table 13.1). A first model applies the GALILEO pre-flyby hypothesis about 
the moon’s mean density, respectively mass (M = 7.167 x 1018 kg), considering that Amalthea 
has most likely accreted during the Jovian system formation. The second type takes into 
account the post-flyby data evaluation and thus a mass of only M = 2.083 x 1018 kg, implying 
that the moon is an object with high porosity and probably captured. 

 assumption mean density (ρm) mass (M) GM 

type I 
(pre-flyby) 

low porosity body, most 
likely accreted during the 
Jovian system formation 

~ 3000 kg/m³ 7.167 x 1018 kg 4.782 x 108 m³/s² 

type II 
(post-flyby) 

high porosity body, 
probably captured 

860 ± 60 kg/m³ 2.083 x 1018 kg 1.39 x 108 m³/s² 

Table 13.1: Mean density model assumptions for Amalthea.  

Based on these two basic mean density (or mass) types, interior structure models of Amalthea 
have been generated (Figure 13.1). The standard model A describes a homogeneous body 
interior and thus shows no differentiation into core and mantle, which is likely to apply for 
both basic types. Model B consists of a two-layer interior with a dense core that can only be 
related to the higher mass (pre-flyby) type I. A third model C shows as well a two-layer 
interior, but highlights a loose inner agglomeration and a regolith layer – a scenario expected 
for the low mass (post-flyby) type II.  

Because of Amalthea’s small dimensions, no three- or higher layer models are taken into 
consideration for further analysis.  

 

model A – homogeneous  model B – heterogeneous, 2-layer 
h1 ~ 25 km, h2 ~ 39 km 

model C – heterogeneous, 2-layer 
h1 ~ 63 km, h2 ~ 1 km 

Figure 13.1: Interior structure models for Amalthea.   

The interpretations of the interior geology of Amalthea with respect to the stated types and 
models are given in the following sections; as well as the expansions of the gravity field for 
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the different interior models of Amalthea, which have been derived up to degree and order 6. 
For clarification it should be noted that the computed mean densities of the models differ 
slightly from the above due to the body volume approximation (chapter 12.1).  

With reference to the expansion of the potential into spherical harmonics (chapter 11.4), and 
the definition of the moments and products of inertia, the origin of the local coordinate system 
lies in Amalthea’s centre of gravity. Furthermore, the coordinate axes are supposed to 
coincide with the principal axes of inertia, and the z-axis of the moon is identical with the 
mean rotational axis. Consequently, the mass coefficients of degree 2 and order 1 vanish, as 
well as all mass coefficients Knm. Because the volume of Amalthea is derived through an 
ellipsoidal approach (no shape data is implemented with reference to chapter 12.1.4), which 
represents equator symmetry, no odd degree mass coefficients exist. Furthermore, based on 
the ellipsoidal approach, symmetry is given with respect to the xz-plane and thus all odd order 
mass coefficients vanish as well.  

13.2 Homogeneous cases 

As a first step for the calculation of Amalthea’s gravity field, respectively moments of 
gravitation (or mass coefficients), the homogeneous model A has been applied for both basic 
mass types of the moon (Table 13.2).  

mass coefficients (moments of gravitation) moments of inertia [kg m²] 

 not normalised normalised model I/A 

J20 0.08403024 0.03757947 A 1.34785 x 1028 

J22 -0.03408576 -0.05280543 B 2.86366 x 1028 

J40 -0.01990302 -0.00663434 C 3.04198 x 1028 

J42 0.00205441 0.00918760 model II/A 

J44 -0.00021269 -0.01006645 A 3.91785 x 1027 

J60 0.00880104 0.00244097 B 8.32389 x 1027 

J62 -0.00041013 -0.00329676 C 8.84222 x 1027 

J64 0.00001201 0.00317384  

J66 -0.00000061 -0.00261296  

Table 13.2: Mass coefficients and moments of inertia for homogeneous models.  

The mass coefficients of the two models have to be identical, differences are due to the 
calculation uncertainties, which as well apply for the odd order terms and the coefficients Knm. 
J2 defines the flattening of Amalthea, J22 the non-spheroidal and thus ellipsoidal shape of the 
moon; higher degree coefficients contribute to a better adjustment.  

As its axis coincides with the body’s mean rotational axis, the maximum moment of inertia C 
is of importance for the interior structure of Amalthea. For a homogeneous spherical body the 
reduced dimensionless moment of inertia Γ [17] 

2RM
C

=Γ  (13-1) 

equals 0.4 (R denoting the body’s radius). Smaller values indicate a density increase towards 
the body’s interior. Deviation from spherical shape tends to increase Γ, which is clearly the 
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case in Amalthea’s homogeneous models, where Γ equals 0.609 (for a mean radius R of 
83.5 km). 

As mentioned in chapter 11.1, a uniquely determination of Amalthea’s interior structure 
cannot be defined exclusively by the potential of gravitation, which is obvious by considering 
the variety of interpretations that can be derived from the undifferentiated (homogeneous) 
assumptions. A likely selection would be: 

  model I/A: GM = 4.782 x 108 m³/s², rocky material or rock/iron mixture with 
ρm = ρ0 ~ 3000 kg/m³ 

  model II/A: GM = 1.39 x 108 m³/s² and ρm ~ 880 kg/m³, which can be interpreted e.g. as: 
--  rocky material or rock/iron mixture with ρ0 ~ 3500 kg/m³ and porosity Φ ~ 0.75 

(probably demonstrating ice content and holes); the rock composition would imply that 
Amalthea is not a captured body but accreted during the Jovian system formation 

--  carbon-rich material with ρ0 ~ 2000 kg/m³ and porosity Φ ~ 0.55; considering Amalthea 
as a captured body with interior volatile and void components 

In order to get more valuable insights into Amalthea’s interior structure additional 
information from in-situ geological or seismic measurements are needed.  

13.3 Heterogeneous cases 

To derive heterogeneous two layer models for Amalthea, model B has been applied for type I 
and model C for type II. Based on the assumptions in the previous section for the interior 
structure, a similar interpretation for the heterogeneous models can be made:  

  model I/B: GM = 4.782 x 108 m³/s² (ρm ~ 3000 kg/m³), iron rich core with ρ1 = 4500 kg/m³ 
and thus resulting in a slightly porous outer layer with Φ ~ 0.1 and ρ2 = 2670 kg/m³ 
(ρ0 ~ 3000 kg/m³, rocky material or rock/iron mixture) 

  model II/C: GM = 1.39 x 108 m³/s² (ρm ~ 880 kg/m³), agglomeration of smaller objects with 
properties similar to the two scenarios mentioned for model II/A (chapter 13.2): 
--  interior with ρ1 = 870 kg/m³ (ρ0 ~ 3500 kg/m³, porosity Φ ~ 0.75), and thus resulting in 

an outer regolith layer with ρ2 = 1390 kg/m³ (ρ0 = 3000 kg/m³, Φ ~ 0.5)  
--  interior with ρ1 = 870 kg/m³ (ρ0 ~ 2000 kg/m³, porosity Φ ~ 0.55), outer regolith layer 

with ρ2 = 1390 kg/m³ (ρ0 = 2000 kg/m³, Φ ~ 0.3) 

Taking into account the latest data from GALILEO, model II/C is the most likely scenario for 
Amalthea, although it should be perceived with care. Data analysis of future exploration 
should yield more precise information about the moon’s interior structure.  

The properties of the gravity field for the above models are given in Table 13.3. The mass 
coefficients of the two models differ slightly from those of the homogeneous models, which is 
due to a different internal mass distribution. Latter can as well be derived from the reduced 
dimensionless moment of inertia Γ (13-1):  

  model I/B: Γ = 0.585 and hence smaller as the homogeneous value of 0.609, indicating a 
density increase towards the centre of the body  

  model II/C: Γ = 0.613 and thus larger than the homogeneous value of 0.609 due to the 
dense regolith layer 
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mass coefficients (moments of gravitation) 

model I/B model II/C 

 not normalised normalised  not normalised normalised 

J20 0.08403304 0.03758072 J20 0.08402517 0.03757720 

J22 -0.03408290 -0.05280100 J22 -0.03408343 -0.05280182 

J40 -0.01999098 -0.00666366 J40 -0.01987390 -0.00662463 

J42 0.00206005 0.00921282 J42 0.00205218 0.00917765 

J44 -0.00021365 -0.01011177 J44 -0.00021235 -0.01005041 

J60 0.00887681 0.00246199 J60 0.00877179 0.00243286 

J62 -0.00041317 -0.00332121 J62 -0.00040886 -0.00328661 

J64 0.00001209 0.00319352 J64 0.00001198 0.00316455 

J66 -0.00000061 -0.00263046 J66 -0.00000061 -0.00260569 

moments of inertia [kg m²] 

model I/B model II/C 

A 1.22786 x 1028 A 3.97214 x 1027 

B 2.74287 x 1028 B 8.37884 x 1027 

C 2.92128 x 1028 C 8.89716 x 1027 

Table 13.3: Mass coefficients and moments of inertia for heterogeneous models.  

As the difference of the mass coefficients (∆coefficients) of Amalthea’s homogeneous and 
heterogeneous gravity field models amounts at the most to 9 x 10-5 the resulting 
acceleration as/c acting on the spacecraft 

2/ r
GMa tscoefficiencs ∆=  (13-2) 

is less than 6.5 x 10-4 mm/s² (with a flyby radius r of 254.8 km and GM = 4.782 x 108 m³/s²). 
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14 Spacecraft Data Implementation and 
Evaluation 

In case of availability of 2-way Doppler data for the GALILEO Amalthea flyby the moon’s 
models derived in the previous chapter could have been implemented as a priori information 
into the JPL’s DPODP and the analysis of the remaining Doppler residuals would have given 
more information on Amalthea’s gravity field and thus interior structure. Because of the 
already mentioned non-availability of these data a reverse approach and interpretation of the 
existing data has been taken into consideration within the frame of this work.  

As stated in chapter 8.2 the yearlong experience of the JPL Radio Science team guaranteed 
the analysis of the 1-way Doppler data from GALILEO’s Amalthea flyby with respect to the 
mass of the body as well as the spacecraft’s position at closest approach (c/a). Latter can be 
found in Appendix C. With the support of B. Kazeminejad, Space Research Institute of the 
Austrian Academy of Sciences, the c/a-data was conveyed to Amalthea’s local coordinate 
system using the SPICE Toolkit. SPICE (Spacecraft, Planet, Instrument, C-matrix, Events), 
developed by JPL’s Navigation and Ancillary Information Facility (NAIF), provides tools and 
data files of e.g. planetary body’s ephemeris, shapes, reference frames, star catalogues, etc. 
for spacecraft mission evaluation, observation planning and data analysis.  

In order to derive the rotation angles εx, εy, εz, which are needed for the transformation 
between the local and the inertial J2000 coordinate system (chapter 10.3), the positions of 
Earth, Sun and Jupiter at the time of closest approach have been transformed as well 
(Appendix D). For the further calculation of GALILEO’s flyby trajectory, no variations in the 
positions of the Earth and Jupiter are considered because of the short time interval of about 
three minutes.  

14.1 Spacecraft Trajectories 

Based on GALILEO’s state vector ( vr rr, ) at the time of closest approach, the numerical 
integration method of Runge-Kutta (chapters 6.3 and 12.3) and the gravity field models of 
Amalthea derived in chapter 13, various spacecraft trajectories around closest approach have 
been calculated with GRASP. A sample trajectory for 100 seconds is given in Figure 14.1. 

 
Figure 14.1: Spacecraft trajectory based on GALILEO’s data at closest approach.  
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For further evaluations the following trajectories have been derived (Jupiter is included as 
additional gravitating body, the time period totals 200 seconds covering 100 seconds before 
and after closest approach): 

  T-I/0: trajectory based on Amalthea as point mass (GM only, pre-flyby assumption) 
  T-I/A: Amalthea homogeneous model I/A (chapter 13.2) 
  T-I/B: Amalthea heterogeneous model I/B (chapter 13.3) 

  T-II/0: Amalthea as point mass with post-flyby data 
  T-II/A: Amalthea homogeneous model II/A (chapter 13.2) 
  T-II/C: Amalthea heterogeneous model II/C (chapter 13.3) 

Data which roughly represent the values of all trajectories are given in the following graphs 
(Figure 14.2, Figure 14.3 and Figure 14.4). The sample interval equals one second and thus 
the trajectory points lie one second apart.    

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

-100 -80 -60 -40 -20 0 20 40 60 80 100
number of points

ra
di

us
 [m

]

 
Figure 14.2: Spacecraft radius around closest approach. 
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Figure 14.3: Spacecraft velocity around closest approach. 
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The acceleration of the spacecraft is influenced by Jupiter’s gravitational tug and is based on 
Amalthea’s gravity field derived up to degree and order 6 (chapter 13), hence includes effects 
from quadrupole and higher degree mass coefficients. Amalthea’s gravitational force acting 
on the spacecraft can be clearly seen in Figure 14.4.  
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Figure 14.4: Spacecraft acceleration around closest approach.  

The difference of the spacecraft’s position from the two trajectories T-I/0 and T-I/A amounts 
to ~ 23 cm at the end of the chosen time interval (Figure 14.5), and ~ 7 cm for the trajectories 
T-II/0 and T-II/A. The trajectories T-I/A and T-I/B (respectively T-II/A and T-II/B) are nearly 
identical – they only vary in the order of a tenth of a millimetre, which was expected from the 
small differences in the spacecraft’s acceleration (compare to chapter 13.3). 
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Figure 14.5: Difference of spacecraft position. 
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14.2 Interpretation 

The objective of this work, with respect to the trajectory data of GALILEO, is to get insight 
about the closest approach configuration regarding Amalthea’s gravity field determination 
and thus to answer the following questions: 

  are the moments of gravitation for Amalthea undetectable with the 1-way Doppler data 
(hence verifying the conclusions of the Radio Science team)? 

  would the moments of gravitation have been detectable with the 2-way Doppler data? 
  would a heterogeneous mass distribution within Amalthea been detectable with 2-way 
Doppler-data? 

In order to answer those questions and derive conclusions the various trajectories have to be 
analysed with respect to each other: 

  case 1: T-I/0 and T-I/A (respectively T-II/0 and T-II/A) for the mass coefficients, 
  case 2: T-I/A and T-I/B (respectively T-II/A and T-II/B) for the interior structure, 

computing the spacecraft velocity (and acceleration) differences of the two trajectories, with 
T-I/A (respectively T-II/A) as reference trajectory. As the Doppler observables are derived on 
Earth the spacecraft velocity difference dv (and acceleration difference da) of the two 
trajectories needs to be projected on the Earth line of sight (ELoS):  

r
vdr

v ELoS
r

rr
⋅

=∆       and       
r

adr
a ELoS

r

rr
⋅

=∆  (14-1) 

with rr  being the radius vector spacecraft-Earth.  

The results for case 1 are given in Figure 14.6 and Figure 14.7 and analysed in the following 
sections (to recall: model type I represents the higher mass from the pre-flyby data for 
Amalthea, model type II denotes the low mass derived after the flyby of GALILEO).  
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Figure 14.6: Velocity plot for case 1. 
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Figure 14.7: Acceleration plot for case 1.  

Case 2 yields practically no differences in velocity and acceleration for both model types, thus 
no information about the heterogeneous interior structure of Amalthea can be derived for the 
actual flyby configuration! 

14.2.1 Actual Flyby Configuration  

The actual flyby data (for Doppler data information refer to chapters 7 and 8.1.1) is given 
through: 

  Amalthea’s mean density of ρm ~ 860 kg/m³ (model type II), and 
  the available 1-way Doppler data received from GALILEO 

The values for model type II are represented by the blue line in the above graphics. The 
Doppler accuracy for the 1-way Doppler data (±0.3 mm/s) is too low to detect any velocity 
differences between the two trajectories. Hence the acceleration difference gives no 
information about the moments of gravitation. Latter are buried deep in the data noise, 
although still above the error floor of ±5 x 10-3 mm/s² over 60 seconds for 1-way Doppler data 
(compare to (8-1)). The determination certainty results to approximately 30 % and thus an 
analysis of the Doppler residuals derived by the DPODP would yield no useful values.  

14.2.2 Other Configurations 

Considering model type II and 2-way Doppler data, velocity differences between the two 
trajectories would have been detected taking into account a 2-way Doppler accuracy of 
±0.15 mm/s. Nevertheless the mass coefficients are still buried in the data noise and could 
only be derived by the DPODP with a certainty of 60 %.  

In the case of model type I the Doppler accuracy of the 1-way data would have been good 
enough to detect velocity differences between the two trajectories. Although the moments of 
gravitation are still buried in the data noise they could have been analysed by the DPODP 
with a high certainty. The values for model type I are represented by the yellow line in the 
above graphics. 
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For the planned 2-way Doppler data and the predicted mean density of Amalthea (model 
type I) it would have been possible to determine the mass coefficients. Nevertheless the flyby 
configuration would yield no information about a heterogeneous interior structure of the 
moon.  

Considering the same flyby data with respect to the spacecraft’s velocity and its polar 
coordinates but a closer flyby radius (e.g. 100 km, resulting in an altitude above Amalthea of 
about 29 km), the 1-way Doppler data would have given much better results. The moments of 
gravitation could have been easily detected (Figure 14.8); still, a heterogeneous interior 
structure of the moon only with a certainty of approximately 25 % for model type I but not at 
all for the actual low density model type II (Figure 14.9). On the other hand, a flyby at such a 
close distance to the moon is a risky undertaking because of spacecraft navigation 
uncertainties and thus a possible crash on the body.  
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Figure 14.8: Acceleration plot for closer flyby (c/a radius 100 km), case 1. 
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Figure 14.9: Acceleration plot for closer flyby (c/a radius 100 km), case 2. 
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14.3 Predictions 

In addition to the above interpretations and conclusions, predictions for further space mission 
flybys of Amalthea can be made through GRASP. For the calculations carried out within the 
present work, Jupiter’s position with respect to the moon is taken over from the actual 
GALILEO flyby data (closest approach), as well as the spacecraft’s velocity vs/c~ 18.4 km/s 
and its altitude Hc/a~ 183 km above surface. The results are derived within Amalthea’s local 
body-fixed coordinate system and thus take not into consideration the position of the Earth, 
which will depend on the future flyby date (a perfect Doppler data output can be obtained by 
placing the Earth line of sight approximately into the spacecraft’s flyby direction). 

Three scenarios are considered with Amalthea model types II (Table 14.1). The different 
flyby radii rc/a are due to the moon’s irregular shape (rc/a = Hc/a + body axis).  

Flyby scenario spacecraft coordinates at c/a spacecraft velocity at c/a 

 x y z vx vy vz 

equator, along y-axis (A) 308 km 0 0 0 18.4 km/s 0 

equator, along x-axis (B) 0 256 km 0 18.4 km/s 0 0 

polar, along x-axis (C) 0 0 247 km 18.4 km/s 0 0 

Table 14.1: Future flyby scenarios.  

As in chapter 14.2 the following plots illustrate the spacecraft velocity and acceleration 
differences for the trajectories derived with the assumption of Amalthea as a point mass 
(considering only GM) and Amalthea with a homogeneous interior structure. Because no 
projection on the Earth line of sight is taken into account, the values shown are absolute. 
Further to the above mentioned flyby altitude of 183 km a closer flyby with an altitude of 
80 km is demonstrated in the graphs. The values for scenario B lie among the other scenarios 
and are not displayed.  

For all scenarios velocity differences between the two trajectories should be easily detectable 
taking into account a 2-way Doppler accuracy of ±0.15 mm/s. The closer the flyby is chosen 
the better the evaluation of the Doppler residuals with respect to the moments of gravitation. 
Furthermore, a polar flyby will generate stronger gravity field signals.  

Nevertheless, the evaluation of velocity and acceleration differences between trajectories 
based on Amalthea with a homogeneous and a heterogeneous interior (case 2) yield signals 
far below the data noise, even for a very close flyby (comparable to Figure 14.9). Thus no 
analysis of Amalthea’s interior can be made from a spacecraft flyby alone, but needs other 
means like in-situ geological measurements.  
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Figure 14.10: Velocity plot for future flyby scenarios.  
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Figure 14.11: Acceleration plot for future flyby scenarios.  
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15 Conclusions 

The international space endeavours of the past decades have shown social cohesion and 
public consensus concerning the fundamental, long-range and common causes and purposes 
of civilisation – survival and progress. The most important objective is the devotion to 
progressive change and readiness to improve knowledge for the benefit of all the peoples on 
Earth, whose destiny is to improve life on their planet along with their expansion into the 
Universe. With scientific and international cooperation being an essential element, the present 
work provides fundamental contributions to these efforts, the focus lying on planetary body 
modelling and spacecraft trajectory predictions. The knowledge of the configuration, 
composition and interior structure of planetary bodies offers insights about our solar system’s 
formation and structure, usability of resources, possible presence of organic material (and thus 
some form of life), and facilitates the navigation of spacecraft on their planetary exploration 
tours.  

Amalthea, one of Jupiter’s small inner moons and the study object within the present work, 
has the shape of an ellipsoid with axis of 125 km, 73 km and 64 km, and a mean radius of 
83.45 km derived for an equal volume sphere. Analyses of the one-way Doppler data obtained 
during a flyby of the moon by NASA’s spacecraft GALILEO reveal a body with a small mass 
of 2.083 x 1018 kg and consequently mean density of 860 ± 60 kg/m³. This low density was 
unexpected for most Jupiter system models inside the orbit of the Galilean moon Io and thus 
implies that Amalthea probably did not aggregate during the Jovian system formation but is a 
captured planetary body with a composition similar to an asteroid. These objects mostly have 
a rubble pile structure and are highly fractured inside with considerable pore spaces. A likely 
composition and interior structure model for Amalthea consists of volatile and void 
components, carbon-rich materials (rock density ranges from 2000 to 3600 kg/m³, common to 
CI class asteroids) including water content in the form of water bound in the minerals, and 
most likely a regolith layer with a couple of hundred kilometre thickness. An open question is 
whether water-ice might contribute to the low density. Future exploration of Amalthea by 
means of spacecraft flybys (preferably including imaging) or even in-situ geological 
measurements will confirm or alter the compiled models of the moon.  

Founded on the models for Amalthea’s interior structure the gravity field of the moon has 
been obtained and is described by the moments of gravitation (mass coefficients up to degree 
and order 6). Latter have been derived by the application of Neumann’s second method and 
the numerical integration of infinitesimal volume elements, calculated by the scale factors of a 
three-axial ellipsoid (elliptic coordinates) due to Amalthea’s non-spherical shape. Actual 
shape data of the moon can be implemented within the approach but because of long 
computation times provide no useful input. The analysis of various spacecraft trajectories, 
based on Amalthea’s gravity models and GALILEO’s closest approach data, compared to the 
available GALILEO one-way Doppler data yield no information about the quadrupole or 
higher degree moments of gravitation. Despite of that, a determination of the mass 
coefficients would have been possible with the actual flyby configuration, the planned 
availability of two-way Doppler data and the predicted higher mass of Amalthea 
(7.167 x 1018 kg).  

Future spacecraft flyby scenarios should take into consideration Amalthea’s low mass and 
thus have a low spacecraft altitude in the order of 80 km above surface. Lower altitudes 
would of course yield more valuable results but are a risky undertaking because of spacecraft 
navigation uncertainties. To conclude, the best flyby configuration for deriving Amalthea’s 
mass coefficients by means of two-way Doppler data from spacecraft tracking would be a 
polar flyby along the moon’s major axis.  
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For completeness it should be stated that the above approach for modelling planetary interiors 
and predicting flyby configuration for the determination of planetary body’s gravity fields can 
be applied to any planetary body, regardless of size, shape and number of interior layers.  
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A. GALILEO’s Scientific Payload and Objectives 

Source: [25] Russell, C.T. (Editor): The Galileo Mission, Space Science Reviews, Volume 60, 
Nos. 1-4, Kluwer Academic Publishers, Netherlands, 1992. 

Experiment Mass (kg) Range Objectives 

Probe 

Atmospheric Structure 
Instrument (ASI) 

4 Temperature: 0-540 K 
Pressure: 0-28  bar 

Determine temperature, pressure, density, and 
molecular weight as a function of altitude 

Neutral Mass 
Spectrometer (NMS) 

11 Covers 1-150 amu Determine chemical composition of 
atmosphere 

Helium Abundance 
Detector (HAD) 

1 Accuracy: 0.1% Determine relative abundance of helium 

Nephelometer (NEP) 5 0.2-20 µm particles as 
few as 3 cm³ 

Detect clouds and inter states of particles 
(liquid versus solid) 

Net-flux Radiometer 
(NFR) 

3 6 infrared filters from 
0.3 to 100 µm  

Determine ambient thermal and solar energy 
as a function of altitude 

Lighting and Energetic 
Particles (LRD/EPI) 

2 Fisheye lens sensors, 
1 Hz-100 kHz 

Verify the existence of lightning and measure 
energetic particles in inner magnetosphere 

Orbiter 

Solid-State Imaging 
(SSI) 

28 1500 mm, f/8.5, 
800x800 CCD, 8 filters, 
0.47° field-of-view 

Map Galilean satellites at roughly 1km 
resolution, and monitor atmospheric 
circulation over 20 months while in orbit 
around planet 

Near-Infrared 
Mapping Spectrometer 
(NIMS) 

18 0.7-5.2 m range, 0.03 
µm resolution 0.5 m rad 
IFOV 

Observe Jupiter and its satellites in the 
infrared to study satellite surface composition, 
Jovian atmospheric composition and 
temperature 

Ultraviolet 
Spectrometer (UVS) 

4 1150-4300 Å Measure gases and aerosols in Jovian 
atmosphere 

Extreme Ultraviolet 
Spectrometer (EUV) 

13 54 to 128 nm Investigate So, O ion emissions of the Io 
torus, and atomic and molecular H auroral and 
airglow emissions of Jupiter 

Photopolarimeter-
Radiometer (PPR) 

5 Discrete visible and 
near-infrared bands, 
radiometry to >42 µm 

Determine distribution and character of 
atmospheric particles; compare flux of 
thermal radiation to incoming solar levels 

Magnetometer (MAG) 7 32-16384 γ Monitor magnetic field for strength and 
changes 

Energetic Particles 
Detector (EPD) 

10 Ions: 0.020-55 MeV 
Electrons: 0.015-
11 MeV 

Measure high-energy electrons, protons, and 
heavy ions in and around Jovian 
magnetosphere and study processes affecting 
these populations 

Plasma Detector (PLS) 13 1 eV to 50 keV in 
64 bands 

Assess composition, energy, and three-
dimensional distribution of low-energy 
electrons and ions 
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Continued 

Plasma Wave (PWS) 7 E: 5 Hz to 5.6 MHz 
B: 5 Hz to 160 kHz 
Wideband 1 kHz, 
10kHz, 80 kHz 

Detect electromagnetic waves and analyse 
wave-particle interactions 

Dust Detector (DDS) 4 10-16 g to 10-6 g, 2-
50 km/s 

Measure particles’ mass, velocity, and charge 

Radio Science (RS): 
Celestial Mechanics 

- S- and X-band signals Determine mass of Jupiter and its satellites 
(uses radio system and high-gain antenna) 

Radio Science (RS): 
Propagation 

- S- and X-band signals Measure atmospheric structure and objects’ 
radii (uses radio system and high-gain 
antenna) 

Heavy Ion Counter 
(HIC) 

8 Ions from carbon to 
nickel range – 6 to 
>200 MeV/nucl 

Monitor the fluxes and composition of 
energetic heavy ions in the inner Jovian 
magnetosphere, and high energy solar 
particles in the outer magnetosphere, 
characterise the ionising radiation 
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B. GALILEO Amalthea Flyby Timeline 

Source: [38] Baalke, Ron: Today on Galileo – November 4-5, 2002, Galileo-email-news, Jet 
Propulsion Laboratory, Pasadena, 2002. 

Encounter with Amalthea 

Early Monday morning begins our sprint into the inner reaches of the Jupiter system 
to snatch the scientific secrets of that environment out from under the nose of the 
gas giant, and to skirt by the tiny inner satellite Amalthea. The science 
instruments that will focus on the inner magnetosphere are the Dust Detector (DDS), 
the Energetic Particle Detector (EPD), the Heavy Ion Counter (HIC), the 
Magnetometer (MAG), the Plasma Subsystem (PLS), and the Plasma Wave Subsystem (PWS) 
instruments. The Galileo spacecraft, however, may be unique among NASA's planetary 
probes in being the only mission to add a science instrument to its payload after 
launch! 

The Attitude Control Star Scanner, an engineering system normally used to provide 
information about the orientation of the spacecraft by sensing the locations of 
stars, can double as a radiation sensor. Several years ago, engineers noticed that 
the pesky radiation-induced noise that interferes with the normal star sensing of 
the instrument could be used to provide a measure of the intensity of that 
radiation. The sensor mechanism is most sensitive to high-energy electrons. Though 
the instrument was never designed or calibrated to provide an absolute physical 
measure of the quantity of such electrons, when combined with the measurements 
taken by the other science instruments, the relative noise level seen by the Star 
Scanner can provide additional insight into the continuum of particles and other 
radiation in the environment sensed by Galileo. 

At midnight, the spacecraft is 20 Jupiter radii from the center of the giant planet 
(1.43 million kilometers or 888,000 miles) and the science instruments are studying 
the magnetospheric plasma sheet, which periodically waves past Galileo as the 
planet rotates. 

By 6:30 a.m., PST, the radiation from Jupiter is becoming strong enough to cause a 
noticeable effect in the Star Scanner. At this point, the Attitude Control system 
is told to rely only on a single bright star for knowledge of the orientation of 
the spacecraft. The static in the sensor caused by the radiation is enough to mask 
the signals from fainter stars. The single bright star we are using for this 
encounter is Rigel Kentaurus, more popularly known as Alpha Centauri, the nearest 
bright star to the Sun. 

At 9:45 a.m., the EPD instrument turns its power off and on again, and reloads its 
memory. During a small number of previous encounters, this instrument has suffered 
upsets which can only be cleared by this technique. Three times during this flyby 
the instrument is reset in this fashion, so that if an upset occurs, the instrument 
will be able to continue to collect science data without waiting for commands from 
Earth to correct the problem. 

At 1:02 p.m., the Radio Science team begins an experiment to measure the gravity 
field of the small satellite Amalthea. Though we are still 10 hours away from the 
closest approach, the team uses this distant measurement of the radio signal to 
establish a baseline against which they can compare the changes seen as Amalthea's 
gravity tugs on Galileo during the later flyby. By measuring the extent and nature 
of this tug, the mass of Amalthea can be determined. In addition, the flyby's 
proximity will also yield knowledge of whether or not Amalthea has a dense central 
region or core. This information will give additional clues as to the composition 
of Amalthea and may also help us to understand its origin. 

At 2:55 p.m., the spacecraft is again expected to pass through Jupiter's plasma 
sheet, and detailed Fields and Particles measurements are written to the tape 
recorder. The recorder is used to collect data faster than the spacecraft can 
transmit in real time. At this time the spacecraft is only 10 Jupiter radii from 
the planet (715,000 kilometers or 444,000 miles). After 45 minutes, the instruments 
revert to collecting data for real-time transmission to Earth. 

At 5:49 p.m., the Fields and Particles instruments switch from transmitting all of 
their data in real-time to begin recording the data for later playback. This allows 
the instruments to collect more data at a higher time resolution than would be 
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possible in real time. This recording continues for the next 10.5 hours, through 
the closest approach to Amalthea and Jupiter. 

At 6:07 p.m., the spacecraft changes its telemetry system to put more power into 
the fundamental carrier frequency that is transmitted. This allows the 70-meter-
diameter (230 foot) communications antenna located near Madrid, Spain, to better 
track the Galileo signal during the upcoming close flyby of Amalthea. It is the 
change in frequency (Doppler shift) of this transmitted signal that provides the 
Radio Science and Navigation teams the information about Amalthea's gravity field. 

At 7:18 p.m., the Near Infrared Mapping Spectrometer begins a 5-minute period of 
real-time collection of engineering data. This peek into the signals generated by 
the instrument as the radiation level rises will help researchers understand 
detector behavior seen during observations taken on previous orbits. This 
information can be used to help engineers design instruments that will operate in 
similar radiation environments for future missions. 

At 7:41 p.m., Galileo reaches the closest point to the volcanic satellite Io. At 
45,250 kilometers (28,100 miles), this pass is over twice the distance that Voyager 
1 flew by in 1979, and is a distant cousin to the 101-kilometer (63-mile) altitude 
at the previous encounter in January of this year. No observations of Io are 
planned during this passage. The spacecraft is passing Io's orbit at about 6 
Jupiter radii (429,000 kilometers or 267,000 miles) from the planet on its way in 
to the inner system. 

The radiation at this point in the orbit is becoming fierce enough that even Alpha 
Centauri may no longer be seen by the Star Scanner, and the attitude control 
software would not be able to determine the orientation of the spacecraft. At 8:12 
p.m., the software is told to enter hibernation. In this state it will ignore the 
signals from the Star Scanner and remember its last calculated orientation and spin 
rate, relying on the fact that we don't plan to change it. This configuration will 
last for the next nine hours, while Galileo is within the distance of Io's orbit. 

Then, at 11:02:28 p.m., Galileo reaches its closest point to Amalthea. This 
irregularly-shaped moon measures approximately 270 kilometers (168 miles) across 
its longest dimension. Galileo will fly by with its closest distance to the surface 
of the body of 160 kilometers (99 miles). The speed of the spacecraft relative to 
Amalthea is 18.4 kilometers per second (41,160 miles per hour) so it will take less 
than 15 seconds to pass by! At this speed, Galileo could circle the Earth (at sea 
level) in 36 minutes, not counting stops for the speeding tickets. 

Ten minutes later, at 11:14 p.m., Galileo enters the shadow cast by Jupiter from 
the Sun, and eleven minutes after that, at 11:25 p.m., the spacecraft passes behind 
Jupiter as seen from Earth. The spacecraft will remain out of view of ground 
controllers for about an hour, reappearing 23 minutes after midnight on Tuesday 
morning, having cleared Jupiter's shadow 10 minutes earlier. 

While the spacecraft is hidden from Earth, at eight minutes after midnight, it will 
reach this orbit's closest point to Jupiter. This is also the closest Galileo has 
ever come to the planet. Galileo will pass 71,500 kilometers (44,500 miles) above 
the visible cloud tops. This is three times closer than the previous Galileo record 
in 1995, which was set as we first entered Jupiter orbit. Pioneer 11 still holds 
the ultimate record, however, speeding by in 1973 only 43,000 kilometers (26,725 
miles) above the clouds. 

For a period of about two hours, starting about the time Galileo passes Amalthea, 
the spacecraft will be passing through a region occupied by what is known as the 
Amalthea Gossamer Ring. This very tenuous band of dusty material circles Jupiter 
between Amalthea's orbit and the start of the more prominent main ring first 
noticed by the Voyager spacecraft in 1979. This offers a unique opportunity to 
study a planetary ring system from the inside! The Dust Detector instrument will be 
the primary student, but the plasma environment is also likely to hold some 
interesting surprises. 

On the outbound stretch of the Jupiter-Earth occultation, the Radio Science team 
will use the radio transmission from Galileo to probe the layers of the Jupiter 
atmosphere, studying how the signal changes as it passes through increasingly 
thinner gases as the spacecraft recedes from its closest point. 

At 12:20 a.m., the EPD instrument reloads its memory again, as protection against a 
possible upset in the high radiation environment. During this single flyby the 
spacecraft may be subjected to up to 100 times the radiation dose that would be 
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lethal to a human being. It has already received more than 4 times its planned 
spacecraft-lifetime dosage, and is still ticking away. 

At 12:37 a.m., the Radio Science occultation experiment is over, and science 
telemetry is restored into the radio signal. For the past few hours, the Fields and 
Particles science data have been stored on both the tape recorder and in a computer 
memory buffer while the spacecraft has been out of sight. Now the buffered data can 
be sent to Earth. The continuous recording period ends at 4:04 a.m. Recorded data 
from the encounter will be played back starting Thursday evening. 

At 4:15 a.m., Galileo again crosses Io's orbit, this time outward bound, and the 
radiation levels have dropped to the point that the Star Scanner should again be 
able to recognize Alpha Centauri. At this time the attitude control software is 
told to come out of hibernation and re-establish its lock on that single bright 
star. By 6:30 p.m., the radiation has dropped to the level that will allow fainter 
stars to be seen, and the software is told to look for the normal contingent of 
three stars. 

Finally, (has this really only been two days?) the tape recorder is slewed to a new 
position and a new series of plasma sheet observation recordings is begun at 11:07 
p.m. Tuesday night. The high-intensity pace of the encounter has slowed to a more 
bearable crawl, the spacecraft has receded again to 20 Jupiter radii from the 
planet, and the final flyby of the mission is behind us. 

 

============== 

Note 1. Pacific Standard Time (PST) is 8 hours behind Greenwich Mean Time (GMT). 
The time when an event occurs at the spacecraft is known as Spacecraft Event Time 
(SCET). The time at which radio signals reach Earth indicating that an event has 
occurred is known as Earth Received Time (ERT). Currently, it takes Galileo's radio 
signals 44 minutes to travel between the spacecraft and Earth. All times quoted 
above are in Earth Received Time at JPL in Pasadena. 

For more information on the Galileo spacecraft and its mission to Jupiter, please 
visit the Galileo home page at one of the following URL's: 

http://galileo.jpl.nasa.gov 

http://www.jpl.nasa.gov/galileo 
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C. GALILEO Data at Closest Approach 

Source: Anderson, John D., personal communications, December 2002. 

Excerpt from the DPODP data file: 

 
Relevant parameters: 
XP, YP, ZP … spacecraft coordinates 
DXP, DYP, DZP … spacecraft velocity 
RIP … radius vector from centre of Amalthea to spacecraft 
X300, Y300, Z300 … Earth coordinates 
XSOL, YSOL, ZSOL … Sun coordinates 
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D. GALILEO and Planetary Data at Closest 
Approach 

Source: Kazeminejad, Bobby, personal communications, December 2003. 
KERNELS USED FOR TRANSFORMATION 
 LEAP-SECOND FILE: LS_NAIF0007.TXT 
 AMALTHEA EPHEMERIS FILE: JUP120_1996-2010.BSP 
 PLANETARY CONSTANT FILE: PCK00007.TPC 
 JUPITER EPHEMERIS: DE405.BSP 
  
 EPOCH (UTC)= 05-NOV-2002 06:18:40.723858445           
 EPOCH (ET)= 2002-11-05T06:18:40.7238    
               
 GALILEO IN AMALTHEA CENTERED J2000 SYSTEM 
  
XP=   0.1612523424071424D+03 
YP=   0.3636377203601296D+02 
ZP=   -.1939738993036735D+03 
DXP=  -.5024291247599944D+01 
DYP=  -.1616173511902653D+02 
DZP=  -.7206538580144511D+01 
  
 GALILEO IN AMALTHEA CENTERED BODY-FIXED SYSTEM (NAIF ID: IAU_AMALTHEA) 
  
XP=   0.5842412397169222D+02 
YP=   0.1548888397618504D+03 
ZP=   -.1937694106790782D+03 
DXP=  0.1740284072485501D+02 
DYP=  -.6018218107416210D+01 
DZP=  0.4365544535308397D+00 
  
 JUPITER IN AMALTHEA CENTERED J2000 SYSTEM 
  
XP=   0.1648672290751625D+05 
YP=   -.1635217621968356D+06 
ZP=   -.7646985597682821D+05 
DXP=  0.2636830603418336D+02 
DYP=  0.2034953703621695D+01 
DZP=  0.1447596489013380D+01 
  
 JUPITER IN AMALTHEA CENTERED BODY-FIXED SYSTEM (NAIF ID: IAU_AMALTHEA) 
  
XP=   0.1811619424805439D+06 
YP=   0.6258309743020722D+04 
ZP=   0.4210868143069092D+02 
DXP=  -.4899970819523858D-01 
DYP=  0.2356815116729064D-01 
DZP=  -.8786285290998563D-02 
  
 SUN IN AMALTHEA CENTERED J2000 SYSTEM 
  
XP=   0.4637073524653358D+09 
YP=   -.5841868427476652D+09 
ZP=   -.2616952988987580D+09 
DXP=  0.3710535030902253D+02 
DYP=  0.8581433455825721D+01 
DZP=  0.3984264139731463D+01 
  
 SUN IN AMALTHEA CENTERED BODY-FIXED SYSTEM (NAIF ID: IAU_AMALTHEA) 
  
XP=   0.6652179060843022D+09 
YP=   0.4269138460922086D+09 
ZP=   0.3593170630710572D+07 
DXP=  0.6231168728625942D+05 
DYP=  -.9706806168029277D+05 
DZP=  -.1103352704021621D+00 
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 EARTH IN AMALTHEA CENTERED J2000 SYSTEM 
  
XP=   0.5728492345933125D+09 
YP=   -.4920181482160503D+09 
ZP=   -.2217362243138397D+09 
DXP=  0.1643744677769011D+02 
DYP=  0.2859580862839593D+02 
DZP=  0.1266258475296637D+02 
  
 EARTH IN AMALTHEA CENTERED BODY-FIXED SYSTEM (NAIF ID: IAU_AMALTHEA) 
  
XP=   0.5711324468303854D+09 
YP=   0.5414896729626707D+09 
ZP=   -.1311172517135054D+07 
DXP=  0.7901402540144350D+05 
DYP=  -.8335326987747882D+05 
DZP=  0.3573550856521557D-01 

 
Relevant parameters: 
XP, YP, ZP … body coordinates 
DXP, DYP, DZP … body velocity 
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E. Legendre Functions and Neumann 
Coefficients 

E.1. Legendre Functions and Derivates 
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E.2.2. Degree p=5 
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E.2.3. Degree p=6 

( ) 0
16
35

16
315

16
693

16
429 357

7 =−+−= tttttP  

17

26

35

4

3

2

1

0
137739720.40584515
559939450.74153118
234275850.94910791

tt
tt
tt

t
t
t
t

−=
−=
−=

=
=
=
=

  

367346260.41795918
0505123640.38183005
148927510.27970539
6168869950.12948496

4

53

62

71

=
==
==
==

a
aa
aa
aa

 

 

 



Amalthea’s Gravity Field and its Impact on a Spacecraft Trajectory 

- 106 - 

F. GRASP Routines 

F.1. Volume approximations 

Derivation of the volume of a planetary body by means of scale factors (spheroidal approach, 
ellipsoidal approach):  

 

 



Amalthea’s Gravity Field and its Impact on a Spacecraft Trajectory 

- 107 - 

F.2. Rotational matrix 

Calculation of the rotation angles ex, ey, ez from the inertial coordinate system J2000 into a 
local body-fixed coordinate system, by means of three identical points – in this case the 
coordinates of the planets Earth (xE, yE, zE) and Jupiter (xB, yB, zB), and the Sun (xS, yS, 
zS). 

 
Transformation between inertial (J2000) and local coordinate system: 
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F.3. Accelerations 
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