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Kurzfassung

Die Hauptaufgabe der Photogrammetrie ist es, aus analogen oder digitalen Bildern
dreidimensionale Objekte - GroBe, Form, Lage oder geometrische Abstinde - zu
rekonstruieren. Dazu werden zunidchst aus Photos mit Hilfe von bekannten ,,Gebilden*
die Aufnahmeorte und die Orientierungsparameter bestimmt. In erster Linie wird die
Objektrekonstruktion mittels Verkniipfungspunkten - oder auch iiber kurvenformige
Merkmale - gelost. In dieser Arbeit hingegen soll die Objektrekonstruktion {ber
UmriBlinien diskutiert werden. Die Einbeziehung von Umripunkten bei der
Objektrekonstruktion ist dann von Bedeutung, wenn am Objekt nur wenige Punkte
gemessen werden konnen, und das Einmessen eines jeden weiteren Punktes mit
erheblichem Mehraufwand verbunden wiire. In der digitalen Photogrammetrie bietet sich
an, Umrilllinien automatisch zu detektieren, jedoch miissen diese Linien als Umrisse
identifiziert und den entsprechenden Objekten zugeordnet werden. Eine
Objektrekonstruktion ausschlielich iiber Umrillinien st6Bt bei Flichen mit Eindellungen
an ihre Grenzen, jedoch auch hier liefern sie wertvolle Beitrige.

Im ersten Teil wird das mathematische und photogrammetrische Gebiude, das fiir die
Losung dieser Aufgabe notig ist, entwickelt; der zweite Teil beschiiftigt sich mit der
Implementierung in das Programmpaket ORIENT. Abgerundet wird diese Arbeit durch
ein Musterbeispiel (Vermessung des Wiener Fernwirmeturms), an dem der Einsatz der
entwickelten Theorie ausfiihrlich gezeigt wird.



Abstract

The main task in photogrammetry is the reconstruction of 3 dimensional objects - size,
shape, position or geometric distance - from analog or digital images. In a first step the
camera position and the orientation parameters are calculated from known objects within
the image. The widespread procedure for solving the problem of object reconstruction
uses 3-D points or free-formed features. In the present paper object reconstruction and via
contours are discussed. Points of the contour are used if a limited number of 3-D points is
accessible and measurements of additional points lead to prohibitive efforts. In digital
photogrammetry contours can be detected automatically, but these lines have to be
identified as contours and have to be related to the right surface. Object reconstruction of
surfaces with dents is not possible by using only contours, but anyway even in these cases
points on contours provide valuable information.

In the first part of the paper the necessary mathematical and photogrammetric methods
for the solution of the tasks are developed. The second part deals with implementing the
algorithms in the ORIENT software. Finally an example is given to demonstrate in detail
the theory developed (surveying of the “Wiener Fernwirmeturm”).

Vi
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1 Einleitung

1.1 Aufgabenstellung — Motivation

Das Grundprinzip der Photogrammetrie ist es, aus analogen oder digitalen Bildern das
rdumliche Objekt zu bestimmen [Kraus, 1994]. Das Einsatzgebiet erstreckt sich von
Nahbereichsanwendungen, Aufnahmen von Werkstiicken oder Fassaden, bis hin zur
Fernerkundung der Erdoberfliche vom Weltraum aus.

Um jedoch aus den Bildern das Objekt rekonstruieren zu koénnen, miissen die AuBeren
Orientierungen der Bilder bekannt sein. Unter der AuBeren Orientierung versteht man die
Rekonstruktion der Aufnahmesituation, also die Bestimmung des Aufnahmeortes und die
Stellung der Kamera im Raum beziiglich des Objektes.

Die wichtigsten Orientierungsverfahren sind [Kraus, 1994]:

e Einzelbildorientierung mit Hilfe von PaBpunkten oder Pafllinien: Punkte, deren
Positionen, bzw. Linien, deren Verldufe zuvor bestimmt wurden.

e Die relative Orientierung mehrerer Bilder durch Verkniipfungspunkte bzw.
-linien. (Homologe Objektpunkte oder Linien, die in mehreren Bildern gemessen
wurden, jedoch sind ihre Koordinaten bzw. ihre Linienparameter im
libergeordneten System nicht bekannt.)

e Die absolute Orientierung eines aus mehreren relativ orientierten Bildern
gebildeten Modells durch PaBpunkte oder PaB3linien.

e Die hybride Biindelblockausgleichung als gleichzeitige Durchfiihrung der beiden
zuletzt genannten Methoden.

Nach der Bestimmung der AuBeren Orientierungen fiir die Kamerastandpunkte knnen
die weiteren gewiinschten Neupunkte, z.B. mittels rdumlichen Vorwirtsschnittes,
bestimmt werden.
In dieser Arbeit geht es darum, auch Umrilpunkte fiir die Objektrekonstruktion zu
beniitzen. Umripunkte sind solche Punkte, welche im Bild die Grenze zwischen dem
Objekt und dem Hintergrund darstellen. Dabei gibt es zwei Arten von Umrif3punkten:
a) wenn seine Tangentialebene ans Objekt im Bild projizierend erscheint (z.B.
Kugel).
b) wenn sie auf einer Kante des Objektes liegen, und diese das Bild des Objektes
begrenzt (z.B. Wiirfel).
Wird in dieser Arbeit von Umri3punkten gesprochen, so handelt es sich immer um solche
vom Typ , Tangentialebene*, weil man die Eigenschaft, da die Tangentialebene
projizierend erscheint, beniitzt, um die UmriBbedingung aufzustellen!
Der Typ ,,Kante** wurde bereits frither in ORIENT [IPF, 1994] verwirklicht und wird dort
durch Geraden, Polynome oder Splines modelliert.

In der analytischen Photogrammetrie werden PaBpunkte, Verkniipfungspunkte und
Umrilpunkte vom Beobachter im Photo gemessen. In der digitalen Photogrammetrie ist
man bestrebt, soviel wie moglich ohne Einwirkung eines Operateurs bestimmen zu
lassen. In vielen Fillen kommt es aber aufgrund ungeeigneter Textur des Objektes zu
einer falschen Identifizierung des Punktes. Beim Messen von UmriBpunkten ist diese



Gefahr geringer, da sich der Hintergrund meist deutlich vom Objekt abhebt. Weiters ist
auch keine falsche Zuordnung gemessener Umripunkte in verschiedenen Photos
moglich (es wird keine durchgefiihrt), weil sich der Umrif3 - von jeder Blickrichtung aus -
aus anderen Objektpunkten zusammensetzt. Es besteht aber die Gefahr, einen
beobachteten UmriBpunkt der falschen Fliche am Objekt zuzuordnen. Diese Gefahr ist
besonders grof3, wenn sich ein - in sich abgegrenztes Objekt - aus mehreren einzelnen
Teilflichen zusammensetzt. Aus diesen Griinden ergibt sich fiir die digitale
Bildverarbeitung der Vorteil, daB3 diese Methode sicherer und mit weniger Einwirkung
des Operateurs erfolgen kann, wenn sichergestellt ist, dal es sich bei den gemessenen
Punkten um Umripunkte der gewiinschten Fliche handelt. Umripunkte sind von
besonderer Wichtigkeit, wenn die Fliche keine oder nur unzureichende Textur aufweist,
und es auch nicht méglich ist, Markierungen auf ihr zu befestigen, um Objekt- oder
Verkniipfungspunkte einzumessen.

In dieser Arbeit werden fiir unterschiedliche Flichendarstellungen die dafiir nétigen
mathematischen Formeln allgemein abgeleitet, und Teile davon speziell fiir das
Programmpaket ORIENT aufbereitet.

1.2 Erklarung von Fachausdriicken

AuBere Orientierung:
Sie legt die Position und Stellung der Kamera im Referenzkoordinatensystem fest.
[Kraus, 1994, p15ff]

DHM:
In einem digitalen Hohenmodell (DHM) wird die Form der Gelindeoberfliche
modelliert und gespeichert.
[Kraus, 2000]

Gemeinlot zweier windschiefen (nicht schneidenden) Geraden im R*:
Als Gemeinlot zweier Geraden bezeichnet man die kiirzeste Verbindung dieser
beiden Geraden.

Innere Orientierung:
Sie legt die innere Geometrie einer MeBBkammer fest. Dazu gehort die
Kammerkonstante und die Bildkoordinaten des Hauptpunktes.
[Kraus, 1994, p29ff]

Kollinearititsbeziehung:
Unter der Kollinearititsbeziehung versteht man, dal zum Zeitpunkt der
Aufnahme Objektpunkt, Bildpunkt und Aufnahmeort auf einer Geraden liegen.
(Kraus, 1996, p270]

ORIENT:
ORIENT ist ein universelles photogrammetrisches Ausgleichungssystem.
[Kager, 1980] oder [Kager, 1989]

Pa3punkt:
PaBBpunkte sind Punkte, deren Koordinaten im Objektkoordinatensystem bekannt
sind.
[Kraus, 1994, p15ff]



PaBlinie:
Eine PaBlinie ist im globalen System bekannt und kann im Bild identifiziert
werden. Sie kann entweder in Form einer Punktfolge oder in Form der
Kurvenparameter festgelegt sein.
[Kraus, 1996, p68]
Quadrik:
Quadriken sind algebraische Fliachen 2.0rdnung.
Scheinbarer Umrif3:
Das Abbild des Wahren Umrisses z.B. in einem Photo.
SCOP:
SCOP, Stuttgart COntour Program, ist ein computerunabhingiges
Programmsystem zur Berechnung und Verwendung digitaler Gelindemodelle.
(IPF, 1997]
UmriBpunkt:
Ein Punkt, dessen Tangentialebene vom Aufnahmeort aus projizierend erscheint.
Wahrer Umrif3:
Der Wahre Umrif3, bezliglich eines Standpunktes, setzt sich aus jenen Punkten am
Objekt zusammen, deren Tangentialebenen vom Aufnahmeort aus projizierend
erscheinen.

1.3 Schreibweise mathematischer Formeln

Berechnungen finden in dieser Publikation in einem linearen orthonormalen Vektorraum
(9(3) statt [Netz, 1992, p35]. Elemente aus einem Vektorraum werden als Vektoren
bezeichnet.

Im Gegensatz zu anderen Publikationen wird hier zwischen Punkten, die durch
Ortsvektoren reprisentiert werden, und anderen Elementen des Vektorraumes in der
Notation unterschieden. Grund dafiir ist die groBere Ubersichtlichkeit der Gleichungen
und auch die unterschiedliche Bedeutung: Ortsvektoren legen einen Punkt im System
fest, die ,restlichen* Vektoren eine bestimmte Richtung, die z.B. aus der Differenz
zweier Ortsvektoren berechnet werden kann. Ortsvektoren werden im folgenden
,Punkte* genannt und - an die geometrische Darstellung angelehnt - mit fettgedruckten
Groflbuchstaben bezeichnet. In Kapitel 1.3.2 werden alle mathematischen Elemente und
deren Schreibweisen in der Tabelle 1-1 iibersichtlich zusammengefalt.

Die Tensornotation wird in dieser Arbeit der Matrizenschreibweise vorgezogen, weil
Differentiale von Matrizen - 3-fach indizierte Groflen - einfacher dargestellt werden
konnen.

1.3.1 Einfihrung in die Tensorrechnung

In diesem Kapitel wird nur auf die fiir diese Arbeit wichtigen Grundkenntnisse der
Tensornotation eingegangen. Detailliertere Ausfithrungen findet man in [Bretterbauer,
1995] oder auch in [Schouten, 1924]. Die Tensorrechnung arbeitet direkt mit den
einzelnen Elementen der Vektoren, Matrizen oder allgemein mit den Elementen der
mehrdimensionalen Groen. Die einzelnen Elemente dieser GroBBen werden direkt mit
Hilfe einer Indizierung angesprochen, z.B. ein Vektor a wird in Tensornotation wie folgt



dargestellt: @, Man unterscheidet zwischen ko-varianter (Index unten) und kontra-
varianter (Index oben) Darstellung. Bei einem nicht-orthogonalen System liegt auch eine
unterschiedliche geometrische Interpretation von ko- und kontra-variant vor. Da in dieser
Arbeit aber nur mit orthogonalen Systemen gearbeitet wird, existiert hier dieser
Unterschied nicht. Diese unterschiedlichen Darstellungsweisen in Verbindung mit der
Einstein’schen Summenkonvention stellen eine sehr tibersichtliche und einfache Methode
zur Notation fiir Formeln dar. Die Einstein’sche Summenkonvention besagt, daf3 iiber
gleichnamige Indizes in ko- und kontra-varianter Darstellung summiert wird. Ein
Skalarprodukt zweier Vektoren a, b wird in folgender Weise angeschrieben:

a'b=(a,b)=>ab =da'b,

Der Summationsindex i wird als stummer Index bezeichnet, weil er nach der Summation
verschwindet. Ein Index, der hingegen keine Summation bewirkt, heiflt freier Index.
Indizes in lateinischer Notation (i, j, k...) laufen in dieser Arbeit von 1 bis 3, jene in
griechischer Notation (¢, B, ¥.) von | bis 2.

Eine Ableitung von einer n-fach indizierten GroBe liefert allgemein eine n+1-fach
indizierte Grofle. Der dadurch entstandene Index wird durch einen Beistrich von den
anderen getrennt. Ein Vektor a, nach seinen Komponenten abgeleitet, liefert eine Matrix
A:

da, da, Jda,

ox'  ox?  ox’

da _ da, da, da, da,

A = —= = a’_ W 7 .
ox ox’ oooxt ox® ox

da, da, da,

ox'  ox?  ox’

Ob die Ableitungen ko- oder kontra-variant angeschrieben werden ist egal, es sollte aber
darauf geachtet werden, daB3 beim Anschreiben des totalen Differentials kein
Widerspruch entsteht:

weil

Das Kronecker-d in der Tensornotation ist das Pendant zur Einheitsmatrix in der
Matrizenschreibweise:

PV firi=j
fliri #j

Der € Tensor ist ein antisymmetrischer Tensor und wird unter anderem verwendet, um
ein Kreuzprodukt zweier Vektoren darzustellen:



1ofir (i, 7,k) e {(1,2,3).(2,3.0),(3,1,2)}
gx={=1 fir (i,j,k) e{1,3,2).3.21),(2.13)}
0 fir alle tibrigen

A o
n=¢gusv

(1.3-1)
n=sSXyv

In der Matrizenrechnung bendétigt man oft die Transponierte einer Matrix; in der
Tensornotation wird die indizierte Grofle nicht transponiert, sondern iiber den anderen

Index verkniipft:

C=AB
D=AB"

Allgemein heilen GroBen, die nur von einem Index abhiingen, Systeme 1. Ordnung. Ein
Vektor ist ein solches System. Ein Skalar ist hingegen ein System nullter Ordnung.

1.3.2 Symbolubersicht

In der folgenden Tabelle werden die Richtlinien fiir die Darstellung mathematischer
Symbole zusammengefaft.

Symbol in Text und

Symbol in Formeln

Erkldrung

ERZ ()‘3

Lineare Vektorriume: der
hochgestellte Index
die Dimension an

m, u

Skalare: GroBen nullter Ordnung

Punkte: GroBen I. Ordnung

Matrizen: Groen 2.

Vektoren: Groflen 1.

Normierte Vektoren: Norm = |

Flichen (auler Ebenen): Griechische
GroBbuchstaben

Ebenen, Kurven und Terme, die zur
Flichendarstellung dienen: Griechische
Kleinbuchstaben

/

Parallel

xela,b]

Die Zahl x ist Element des
geschlossenen  Intervalls mit den
Grenzen ¢ und b

Wird bei lIterationen verwendet und
stellt eine Wertzuweisung dar

Tabelle 1-1: Allgemeine Schreibweise von mathematischen Symbolen



In der Photogrammetrie werden oft mehrere Koordinatensysteme gleichzeitig verwendet.
Daher bedarf es einer eindeutigen symbolischen Zuordnung, um die Systeme nicht
untereinander zu verrnischen. Die Elemente in den jeweiligen Systemen werden durch die
jeweiligen Anfangsbuchstaben des Systems dargestellt.

Symbol in Text und Symbol in Formeln Erklidrung
rP, rU rPi, RU' Punkte im
MA , MR A Matrizen: GréBen 2. Ordnung
gb, BS gbi, gs' Vektoren im
MP , MO, M’ Fliachen im Modellsystem
mE ,RE, BT, RO, RO Ebenen, Kurven und Terme

verschiedenen

Tabelle 1-2: Schreibweise von mathematischen Symbolen in unterschiedlichen Koordinatensystemen

Die systemanzeigenden Indizes konnen leicht von jenen der Tensornotation
unterschieden werden. Die einen werden groB3 und links vom Symbol, die anderen klein
und rechts geschrieben. In einigen Kapiteln wird auf die systemanzeigenden Indizes
verzichtet, um eine bessere Lesbarkeit zu erzielen. Es wird natiirlich in diesen Kapiteln
speziell darauf hingewiesen.




2 Theorie

2.1 Allgemeine Uberlegungen

Betrachtet man eine Fldache, von der die Gestalt bekannt ist, so ist nicht jeder Punkt auf
der Fliche ein UmriBpunkt beziiglich des Beobachtungsortes. Von anderen
Beobachtungspunkten aus werden andere Punkte zu Umrilpunkten. So bilden immer
andere Punkte der Fliche den wahren Umrif} in Abhiingigkeit des Beobachtungsortes.
Aus dieser Gegebenheit kann man Riickschliisse auf die Lage des Beobachtungspunktes
relativ zur Fldche ziehen.

Kennt man den Beobachtungspunkt, so kann auf Grund des Umrisses auf die Gestalt der
Fliache geschlossenen werden. Aus mathematischer Sicht muf3 hier ein liberbestimmtes
System aus Fliche, UmriBpunkt und Beobachtungspunkt vorliegen, da nicht jeder
Sehstrahl automatisch zu einem Umripunkt der Fliche zeigt. Man spricht von einem
iberbestimmten System, wenn mehr Gleichungen als Unbekannte vorliegen.

Geht man davon aus, da3 sowohl die Fliche, der Beobachtungspunkt und die Richtung
des Sehstrahls bekannt sind, so ldBt sich aus dieser Konstellation ein gewohnlicher
Flachenpunkt eindeutigI durch Schnitt des Sehstrahls mit der Fliche berechnen. Den drei
unbekannten Koordinaten des Punktes stehen die bekannten (beobachteten) zwei
Bildkoordinaten und eine Flichengleichung gegeniiber. Wurde aber nicht ein allgemeiner
Flichenpunkt beobachtet sondern ein Umrilpunkt, so kann man vermuten, daf} eine
weitere Bedingung vorliegen muf.

2.2 Ableitung der UmriBbedingung

UmriBpunkte sind besondere Punkte der Fliche. Es mufl eine mathematische Bedingung
zwischen der Fliche, dem Beobachtungspunkt und dem Umri8punkt bestehen. Zuerst soll
auf dieses Problem kurz im R? eingegangen werden, da anschlieBend der Ubergang in
den R? leichter fillt. Ein ,UmriBpunkt* einer Kurve 6 im R beziiglich eines Punktes V
(Viewpoint) liegt dann vor, wenn die Tangente t im UmriSpunkt U auch V enthiilt, siche
Abbildung 2-1. Eine solche Bedingung wird in der Schule allgemein zwischen einem
Kreis in Hauptlage und einer Tangente abgeleitet und ist als Beriihrbedingung bekannt
[Kraft, 1974, p13].

" Eindeutig ist hier so zu verstchen, da den 3 Unbekannten 3 Gleichungen gegeniiberstehen und nicht, daB
bei einem Schnitt von Sehstrahl und Fliiche die Losung eindeutig sein mul3.



Abbildung 2-1: Bedingung zwischen UmriBpunkt, Tangente und Kurve im 9%t*

Das Ziel ist es, eine moglichst allgemeine Formulierung der Bedingung fiir beliebige
Kurven in Parametern der Kurve und des Beobachtungspunktes zu finden. Ausgehend
von der Eigenschaft, dafl der Punkt U genau dann ein Umripunkt beziiglich V ist, wenn
die Tangente t im Punkt U auch V enthilt. Aus dieser Eigenschaft erkennt man, daf3 der
Sehstrahlvektor s ( s = Ug— V¢ ) normal auf den Normalenvektor n der Kurve im Punkt
U steht, siehe Abbildung 2-2.

Abbildung 2-2: UmriBbedingung zwischen Normalen- und Sehstrahlvektor im %*

Diese Bedingung ldBt sich nun sehr einfach iiber das innere Produkt der beiden Vektoren
(n,s)in eine mathematische Formel kleiden:



(2.2-1)

Kénnte man die Gleichung (2.2-1) vom R? auf den im R* erweitern, so hitte man

eine passende Formulierung fiir die Umribedingung gefunden. Im R tritt anstelle einer
Kurve 0 eine Fliche ®. Es liegt ein UmriBpunkt U der Fliche beziiglich des
Beobachtungspunktes V dann vor, wenn die Tangentialebene T in U auch V enthiilt.
Diese Bedingung lif3t sich analog zum Fall R? wieder folgendermaf3en formulieren: U ist
UmriBpunkt der Fliche @& beziiglich des Beobachtungspunktes V, wenn der
Normalenvektor n der Fliche normal auf den Sehstrahlvektor s steht, siehe Abbildung
2-3.

Abbildung 2-3: UmriBbedingung zwischen Fliiche, Sehstrahl und UmriBpunkt im %*

Die Formel (2.2-1) ist daher auch im R* anwendbar. Daher kann anstelle des Index « der
Index i geschrieben werden.

(2.2-2)

2.3 Das liberbestimmte System bei UmriBpunkten

Die in Kapitel 2.2 abgeleitete Bedingungsgleichung fiir einen UmriBpunkt bewirkt, daf3
das Gleichungssystem iiberbestimmt wird. Bei einem {iberbestimmten System liegen
mehr Beobachtungen bzw. Bedingungen vor als Unbekannte. Ein sehr anschaulicher



Zugang, um zu den Parametern zu gelangen, ist der folgende, sieche Abbildung 2-4: Mit
den Parametern u« und v kann man den Punkt U(u,v) auf der Fliche ® beschreiben mit &
den Punkt W(k) am Sehstrahls g. Die Parameter u, v und k beschreiben genau dann eine
,Lumriflsituation®, wenn die beiden Kollinearititsgleichungen in Verbindung mit den
beobachteten Bildkoordinaten [Kraus, 1994, pl4ff], die in Kapitel 2.2 abgeleitete
Umrifbedingung und die Bedingung, dal U in der Normalebene zu g durch W liegt,
erfillt sind. Bildlich 148t sich die Suche nach den Unbekannten wu, v und k so
veranschaulichen: Man stelle sich vor, man befinde sich am Sehstrahl und schiebe eine
Normalebene zu g vor sich her und suche gleichzeitig dazu jenen Punkt auf der Fliche,
der einerseits in der Normalebene liegt und dessen Normalvektor andererseits normal auf
g steht.

u+du
\)

Abbildung 2-4: Veranschaulichung von Beobachtungen und Unbekannten bei einer
UmriBbeobachtung

Diese Konstellation aus Bedingungen und Unbekannten ist in Tabelle 2-1
zusammengefaft.

Anzahl Unbekannte Anzahl
Gemessene Bildkoordinaten des 2 Flichenparameter « und v 2
U
U liegt in der Normalebene zu g 1 Sehstrahlparameter k 1

durch W

Fiktive UmriBBbeobachtung des 1
Umriflpunktes U

z 4 ) 3

Tabelle 2-1: Gegeniiberstellung von Beobachtungen und Unbekannten bei einer Umrilbeobachtung
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Im Hinblick auf die Einbindung in das Programm ORIENT wurde ein anderer
(analytischer) Zugang zu den Beobachtungen und Unbekannten des Gleichungssystems
bewihlt:

Als Unbekannte werden die drei Raumkoordinaten des Umri3punktes U eingefiihrt. Dem
gegeniiber stehen wieder die beiden Kollinearititsgleichungen in Verbindung mit den
beobachteten Bildkoordinaten [Kraus, 1994, pl14ff], die vom Umri3punkt erfiillt werden
miissen. Weiters mu3 U auch die Flichengleichung [Kraus, 1996, p33ff] und die
Umrifibedingung (2.2-2) erfiillen. Diese Konstellation aus Bedingungen und
Unbekannten ist in Tabelle 2-2 zusammengefat. Wiederum stehen den drei
Unbekannten 4 Bedingungen gegeniiber.

Anzahl Unbekannte Anzahl

Gemessene Bildkoordinaten des 2 3D-Raumkoordinaten des 3

U UmriBBpunktes U
Fiktive Flichenbeobachtung des ]

U
Fiktive UmriBbeobachtung des ]

U

E 4 3 3

Tabelle 2-2: Gegeniiberstellung von Beobachtungen und Unbekannten bei einer Umribeobachtung

Man spricht hier von ,.fiktiven** Flichen- und Umri3beobachtungen, weil sie nicht direkt
beobachtet werden wie die Bildkoordinaten, sondern auf theoretischem Wissen beruhen.
Umripunkte miissen nicht zwingend durch photogrammetrische Methoden beobachtet
werden, sie konnen auch mittels eines Theodolits beobachtet werden. Hier treten anstelle
der beiden gemessenen Bildkoordinaten ein Horizontalwinkel und ein Vertikalwinkel, die
in diesem Fall die Richtung des Sehstrahles festlegen.

Wie aus Tabelle 2-1 bzw. Tabelle 2-2 hervorgeht, wiirde ein gemessener Umri3punkt
eine Uberbestimmung liefern. Die Behauptung, dal ein Umri8punkt ,,genau* eine
Uberbestimmung liefert, ist nicht ganz exakt. Der Grund fiir diese Unexaktheit liegt in
der Art und Weise wie nicht-lineare liberbestimmte Systeme in der Photogrammetrie
gelost werden. Aus Kapitel 4, in dem das Losen derartiger Systeme ausfiihrlich behandelt
wird, geht hervor, da3 die nicht-linearen Gleichungen durch lineare Gleichungen ersetzt
werden. Betrachtet man das Gleichungssystem im ausiterierten (=gelosten) Zustand, so
ergibt sich folgende Situation: Die Linearisierung der fiktive Flichenbeobachtung ist die
Tangentialebene im UmriBpunkt, der Schnitt aus den beiden linearisierten
Kollinearitidtsgleichungen ergibt den Sehstrahl, und die linearisierte Umri3beobachtung
liefert eine Ebene, die normal auf den Sehstrahl steht und den UmriBpunkt enthilt. Wiirde
eine ,,herkommliche* Uberbestimmung vorliegen, so konnte eine beliebige linearisierte
Gleichung weggelassen werden. Wiirde man hier die Umrifbeobachtung weglassen, so
konnte der Umri3punkt nicht aus dem Schnitt der anderen drei Gleichungen bestimmt
werden, da der Sehstrahl in der Tangentialebene bzw. parallel zu ihr liegt. Daraus folgt,
daB die Umribedingung eine auBerordentliche Stellung in diesem System hat. Sie ist
nicht durch die anderen drei ersetzbar und wird daher auch exakt erfiillt, da es zu keinem




Widerspruch kommen kann. Die Uberbestimmung liegt genau genommen in den beiden
Kollinearititsgleichungen gemeinsam mit der fiktiven Flichenbeobachtung.



3 Aufbereitung der UmriBbedingung flr
photogrammetrische Zwecke

3.1 Zusammenfihrung photogrammetrischer
Koordinatensysteme

In der Photogrammetrie arbeitet man mit mehreren Koordinatensystemen. In dieser
Arbeit wird ein iibergeordnetes System verwendet, das Referenzsystem (Index R), in dem
alle anderen eingebettet werden. Weiters gibt es Bildkoordinatensysteme (Index B), in
denen die Bildkoordinaten unter anderem auch von den Umripunkten, gemessen
werden, und Modellsysteme (Index M), in denen die Flichen dargestellt werden. Um die
UmriBbedingung, die sowohl Elemente aus dem Modellsystem als auch aus dem
Bildsystem enthilt, formulieren zu konnen, miissen zuerst die Koordinatensysteme
ineinander Ubergefiihrt werden. Die Grundgleichung dafiir ist die ridumliche
Ahnlichkeitstransformation [Kraus, 1996 pl4ff], die im folgenden - in der Notation an
die Anwendung dieser Arbeit angepal3t - angeschrieben wird.

3.1.1 Transformation vom Bildkoordinatensystem ins
Referenzkoordinatensystem

Die Stellung der beiden Systeme ist in Abbildung 3-1 dargestellt.

Die Transformationsgleichung fiir einen Punkt X lautet:

3.1-1)

rX:  Punktim Referenzsystem

gX:  Punkt im Bildsystem

pm:  Punkt-Mafstabszahl

sR:  Rotationsmatrix: Stellung des Bildkoordinatensystems zum
Referenzsystem

rY:  Projektionszentrum (Viewpoint) im Referenzsystem

gV: innere Orientierung der Me3kamera



Die Transformationsgleichung fiir einen Vektor s lautet:

(3.1-2)
RS: Vektor im Referenzsystem
BS: Vektor im Bildsystem
gR:  Rotationsmatrix der Ahnlichkeitstransformation
B Mal3stabsfaktor
3
X
V3
Rv1 Hxa
___________________________ _p
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Abbildung 3-1: Zusammenhang zwischen Bild- und Referenzkoordinatensystem



3.1.2 Transformation vom Modellkoordinatensystem ins

Referenzkoordinatensystem

Flichen konnen sowohl direkt im Referenzsystem (wie z.B. als DHM in SCOP), als auch

in einem eigenen Modellsystem gegeben sein (wie z.B. die GESTALTen

im

Programmpaket ORIENT). Ist die Fliche in einem eigenen Modellsystem gegeben, so
vereinfacht sich oft die analytische Darstellung der Fliche bei giinstiger Wahl des
Systems (kanonische Darstellung). Ein Nachteil hingegen ist, dal dieses System dann ins

Referenzsystem transformiert werden mulf3.

Die Stellung von Modell- und Referenzkoordinatensystem ist in Abbildung 3-2

dargestellt.
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Abbildung 3-2: Zusammenhang zwischen Modell- und Referenzkoordinatensystem
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Die Transformationgleichung fiir einen Punkt X lautet:

3.1-3)
rX:  Punkt im Referenzsystem
mX:  Punkt im Modellsystem
mm:  Punkt-MaRstabszahl
mR:  Rotationsmatrix der Ahnlichkeitstransformation
rQ:  Bezugspunkt im Referenzsystem
mQ:  homologer Bezugspunkt zu gQ im Modellsystem
Die Transformationgleichung fiir einen Vektor s lautet:
3.1-4)
RS: Vektor im Referenzsystem
MS: Vektor im Modellsystem

mR:  Rotationsmatrix der Ahnlichkeitstransformation
ML Modellmafstab

3.1.3 Transformation der Elemente der UmriBbedingung ins
Referenzsystem

Die Umribedingung (2.2-2) ist eine allgemein - vom Koordinatensystem unabhiingig -
giiltige Gleichung und lautet daher fiir das iibergeordnete Referenzsystem:

3.1-5)

Da der Flichennormalenvektor pn im Modellkoordinatensystem und der
Sehstrahlvektor gs im Bildkoordinatensystem anfillt, miissen beide ins Referenzsystem
transformiert werden.

Vektoren im Modellsystem werden nach (3.1-4) ins Referenzsystem transformiert. Der
Normalenvektor ergibt sich daher zu:

(3.1-6)

Fiir die UmriBbedingung wird der Vektor gs ins Referenzsystem nach (3.1-2)
tibergefiihrt.



3.1-7)

Setzt man nun (3.1-6) und (3.1-7) in (3.1-5) ein, so ergibt sich die Bedingung im
Referenzsystem in Elementen der anderen Systeme zu:

3.1-8)

3.2 Flachendarstellungen und Berechnung der
Normalenvektoren

Die Berechnung des Fliachennormalenvektors yn und der Niaherungskoordinaten des
UmriBpunktes mU (siehe Kapitel 5) hingt erheblich von der Darstellungsart der Fliache
m® ab. Daher werden die Vorgangsweisen fiir einige Flichendarstellungen angegeben.

In den folgenden Unterkapiteln wird auf den Index fiir das Modellsystem verzichtet, weil
alle Berechnungen in diesem System durchgefiihrt werden. Die Transformation vom
Modellsystem zum Referenzsystem geschieht mit Formel (3.1-4).

3.2.1 In Parameterdarstellung gegebene Flachen

Die Fliche @ sei wie folgt im Modellsystem gegeben (X laufender Punkt der Fliche,
abhingig von den Parametern u, u;):

3.2-1)
Man berechnet die partiellen Ableitungen nach u; und u; , diese Vektoren
entsprechend den Tangentialvektoren an die Parameterlinien:
0X' 9X' ) _0X' _ i
du, " ou, du,,
3.2-2)

AnschlieBend wird iiber das Kreuzprodukt (vektorielles Produkt) der
Normalenvektor n berechnet. In der Tensorrechnung wird ein Kreuzprodukt iiber den &-
Tensor dargestellt, siehe Kapitel 1.3.1:

(3.2-3)
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3.2.2 Implizit algebraisch gegebene Flachen

i

Eine implizit gegebene Fliche ® wird durch einen Term 8, der von den Koordinaten X
abhingt, dargestellt. Liegt ein Punkt auf der Fliche, mufl der Term ¥ verschwinden.

3.2-9)

Die Berechnung des Normalenvektors n der Fliche @ erfolgt, indem man den
Gradienten von U berechnet:

(3.2-5)

3.23 Explizit algebraisch gegebene Flachen

Eine explizit algebraisch gegebene Fliche @ ist der Graph einer Funktion 0, die von zwei
Koordinaten X’ X abhingt.

(3.2-6)

Diese Fliche @ 1aBt sich sowohl in eine implizit algebraische als auch in eine
Fliche in Parameterform iiberfiihren. In welcher Darstellung man sie nun umrechnet,
hingt davon ab, mit welcher Darstellung man das Umripunktproblem behandeln
mochte.
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3.2.3.1 Umwandlung von explizit algebraisch gegebenen Flichen in
Parameterdarstellung:

Man setzt:

3.2-7)
Nun liegt die Fliche @ in Parameterdarstellung vor.
Beispiel:
3.2.3.2 Umwandlung von explizit in implizit algebraisch gegebene Flichen:
Eine implizit algebraisch gegebene Fliche ® hat folgende Gestalt:

(3.2-8)
Die Umwandlung der explizit gegebenen Funktion ergibt sich zu:

3.2-9)
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Beispiel:

3.3 Verbesserungsarten der fiktiven UmriBbedingung

Uberbestimmte Systeme konnen im allgemeinen nicht in dem Sinn exakt gelost werden,
daB3 alle Beobachtungsgleichungen gleichzeitig erfiillt sind. Die Unbekannten des
Gleichungssystems werden so bestimmt, daf die gewichtete Quadratsumme der
Verbesserungen minimal wird [Kraus, 1994, p382ff]. Unter einer Verbesserung versteht
man den Zuschlag, den man an die Beobachtung anbringen muf}, damit sie exakt erfiillt
ist. Beim iiberbestimmten System des UmriBpunktes treten 4 Beobachtungen auf, siehe
Tabelle 2-2, die verbessert werden miissen. Bei Bildkoordinaten ist naheliegend, daf3
diese verbessert werden, weil sie auch wirklich beobachtet werden [Kraus, 1994, pl4ff].
Bei einer fiktiven Flichenbeobachtung (3.2-8), die in impliziter Form vorliegt, ist das
nicht mehr so offenkundig. In diesem Fall wiirde man die fiktive ,,Null* beobachten und
verbessern, hier fehlt aber eine anschauliche Deutung. Sinnvoll wire es, den kiirzesten
Abstand zur Fliche zu verbessern, was auch in ORIENT geschieht [Kager, 2000]. Bei der
fiktiven UmriBbeobachtung, wie in Kapitel 2.2 abgeleitet, wiirde das innere Produkt
verbessert werden:

3.3-1)

Doch so wie bei der Flichenbeobachtung fehlt auch hier eine anschauliche
Interpretation. Geometrisch anschauliche Verbesserungen wiren, siehe Abbildung 3-3:
Die Normalprojektion von s auf n,

i
n's.
—=0+v,

|2
n llj

(3.3-2)

Die Normalprojektion von n auf s

i
n's.
— O+v

3z

(3.3-3)
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Die Abweichung vom Rechten Winkel

n's.

{

F =¢0s(90° +v) = =sin(v) =0—v,,
S sw.
J

(3.3-4)

Abbildung 3-3: Geometrische Darstellung der Minimakriterien fiir die Umrilbeobachtung

Aus der Abbildung 3-3 geht hervor, daf3 (3.3-3) zwar geometrisch interpretierbar ist, aber
deren praktische Anwendung als Endminimumkriterium fraglich ist. Diese Art der
Verbesserung ist aber dennoch sehr wichtig, wie in Kapitel 4 gezeigt wird.

Die geometrisch sinnvoll interpretierbaren Verbesserungen aller Beobachtungsarten
werden in Tabelle 3-1 nochmals zusammenfassend aufgelistet:

Gemessene Bildkoordinaten v. U

Bildkoordinaten v. U

Fiktive v. U

Normalabstand zur Flache

Fiktive Umrifbeobachtung v. U

Normalabstand zur Flidche oder
der Rechte Winkel zwischen n und s

Tabelle 3-1: Die Verbesserungsarten beim iiberbestimmten System Umripunkt
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4 Linearisierung und Konvergenzverhalten der
UmriBbedingung

4.1 Losen eines uberbestimmten Systems

Liegt ein iiberbestimmtes System vor, so kann es mit Ausgleichung nach der Methode der
kleinsten Quadrate [Wolf, 1996] gelost werden. Es soll hier niher in der Notation dieser
Arbeit zitiert werden, weil diese Vorgangsweise sehr wichtig fiir das Verstindnis dieses
Kapitels ist.

Beobachtungen, wie z.B. Bildkoordinaten oder auch die fiktive Umrilbeobachtung,
lassen sich als Funktion der Unbekannten darstellen:

4.1-1)
l; Beobachtung

% Unbekannte

Da die Ausgleichung nach der Methode der kleinsten Quadrate lineare Systeme
voraussetzt, muf3 (4.1-1) in eine Taylorreihe entwickelt werden und diese wird nach den
linearen Gliedern abgebrochen. Bei der Linearisierung ersetzt man eine nicht-lineare
Funktion in n Unbekannten durch eine lineare n-dimensionale Hyperebene.

4.1-2)

Eine lineare Funktion kann eine nicht-lineare nicht iiber den ganzen Definitionsbereich
hinreichend gut approximieren, daher kommt dem Entwicklungspunkt (x) ( =
Niherungswerte der Unbekannten?) eine grof3e Bedeutung zu, siehe Abbildung 4-1:

? Der hier rechts hochgestellt Index 0 bedeutet, daf3 es sich um einen Niiherungswert handelt und nicht um
eine Potenz.

22



Abbildung 4-1: Approximation einer Kurve durch Geraden

Abbildung 4-1 zeigt, wie stark sich Richtung und Lage der Approximationsgeraden
dndern konnen, obwohl die beiden Entwicklungspunkte X und Y knapp beisammen sind.

Die Linearisierungskoeffizienten

einer zweifach indizierten Groe A, zusammenfassen:

. 3 0
Ai 1 = ]"l
ox

Die beobachteten Werte [; werden nicht

i

X .

J

0

, ausgewertet an der Stelle (x)” , lassen sich zu

mit

den berechneten Werten

fi(x,,x,,x,..x,)°, die aus der Linearisierung stammen, iibereinstimmen.

Abweichungen werden Widerspriiche genannt und wie folgt berechnet:

Die Beobachtungsgleichungen (4.1-2) lassen sich nun zu einem linearen

Gleichungssystem zusammenfassen:
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Diese

(4.1-49)

(4.1-5)



Da ein iiberbestimmtes System vorliegt, konnen in der Regel nicht alle Gleichungen von
(4.1-5) simultan erfiillt werden. Es miissen Korrekturen an die Beobachtungen /
angebracht werden, die sogenannten Verbesserungen v; . Aus dem Gleichungssystem
(4.1-5) wird das Verbesserungsgleichungssystem:

(4.1-6)
Das Gleichungssystem (4.1-6) wird so gelost, da3 die gewichtete Quadratsumme
der Verbesserungen minimal wird:
i . . 4.1-7)
PY Gewichtsmatrix
In die Gewichtsmatrix gehen die Genauigkeiten der Beobachtungen ein.
Die Zuschlige dx; aus (4.1-7) ergeben sich zu:
mit 4" B A G =d,"
(4.1-8)
Die gesuchte Losung x; ergibt sich iterativ zu:
(4.1-9)

4.2 Linearisierung der UmriBbedingung

Die fiktiven Beobachtungsgleichungen E;-E4 aus dem Kapitel 3.3 miissen nach den
unbekannten Parametern, die sowohl in E;-E4 als auch im Ausgleichungssystem
vorkommen, differenziert werden:

rS kann direkt als Differenz des UmriBpunktes rX und dem Projektionszentrum rV in
Referenzsystem angeschrieben werden.

(4.2-1)

rn kann leider nicht direkt durch Parameter im Referenzsystem ausgedriickt
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werden, da er im Modellsystem berechnet wird. yn wird nach (3.2-3) oder (3.2-5)
berechnet und ist eine Funktion von:

mn =nn (A, mX)

Auf die Flichenparameter A soll in diesem Kapitel noch nicht genauer eingegangen
werden, da sie sehr von der Flichendarstellung abhingen. Im speziellen werden die
Differentiale nur fiir jene Fliachendarstellung, welche auch in ORIENT implementiert
sind, ausformuliert (siehe Kapitel 6).

MmX ist auf Grund der Transformation vom Modell- ins Referenzsystem nach (3.1-3) eine
Funktion von:

mX = mX (MR, rRQ, MQ, 1) .

Die fiktive UmriBbeobachtung muf3 daher nach folgenden Unbekannten differenziert
werden:

rX UmriBpunkt im Referenzsystem

rY Projektionszentrum im Referenzsystem

MR(mr) Rotationsmatrix in Abhingigkeit der Drehparameter r

rQ homologer Bezugspunkt des Modellsystems im Referenzsystem
min Transformationsmalstab

A Parameter der Fliche

Die Taylorentwicklung von E lautet formal:

0 0
0+v=E°+ 8_E dA, + 8_E
oA’ 0. X'

R

0 0 0
+ aE'_ d,0'+ a—E dyr'+ LR d,m
0,0 9yt d,,m

0
(3 .
I X 4| | avis
“e (a V'] ]

R

(4.2-2)
4.2.1 Vom jeweiligen Typ unabhéangige elementare Differentiale
deh;
oyn
Folgt aus Differentiation von (3.1-4) :
ph;
ﬁ:m n MRjI
M
4.2-3)
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oy
aMXI '

Dieses Differential ist von der jeweiligen Flichendarstellung abhingig. Es handelt sich in

jedem Fall um eine zweifach indizierte Grofle, da ein Vektor nach einem Vektor
differenziert wird. Abkiirzend wird dafiir yF geschrieben:

aM I'lj _ |
aM)(I M
4.2-4)
IuX;
0.X,
Folgt aus Differentiation von (3.1-3):
2, X .
W : MR’J
aRX, PR
(4.2-5)
90X,
Folgt aus Differentiation von (4.2-1) :
aRSj :6.I
aR/YI !
4.2-6)
(4.2-7)
aMXj .
99
Folgt aus Differentiation von (3.1-3):
IuX, 1 R
aRQI M m . '
(4.2-8)
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dphn, '

aM rp
Folgt aus Differentiation von (3.1-4) :
aR”./ aM le A _.S'"' R r
aM R/m a/\l r/) & S
4.2-9)
dgn;
9, m
Folgt aus Differentiation von (4.2-1) :
0.1, )
L =y R" yn,
a,,m
(4.2-10)
Die anderen Differentiale sind von der Art der Umrilbedingung abhingig und
werden fiir jeden einzelnen Typ E,-E, separat angegeben.
4.2.2 Differentiale fiir den Typ E;
_ ' (4.2-11)
Grunddifferentiale fiir den Typ E,
oE,
dpi,
Durch Differentiation von (4.2-11) gelangt man zu:
(4.2-12)
E,
dgs,
Durch Differentiation von (4.2-11) gelangt man analog zu:
(4.2-13)
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Differential nach dem UmriSpunkt rX :

; : :
uFl  yRwtpn

abkiirzend wird fir
1 m
M R M E

J
gesetzt.

Differential nach dem Projektionszentrum rV :

OE, OE, 0gs;
9V,

Differential nach dem Modellbezugspunkt rQ :

Differential nach den Drehparametern mr :

JE,  dE, d
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(4.2-15)

(4.2-16)
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Differential nach dem Transformationsmafstab ym :

(4.2-18)
Differential nach den Flichenparametern A :
JE, _ ok, aR”j My
dA,  dgn; dyn, OA
4.2-19)
. . Oyn, . . : y :
Das Differential ——— wird noch nicht ndher ausgefiihrt, da eine konkrete
Flichendarstellung dafiir notwendig wire (siehe Kapitel 6.3).
423 Differentiale fur den Typ E;
- . (4.2-20)
Teildifferentiale fiir den Typ E;
oEy,
dphn;

Durch Differentiation von (4.2-20) unter Verwendung von Produkt- und Quotientenregel
gelangt man zu:

(4.2-21)
abkiirzend wird flir
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oE,
05,

Durch Differentiation von (4.2-20) gelangt man zu:

Differential nach dem UmriSpunkt gX :

. " !
(R % G" 5 Rj
abkiirzend wird fir
! m i 1
M Rj nF yR'w= RFj

gesetzt.

Differential nach dem Projektionszentrum rV :

Differential nach dem Modellbezugspunkt rQ :

30
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(4.2-22)

(4.2-23)
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(4.2-25)

Differential nach den Drehparametern mr :

ok, O,

(4.2-26)
Differential nach dem Transformationsmafstab pm :
4.2-27)
Differential nach den Flichenparametern A :
oE, aRnJ dyn
(4.2-28)
Das Differential wird noch nicht niher ausgefiihrt, da eine konkrete

Fliachendarstellung dafiir notwendig wiire (siehe Kapitel 6.3).
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424 Differentiale fiir den Typ E;

— s 4.2-29)
Teildifferentiale fiir den Typ Esx:

oE,
dph;

Durch Differentiation von (4.2-29) gelangt man zu:

(4.2-30)

E,

05,

Durch Differentiation von (4.2-29) unter Verwendung von Produkt- und Quotientenregel
gelangt man analog zu:

. (4.2-31)
abkiirzend wird fiir

Differential nach dem Umrilpunkt gX :

AIRIIII +R”n H’”)

. . (4.2-32)
abkiirzend wird fiur
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! m g I
Ry wE" yRw=gF;

IYRAY J
gesetzt.

Differential nach dem Projektionszentrum gV :

Differential nach dem Modellbezugspunkt rQ :

Differential nach den Drehparametern mr :

JE,  OE, d.n,
Jyr, Ogn, 0,1

2 ./)

Differential nach dem Transformationsmafistab pmi :

OE, _ OE, 0gn,

9, m aRn_,. d,,n
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(4.2-34)

(4.2-35)

(4.2-36)



Differential nach den Flichenparametern A :

aEJ . 3E1 aan aM)Z,
0A,  dgn; d,n, 0A

(4.2-37)
Das Differential O wird noch nicht niiher ausgefiihrt, da eine konkrete
Flichendarstellung dafiir notwendig wiire (siehe Kapitel 6.3).
425 Differentiale fiir den Typ E,4

(4.2-38)

Teildifferentiale fiir den Typ E4

E,

dpht;

Durch Differentiation von (4.2-38) unter Verwendung von Produkt- und Quotientenregel
gelangt man zu:

(4.2-39)
abkiirzend wird fiir
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JE,
dps,

Durch Differentiation von (4.2-38) unter Verwendung von Produkt- und Quotientenregel

gelangt man analog zu:

abkiirzend wird fir

" S‘j
nj _ B o R - n
5 -2l et | g
RS RSk

gesetzt.

Differential nach dem Umri3punkt rX :

abkiirzend wird fiir
! m
M R f M E

0}
gesetzt.

Differential nach dem Projektionszentrum rV :
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(4.2-41)
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Differential nach dem Modellbezugspunkt rQ :

Differential nach den Drehparametern mr :

JE,
0,1

_ @B, am,
O, 0yt

r 14

Differential nach dem Transformationsmafstab pm :

Differential nach den Flichenparametern A :
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(4.2-44)

(4.2-45)
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Das Differential wird noch nicht ndher ausgefiihrt, da eine konkrete

Flichendarstellung dafiir notwendig wiire (siehe Kapitel 6.3).

4.3 Konvergenzbereich — Wie genau mussen die
Naherungswerte fur den UmriBpunkt sein?

Um das Gleichungssystem (4.1-5) aufstellen zu kdnnen miissen die Differentiale aus dem
Kapitel 4.2 an der Stelle des Entwicklungspunktes (=Nidherungswerte) ausgewertet
werden. Von der Giite der Nidherungswerte hiingt es ab, ob das Gleichungssystem
konvergiert. Die Zuschlige fiir die Ndherungswerte, die mit (4.1-8) berechnet werden,
werden dann mit (4.1-9) angebracht. Diese korrigierten Werte dienen als neuer
Entwicklungspunkt fiir die Differentiale. Ein Gleichungssystem konvergiert, wenn die
Niherungswerte nach einigen Iterationen gegen die gesuchte Losung konvergieren3.
Verfahren und Hinweise zur Bestimmung von Niherungswerte fiir die Orientierungen
und Flichenparameter werden in [Kraus, 1996, p46ff] bzw. [Kraus, 1996, p33ff]
angegeben, Verfahren zur Bestimmung der Niherungswerte fiir Umri3punkte wird im
Kapitel 5 angegeben. In diesem Kapitel soll zuvor die Frage behandelt werden, wie nahe
die Nidherungswerte des Umri3punktes am Umripunkt selbst liegen miissen, damit die
gewlinschte Konvergenz erreicht wird. Jede Bedingungsgleichung, die noch nicht
linearisiert wurde, beschreibt einen geometrischen Ort im R", n ist die Anzahl der
Unbekannten. Im Falle einer Fliache und eines unbekannten Punktes, wire es die Fliche
selbst, auf der der Punkt zu liegen hat. Schneidet man die m (m>n) geometrischen Orter
miteinander, so findet man den gewiinschten n-dimensionalen L&sungsvektor ohne
Niherungswerte und ohne Iteration. Jedoch ist ein ausgleichender Schnitt von m, im
allgemeinen nicht-linearen Gleichungen, in n Variablen nicht trivial. Daher schligt man
den Weg ein, der in Kapitel 4.1 beschrieben wird. Die allgemeinen geometrischen Orter
der Gleichungen werden durch differentielle geometrische Orter ersetzt, die auch n-
dimensionale Hyperebenen genannt werden, und geschnitten. Jede Zeile aus der
Gleichung (4.1-5) entspricht einem differentiellen geometrischen Ort. Eine
Flichengleichung (z.B. von einer Quadrik) wiirde durch eine Ebene ersetzt werden. In
der differentiellen Umgebung des Entwicklungspunktes wird die allgemeine Gleichung
durch die Hyperebene ausreichend gut ersetzt. Je weiter jedoch der Entwicklungspunkt
von der gesuchten Losung entfernt ist, desto schlechter wird die Hyperebene die Fliche
approximieren. Das kann zu schleifenden oder unbrauchbaren Schnitten (neuer
Entwicklungspunkt liegt weiter von der gesuchten Losung entfernt als der vorherige)
fiihren; darin liegt der Grund fiir ein divergierendes Gleichungssystem. Es ist zu
erwarten, je hohergradig die Gleichung ist, desto genauer miissen die Nidherungswerte
bestimmt werden. Schon wire es, den ,giinstigen” Bereich um den Umrif3punkt
(Konvergenzbereich) abgrenzen zu konnen ohne jegliche Messungen einfliefen zu
lassen. Im Fall des Umripunktsystems verfiigt man iiber zwei fiktive
Bedingungsgleichungen und zwei Beobachtungsgleichungen, siehe Tabelle 2-2. Wiirde

Ri=> . . . S— . .
Ein Gleichungssystem kann auch gegen eine ,falsche™ Losung konvergieren, das ist dann der Fall, wenn
das System in einem lokalen Minimum hiingen bleibt.
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man nur die zwei fiktiven differentiellen Orter miteinander schneiden, so wiirde man
keine eindeutige LoOsung bekommen sondern eine Gerade, weil eben noch
Bestimmungsgleichungen fehlen. Diese Unterbestimmung kann man beheben, indem
man immer einen ebenen Schnitt durch die Fliche betrachtet. Diese Annahme schriinkt
die allgemeinen Uberlegungen nicht ein, da man mehrere benachbarte Schnitte betrachten
kann, erleichtert aber die Darstellung.

Jede Zeile des Gleichungssystems (4.1-5) stellt einen differentiellen geometrischen Ort
dar. Da ein Konvergenzbereich fiir den Umripunkt angegeben werden soll, sind nur die
Differentiale der fiktiven Flichen- und Umribeobachtung nach gX von Interesse. A’ in
(4.1-5) wird je nach gewiinschtem Minimumkriterum durch eines der Differentiale
(4.2-14), (4.2-23), (4.2-32) oder (4.2-41) bestimmt. Der Widerspruch w ergibt sich zu:

(4.3-1)

Die differentiellen Orter der Umrifbedingung ergeben sich zu:

(4.3-2)

(4.3-3)

(4.3-4)

(4.3-5)

Die differentiellen Orter fiir die Flichenbedingung werden berechnet, indem die
Flichengleichung ®(rX)=0 nach rX differenziert und anschlieBend der Widerspruch
berechnet wird, siehe [Kager, 2000]:

(4.3-6)
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(4.3-7)

(4.3-6) stellt den Partner fiir E; als auch fiir E5 dar, weil sowohl Umrif3- als auch
Flichenbedingung nicht mit gn normiert wurde. (4.3-7) ist der Partner fiir E; und fiir E4,
weil hier eine Normierung mit rn vorliegt. Normiert man die Fliche mit rn , so
verbessert man in erster Niherung den Normalabstand Fliche - Punkt, was wiederum
eine sehr anschauliche Verbesserungsart darstellt.

Um das Konvergenzverhalten der unterschiedlichen Minimumskriterien untersuchen zu
konnen wurde ein Programm erstellt, das sowohl Normalenvektorfelder als auch die
geometrischen Orter von Quadriken darstellen kann. Durch eine Schnittstelle mit
ORIENT koénnen auch andere Flichen untersucht werden (siehe Kapitel 6).

4.3.1 Untersuchung der Normalenvektorfelder der differentiellen
geometrischen Orter von UmriB- und Flachenbedingungen

Der Normalenvektor der differentiellen geometrischen Orter ist der Vektor, der in den
Formeln (4.3-2) bis (4.3-7) links von drX steht. Weisen diese Vektorfelder Wirbel auf,
so weist das daraufhin, da3 in diesem Bereich der diff. ggom. Ort stark seine Richtung
dndert. Starke Richtungsinderungen wirken sich instabil auf die Konvergenz aus. Treten
Orter auf, in denen der Normalenvektor verschwindet, so wiirde das zu Singularititen im
Gleichungssystem fiihren.

Allgemeine Erlduterungen zu den folgenden Darstellungen:

_ Element Farbe
Fliche, Kurve @
Thalesflache, Thaleskurve T Braun
Elemente vom E, (4.3-2) Blau
Elemente vom Typ E; (4.3-3) Griin
Elemente vom E; (4.3-4) Rot
Elemente vom E; (4.3-5) Gelb
Elemente vom F, (4.3-6)
Elemente vom F, (4.3-7) Zyan

Tabelle 4-1: Farbcodes fiir die Vektorfelddarstellungen und fiir die diff. geom. Orter

In Anlehnung an den Thaleskreis wird jener Ort, an dem der rechte Winkel zwischen n
und s erfiillt ist, allgemein als Thalesfliche bezeichnet. Dieser Ort wird durch die

Gleichung ,n; <5’ =0 beschrieben. In den folgenden Abbildungen werden die Fliche

@, der Flichenmittelpunkt Q, die Thalesfliche T, das Projektionszentrum V und der
UmriBpunkt U mit einem regelmifligen Punkteraster iiberzogen. Dieser Punkteraster legt
die zu testenden Niherungswerte fest.
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Zuerst sollen die Normalenvektoren der diff. geom. Orter fiir eine Kugel untersucht
werden, da man hier die charakteristischen Eigenschaften der Vektorfelder besser
erkennen kann. Die Matrix F ergibt sich bei einer Kugel zu einem Vielfachen der
Einheitsmatrix.

Anmerkung: In den Abbildung 4-2 bis Abbildung 4-12 werden ebene Schnitte der
Normalenvekorfelder dargestellt. Liegt der Normalenvektor nicht in dieser Schnittebene,
so wird dieser in die Ebene projiziert. Daher kann es in diesen Fillen zu minimalen
Verzerrungen in der Linge des Vektors kommen. Diese Verzerrungen wirken sich in
keiner Weise auf die abgeleiteten Ergebnisse aus.

Abbildung 4-2 und Abbildung 4-3 =zeigen die Normalenvektorfelder der vier
Bedingungstypen der Umrilbedingung. Bei der Fliche handelt es sich um eine Kugel,
dargestellt werden Schnitte, die sowohl Q als auch V enthalten:

Abbildung 4-2: Normalenvektorfelder fiir ebenen Kugelschnitt
der UmriBitypen E,; links und E; rechts

Abbildung 4-3: Normalenvektorfelder fiir ebenen Kugelschnitt
der UmriBitypen E; links und E, rechts

Vektorfeld E;(blau): Es handelt sich um ein wirbelfreies Feld. Es besitzt als
ausgezeichneten Punkt den Mittelpunkt des Thaleskreises, an dem der Normalenvektor
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des diff. geom. Ortes verschwindet. Das Feld ist auch radialsymmetrisch beziiglich dieses
Punktes.

Schluffolgerung: Bei E; ist lediglich darauf zu achten, da3 die Naherungswerte nicht in
der Nihe des Mittelpunktes der Thalesfliche liegen.

Vektorfeld E; (griin): Es handelt sich um ein Feld mit einem Wirbel. Es besitzt als
ausgezeichneten Punkt den Mittelpunkt der Fliche, an dem der Normalenvektor des diff.
geom. Ortes verschwindet und auch gleichzeitig das Zentrum des Wirbels ist.
Schluf3folgerung: Bei E, ist darauf zu achten, daf3 die Richtungen der diff. geom. Orter in
der Nihe von Q instabil sind und daher zu numerischen Problemen oder Divergenzen
fithren konnen.

Vektorfeld E; (rot): Es handelt sich um ein Feld mit einem Wirbel. Es besitzt als
ausgezeichneten Punkt das Projektionszentrum V, an dem der Normalenvektor des diff.
geom. Ortes verschwindet und auch gleichzeitig das Zentrum des Wirbels ist.
SchluBfolgerung: Bei Ej ist darauf zu achten, daB die Richtungen der diff. geom. Orter in
der Nihe von V instabil sind und daher zu numerischen Problemen oder Divergenzen
fithren konnen.

Vektorfeld E4 (gelb): Es handelt sich um ein Feld mit zwei Wirbeln. Es besitzt sowohl
den Wirbel bei Q aus auch den bei V. Entlang der Geraden QV verschwinden die
Normalenvektoren des diff. geom. Ortes.

SchluBfolgerung: Bei E, ist darauf zu achten, daB die Richtungen der diff. geom. Orter in
der Nihe von V und Q instabil sind und daher zu Divergenzen fiihren konnen.
Niherungswerte zu nahe an der Geraden QV fiihren zu Singularitéten.

Der Grund fiir diese Wirbel liegt in den Matrizen G und H.

Es handelt sich hier um Normalprojektionsmatrizen. Bei G werden Vektoren rm parallel
zu gn auf den Nullvektor abgebildet, Vektoren gp normal zu rn auf sich selbst:

Fir H gilt Analoges mit gs. Die so entstehenden Verdrehungen der Normalenvektoren
kann man sich sehr schon veranschaulichen, wenn man per Hand einige
Normalenvektoren der diff. geom. Orter konstruiert. Die Normalenvektoren aller Typen
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fallen im Umripunkt zusammen, da hier die Projektionsmatrizen die zu projizierenden
Vektoren auf sich selbst abbilden.

Die Abbildung 4-4 zeigt die Normalenvektorfelder der 2 Bedingungstypen der
Flichenbedingung:

Abbildung 4-4: Normalenvektorfelder fiir ebenen Kugelschnitt
der Flachentypen F, links und F; rechts

Vektorfeld Fj(magenta): Es handelt sich um ein wirbelfreies Feld. Es besitzt als
ausgezeichneten Punkt den Mittelpunkt Q der Fliche, an dem verschwindet der
Normalenvektor des diff. geom. Ortes. Das Feld ist auch radialsymmetrisch beziiglich
dieses Punktes.

SchluBfolgerung: Bei E,; ist lediglich darauf zu achten, dafl die Ndherungswerte nicht in
der Mitte der Fliche liegen.

Vektorfeld F, (zyan): Fiir F; gilt dasselbe wie fiir F;.
Die beiden Vektorfelder unterscheiden sich nicht in den Richtungen der Vektoren. Der
Klammerausdruck in (4.3-7) bewirkt keine Richtungs- sondern nur eine Langeniinderung.

Geht man bei der Fliche von der Kugel zum Ellipsoid iiber, so ist F nicht mehr ein
Vielfaches von der Einheitsmatrix sondern eine konstante symmetrische Matrix, in der
die Achsenparameter des Ellipsoids vorkommen. Dargestellt werden wieder Schnitte vom
Ellipsoid, die wieder Q und V enthalten
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Abbildung 4-5: Normalenvektorfelder fiir ebenen Ellipsoidschnitt
der UmriBitypen E; links und E, rechts

Abbildung 4-6: Normalenvektorfelder fiir ebenen Ellipsoidschnitt
der UmriBtypen E; links und E, rechts

Abbildung 4-5 und Abbildung 4-6 zeigen ein sehr &dhnliches Verhalten der
unterschiedlichen Typen wie bei einer Kugel. Auf folgende Besonderheiten soll speziell
hingewiesen werden: Anstelle der Thaleskugel bei der Kugel, tritt ein Thalesellipsoid. Es
kann allgemein fiir Quadriken gezeigt werden, dal die Gleichung ,n; RS’ =0, die die
Thalesflache beschreibt, wieder von derselben Art ist wie die Flache. Das Vektorfeld E;
besitzt bei der Ellipse auch einen Wirbel, der sein Zentrum im Mittelpunkt des
Thalesellipsoids hat. Bei Ej, Ez und E4 kommt es zu einer Uberlagerung des Wirbels, der
von G und H herriihrt mit jenem, der von F bedingt ist.
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Abbildung 4-7: Normalenvektorfelder fiir ebenen Ellipsoidschnitt
der Flachentypen F, links und F; rechts

Die Matrix F von Ellipsoiden bewirkt bei den Normalenvektoren der diff. geom. Orter
der Flachengleichungen (siehe Abbildung 4-7) unterschiedliche Richtungen.

Bei Hyperboloiden ist F auch nicht mehr ein Vielfaches der Einheitsmatrix sondern eine
konstante symmetrische Matrix, in der allgemein die Achsenparameter des Hyperboloids
eingehen.

'o
<
I5)
<

Abbildung 4-8: Normalenvektorfelder fiir ebenen Hyperboloidschnitt
der UmriBitypen E; links und E; rechts
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Abbildung 4-9: Normalenvektorfelder fiir ebenen Hyperboloidschnitt
der UmriBitypen E; links und E, rechts

Abbildung 4-8 und Abbildung 4-9 wirken auf den ersten Blick ganz anders als jene von
Kugel und Ellipsoid. Dieser Unterschied ist jedoch auf die Geometrie des Hyperboloids
zuriickzufiihren, da es im Gegensatz zu Ellipsoid und Kugel nicht geschlossen sondern
zweigeteilt ist. Bei niherer Betrachtung weisen die unterschiedlichen Typen &dhnliche
Charakteristika auf. E (blau) besitzt einen ausgezeichneten Punkt: den Mittelpunkt des
Thaleshyperboloids, an dem der Normalenvektor des diff. geom. Ortes verschwindet. Bei
E» (griin) ist der ausgezeichnete Punkt Q, an dem der Normalenvektor des diff. geom.
Ortes verschwindet und auch gleichzeitig das Zentrum des Wirbels ist. Bei Es (rot) ist der
ausgezeichnete Punkt V, an dem der Normalenvektor des diff. geom. Ortes verschwindet
und auch gleichzeitig das Zentrum des Wirbels ist. E4 (gelb) vereint den Wirbel von Es
bei Q mit dem von E;z bei V.

Auffillig ist, daB3 der ebene Schnitt des Thaleshyperboloids eine Hyperbel in 1. Hauptlage
ist, obwohl der Schnitt der Fliche hier in 2. Hauptlage ist. Die Begriindung liegt darin,
daf} die Bedingungen E|-E4 in den Punkten Q und V erfiillt werden miissen. Das ist aber
nur dann erfiillt, wenn die Strecke QV ein reeller Durchmesser der Hyperbel darstellt.

Abbildung 4-10: Normalenvektorfelder fiir ebenen Hyperboloidschnitt
der Flichentypen F links und F; rechts
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Auch bei den Hyperbeln bewirkt die Matrix F unterschiedliche Richtungen bei den
Normalenvektoren der Flichengleichungen (siehe Abbildung 4-10).

Dieses Kapitel soll noch mit den Vektorfeldern von einer Ellipse (Abbildung 4-11) und
einer Hyperbel (Abbildung 4-12) in allgemeiner Lage abgerundet werden. In diesem Fall
liegt V nicht auf einer verlingerten Achse des Kegelschnittes. In diesen Abbildungen
werden die Vektorfelder farbig iiberlagert, damit die unterschiedlichen Richtungen besser
sichtbar werden:

Abbildung 4-11: Normalenvektorfelder fiir ebenen Ellipsoidschnitt in allgemeiner Lage
der UmriBitypen E;-E; links und der Flichentypen F, und F; rechts

Abbildung 4-12: Normalenvektorfelder fiir ebenen Hyperboloidschnitt in allgemeiner Lage
der Umriftypen E;-E; links und der Flidchentypen F; und F, rechts

Zusammenfassend haben die Untersuchungen der Vektorfelder der diff. geom. Orter
voraussichtlich sensible und definitiv unmdoglich Orter fiir die Lage der Niherungswerte
des Umrilpunktes aufgezeigt. Jedoch geben uns diese Vektorfelder nur Auskunft tiber die
Richtungen der Normalenvektoren aber nicht iiber die Lage der Orter. Daher liegt es
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nahe, nicht nur die Normalenvektoren zu untersuchen sonder die Lage der differentiellen
geometrischen Orter.

4.3.2 Lageuntersuchung der differentiellen geometrischen Orter von
UmriB- und Flachenbedingungen

Wie schon erwihnt stellt der diff. geom. Ort die lineare Ersatzfliche (=Hyperebene) der
Beobachtungsgleichung dar. Da hier Schnitte durch die Fliche betrachtet werden, wird
der geom. Ort durch eine Gerade reprisentiert. Bevor auf geometrische Zusammenhiinge
unter den Typen niiher eingegangen wird, sollen einige Orter dargestellt werden, um dem
Leser ein Gefiihl fiir deren Lage zu vermitteln. Die Berechnung der diff. geom. Orter
erfolgt durch die Auswertung der Gleichungen (4.3-2) bis (4.3-7).

Die folgende Abbildung 4-13 zeigt die diff. geom. Orter der unterschiedlichen Typen an
zwOlf verschiedenen Niherungswerten. Die zwolf Punkte sind gleichmifig in der oberen
Hilfte (oberhalb der Geraden QV) verteilt, aus Symmetriegriinden (QV ist Spiegelachse
fiir diff. geom. Orter) verhilt sich die Situation in der unteren Hilfte gleich. Als Fliche
wurde eine Kugel gewiihlt, da hier die Zusammenhiinge besser sichtbar werden.
Dargestellt werden wieder ebene Schnitte, die Q und V enthalten, es gelten die Farbcodes
von Tabelle 4-1.
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Abbildung 4-13: Darstellung der unterschiedlichen Lagen der diff. geom. Orter bei
unterschiedlichen Niherungswerten fiir ebene Kugelschnitte

Betrachtungen zu den Ortern der fiktiven UmriBbeobachtung:

Auffallend ist, daB sich die diff. geom. Orter in der Lage je nach Typ stark unterscheiden.
Lediglich in der Nihe des UmriBpunktes, siche Abbildung 4-13 Bild 5, liegen die Orter
nahe beisammen. Allein diese Tatsache weist darauf hin, daf ein unterschiedliches
Konvergenzverhalten je nach gewidhltem Typ zu erwarten ist. Auf dem ersten Blick
scheinen die Orter der unterschiedlichen Typen in keinem direkten Zusammenhang zu
stehen, jedoch bei genauerem Betrachten fallen folgende GesetzmaBigkeiten auf, die
sowohl fiir die Konstruktion als auch fiir die Vorstellung wichtig sind. Aus didaktischen
Griinden wird zuerst mit den Typen E; (griin) und E3 (rot) begonnen. Die Richtungen der
Orter werden, wie in Kapitel 4.3.1 beschrieben, bestimmt. Zur Festlegung fehlt daher nur
mehr ein Punkt des Ortes®:

Diff. geom. Ort fiir E; (griin): Schneidet man die Gerade XQ mit der Thaleskurve T, so
bekommt man einen Punkt des diff. geom. Ortes. Diese Tatsache bewirkt, das der Ort in
der Ndhe von V zu liegen kommt, wenn X in der Nahe der Geraden QV liegt, siche
Abbildung 4-13 Bilder 7, 9-12. Auf diese Eigenschaft ist besonders zu achten, wenn die
Fliche relativ klein zur Entfernung QV ist, denn hier befindet sich einerseits der
Umrilpunkt relativ nahe an der Geraden QV und andererseits kommt dann der diff.
geom. Ort weit vom Umripunkt zu liegen!

Diff. geom. Ort fiir E3 (rot): Schneidet man die Gerade XV mit der Thaleskurve T so
bekommt man einen Punkt des diff. geom. Ortes. Diese Tatsache bewirkt, das der Ort in
der Niahe von Q zu liegen kommt, wenn X in der Nihe der Geraden QV liegt, siehe
Abbildung 4-13 Bilder 7, 9-12. Auf diese Eigenschaft ist besonders zu achten, wenn die
Fldache relativ gro3 zur Entfernung QV ist. Dadurch liegt der UmriBpunkt nahe bei V,
hingegen aber der diff. geom. Ort weit entfernt vom Umriflpunkt bei Q!

* Im Graphikprogramm wurden die diff. geom. Orter nicht mit Hilfe der Konstruktionvorschriften
gezeichnet, sondern berechnet. Diese Konstruktionsregeln sind aber fiir das Verstindnis sehr niitzlich.
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Diff. geom. Ort fiir E (blau): Legt man eine Gerade normal zur Geraden XV durch X und
schneidet diese mit dem diff. geom. Ort vom Typ Ej3, so liegt dieser Schnittpunkt auf E;.

Diff. geom. Ort fiir E4 (gelb): Legt man eine Gerade normal zur Geraden XV durch X
und schneidet diese mit dem diff. geom. Ort vom Typ E,, so liegt dieser Schnittpunkt auf
E4. Die Kombination aus den Wirbeln des Vektorfeldes und der Schnittkonstruktion
bewirkt, da3 dieser diff. geom. Ort in Abbildung 4-13 in den Bildern 1 und 7 auf3erhalb
des Rasters liegt und in den Bildern 10-12 unbestimmt ist.

Betrachtungen zu den Ortern der fiktiven Flichenbeobachtung:

Die Abbildung 4-13 zeigt, daB die diff. geom. Orter der Flichenbeobachtung nicht derart
gro3e Lagedifferenzen aufweisen wie die Umri3beobachtungen. Jedoch fillt folgende
herausstechende Eigenschaft auf: Der diff. geom. Ort von F; (magenta) liegt immer
aulerhalb der Flache, hingegen jener von F; (cyan) immer innerhalb!

Handelt es sich wie im oberen Musterfall um eine Kugel, so kdnnen noch weitere
Zusammenhiinge unter der Ortern gefunden werden, jedoch wiirden diese nicht fiir
Quadriken gelten. Die oben angefiihrten Eigenschafen gelten alle auch fiir Quadriken wie
aus Abbildung 4-14 zu erkennen ist.

Abbildung 4-14: Darstellung der unterschiedlichen Lagen der diff. geom. Orter in einem ebenen
Schnitte von Ellipsoid und Hyperboloid fiir einen allgemein gewihlten Naherungspunkt

Zusammenfassend kann gesagt werden, daf} die Art des Minimumkriteriums (E|-Eq4; F,
F») erheblichen Einflul auf das Konvergenzverhalten nimmt. Eine Grundtendenz lif3t
sich jetzt schon herauslesen, dafl der Typ E; wohl die besten und der E4 die schlechtesten
Eigenschaften fiir eine erfolgreiche Konvergenz aufweist. E; scheint mit E3 und F; mit F;
halbwegs gleichwertig zu sein. Aber um genauere Aussagen treffen zu konnen, wurde
eine Methode entwickelt, die im folgenden Kapitel erklidrt und angewendet wird.

Anmerkung: In dieser ausfiihrlichen Art wurden bis jetzt nur Flichen zweiter Ordnung
untersucht. Stichprobenartig wurden auch Flichen hoherer Ordnung untersucht (z.B.
Torus) bei denen ihnliches festgestellt werden konnte. Es ist daher zu erwarten, daf3 sich
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auch andere Flichen nach diesen Gesetzten verhalten werden. Allgemeine und
weiterfiihrende Untersuchungen zu diff. geom. Ortern von Flichen hoherer Ordnung
wiirde ein sehr interessantes Forschungsgebiet abgeben, jedoch hiitte das den Rahmen
dieser Arbeit gesprengt.

4.3.3 Konvergenzbereich fur UmriB- und Flachenbedingungen

Ziel ist es, jenen Bereich abzugrenzen, der als Naherungswert fiir den Umriflpunkt
geeignet ist. Wie im Kapitel 4.2 bereits erwihnt wurde, liefert der Schnitt der diff. geom.
Orter den neuen Niherungswert. In den Kapiteln 4.3.1 und 4.3.2 konnten aussagekriftige
Eigenschaften aus 2-D Darstellungen fiir die Vektorfelder als auch fiir die Lage der diff.
geom. Orter abgeleitet werden. Um jedoch den Konvergenzbereich abgrenzen zu konnen,
bedarf es der Darstellung von vier Hyperebenen, herrithrend aus den vier Beobachtungen
(siehe Tabelle 2-2). Diese vier Beobachtungen enthalten einerseits die zwei fiktiven
Beobachtungen (Umri3- und Flichenbedingungen) und andererseits die gemessenen
Bildkoordinaten. Wiinschenswert wiire es, iiber das Konvergenzverhalten ausschlief3lich
von Umrif3- und Flichenbedingungen Aussagen treffen zu konnen, da bei diesen beiden
Beobachtungen keine Mef3groflen angenommen werden miissen. Liflt man hingegen die
Beobachtungen der Bildkoordinaten weg, so kdnnte der neue Niherungswert nicht mehr
eindeutig aus dem Schnitt der beiden verbleibenden Hyperebenen — Schnittgerade -
bestimmt werden. Betrachtet man allerdings wieder ebene Schnitte von den Flichen, die
sowohl Q als auch V enthalten, kann der neue Niherungswert eindeutig bestimmt
werden. Durch diese ,,2-D* Vorgangsweise wird der Konvergenzbereich des Systems,
das aus allen vier Beobachtungen besteht, verfilscht. Allerdings treten hierbei die
Konvergenzeigenschaften von Flichen- und UmriBbedingung besser hervor.
Riickschliisse aus den ,,2-D* Ergebnissen (ohne gemessenen Bildkoordinaten) auf
Eigenschaften des kompletten Systems werden im Kapitel 4.3.4 gezogen.

Fiir den ,,2-D* Fall miissen die Orter von Flichen- und UmriBbedingung miteinander
geschnitten werden. Zur Ubersichtlichkeit werden die zusammengehorenden Typen in
Tabelle 4-2 zusammengefalt.

E, (4.3-2) F, (4.3-6)
E, (4.3-3) F; (4.3-7)
Typ E1 (4.3-4) Typ F, (4.3-6)
E, (4.3-5) F, (4.3-7)

Tabelle 4-2: Zusammengehorigkeiten von Umrif3- und Flidchentypen

Fir den Umrifityp E; und dem dazugehorenden Flichentyp F, wird eine erfolgreiche
Konvergenz in der Abbildung 4-15 dargestellt:
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Abbildung 4-15: Erfolgreiche Konvergenz von Umri}- und Flichenbeobachtung

In Abbildung 4-15 sieht man sehr schon, wie von Iteration zu I[teration der
Niherungspunkt X dem UmrifSpunkt U zustrebt, bis er schlieflich mit ihm im letzten Bild
zusammenfallt. Priift man fiir jeden Rasterpunkt, ob die Iterationen zum Umriflpunkt
fiilhren, so kann dadurch der Konvergenzbereich bestimmt werden. Alle Punkte, von
denen aus das System konvergiert, werden mit einem Kreis versehen. Die Farbe des
Kreises gibt Auskunft wie viele Iterationen notig sind, bis der UmriSpunkt erreicht wird.
Von Punkten mit gleicher Farbe ausgehend konvergiert das System gleich schnell. Die
Anzahl der Iterationen kann so eruiert werden, indem man die Farbiiberginge vom
UmriBpunkt zum Naherungspunkt zihlt. Punkte mit einem schwarzen Doppelkreis zeigen

50



jene Punkte an, an denen der diff. geom. Ort unbestimmt ist. Punkte, von denen das
System aus nicht konvergiert, werden lediglich durch den Rasterpunkt dargestellt.

Zu Beginn werden die Konvergenzbereiche fiir den Kreis (analog zur Kugel im RY)
untersucht:

Abbildung 4-16: Konvergenzbereiche bei einem Kreis fiir E; mit F, links und E, mit F, rechts

Abbildung 4-16 zeigt die Konvergenzbereiche fiir E; mit F; links und E, mit F; rechts.
Beide weisen einen zusammenhingenden, annidhernd gleich groflen Bereich auf.
Auffillig ist, da} E; bei weitem mehr Farbschichten hat, was ein Zeichen fiir langsamere
Konvergenz ist. Die zwei konvergenzfreien Riume, der eine hinter dem Kreis (Art
»Schlagschatten®) der andere davor, liegen dort, wo man das erwarten kann.

Abbildung 4-17: Konvergenzbereiche bei einem Kreis fiir E; mit F, links und E; mit F, rechts

Abbildung 4-17 zeigt die Konvergenzbereiche fiir E3 mit F; links und E4 mit F, rechts.
Diese Konvergenzbereiche unterscheiden sich optisch stark von jenen in Abbildung 4-16.
Beide haben wieder einen zusammenhingenden Bereich, jedoch enthilt dieser ein Loch
neben V. Besonders auffillig ist, dal3 sowohl bei E; als auch bei E4 das System bei

Punkten konvergiert, die hinter V liegen. Weiters fillt auf, dal der Konvergenzbereich
bei E4 kleiner ist als bei den anderen.

53



Ellipse in 1. Hauptlage:

Abbildung 4-18: Konvergenzbereiche bei einer Ellipse in 1. Hauptlage fiir E; mit F; links und E; mit
F, rechts

Abbildung 4-18 zeigt die Konvergenzbereiche fiir E; mit F; links und E; mit F;, rechts.
Beide Konvergenzbereiche sind wieder zusammenhingend, jedoch grof3er als jene bei der
Kugel, Ursache dafiir ist die Matrix F. Wiirde eine Ellipse in 2. Hauptlage gegeben sein,
wiirde sich der Konvergenzbereich gegeniiber der Kugel verkleinern. Weiters sind bei E,
wieder mehr Farbschichten, was ein Zeichen fiir eine langsamere Konvergenz ist.

Abbildung 4-19: Konvergenzbereiche bei einer Ellipse in 1. Hauptlage fiir E; mit F, links und E; mit
F, rechts

Abbildung 4-19 zeigt die Konvergenzbereiche fiir E3 mit F; links und E4 mit F; rechts.
Auch diese Konvergenzbereiche unterscheiden sich wieder optisch stark von jenen in
Abbildung 4-18. Diesmal liegt kein einzelner zusammenhingender Bereich mehr vor. Es
besteht weiterhin ein dominierender Bereich jedoch existieren auch vereinzelte isolierte
Punkte bzw. Punktgruppen, von denen das System aus konvergiert. Weiters fillt auf, dafl
der Konvergenzbereich bei E3 und Eg4 kleiner ist als bei den beiden anderen.
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Ellipse in 2. Hauptlage, V nicht auf einer der beiden Ellipsenachsen:

Abbildung 4-20: Konvergenzbereiche bei einer Ellipse in 2. Hauptlage fiir E; mit F; links und E; mit
F, rechts

Abbildung 4-20 zeigt die Konvergenzbereiche fiir E; mit F; links; dieser unterscheidet
sich lediglich von jenem in Abbildung 4-18 dadurch, da3 er verzerrt ist auf Grund der
Verschiebung von V. Die Tatsache, da3 es sich hier um eine Ellipse in 2. Hauptlage
handelt, wirkt sich nur sehr schwach bis gar nicht aus. Jedoch bei E; mit F, rechts bewirkt
die 2. Hauptlage, dal der Bereich viel kleiner wird als in Abbildung 4-18. Ursache dafiir
ist die Matrix F, wie schon zuvor erwihnt wurde.

Abbildung 4-21: Konvergenzbereiche bei einer Ellipse in 2. Hauptlage fiir E; mit F; links und E; mit
F, rechts

Abbildung 4-21 zeigt die Konvergenzbereiche fiir E3 mit F; links und E4 mit F; rechts.
Besonders auffallend ist, dal der Konvergenzbereich von Ej3 grofer ist als jener von E,
man konnte sagen, daf3 die beiden Typen die ,,Rollen* getauscht haben. Die Begriindung
liegt wieder bei der Matrix F. E4 weist wieder einen sehr auffilligen Konvergenzbereich
auf, der diesmal jenem von E; dhnelt. Es besteht bei E; und E4 ein dominanter Bereich;
jedoch existieren auch vereinzelte isolierte Punkte bzw. Punktgruppen, von denen das
System aus konvergiert. Weiters fillt auf, da3 der Konvergenzbereich bei E; und Ej
kleiner ist als bei den beiden anderen. '
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Hyperbel in 2. Hauptlage:

Abbildung 4-22: Konvergenzbereiche bei einer Hyperbel in 2. Hauptlage fiir E; mit F, links und E;
mit F; rechts

Abbildung 4-22 zeigt die Konvergenzbereiche fiir E; mit F; links und E; mit F; rechts. E;
besticht wieder durch einen grofen und zusammenhiingenden Konvergenzbereich. E;
hingegen weist nur ein relativ kleines Band, normal zur Geraden QV, als

Konvergenzbereich aus.

Abbildung 4-23: Konvergenzbereiche bei einer Hyperbel in 2. Hauptlage fiir E; mit F, links und E,
mit F, rechts

Abbildung 4-23 zeigt die Konvergenzbereiche fiir E3 mit F; links und E4 mit Fa rechts.
Der Konvergenzbereich von Ez ist groBer als jener von E», aber nicht ganz so grofl wie
jener von E;. E4 weist wieder einen sehr auffilligen Konvergenzbereich auf, der eine Art
Kombination aus E; und Ej3 ist. Die Grof3e stammt von E,, die Form von E;.
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Hyperbel in 1. Hauptlage:

Abbildung 4-24: Konvergenzbereich bei einer Hyperbel in 1. Hauptlage fiir E; mit F,

Das besondere an diesem Beispiel ist, da das Projektionszentrum V in der rechten
Schale der Hyperbel liegt und somit kein UmriBpunkt existieren kann. Abbildung 4-24
zeigt dieses auch, weil @ mit T keinen Schnitt hat, und weist auch keinen Punkt als
geeigneten Niherungswert aus.

Es soll nochmals erwihnt werden, daB die in diesem Kapitel gefundenen
Konvergenzbereiche und deren Eigenschaften auf Vereinfachungen beruhen. Im Kapitel
4.3.4 werden die hier gewonnenen Erkenntnisse vor allem durch geometrische
Uberlegungen auf das komplette System (mit gemessenen Bildkoordinaten und im R
tibertragen.

434 Erweiternde Uberlegungen zum Konvergenzbereich von UmriB-
und Flichenbedingung im %*

Die in Kapitel 4.3.3 abgeleiteten Ergebnisse beruhen auf der Tatsache, dal die zwei
Beobachtungen der Bildkoordinaten weggelassen wurden und nur ebene Schnitte, die Q
und V enthielten, der Fliche betrachtet wurden. Ziel ist es, diese Ergebnisse fiir das
System Umri- und Flichenbedingung und beobachtete Bildkoordinaten zu erweitern.
Um einen Bereich fiir die Schnittkonvergenz von diesem System angeben zu konnen,
miiite fiir jeden Rasterpunkt und fiir jede Richtung des Sehstrahls ein ausgleichender
Schnitt der Hyperebenen durchgefiihrt werden. Dieser Schnittpunkt wiire dann der neue
Niherungswert, fiir den dann wiederum die Orter berechnet werden wiirden und so
weiter, bis eine Konvergenz oder Divergenz des Gleichungssystems erfolgt. Eine derartig
empirisch Untersuchung wire fiir diese Arbeit einerseits zu umfangreich geworden,
andererseits gelingt es, durch allgemeine Uberlegungen und geschickt getroffene
Annahmen hinreichende Aussagen iiber die Konvergenz im R? abzuleiten.
Zwei Fragen erscheinen von besonderer Wichtigkeit zu sein:

1. VergroBert oder verkleinert sich der Konvergenzbereich?

2. Gelten die unterschiedlichen Charakteristika der Typen E;-E4 auch im R*?
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Zur Beantwortung beider Fragen ist folgende Uberlegung sehr wichtig: Wie schon oben
erwihnt, bekommt man den neuen Niherungswert als Schnitt der vier Hyperebenen.
Diese vier Ebenen schneiden einander allgemein nicht in einem Punkt sondern in einem
Tetraeder. Der Schnittpunkt ist bei gleicher Gewichtung der Beobachtungen der
Schwerpunkt des Tetraeders. Der Schnittpunkt kdnnte auch iiber folgende Konstruktion
bestimmt werden: Man scheidet paarweise die Hyperebenen von Umri- und
Flichenbedingung und die Ebenen der beiden Bildkoordinatenbeobachtungen
miteinander (Anm.: Der Schnitt der dieser beiden Hyperebenen liefert den Sehstrahl.). So
liegt dann der Schnittpunkt in der Mitte des Gemeinlots der beiden Geraden.

Ad 1: Zuerst betrachten wir einen ebenen Schnitt, der den Sehstrahl g und die Strecke
QV enthilt. Der Niherungswert X soll vorab auch in dieser Ebene liegen. Diese
Annahme bewirkt, da3 in diesem Fall (Kugel) die Hyperebenen projizierend erscheinen.
In blau ist die Hyperebene vom Typen E; und in magenta jene vom Typ F, dargestellt.
Die Schnittgerade h der beiden Hyperebenen ist daher auch projizierend, somit liegt das
Gemeinlot und S auch in dieser Ebene und kann eingezeichnet werden (siehe Abbildung
4-25). Aus dieser Abbildung kann man sofort erkennen, daf3 der neue Niherungswert
(Schnittpunkt) S mit Beriicksichtigung des Sehstrahls niher zum UmriBpunkt U riickt als
ohne. Jedoch das hiingt natiirlich sehr von der Exaktheit der Richtung des Sehstrahls ab.
Aber bei der Objektrekonstruktion kann man davon ausgehen, dal eine sehr gute
Richtung des Sehstrahls vorliegt.

Abbildung 4-25: Bestimmung des Schnittpunktes im %* iiber Gemeinlot
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Lost man sich von der Annahme, daf} der Niherungswert X auch in der Schnittebene liegt
und laBt ihn z.B. um die Achse QV rotieren, so koénnte der Schnittpunkt in sehr
ungiinstigen Bereichen, vergleiche Kapitel 4.3.1 und 4.3.2, zu liegen kommen. Je weiter
sich X vom Sehstahl entfernt, desto eher muf3 mit ungewiinschten Effekten oder sogar mit
Singularitiiten gerechnet werden. Liegt der Niaherungswert X auf dem Sehstrahl g, so
kann dieses Problem einfach umgangen werden. Betrachtet man in Kombination
Abbildung 4-25 und Abbildung 4-16 (rechtes Bild) so erkennt man, da3 nicht unbedingt
jeder Punkt am Sehstrahl zur Konvergenz fiihren muf3. In jedem Fall fiihren die Punkte
zur Konvergenz, die es auch ohne Sehstrahl getan haben. Durch Einbeziehung des
Sehstrahls vergroflert sich sogar der Konvergenzbereich, weil in den Abbildungen tiber
die Konvergenzbereiche Punkte als ungiinstig ausgewiesen werden, deren Schnittpunkt
z.B. von E; und F, auflerhalb des Rasters lagen. Der Sehstrahl bewirkt nun, dafl der
Schnittpunkt niher beim Umrilpunkt zu liegen kommt und somit zu einer Konvergenz
fiihrt. Allgemein kann gesagt werden, je weiter man sich am Sehstrahl mit dem
Niherungswert von der Fliche entfernt, desto wahrscheinlicher wird eine Divergenz.
Daher sollte man den Niherungswert am Sehstrahl auf etwa gleicher Hohe der Fliche
suchen, um nicht in gefdhrliche Randzonen zu kommen. AbschlieBend kann gesagt
werden, daf3 die Konvergenzbereiche im xR* jenen im R? dhneln, wenn man die oben
genannten (einfach zu bewerkstelligenden) Lagebeziehungen beriicksichtigt.

Ad 2:

Geht man davon aus, dal die Niaherungswerte unter Beriicksichtigung der oben
genannten Kriterien bestimmt werden, so kann aus analogen und geometrischen
Uberlegungen gesagt werden, daB die in Kapitel 4.3.3 fiir die Typen unterschiedlichen
Merkmale auf den R*-Fall tibertragen werden konnen. Diese Behauptung wurde auch
stichprobenartig an Quadriken und Toren tiberpriift.

Zusammenfassend kann gesagt werden, daB das Konvergenzverhalten sowohl in R*-
bzw. im R*-Fall sehr stark von Fliche, Typ und Sehstrahl abhiingt und dadurch eine sehr
hohe Bedeutung der Giite der Niherungswerte fiir die Umripunkte zukommt. Aus den
untersuchten Flichen geht hervor, dafl der Typ E; in den meisten Fillen der geeignetste
ist, um die gewiinschte Konvergenz zu erzielen. Ist dieser Typ jedoch als
Minimumkriterium ungeeignet, sollte man die Iteration trotzdem mit diesem Typ starten
und erst in der letzten Iteration auf den gewiinschten anderen Typ umschalten. Im Kapitel
5 werden verschiedene Verfahren zur Bestimmung von Niherungswerten fiir
UmriBpunkte angegeben, um sie mit hinreichender Qualitiit zu bestimmen.
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5 Bestimmung der Naherungswerte fiir UmriBpunkte

Wie aus Kapitel 4 hervorgeht, ist die Giite der Niherungswerte fiir die Umrilpunkte von
besonderer Wichtigkeit. Daher werden in diesem Kapitel verschiedene Verfahren zur
Bestimmung der Niherungswerte angegeben. Grob konnen diese Verfahren in drei
Gruppen zusammen gefaBt werden: Verfahren, die unabhingig von der
Flichendarstellung sind, werden im Kapitel 5.2 angefiihrt; Verfahren, die nur fiir Flichen
in Parameterdarstellung geeignet sind, im Kapitel 5.3 und Verfahren, die fiir implizit
gegebene Flichen geeignet sind, im Kapitel 5.4. Explizit gegebene Flichen kdnnen in
eine der beiden anderen Darstellungsmoglichkeiten iibergefiihrt werden (siehe Kapitel
3:2:8):

Fiir die Berechnung der Niherungswerte des Umripunktes miissen Sehstrahl und Fliache
im selben Koordinatensystem dargestellt werden. Naheliegend wire es, den
Niherungswert im Referenzsystem zu berechnen, da auch in diesem System die
Umribedingung formuliert wird. Aber dazu miifite die Fliche transformiert werden, was
wiederum zu einer komplizierteren Flichendarstellung fiihren kann. Daher transformiert
man den Sehstrahl ins Modellsystem.

5.1 Transformation des Sehstrahls vom Bild- ins Modellsystem

Die Darstellung des Sehstrahls g im Bildsystem lautet:

(5.1-1)

U’ sV
sU=| U [0 gV =[ V"
0 c

sU' gemessene Bildkoordinaten des Umri3punktes
V' Bildkoordinaten des Hauptpunktes

c Kammerkonstante

m Parameter der Sehstrahlgleichung

Da das Projektionszentrum V der homologe Punkt bei der Transformation vom Bild- ins

Referenzsystem ist (siehe Kapitel 3.1.1), wird V nur vom Referenz- ins Modellsystem
nach Umkehrung von (3.1-3) transformiert:
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(5.1-2)
Der Sehstrahlvektor s wird nach (3.1-2) ins Referenzsystem und anschlieend
durch Umkehrung von (3.1-4) ins Modellkoordinatensystem transformiert:

(5.1-3)
Nun bekommt man den Sehstrahl im Modellsystem:

(5.1-4)

m Parameter der Sehstrahlgleichung

5.2 Flachenunabhangige Losungsansatze zur Bestimmung der
Naherungswerte

In diesem Kapitel werden Verfahren zur Bestimmung der Niherungswerte fiir die
UmriBpunkte angegeben, die unabhingig von der Darstellungsart der Fliche sind. Wie in
Kapitel 4.3.4, kann auch hier angenommen werden, daf3 die Richtung s des Sehstrahls g
und das Projektionszentrum V bei der Objektrekonstruktion der Fliche @ sehr gut
bekannt sind. Dadurch ldBt sich der Sehstrahl g mit Hilfe der Formel (5.1-4) im
Modellsystem beschreiben. In den Formeln wird wieder auf den systemanzeigenden
Index verzichtet, da alle Berechnungen im Modellsystem erfolgen:

Verfahren 1:

Fiir dieses Verfahren ist es wichtig, daf3 eine mittlere Distanz ¢ von V zur Fliche ®
bekannt ist. Die Distanz « kann iiber verschiedene Arten bestimmt werden: Man kdnnte
eine mittlere Entfernung zur Fliche mit genidherter Normalfallphotogrammetrie oder auch
mit einem Entfernungsmesser bestimmen. Es besteht aber auch die Mdoglichkeit die
Entfernung zu berechnen: Wurde ein Verkniipfungspunkt T auf der Fliche bestimmt, so
kann fiir die Distanz  die Linge der Strecke TV verwendet werden.

Dann wird der Niherungswert S fiir den UmriBpunkt U so berechnet, daB S am Sehstrahl
liegt und die Strecke SV die Linge « hat:

(5.2-1)
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Hinweis: Gefahr besteht bei diesem Verfahren, daf} eine Distanz  nicht fiir alle Punkte
ausreichend genau ist, oder sogar fiir einen Sehstrahl mehrere Punkte in unterschiedlichen
Entfernungen in Frage kommen. Bei Quadriken oder dhnlich geformten Flichen wird
man mit einer Distanz auskommen, hingegen bei einem Torus sollten mehrere Distanzen
verwendet werden oder man greift auf ein anderes Verfahren zuriick (siehe Kapitel 5.4).

Verfahren 2:

Dieses Verfahren ist besonders gut geeignet, wenn sich der Wahre Umrif3 der Fliche @
nahezu in einer Ebene ¢ befindet. Kennt man weiters einen Punkt P in dieser oder nahe
dieser Ebene €, so kann der Niherungswert S wie folgt bestimmt werden:

Bei dem Punkt P kann es sich um einen Verkniipfungspunkt auf der Fliche, oder auch
um den Flichenmittelpunkt handeln. Die Ebene € wird dann so gelegt, daf3 sie einerseits
P enthilt und andererseits normal auf s steht.

Die Normalform von ¢ lautet:

(5.2-2)

Den Niherungswert S erhilt man als Schnittpunkt von Sehstrahl g und Ebene ¢.

S kann auf folgende Art berechnet werden: Das Einsetzen der Sehstrahlgleichung (5.1-4)
in (5.2-2) fiihrt zu einer linearen Gleichung in m, 16st man diese Gleichung nach m auf
und setzt m wieder in (5.1-4) ein, so erhilt man den gesuchten Schnittpunkt S.

Hinweis: Es muf3 nicht fiir jeden Sehstrahl eine eigene Ebene aufgespannt werden. Es
reicht in vielen Fillen, wenn eine mittlere Richtung dazu verwendet wird. Bei dem
Musterbeispiel in Kapitel 7 wird dieses Verfahren zur Bestimmung der Niherungswerte
angewendet. Auch hier werden alle Niherungswerte der Umri3punkte in einem Bild mit
Hilfe einer Ebene bestimmt, die normal zum Hauptstrahl des Bildes (ist gleichbedeutend
mit Bildebene und Ebene ¢ sind parallel) steht. Diese Methode wird deshalb in Kapitel 7
angewendet, weil sie sehr leicht in ORIENT realisierbar ist. Weiters wiirde sich auch als

mittlere Richtung der Vektor s'=V' — P’ anbieten.

5.3 Bestimmung der Naherungswerte fur Flachen in
Parameterdarstellung

Die hier angegebene Methode sollte nur dann verwendet werden, wenn die in Kapitel 5.2
versagen oder die Voraussetzungen nicht gegeben sind. Grund dafiir ist, da3 bei der
Objektrekonstruktion im Gegensatz zum Sehstrahl die Lage und Orientierung der Fliche
nur sehr ungenau bekannt sind. Dariiber hinaus muf3 auch noch iiber die Formparameter
der Fliche verfiigt werden. Diese Tatsachen sind deshalb sehr unangenehm, da bei dieser
Methode ein Punkt auf der Fliche gesucht wird und daher auch mit der Fliche gerechnet
wird.

Die Grundidee dieses Verfahrens ist, jenen Punkt A auf der Fliche zu finden, an dem die
UmriBbedingung n' s; = 0 erfiillt ist und einen moglichst kurzen Abstand zum Sehstrahl g
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hat. Die Bestimmung des Nidherungswertes des UmriBpunktes kann in folgende Schritte
unterteilt werden:

1. Schritr: Dieser Schritt ist wohl der wichtigste bei dieser Methode. Es muf3 eine Fliche
@, die der zu bestimmenden Fliche &dhnelt, und deren Parameterdarstellung gefunden
werden. Dazu konnen diverse Flichenatlanten, z.B. [Loria, 1910], herangezogen werden.
AnschlieBend muf3 die Fliche @ in anniihernd richtiger Stellung zum Sehstrahl g gebracht
werden. Dieser Schritt kann im Falle einer Kugel oder Quadrik einfach sein, hingegen bei
Flichen héherer Ordnung durchaus zu einem diffizilen Problem fiir den Benutzer werden.
2. Schrirr: Im nichsten Schritt muf3 die Domiine der Fliche @ bestimmt werden. Mit dem
Begriff Domiine wird in dieser Arbeit jener relevante Teil des Definitionsbereiches der
Fliche bezeichnet, der fiir die Niherungswertsuche in Frage kommt. Der
Definitionsbereich fiir die Fliche kann gemeinsam mit der Flichendarstellung aus den
Flichenatlanten entnommen werden. Wurde schlief$lich eine Fliche ® gefunden, so kann
sie und ihr Definitionsbereich in folgender Form angeschrieben werden:

od:
(5.3-1)

Bevor Kriterien fiir die Bestimmung der Domiine angegeben werden, soll
Abbildung 5-1 auf mogliche Gefahren hinweisen.

Abbildung 5-1: Ubersichtsskizze bei der Bestimmung des Niherungswerts fiir Flichen in
Parameterdarstellung
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Aus Abbildung 5-1 erkennt man, daB ohne nidheres Wissen iiber die Lage des
UmriBpunktes mehrere Bereiche fiir die Kandidaten in Frage kommen. Die Parameter u;
und u; des einen Kandidaten wiirden im Intervall [a;, a2] beziehungsweise im Intervall
(b, b7] liegen, die des anderen in [a;, az] beziehungsweise in [b2, b3]. Daran erkennt man,
wie wichtig eine sorgfiltige Wahl einer Domiine ist. In einigen Fillen wird bereits das
Wissen, daB3 die Fliche auflerhalb eines gewissen Bereiches in der Natur nicht mehr
existiert, die Mehrdeutigkeit 16sen. In allen anderen Fillen wird der Benutzer kldrend
eingreifen miissen. Auf den ersten Blick scheint eine vollstindige Automatisierung dieser
Methode nicht méglich zu sein. Man sollte aber auch in diese Uberlegung einbeziehen,
dal3 die in Abbildung 5-1 dargestellte Situation bewulit schwierig gewiihlt wurde, und in
vielen anderen Fillen die Domine automatisch gefunden werden kann.

Somit ergibt sich eine mogliche Domine bei sehr gutem Vorwissen iiber die
Parameterverteilung zu:

(5.3-2)

oder bei praktisch keinem oder sehr geringem Vorwissen zu:

(5.3-3)

Bei der im Fall (5.3-3) angegebenen Domiine bedarf es einer weiteren, wenn
moglich automatischen, Einschrinkung des Bereiches, um eine ihnlich gute und
vielversprechende Ausgangsposition zu bekommen, wie im Fall (5.3-2). Ferner ist auf
Singularititen der Flichendarstellung zu achten. Kommen Singularititen in der Nihe
oder sogar in der Domiine vor, so gilt hier hochste Vorsicht. Diese konnen natiirlich
genauso wie beim Definitionsbereich auch aus der Domiine ausgeschlossen werden,
wobei dies aber eher auf eine falsche Wahl der Domine hindeutet oder iiberhaupt auf
eine falsche Wahl der Fliche.

Es sei darauf hingewiesen, daf3 die im folgenden angegebene Methode zur Einschriinkung
der Domiine mit Vorsicht zu genief3en ist, da sie nie in der Praxis ausreichend getestet
wurde:

Um die Domine weiter einschrinken zu konnen, versucht man Punkte auf der Fliche ®
zu finden, die einen moglichst kiirzen Abstand ¢ zum Sehstrahl g haben. Zu diesem
Zweck verteilt man regelmiiflig iiber der Domine (5.3-3) die Punkte Ap(u;, u2) und
berechnet die Abstinde dj,(u;, u2) zum Sehstrahl g (siehe Abbildung 5-2):
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Abbildung 5-2: Testpunktverteilung und Abstinde zum Sehstrahl

Die Testpunkte werden innerhalb der Domiine regelmiflig verteilt durch:

mit ka=0(1)ngq
(5.3-4)

Bei einer Anzahl von (n;+1) (n,+1) Testpunkten ergeben sich die du; zu:

a, b -

-a
Oou, ==—=2—L; fu, =
n, n,

(5.3-5)

Bei der Wahl der Groflen n; und n; sollte man folgendes beachten: Eine zu geringe
Anzahl an Testpunkten konnte zu einem Versagen des Verfahrens fiihren, jedoch eine zu
groBe Anzahl lediglich zu lingeren Rechenzeiten. Eine verniinftige Richtlinie wire, daf3
die Anzahl der Testpunkte so zu wihlen ist, daB3 diese Testpunkte den charakteristischen
Verlauf der Fliche wiedergeben.

Die Indizes /, m laufen in den folgenden Formeln nicht von | bis 3 sondern von O bis 7,
dann ergeben sich die Testpunkte A, zu:

(5.3-6)

tim seien die Vektoren vom Projektionszentrum V zu den Testpunkten Ajy:

tillll == Ai/m - Vi
(5.3-7)
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Wobei nur jene tin, relevant sind, deren innere Produkte mit s grofler Null sind. Mit dieser
Bedingung wird sicher gestellt, da3 s und t,,, in denselben Halbraum zeigen.

Die Abstinde d,, berechnen sich zu:

) (5.3-8)
mit
k
i i j S im
M =& jk [im _| p
S im sklm

Bei der Suche nach jenen Punkten Ay, (u;,uz), die einen moglichst kleinen Abstand dj,, in
einem lokalen Bereich haben, sollte folgende Strategie angewendet werden: Man sortiert
die Punkte A}, (us,uz) nach dem steigenden Betrag der Vektoren ', aus Formel (5.3-7).
Damit bewirkt man, daf man zuerst jene Punkte untersucht, die nahe dem
Projektionszentrum V sind. Diese sortierte Liste wird der Reihe nach nach lokalen
Minima untersucht. Betrachtet man nochmals die Abbildung 5-1, so hiitte man die
folgenden Stellen, der Reihe nach, als Punkte A, B, C, D mit lokalen minimalen Abstand
zu g gefunden. An diesen Stellen verfeinert man den Raster, hier ausgefihrt nur fiir ein
Parameterpaar u; und u; (#; und #; gehort zu jenem Punkt Aj, mit dem kiirzesten
Abstand zum Sehstrahl):

ay:=u;-ou;  az:= uj+ou;
by:=u;-0u;  by:= ur+ou;

(5.3-9)

Mit diesen verkleinerten Bereichen fiihrt man eine weitere Abstands-
minimumsuche, analog zur ersten mit angepafiten #; und 712, durch. Diesen Schritt
wiederholt man solange, bis entweder der Minimalabstand keiner als eine gewisse
Schranke ¢; ist, oder das Verhiltnis der Minimalabstiinde aus der letzten und vorletzten
Iteration kleiner als eine Schranke &; ist. Als Richtwert fiir ¢; konnte ein Prozentsatz p der
Entfernung von Rasterpunkt und Projektionszentrum genommen werden; ¢, konnte direkt
auf diesen Prozentsatz p gesetzt werden. Als Prozentsatz p konnte sich z.B. 0.05 eignen.
Die so gefundenen Punkte priift man der Reihe nach auf folgende Kriterien:

Ist der Abstand d,,, > ¢;, so geht der Sehstrahl an der Fliche vorbei und der Punkt bleibt
als Kandidat fiir den Niherungswert erhalten. Das wiirde beim Punkt A in diesem
Musterbeispiel der Fall sein. Das macht man mit jedem weiteren Punkt, bis der Abstand
an einem Punkt d,, <= ¢, ist. In diesem Fall mu man zwischen zwei Fillen
unterscheiden, dazu berechnet man den Winkel zwischen s und n nach der Formel
(3.3-4). Weicht dieser Winkel nicht mehr als z.B. 5 Grad vom Rechten Winkel ab, so hat
man den Kandidaten gefunden und kann die Suche beenden. Weicht dieser Winkel
jedoch mehr als diese angenommenen 5 Grad ab, so heifit das, dafl der Sehstrahl an
diesem Punkt in die Fliche eindringt (sieche Abbildung 5-1 Punkt B). In diesem Fall
spannen dieser Punkt und der nichste Punkt (siehe Abbildung 5-1 Punkt C) in der Liste
ein Intervall auf, in dem ein weiterer moglicher Kandidat enthalten sein kann. Alle
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anderen Punkte der Liste konnen auf Grund von Sichtbarkeitsiiberlegungen
ausgeschlossen werden. Dieses Intervall kann aufgespannt werden, wenn der eine Punkt
die Parameter (ay, b;) und der andere (a3, b,) hat, mit:

(5.3-10)

In diesem Intervall startet man eine weitere Minimumsuche, in der jener Punkt
Aim gefunden werden soll, dessen Normalenvektor mim, und Sehstrahlvektor s die kleinste
Winkelabweichung von einem Rechten Winkel nach Formel (3.3-4) aufweisen:

Die Berechnung der Rasterpunkte geschieht wieder mit den Formeln (5.3-4) bis (5.3-6).
Die Normalenvekoren n';,, an den Stellen A';,, werden nach den Formeln (3.2-1) bis
(3.2-5) berechnet. Anschlieend berechnet man die Abweichungen vom Rechten Winkel
nach der Formel (3.3-4). An jener Stelle mit der kleinsten Winkelabweichung fiihrt man
solange eine Intervallverdichtung durch, bis die Winkelabweichung kleiner als die
angenommene Schranke von 5 Grad ist. Letztlich wiirde das in unserem Beispielsfall zu
Punkt E fiihren.

Um jetzt aus der Liste der verbleibenden Kandidaten den richtigen, besser gesagt den
wahrscheinlichsten, zu finden, berechnet man nochmals fiir diese Punkte die Abstinde
zum Sehstrahl g und nimmt jenen mit dem kleinsten Abstand als Niherungswert fiir den
Umriflpunkt. Im Beispielsfall wiire das der Punkt A gewesen.

AnschlieSend wird der gefundene Punkt pA nach Umformung von (3.1-3) mit (5.3-11)
ins Referenzsystem transformiert.

(5.3-11)

5.4 Bestimmung der Naherungswerte fur implizit
algebraisch gegebene Flachen

Im folgenden werden zwei Vorgehensweisen zur Bestimmung der Niherungswerte fiir
implizit algebraisch gegebene Flichen ausgefiihrt. Variante eins eignet sich besonders
gut, wenn @ von niedrigem Grad ist, Variante 2 beruht auf derselben Grundidee wie jene
in Kapitel 5.3.

1. Variante:

Die Schnittkurve der 1. Polarfliche I' von @ mit ® selbst liefert den Wahren Umrif3
beziiglich eines festen Punktes V [Pottmann, 1996]. Nach Berechnung von I' wird die
Polarfliche mit dem Sehstrahl g geschnitten; das liefert den gesuchten Nidherungswert S
fiir den Umripunkt U.
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Abbildung 5-3: Stellung von Fliache, Polarfliche und Sehstrahl zueinander

Der Index M zur Kennzeichnung des Modellkoordinatensystems wird auch hier fiir die
folgende Berechnung des Niherungswertes zum Zwecke der Ubersichtlichkeit
weggelassen, da alle folgenden Berechnungen in diesem System stattfinden.

(5.4-1)

Zur Berechnung der 1. Polarfliche I' muf3 die Fliche in homogenen Koordinaten,

hier gekennzeichnet durch ein links von der Variable hochgestelltes h dargestellt werden
[Boehm, 1994, p307ff]. Bei Variablen in homogenen Koordinaten laufen daher die
Indizes von O bis 3:

(5.4-2)
Nach Einsetzen in (5.4-1) und Wegmultiplizieren mit ("Xo)" erhilt man eine
homogene Gleichung fiir die Fliache "® vom Grad n:
l:ﬂ(l;XO’l:XI’/zXZ’/zX3):O
(5.4-3)
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Die Gleichung der Tangentialebene T in einem festen Flichenberiihrpunkt Px
"ﬂ("X'): 0 lautet - "Y' seien jetzt die laufenden Koordinaten in t:

(5.4-4)

a h ) - ) -
worin "%, = 5 by die partielle Ableitung von " nach "X’ darstellt.

Fiir irgend einen festen Punkt "Y - jetzt laufe "X ' - stellt diese Gleichung die erste
Polarfliche I" dieses Punktes dar. Da der gesuchte Umri8punkt auch auf der Fliche ®

selbst liegt, vereinfacht sich die Gleichung fiir I' nach Einsetzen der Euler’schen Identitit
[Bretterbauer, 1994, p.68f]:

"', =n 9" x7)

(5.4-5)
und mit "z?("X’):O zu:
1'*: hyi /119,[:0
(5.4-6)
Anstelle irgendeines festen Punktes "Y wird das Projektionszentrum hy
eingesetzt:
hvi 1119,':0
(5.4-7)
Der Punkt X des Sehstrahls g in (5.1-4) wird in homogenen Koordinaten
dargestellt:
hxl
I:XO
h 2
X i A
g: by 0 =V'+ms'
le3
hXO
(5.4-8)
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Nach Einsetzen von g in die Gleichung (5.4-7), bekommt man eine Gleichung vom Grad
n-1, in der m der unbekannte Parameter ist - "X° 148t sich bei algebraisch gegebenen
Flichen immer herausheben und kiirzen. Wird der Wert von m in (5.1-4) eingesetzt, so
ergibt sich pS zu:

(5.4-9)

Achtung: Die Gleichung fiir m ist vom Grad n-1 und hat daher n-1 Losungen fiir m; von
diesen muf} die richtige - reelle - Nullstelle durch Einsetzen von uS in (5.4-1) gefunden
werden. Fiir jeden Kandidaten S ergibt sich nach Einsetzen eine Diskrepanz d. Jener
Punkt mit dem absolut kleinsten ¢ ist der gesuchte Umrif3punkt.

Anschliefend wird S nach Umformung von (3.1-3) mit (5.4-10) ins Referenzsystem
transformiert.

(5.4-10)
Beispiel:
Geg.: Torus @ und ein Sehstrahl g:
r
Vv

Abbildung 5-4: Stellung von Torus, Polarfliche und Sehstrahl zueinander
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Die Sehstrahlgleichung lautet:

(5.4-11)

Die Parameterdarstellung eines Torus lautet (zur Interpretation der Parameter,
siehe Abbildung 5-5):

Abbildung 5-5: Grund- und Aufrif} eines Torus
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(R+ rcosar)cos A
d: X. =|(R+rcosa)sin A

1

rsino

Die implizite Darstellung lautet:

D (X)) (X)) 20X AKX+ 2(X 02X )P+ 2(X ) (X3
2r(X))2-2RY (X )22 (X P - 2R3 (X )P - 218 (X3 )P + 2R (X3 )P+
+r'-2r'R*+R* =0

Folgende Abkiirzungen werden gesetzt:

a= 2

b=-2(R’*+r)
G= 2(R2—r2)
d= (R2-r%)

O (X)) X)X ral X P(X ) +alX P (X P a(Xa) (X +
+b(X1 )P+ b(X2) +c(X3)*+
+d =0

Ges.: Niherungswert S des Umripunktes.
Ubergang auf homogene Koordinaten mit (5.4-2) und Multiplikation mit ( /'XU)4:
(IIXI )4+(I1X2)4+("X3)4+
+a(/1X])2(/1X2)2+a(hXI )Z(hXj)Z+a(hX2)2(hXj)2+

+B (IIXO)Z (IIXI)2+ b (IIX0)2 (IIX2)2+C (IIXO)Z (IIX})Z_}_
+d ("Xp)* =0

Berechnung der I. Polarfliche I" nach (5.4-4):

1—~h: (2 (/'X/)j+a hX/ (/1X2)2+a hXI (IIX3)2+b hXI (/1X0)2)( I’X/-IIY/)‘I'
+(2 (/1X2)3+a (hX])Z hX2+Cl Il}(2 (,IX})Z‘I'b IzXZ (IIXO)Z)( IIXZ_ /1Y2)+
+(2 (I'X_;)j+a (hX])Z /'X_4+a (hXZ)Z hX_H-C /IX} (IIXO)Z)( /IX}- /’Y3)+
+(2d (I1X3)3+b (hX])Z /1X0+b (IIXZ)Z ,IX()‘I'C (I'Xj)z hX())( hXO_ hyo) =0
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Nach Einsetzen der Euler’schen Identitit und von "V fiir Y - "z?("Xi)—O - folgt die
Gleichung der | Polarfliche beziiglich hy - Vergleich mit (5.4-6):

Ty (2 ("X +a "X (") +a "X (X3 )P b X (" X0)P) MV +

H2 ("Xo) +a ("X, P "Xy a "Xo(" X3 )2+ b "Xo(" X)) "V +
+(2 (hX_;)j'i‘(l (IIX])Z ,'X3+(l (IIX2)2 hXj'i'C /'Xj(hX())z) IIV;H‘
+(2d (IIX0)3+b (IIXI)Z I’Xo-l-b (IIXZ)Z I’X()-I-C (IIX3)2 hX()) hV() =0

Berechnung des Sehstrahles g nach (5.4-7):

g wird in o eingesetzt. Nach einigen Umformungen ergibt sich eine kubische Gleichung
in m; "V kann herausgehoben werden.

e+ fm +gm2 +hm' =0
mit e =2b("V,)* +2b("Vo)? + 2¢ ("V3)*+
+ 2"+ 20y + 2 (v '+

+ 2a Va2 ("l +2a¢V,) ("

V)2 + 2a ("Vao)? ("Vi)? +
+ 2d

I 3 ) 3 )i 54
h= 2 lV/ Y} + 2 IVZSZ + 2 IV_{S} +
) 2 I 2 I 2
+ a ’V/ §; 8§ +a 'Vg S; S)+a 'V/ sy sy +
1 2 1 I 2
+a"VisPsi+a™Vy sy s +a "Visis

Folgende Beispielswerte werden angenommen:

R=5
r=2
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—-15
i SI.: _]5

10 _5042

Mit diesen Werten ergeben sich folgende Zwischenergebnisse:

a=2 b =-58 c=42 d =441
e = 194432 f=-738338,2736
g = 959825,0401 h =-417396,8741

Fiir diese Koeffizienten gibt es nur eine reelle Losung fiir m:

m =0,9770

Setzt man m in g ein, so bekommt man den gesuchten Umrilpunkt U:

~4,05
U, =|-405
1,85

Hiitte es fiir m mehrere reelle Losungen gegeben, so wiirde es auch mehrere Kandidaten
fir den gesuchten Umrilpunkt geben. Den gesuchten Umrilpunkt wiirde man
herausfinden, indem man alle drei Punkte in die Gleichung von @ einsetzt und die
Diskrepanzen d; betrachtet. Der Punkt mit dem absolut kleinsten «; wire dann der
gesuchte UmriBpunkt. Bei diesem Beispiel gibt es nur eine Diskrepanz:

d=-6,7130

2. Variante:

Die hier angegebene Methode ihnelt jener, die im Kapitel 5.3 angegeben ist. Der
Unterschied liegt darin, da man bei diesem Verfahren einen Punkt S auf dem Sehstrahl g
und nicht auf der Fliche @ sucht, an dem die Umribedingung n' s; = 0 erfillt ist und
einen moglichst kiirzen Abstand d zur Fliche @ hat.
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Der Sehstrahl g ist gegeben durch:

(5.4-12)

Der Abstand ¢ vom Sehstrahl g zur Fliche @ kann niherungsweise auf folgende
Art bestimmt werden: Ausgehend von der Gleichung (3.2-2) fiir implizit gegebene
Flichen kann fiir jeden Punkt X ein Potential p berechnet werden:

(5.4-13)

Das Potential p ist negativ fiir Punkte innerhalb’, positiv fiir Punkte auBerhalb

und verschwindet fiir Punkte auf der Fliche ®. Dieses Potential ist ein Richtwert flir den
mit Vorzeichen behafteten (gerichteten) Abstand eines Punktes zur Fliche. Jedoch
handelt es sich bei p noch um kein metrisches Maf}, sondern um eine Zahl. Dividiert man
p durch den Betrag des Normalenvektors n (n folgt aus (3.2-6)) im Punkt X, so erhilt
man in erster Niherung seinen gerichteten und metrischen Abstand d :

I|'I
(5.4-14)

Hinweis zur Berechnung des Normalenvektors n im Punkt X: Liegt X nicht auf
der Fliche ®, so berechnet man genau genommen den Normalenvektor der
Aquipotentialfliche @, durch X, die gegeben ist durch die Gleichung:

o, B(x',X%.X)-p=0
(5.4-15)
Bei diesem Verfahren im Gegensatz zu jenem aus Kapitel 5.3 muf3 lediglich die
Domine des Parameters m aus der Gleichung (5.4-12) bestimmt werden. Dafiir reicht

eine grob geschitzte maximale Entfernung r der Fliche aus. Dann ergibt sich die Domiine
fir m zu:

me [O, r]
(5.4-16)
Fiir m = 0 liefert die Gleichung (5.4-12) das Projektionszentrum V, fiir in = r den

Punkt D am Sehstrahl mit der Entfernung r zum Projektionszentrum (siehe Abbildung
5-6).

* Die Definition von innerhalb und auBerhalb erfolgt iiber die Richtung des Normalenvektors in der Art,
daf} der Normalenvektor fiir Punkte auf der Fliiche nach ,.auf3en™ zeigt.
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Abbildung 5-6: Ubersichtsskizze bei der Bestimmung des Niherungswerts fiir
implizit gegebene Fliachen

Analog zum Kapitel 5.3 verteilt man nun regelmiilig tiber der Domine von m die Punkte
A (m) und berechnet die Abstinde d,(m) zur Fliche ®:

Die Testpunkte werden innerhalb der Domine regelmii3ig verteilt durch:

m,=0+kSm mit k=0()n
(5.4-17)
Bei einer Anzahl von (n+1) Testpunkten ergeben sich die om zu:
om= r
n
(5.4-18)

Bei der Wahl der Grofe n sollte man wieder folgendes beachten (vergleiche Kapitel 5.3):
Eine zu geringe Anzahl an Testpunkten konnte zu einem Versagen des Verfahrens
fiihren, jedoch eine zu groBe Anzahl lediglich zu lingeren Rechenzeiten. Eine
verniinftige Richtlinie wire, dafl die Anzahl der Testpunkte so zu wihlen ist, daf} diese
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Testpunkte den charakteristischen Verlauf der Fliche entlang des Sehstrahls
wiedergeben.

Der Indiz [/ lauft in den folgenden Formeln nicht von 1 bis 3 sondern von O bis n, dann
ergeben sich die Testpunkte A zu:

Ar=Vi+m, O
(5.4-19)

Die gerichteten Abstinde «,; berechnen sich nach der Formel (5.4-14) zu:

P

(1:_—_'

(5.4-20)

Bei der Suche nach jenem Punkt A(m), der einen moglichst kleinen
Absolutbetrag des gerichteten Abstandes d; hat, sollte folgende Strategie angewendet
werden: Man beginnt mit A(0) = V und sucht der Reihe nach nach lokalen Minima oder
nach Stellen an denen d, sein Vorzeichen wechselt. Betrachtet man nochmals Abbildung
5-6, so hiitte man die folgenden Stellen, der Reihe nach die Punkte A, B, C, am Sehstrahl
g gefunden. An diesen Stellen verfeinert man den Bereich von m (m gehort zu jenem
Punkt A; mit dem kiirzesten Abstand zum Sehstrahl):

me[m—dm,m+ nl
(5.4-21)

Mit diesem verkleinerten Bereich filhrt man eine weiter Abstands-
minimumsuche, analog zur ersten, durch. Diesen Schritt wiederholt man solange, bis
entweder der Absolutbetrag des gerichteten Minimalabstands keiner als eine gewisse
Schranke ¢; ist (Vorzeichenwechsel), oder das Verhiltnis der Minimalabstinde aus der
letzten und vorletzten Iteration kleiner als eine Schranke ¢, ist. Als Richtwert fiir &;
konnte ein Prozentsatz p des Parameters m genommen werden; &, konnte direkt auf
diesen Prozentsatz p gesetzt werden. Als Prozentsatz p konnte sich z.B. 0.05 eignen.

Die so gefundenen Punkte priift man der Reihe nach auf folgende Kriterien:

Ist der d; > &), so geht der Sehstrahl an der Fliche vorbei und der Punkt bleibt als
Kandidat fiir den Niherungswert erhalten. Das wiirde beim Punkt A in diesem
Musterbeispiel der Fall sein. Das macht man mit jedem weiteren Punkt, bis |d)| <= ¢, ist.
In diesem Fall mufl man zwischen zwei Fillen unterscheiden, dazu berechnet man den
Winkel zwischen s und n nach der Formel (3.3-4). Weicht dieser Winkel nicht mehr als
z.B. 5 Grad vom Rechten Winkel ab, so hat man den Kandidaten gefunden und kann die
Suche beenden. Weicht dieser Winkel jedoch mehr als diese angenommenen 5 Grad ab,
so heilt das, dal der Sehstrahl an diesem Punkt in die Fliche eindringt (siehe Abbildung
5-6 Punkt B). In diesem Fall spannen dieser Punkt und der nichste Punkt (Punkt C) in
der Liste ein Intervall auf, in dem ein weiterer moglicher Kandidat enthalten sein kann.
Alle anderen Punkte der Liste konnen auf Grund von Sichtbarkeitsiiberlegungen
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ausgeschlossen werden. Dieses Intervall kann aufgespannt werden, wenn der eine Punkt
den Parameter m; und der andere m, hat, mit:

(5.4-22)

In diesem Intervall startet man eine weitere Minimumsuche, in der jener Punkt
A gefunden werden soll, dessen Normalenvektor m und Sehstrahlvektor s die kleinste
Winkelabweichung von einem Rechten Winkel nach Formel (3.3-4) aufweisen:

Die Berechnung der Rasterpunkte geschieht wieder mit den Formeln (5.3-4) bis (5.3-6).
Die Normalenvekoren n'; an den Stellen A'; werden nach der Formel (3.3-4) berechnet.
AnschlieBend berechnet man die Abweichungen vom Rechten Winkel nach der Formel
(3.3-4). An jener Stelle mit der kleinsten Winkelabweichung fiihrt man solange eine
Intervallverdichtung durch, bis die Winkelabweichung kleiner als die angenommene
Schranke von 5 Grad ist. Letztlich wiirde das in unserem Beispielsfall zu Punkt E fiihren.
Um jetzt aus der Liste der verbleibenden Kandidaten den richtigen, besser gesagt den
wahrscheinlichsten, zu finden, berechnet man nochmals fiir diese Punkte die Abstinde
zum Sehstrahl g und nimmt jenen mit dem kleinsten Abstand als Niherungswert fiir den
UmriBpunkt. Im Beispielsfall wiire das der Punkt A gewesen.

AnschlieBend wird der gefundene Punkt A nach Umformung von (3.1-3) mit (5.3-11)
ins Referenzsystem transformiert.

5.5 Loésungsweg spezialisiert flir implizit gegebene Quadriken

Quadriken sind Flichen 2. Ordnung [Netz, 1992, p.454] und decken einen Grofiteil der
benotigten Flichen ab. Zu ihnen zihlen:

Dreiachsiges Ellipsoid Rotationsellipsoid

Kugel Kegel

Elliptischer Zylinder Hyperbolischer Zylinder
Parabolischer Zylinder Kreiszylinder

Einschaliges Hyperboloid Zweischaliges Hyperboloid
Elliptisches Paraboloid Hyperbolisches Paraboloid

Bei Quadriken vereinfacht sich die in Kapitel 5.4 (1. Variante) aufbereitete Theorie, da
die erste Polarfliche I eine Ebene ist.
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Quadriken werden nach [Netz, 1992, p.454] wie folgt angeschrieben:

a(X, ) +b(X,) +c(X,) +dX, X, +eX X+ X, X+

D:
& gXq F WX, FyX,3k=0
(5.5-1)
Jedoch ist fiir die Berechnung der 1. Polarfliche I" die Tensorschreibweise zu
bevorzugen, da hier der mathematische Zusammenhang besser ersichtlich ist.
hX. /IAlj /IX , :O
i J
(5.5-2)

mile "X, =1

Die Koeffizienten der beiden Darstellungen konnen leicht ineinander iibergefiihrt
werden:

2k g h g

h i _1] 8 2a d e
MWh d 2 f

]J] B F 2

(5.5-3)

Die Schreibweise (5.5-2) wird oft als symmetrische Darstellung bezeichnet. L6t sich "D
in dieser symmetrischen Darstellung - bei Quadriken ist dies immer moglich -
anschreiben, liegt "® bereits in homogenen Koordinaten vor.

Berechnung der 1. Polarebene I':

Wird in (5.5-2) anstelle eines der beiden Vektoren "X, das Projektionszentrum

h
V
"y, = ”VI eingesetzt, liegt die Gleichung der Polarebene I vor:

/lv
3

h‘/’- /lAlj hX]- :O
(5.5-9)

Da X, konstant | gesetzt ist und als laufende Koordinaten von I" nur X;, X, X;
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librig bleiben, wechselt die homogene Darstellung von yI" nach Ausmultiplizieren von
(5.5-4) in die inhomogene Darstellung iiber:

(A® + AV + ADV, + A%V, )+
+(A°' + A"V, + APV, + AV, )X, +
+ (AO2 + AV, + APV, + AV, )X2 +
+(A% + ARV, + APV, + ATV, )X, =

(5.5-5)
Fiir die Klammerausdriicke werden zur besseren Ubersicht folgende Abkiirzungen
eingefiihrt:
t= (A% + AV, + A2V, + AMY,)
u=(A" + A"V + APV, + ATV,
v={(A% + A%V, + A2V, + ARV,
w=(A% + A"V, + A%V, + A™V,)
I t+uX, +vX,+wX, =0
(5.5-6)
Die Ebene I" wird nun mit dem Sehstrahl g, der zuvor mit den Gleichungen aus
Kapitel 5.1 ins Modellsystem transformiert wurde, geschnitten:
(5.5-7)
Nach Einsetzen von g in die Gleichung (5.5-6) bekommt man eine Gleichung
vom Grad |, in der m der unbekannte Parameter ist,
m ergibt sich zu:
oy t+u ,V,+v ,,V,+w,V,
U S +V Sy +W 8,
(5.5-8)
Wird der Wert von m in (5.5-7) eingesetzt, so ergibt sich mS zu:
(5.5-9)

AnschlieBend wird mS nach Umformung von (3.1-3) mit (5.5-10) ins
Referenzsystem transformiert.

80



(5.5-10)

In der Rechtwinkelbedingung ,n'ps,=, m zm ,R'c, n* R/’ gs; =0 ldBt sich

der Vektor ypn spezifizieren:

(5.5-11)

Durch Einschrinkung der Flichen auf Flichen zweiter Ordnung wurde die
komplexe Theorie aus Kapitel 5.4 so weit vereinfacht, daf3 sie sehr gut geeignet ist zur
automatisierten Berechnung der Niherungswerte.

5.6 Bestimmung der Naherungswerte fur explizit algebraisch
gegebene Flachen

Diese Flichen konnen wie aus Kapitel 3.2.3 hervorgeht sowohl in eine implizit
algebraische als auch in eine Fliche in Parameterform umgeformt werden. Daher wird
kein Losungsweg nur fiir explizit algebraisch gegebenen Flichen angegeben.
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6 Aufbereitung der Theorie fir ORIENT

In den folgenden Unterkapiteln werden die Erweiterungen von ORIENT, die das Thema
UmriBpunkt betreffen, ausfiihrlich behandelt. Allgemeine Informationen zum Produkt
ORIENT konnen jedoch z.B. in [Kager, 1980], [Kager, 1989], [Kager, 2000] oder
[Forkert, 1994] nachgelesen werden.

6.1 Datenraumstruktur

In ORIENT sind die Daten in zwei Arten von Datenridumen organisiert [IPF, 1994, p6]:
e Parameterriume,
e Beobachtungsriume.

Bekannte Parameter konnen entweder als Konstante oder als Beobachtungen behandelt
werden. Unbekannte Parameter werden durch strenge Ausgleichung nach der Methode
der kleinsten Quadrate bestimmt.

Innerhalb der ,,Rdume* sind die Daten als ,,Punkte* organisiert,
e die einen Namen haben,
e die von O bis zu 7 ,Koordinaten* (z.B. X, Y, Z, Sigmax, Sigmay, Sigmaz)
aufweisen und
e die durch ein ,,Statuswort* hinsichtlich ihrer Teilnahme oder Nichtteilnahme am
aktuellen Prozef3geschehen gekennzeichnet sind.

Um beobachtete UmriBpunkte in ORIENT verwalten zu kdnnen, mufite ein neuer
Beobachtungsraum vom Typ SILHOUETTE® geschaffen werden.
Zum Raum SILHOUETTE gehoren:

e _Name* (IDENTIFIER), zur Unterscheidung von mehreren SILHOUETTEen
wird jeder eine eigene Nummer zugewiesen, die vom Beniitzer gewihlt werden
kann.

e Kopfzeile® (HEADER): In der alle Verweise zu anderen Punkten oder Rdumen
angefiihrt sind, die direkt mit dem Raum oder seiner Transformation selbst im
Zusammenhang stehen.

o EXTREFPO  (Exterior Reference Point):  Punktnummer  des
Aufnahmeortes rV. rV wird liblicherweise ein Projektionszentrum eines
Photos sein, aber es kann sich auch um einen Polarstandpunkt, von dem
aus UmriBpunkte beobachtet wurden, handeln. Aufgrund dieser
Punktnummer konnen die zugehérigen Koordinaten des Aufnahmeortes
im Referenzsystem gefunden werden.

® In ORIENT wurde die Bezeichnung SILHOUETTE der CONTOUR vorgezogen, um Verwechslungen
mit dhnlichen Schiisselwortern zu vermeiden, obwohl CONTOUR der exaktere Name wiire.
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o GESTALT: Name der Fliche, auf der die UmriBpunkte beobachtet
wurden.
o SIGMA: Zur Festlegung der Genauigkeit der UmriBpunktbeobachtung.
Jede Beobachtung wird vor der Ausgleichung mit einem Gewicht
versehen. Das Gewicht ist indirekt proportional dem Quadrat der
Genauigkeit (= SIGMA) der Beobachtung:
e ,Punktliste*: In dem die Punktnummern der beobachteten UmriBpunkte stehen
e Subtyp®: Der ,,Subtyp* liefert eine wichtige Information zum Raum selbst. Im
Falle SILHOUETTE wird dieser ,Subtyp* dazu verwendet, um die
dazugehorende Flichenart auszuwihlen. Er wihlt durch seinen Wert, der O, 1, 2
oder 3 sein kann, eine der 3 Flichen der dazugehtérenden GESTALT aus, siehe
Kapitel 6.2. Nimmt er den Wert | an, so ist die erste Fliche gemeint usw. Bei 0
existiert hoffentlich nur eine von diesen drei Flichen, die dann natiirlich zu
verwenden ist. Durch diese Vorgehensweise legen GESTALT und ,,Subtyp* von
SILHOUETTE eindeutig die dazu gehorende Fliche fest.

Punkte pX im Modellsystem der Fliche ® werden in ORIENT mit der Formel (6.1-1) ins
Referenzsystem transformiert:

(6.1-1)

Die fehlenden Parameter dieser Transformation bekommt man iber den
HEADER der GESTALT:

e MmR:  Die drei Drehwinkel stehen in einem Raum des Typs ROTPAR. Der
»oubtyp des ROTPAR Raums legt die Deutung der Drehparameter fest. Der
Name des ROTPAR-Raumes steht im HEADER der GESTALT.

e um: Der MaBstab der Ahnlichkeitstransformation wurde seinerzeit per
Definition 1 gesetzt und wird aber in Zukunft auch durch die Ausgleichung
bestimmt werden konnen.

Das gewiinschte Minimumkriterium bei der Ausgleichung legt der ,,Subtyp* des
ADPAR-Raumes fest (sieche Tabelle 6-1):

des Minimumkriteriums
E; (43-2)ymitT F, (4.3-6) “1

T E,(43-3)mitT F, (4.3-7) 0]
T Ei@43-4mitT F (43-6) “5
Es (43-5mitT F, (4.3-7) )

Tabelle 6-1: Zusammenhinge zwischen Minimumkriterium und ,,Subtyp‘ des ADPAR-Raumes

Der Zusammenhang von ADPAR und GESTALT wird im Kapitel 6.2 erklirt.
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6.2 Flachendarstellung in ORIENT:

In ORIENT werden Flichen in Riumen vom Typ GESTALT verwaltet. Zu jeder
GESTALT kann es bis zu drei Flichen geben, die folgende unterschiedlichen Formen
haben konnen:

Erste Fliche:

w0 =X FFF I A [ X XV (2] @7 Y6 C 2w

Zweite Fliche:
D2

M Q2 = 4” ," NI i y AZ[/A'/)IMMI (M X~I )i (M 22 )j (M X’] )k (q)I’ (’.)I (s)”’ ([ )” (6.2-2)

" " "

M Q} = Zi A3ijkp’"'" (M X' )i(M X’ )j(M X’ )k ((/)p (")’ (S)m (f)” (6.2-3)

i=0 j=0 k=0 p=0 /=0 m=0 n=0
mitu =9.

Die Koeffizienten A’,-jk,,,,,,,, von @' stehen in keinem Zusammenhang mit Az,jk,,/,,,,, von ®?
oder mit Aj,jk,,,,,,,, von ®*. Es wird aber trotzdem eine zusammenfassende Bezeichnung fiir
die unterschiedlichen Koeffizienten A“’,-jk,,/,,,,, gewihlt, weil dadurch eine bessere
Ubersichtlichkeit in der Notation erzielt wird. Die drei Formeln konnen zu einer
zusammengefalit werden:

" " " "

Y'Y At (o X'V X2 (LX) @ O 66 (624

]
=0 p=0 /=0 m=0n=0

i
)
-~.
I
<)
g

_ ' (6.2-5)
mit /my als konstantem Skalierungsfaktor
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Dadurch ergibt sich der Zusammenhang zwischen ,, X' und ,, X' zu:

(6.2-6)

Die Grof3en i und A“,;,—k,,l,,,,, werden in ORIENT wie folgt verwaltet:

°  my: Der Skalierungsfaktor fiir die Transformation (6.2-5) steht im
HEADER des ADPAR-Raumes und soll etwaige numerische Probleme bei der
Bestimmung der A"',;,-k,,,,,,,, verhindern. Als Richtwert fiir m, kann der halbe
Durchmesser des Interessensgebiet angenommen werden. Der Faktor miy steht in
direkter Abhiingigkeit zu ym und wird daher in ORIENT - bei der Ausgleichung -
als Konstante gefiihrt und nicht bestimmt. Daher wird auch kein Differential fiir
my berechnet.

o Ao Die Koeffizienten stehen in einem Raum des Typs ADPAR. Der
Name des ADPAR Raumes steht im HEADER der GESTALT.

rX ist der Punkt im Referenzsystem, der nach der Transformation mit (6.2-5) die
Flichengleichung erfiillen muf}, abgesehen von seiner Verbesserung v. Achtung! Die
Gleichung (6.2-4) stellt noch nicht die fiktive Flichenbeobachtung dar! Zur
Beobachtungsgleichung fiir Punkte auf Flichen in ORIENT gelangt man nach folgenden
Umformungen der Gleichung (6.1-1):

Anstelle des Punktes pQ in (6.1-1) wird (6.2-4) substituiert. Diese Vorgangsweise
scheint verwickelt zu sein, hiingt aber damit zusammen, daf diese Substitution fiir andere
Aufgaben entworfen wurde. Lost man diese Gleichung nach mX auf und schreibt sie
komponentenweise an, so wird nur die g-te Komponente fiktiv zu Null beobachtet.

Ersetzt man ,, X' mit Hilfe von (6.2-6) durch . b L gelangt man schlieBlich zur fiktiven
Flichengleichung in ORIENT:

6.2-7)

Fiir A =0 handelt es sich um eine implizite Flichengleichung, bei 4 =1 um eine
explizite Flichengleichung. Handelt es sich um eine explizite Flichengleichung, so
Hauft in der Gleichung (6.2-7) einer der Indizes i (bei g=1), j (bei g=2) oder & (bei g=3)
nicht bis « sondern bis Null. Je nach Art der Fliachendarstellung (implizit oder explizit)
muf der ,,Subtyp* der GESTALT dementsprechend gesetzt werden (siehe Tabelle 6-2).
Die Koeffizienten A%, konnen entweder Parameter der Fliche reprisentieren oder
auch Konstante. Jedoch ist es nicht moglich, unter den Koeffizienten Bedingungen zu
formulieren, wie es z.B. bei einem Rotationsellipsoid notwendig wire, weil hier zwei
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Achsen gleich sein miilten. Geht ein Flichenparameter in mehrere Koeffizienten ein, so
muf} dieser lber einen der Parameter ¢, r, s, t+ modelliert werden. Beispiele fir
Flichenmodellierungen finden sich im Kapitel 8.4.

Flichendarstellung ,»Subtyp* der
Fliche 1 () Fliche2 () Fliche 3 ( GESTALT

explizit 0
implizit explizit l

2

3

4

implizit explizit implizit 3

6

implizit 7

Tabelle 6-2: Zusammenhinge zwischen expliziter und impliziter Flichendarstellung und ,,Subtyp*
der GESTALT

6.3 Differentiale der fiktiven UmriBbedingung angepaft an die
Flachendarstellung von ORIENT

Die Differentiale aus dem Kapitel 4.2 werden fiir die Flichendarstellungen in ORIENT
aufbereitet. Zu diesem Zweck werden Flichennormalenvektor yn und Matrix mF
berechnet. Genau genommen miifiten diese GroBen ebenfalls mit dem Index g versehen
werden. Da aber ab diesen Grofien keine Fallunterscheidungen, die von g herriihren,
mehr notig sind, wird auf diesen Index zwecks Ubersichtlichkeit verzichtet. Ausdriicke,
bei denen der Exponent kleiner Null wird, sind per Definition gleich Null:

Der Normalenvektor berechnet sich nach (3.2-5) und unter Beriicksichtigung des
,»Schlangenmodells* zu:

(6.3-1)

(6.3-2)

Zu:
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M=

(6.3-3)
Die Matrix pF ergibt sich nach (4.2-4) und unter Beriicksichtigung des
»Schlangenmodells* zu:
_ (6.3-4)
mit (6.3-2) und
8/‘,11,- _my 5
Qo y m
(6.3-5)

ergibt sich F," zu:

B —ZZZZZZZ =DA% (w X7 (0 X2 (X @) CY ()" G

i=0 j=0 k=0 p=0 /=0 m=0n

F'2 - 2 i 2 Z 2’2;"2;' GA ijkpimn (M X' )’A—I (M X 2)H (M X* )k ((/)p ('.)I (S)m (t)“

|
(=}
~.
Il
(=}
>~
|
(=}
<
|
(=}
—
|
(=}
(=)
(=}
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Fjl ist symmetrisch auf Grund der Vertauschbarkeit der partiellen Ableitungen. Daher
}V‘zird auch hier nur die obere Dreieckshiilfte der Matrix angegeben, und es gilt daher Fj' =
e

Die Differentiale fiir ORIENT ergeben sich, indem man die Differentiale (6.3-1) bis
(6.3-5) in die gewiinschten - je nach Typ und Unbekannte - vom Kapitel 4.2 einsetzt.

Es wird hier nur das Differential fiir die Flachenkoeffizienten ausformuliert, weil auf die
nicht speziell im Kapitel 4.2 eingegangen wurde, und weil dieses auch als Musterbeispiel
der Vorgangsweise fiir die anderen nicht ausformulierten Differentiale dienen kann.

Differential nach den Flichenparametern A in ADPAR:

Typ E;:
Das Grunddifferential von (4.2-19) lautet:
B, OE, dgn; 9, n,
aAg ijkplnn a Rnf aAl n,. aAg ijkplmn

(6.3-6)

Das Differential 8:, " Kkonnte in (4.2-19) nicht niher ausgefiihrt werden, da

ijkphnn
noch keine konkrete Flichendarstellung vorhanden war. Mit der Flichendarstellung aus
(6.2-7) 146t sich dieses Differential konkretisieren, aus (6.3-3) folgt:

(6.3-7)
Setzt man (6.3-7) in (6.3-6) ein, so kommt man zum gesuchten Differential:
51 V- v S\ 4 m n
OE l(MX]) (Mij(MXK) CI)I(')’S (I) G, +
s r 5 / -l l‘ ) ni n
e i ST R P (PR I OV QO O R
ijkplmn ~ o\ ~ i~ -1 N m n
" ’ +k(MXI)(MX2)I(MXz) CI)I(”S) (f 03
(6.3-8)

Zur Vollstindigkeit werden auch die Differentiale fiir die anderen Typen
angegeben:
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(6.3-9)

(6.3-10)

(6.3-11)

Differential nach den Flichenparametern g, r, s, f:
Im folgenden werden nur die Differentiale fiir r berechnet, da sich alle anderen
Differentiale aus Analogien ableiten lassen.

TypE;:

Das Grunddifferential lautet:
aEl aEI an—faM ”’.
dt - dgn, d,n, O

(6.3-12)

Das Differential konnte in (4.2-19) nicht niher ausgefiihrt werden, da noch keine
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konkrete Flichendarstellung vorhanden war. Mit der Flichendarstellung aus (6.2-7) 1d3t

o, n, .
sich das Differential #’1’ konkretisieren, aus (6.3-12) folgt:
1

n (M X' )’] (It
At kot | + Jn (M X' )’ (M
X'

+ kn (M ')i(

dyn,  ,m

..

<)

— &

S

~.

S oa s
=

ot m,

(6.3-13)
Setzt man (6.3-13) in (6.3-12) ein, so kommt man zum gesuchten Differential:
in (X7 ) (0 2 f @Y (Y 61 (0 8,4+
~ i ~5\j- ~ 3\
A |+ i (o XY (3 X2) 70 R (@ Y () () 6,0+
~ =2 5 =1 ) Vi n—
(XS (22 G 27 (@ () () 0 6,
(6.3-14)
Zur Vollstindigkeit werden auch die Differentiale fiir die anderen Typen
angegeben:
Typ E; ergibt sich zu:
5 > ¥! 2 J 9 K ) n n—
in o £ X7 (0 20 F (0 0 6P (0 6,4
At |+ g1 ( XV ( X2 (L X2 (@) () ()" ()™ 6, +
=\ ~ j ~ 1 k-1 ) m n—
oy X (0 22V (XS 0 (V) (0 8,4
(6.3-15)
Typ E; ergibt sich zu:
. Sy o ] 53\ n n—
In (M XI) (M X2_)JI (M X1)‘ ((1), (")/(S) ([) I 8, +
A ikptn | + (M X ’ j__ (M )zz) ((1)”(")1(5)’" (f)"_] 6,,+
(X | '
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(6.3-16)

Typ E,4 folgt aus (4.2-46):

(6.3-17)

Alle weiteren Differentialkoeffizienten fiir die Umribedingung konnen in analoger
Vorgangsweise gefunden werden ausgehend von den Differentialen im Kapitel 4.2. Hier
nicht ausformulierte Differentiale, wie z.B. das Differential nach den Drehwinkeln,
konnen in [Stadler, 1997, p24ff] nachgelesen werden.

6.4 Bestimmung des Konvergenzbereiches

Fiir die Bestimmung des Konvergenzbereiches von Quadriken kann das EDV Programm,
mit dem auch die Abbildungen im Kapitel 4.3 erzeugt wurden, allein verwendet werden.
Fir die Untersuchung der Konvergenzbereiche von anderen Flichen (laut Kapitel 6.2)
wurde eine Schnittstelle zwischen ORIENT und diesem Programm geschaffen. Die
Vorgangsweise soll anhand eines Torus erlidutert werden:

Um die gewiinschten Daten der diff. geom. Orter von ORIENT zu bekommen, miissen in
ORIENT Fliche, Silhouette, Koordinatensysteme und Rasterpunkte erzeugt werden. Fiir
diese Aufgabe empfiehlt es sich, ein CMD-File zu erstellen. In diesem CMD-File stehen
alle dafiir notigen ORIENT-Befehle (Direktiven) iibersichtlich aufgelistet. Details und
allgemeine Erkldirungen zu den ORIENT-Befehlen konnen in [IPF, 1996] nachgelesen
werden, zusiatzliche Kommentare stehen direkt im CMD-File und sind durch ein $c
gekennzeichnet. Das folgend CMD-File erzeugt zuerst ein MODEL, in dem alle
Rasterpunkte (die Auflistung enthilt aus Platzgriinden nicht alle Punkte) mit ihren
Koordinaten enthalten sind. AnschlieBend werden REFSYS, GESTALT und
SILHOUETTE erzeugt und der Beobachtungspunkt rV gesetzt. Kommentare sind im
CMD-File durch ein vorangestelltes $¢ gekennzeichnet.

$c tor.txt 2001.1.2 Torus-Rasterp.
$M Modell 800:
Sc $SM erzeugt Meldung am Bildschirm

$d EDIT MODEL FREE CMD ROTPAR=OWN=OMFIKA(O O 0) ORIGIN 90000800 END -

9'9.
Sc Erzeugung des Modells
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800

101 -50.000 50.000 0.000
102 -44.737 50.000 0.000
1083 -39.474 50.000 0.000
2018 39.474 ~-50.000 0.000
2019 44.737 -50:000 0.000
2020 50.000 -50.000 0.000
=989 0 0 0

Sc Rasterpunkte und deren Koordinaten wurden in das Modell
Sc eingelesen

$d EDIT REFSYS 9000 TAKE(M800 i11-9999 N90000800 90000001-90000010) .
Sc nimmt alle Punkte aus dem Raum 800 mit den Nummern 1-9999
Sc zusatzlich noch 90000800 und 90000001-90000010

$d UPDATE REFSYS 9000 DEACTIVATE (90000002-90000010) .

Sm GEST 500 Torus

$d UPDATE REFSYS 9000 ALTER(90000010)n(90000500) ;
REACTIVATE (90000500) ;

ALTER 90000500 x(-10.00 0.00 0.00).

$d CREATE z=OWN(-34000000 1 -30400000 1 -30040000 1
-32200000 2 -32020000 2 -30220000 2

-32000020 -2 -32000002 -2 -30200020 -2

-30200002 -2 -30020020 2 -30020002 -2

-30200002 -2 -30020020 2 -30020002 -2

-30000004 1 -30000022 -2 -30000040 1

-39990002 1.00

-39990001 0.20)

GESTALT 500 NORME (20.00) ORIGIN(90000500) ROTPAR=OWN=OMFIKA (0.00
0.00)
SIGMA(1l) TAKE(G3 M9000 i 1-9999).

800

und

.00

$d CREATE SILHOUETTE 1000 TAKE(m9000 i 1-9999) EXTREFPO 90000001

SURFACE 500 SIGMA (1).
$d UPDATE REFSYS 9000 ALTER 90000001 x(40.00 0.00 0.00).

$D CMD SYMB (RaAnz) ADD(20) ;
CMD SYMB (Weite) ADD( 1.00000000000000E+0002).

$d CMD READONLY (diffcmdl.cmd) NEXT.

Das Erzeugen von Fliche und der passenden Konstellation in ORIENT kann natiirlich
auch ohne CMD-File anders erfolgen. Als niichster Schritt miissen die diff. geom. Orter
in ORIENT berechnet werden, dies kann wiederum mit Hilfe eines CMD-Files erfolgen
oder auch wiederum ohne. Das zuvor aufgelistete CMD-File ruft automatisch das

folgende auf und zeigt das Menii am Beginn:

Sc diffcmdl.cmd 5-Mai-1999

<menu
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$-pc+lm

Sm torus

Sm ~@Protfn
Sm ~@AdpTypl
$m ~@AdpTyp3
$m ~@AdpTyp5
$m ~@AdpTyp7
$Sm  ~@AdJ

Sm “~@Ende
Sed

<protfn
$DS$S-1c+LM-pm-pcC

SmSm Protfilename?

CMD SYMB(protf) ADD.

Sd CORMAN PROT (!protf).
@menu

<AdpTypl
$Sd UPDATE ADPAR(500-599) TYPE (1).
@menu

<AdpTyp3
Sd UPDATE ADPAR(500-599) TYPE (3).
@menu

<AdpTyp5
Sd UPDATE ADPAR(500-599) TYPE (5).
@menu

<AdpTyp7
Sd UPDATE ADPAR(500-599) TYPE (7).
@menu

<adj

SDS$-1c+LM+pm-pc

Sm ~@RaAnz !Raanz;

Sm "@Weite !Weite;

Sd ADJUST REFSYS 9000 GESTALT OBJECT SILHOUETTE 1000 OBJECT MODEL
OBJECT MERELY SIGMA (1) TEST (33858) PRINT.

$D$S-1c+LM-pm-pc

@menu

<ende
Sed

Unter dem Meniipunkt ,,protfn* kann der Dateiname fiir die Ausgabe der notigen Daten
der diff. geom. Orter angegeben werden. Mit den Meniipunkten ,,AdpTypl-7* kann
jeweils das gewiinschte Minimumkriterium nach Tabelle 6-1 gesetzt werden. Durch
Aufruf von ,,adj* werden die Orter berechnet und auf das Ausgabefile geschrieben. Es
konnen natiirlich auf dasselbe File die Ergebnisse aller 4 ,,ADPAR-TYPEn* ausgegeben
werden. Es muB3 nach jeder Anderung des ,,ADPAR-TYPE* der Meniipunkt ,adj*
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aufgerufen werden. Mit dem Meniipunkt ,,ende* steigt man aus dem CMD-File aus. Das
durch dieses CMD-File erzeugte Ausgabefile kann mit dem EDV-Programm aus Kapitel
4.3 aufbereitet werden.

Abbildung 6-1 und Abbildung 6-2 zeigen den Konvergenzbereich eines Torus bei
unterschiedlichen Minimumkriterien. Der Torus liegt wie in Abbildung 5-5 und
dargestellt wird der Schnitt mit der [X;, X,] Ebene. Der Verlauf des Schnittes von Torus
und Grundebene wird durch die kleinen grauen Kreise angedeutet, die durch Interpolation
gewonnen werden. Auch beim Torus zeigen sich dhnliche Charakteristiken wie bei den
sehr ausfithrlich untersuchten Quadriken (siehe Kapitel 4.3). Es empfiehlt sich auch hier
die Iteration mit E; und F, zu starten und dann auf das gewiinschte Minimumkriterium
umzuschalten.

Abbildung 6-1: Konvergenzbereiche eines Torus, geschnitten mit der Grundebene, fiir E; mit F,
links und E; mit F, rechts

Abbildung 6-2: Konvergenzbereiche eines Torus, geschnitten mit der Grundebene, fiir E; mit F,;
links und E; mit F; rechts
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7 Anwendungsmaoglichkeiten

Bevor direkt auf Anwendungsmoglichkeiten der Objektrekonstruktion mittels
UmriBpunkten eingegangen wird, soll hier ein kurzer und allgemeiner Uberblick iiber die
Methoden der Objektrekonstruktion gegeben werden.
Die Methoden kénnen grob in folgende Bereiche eingeteilt werden:
e Punkt- und linienweise Objektrekonstruktion:
Unter der punkt- und linienweisen Objektrekonstruktion versteht man die
Modellierung einer Oberfliche eines Objektes nur mit Hilfe von Punkten
und Linien.
e Flichenweise Objektrekonstruktion:
Hier wird die Oberfliche eines Objektes durch eine oder mehrere
Teilflichen modelliert.

Bei der punkt- und linienweisen Objektrekonstruktion scheidet die Einbeziehung von
UmriBpunkten aus, da fiir diese Methode eine Fliche unbedingt notwendig ist. Hingegen
bietet sich bei der flichenweisen Objektrekonstruktion die Einbeziehung von
UmriBpunkten an, da ohne erheblichen Mehraufwand (kein Anbringen von
Markierungen) die UmriBpunkte gemessen werden kdnnen.

In der Praxis werden alle oben genannten Objektrekonstruktionsmethoden gleichzeitig
eingesetzt, um eine optimale Modellierung der Fliche zu erreichen. Im Kapitel 8 wird
anhand eines Beispiels auch gezeigt, dal in Sonderfillen eine Objektrekonstruktion
ausschlieBlich tiber UmriBpunkte moglich ist.

Aus jetziger Sicht wird die Objektrekonstruktion mittels Umrissen vor allem in zwei
Bereichen der Vermessung eingesetzt werden:
e Rohrleitungssysteme

Abbildung 7-1: OMV Rohrleitungssystem

e Freiformfliachen

Abbildung 7-2: Zwiebel des Wiener Fernwirmeturms
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Bei Rohrleitungssystemen sind die geometrischen Formen der Flichen von Teilstiicken
bekannt. Hier handelt es sich primédr um Zylinder, Kegel und Toren. Die Schwierigkeit
bei dieser Aufgabe liegt in der Zuordnung der Umrilpunkte zu den Leitungsteilstiicken -
vor allem wenn die Umrisse automatisch detektiert werden sollen - und in der
Verwaltung dieser Teilstiicke.

Bei gekrimmten Freiformflichen liegen die Schwierigkeiten bei der Modellierung der
Flichen und den von Fliche zu Fliche verschiedenen Konvergenzbereichen. Als
besonders vorteilhaft erweist sich diese Theorie, wenn die zu vermessenden Fldchen nicht
zuginglich (Tiirme, gesperrte Bereiche) sind oder zu geringe Textur aufweisen.

Als Musterbeispiel fiir diese Arbeit (siehe Kapitel 8) wurde die Vermessung der
zwiebelformigen Fliche des Wiener Fernwirmeturms (siehe Abbildung 7-2, entworfen
von F. Hundertwasser) gewihlt. Grund fiir diese Wahl war die ausgefallene geometrische
Form, die Nihe zur Universitit und auch der internationale Bekanntheitsgrad dieses
Bauwerkes.
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8 Musterbeispiel anhand der Vermessung der Zwiebel
und des Schaftes des Wiener Fernwarmeturms

Das Hauptaugenmerk bei der Vermessung der Zwiebel und des Schaftes des Wiener
Fernwidrmeturms (siehe Abbildung 8-1) lag darin, zu zeigen, dafl eine Vermessung nur
mit UmriBpunkten moglich ist. So wurde auch auf das aufwendige Einmessen von
PaBpunkten verzichtet und die Auswertungen in einem lokalen System durchgefiihrt.
Derartig verschiedene ,,Vereinfachungen® konnen zu ungiinstiger Fehlerfortpflanzung
und zu anderen aus photogrammetrischer Sicht unerwiinschten Seiteneffekten fiihren, die
aber keinerlei Auswirkungen auf die Giiltigkeit und Exaktheit dieser Arbeit haben.

Abbildung 8-1: Wiener Fernwarmeturm
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8.1 Lagerung und Bestimmung des lokalen Systems

Bei der Planung der verschiedenen Aufnahmeorte wurde darauf geachtet, dal eine
Sichtverbindung zwischen den Aufnahmeorten vorhanden war. In der niheren Umgebung
haben sich zwei Gebiude angeboten: Sowohl am Gebiude der Polizeidirektion Wien als
auch am Hochhaus der Fernwidrme Wien wurden je zwei Standpunkte (P744/P757,
P775/P767) festgelegt (siehe Abbildung 8-2).

Zwiebel

he
Fernwarmeturm 125.95
o P767=]136.68

20.64

Hochhaus der
Fernwarme Wien

(e

Y 78.28
Fma= e P157=| o
Lol 1.41

Gebaude der
Polizeidirektion Wien

o I

20m

Abbildung 8-2: Lageplan der Aufnahmesituation

Von diesen Standpunkten aus wurden mit der digitalen MefBkamera Kodak DCS 460c die
Aufnahmen durchgefiihrt. Es wurde ein | 5Smm Objektiv mit einer Kamerakonstanten von
1665.12pix und ein 28mm Objektiv mit einer Kamerakonstanten von 3118.86pix
verwendet. Von jedem Standpunkt aus wurden, gleichmiBig tiber den ganzen Vollkreis
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verteilt, Aufnahmen zur Versteifung des Systems durchgefiihrt. Anzahl und
Photonummern der Aufnahmen kénnen in Tabelle 8-1 nachgelesen werden.
Photonummern bei 15mm | Photonummern bei 28mm | Anzahl
~ Polizei P744 50-53 44-49, 54, 56 12
Polizei P757 62-64 57-61, 66 9
Hochhaus P767 71-72 67, 69-70, 73 6
Hochhaus P775 85-89 90 6

Tabelle 8-1: Aufnahmeverteilung iiber die Standpunkte

Uber die 7 Parameter der Lagerung des lokalen Systems wurde wie folgt verfiigt, siehe

[Kraus, 1996, p98ff]:

3 Translationen durch Festsetzen der Koordinaten von P744
| Rotation durch Nullsetzen der y Koordinate von P757

2 Rotationen durch Beobachten von senkrechten Linien

1 Maf3stab durch Messen der x Koordinate von P757

Die Messungen von Bildkoordinaten wurden mit dem Programm ORPHEUS [IPF, 2000],
der anschlieBende photogrammetrische Ausgleich mit dem Programm ORIENT
durchgefiihrt.

Auf die Berechnung des Ausgleiches des lokalen Netzes soll hier nicht niher
eingegangen werden, da das eine iibliche und nicht neue Vorgangsweise ist. Die bis dahin
in ORIENT erzeugten Riume konnen in Tabelle 8-2 und die wichtigsten Werte der
Ausgleichsstatistik in Tabelle 8-3 nachgelesen werden:

: Raumart Nummer
REFSYS 9001 Ubergeordnetes System (lokales
Netz)
PHOTO 44-90 Details, siehe Tabelle 8-1
GESTALT 3200, 3210, Senkrechte Hiuserkanten zur
8220, 3230 Horizontierung des Systems
GESTALT 744,757, Modellierung der exzentrischen
767,775 Kameraaufstellungen
CONPOI 80003000 fiir

Tabelle 8-2: Auflistung der in ORIENT erzeugten Rdume zur Bestimmung
der Orientierungen vor der SILHOUETTEn-Berechnung
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Wert

(Quadratsumme der gewichteten 70.02

Anzahl der 2874
_ Anzahl der Unbekannten 613

Redundanz 2261
Standardabweichung a priori PHOTO 1.5 pix
Standardabweichung a priori GESTALT

700 bis 799 0.05m

3000 bis 3999 0.0l m
Sigma0 a priori 0.1 pix
Sigma0 a 0.1727

Tabelle 8-3: Auflistung der wichtigsten statistischen Groflen der Ausgleichung
in ORIENT vor der SILHOUETTEn-Berechnung

8.2 Messung der UmriBpunkte auf Schaft und Zwiebel

Die Umripunkte wurden ebenfalls mit dem Programm ORPHEUS gemessen.
UmriBBpunkte sowohl von Zwiebel und Schaft wurden von jedem Standpunkt aus in den
Bildern gemessen (siehe Abbildung 8-3).

Fiir die Verwaltung der Umriflpunkte wurde folgendes 5-stelliges Punktnummernschema
verwendet (siehe Tabelle 8-4).

Punktnummer

- 2 Schaft pp Photonummer xX Punktnummer

1 Zwiebel
tppx x

Tabelle 8-4: Punktnummernschema von Umripunkten
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Abbildung 8-3: Turm mit gemessenen Umripunkten

8.3 Bestimmung der Naherungswerte fur die UmriBpunkte

Nach Berechnung der Orientierungen wurden die Koordinaten des Mittelpunktes des
Turmes grob geschitzt. In diesem Punkt wurden Ebenen erzeugt, die senkrecht zum
Hauptstrahl der Bilder standen, in denen der Turm beobachtet wurde. AnschlieBend
schnitt man diese Ebenen mit den Sehstrahlen. So gelangte man zu sehr guten
Niherungen fiir die UmriSpunkte.

Das Erzeugen der Ebenen geschah in ORIENT mit folgenden Direktiven,
zusammengefal3t in einem CMD-File:

Sc Schaft

<Ebn6xx

UPDATE REFSYS 9001 ALTER(90000080)n(90000600)

x(-3 94 40);

DEACTIVATE (90000600) .

CREATE z=0OWN(-30000000 O0)

NORME (1) ORIGIN (90000600) ROTPAR (51) GESTALT 651
TAKE (m9001 i 65100-65199) .

101



CREATE z=OWN(-30000000 0)
NORME (1) ORIGIN (90000600) ROTPAR (63) GESTALT 663
TAKE (m9001 i 66300-66399) .

CREATE z=0OWN(-30000000 0)
NORME (1) ORIGIN (90000600) ROTPAR (71) GESTALT 671
TAKE (m9001 i 67100-67199) .

CREATE z=0OWN(-30000000 0)

NORME (1) ORIGIN (90000600) ROTPAR (88) GESTALT 688
TAKE (m9001 i 68800-68899) .

Sed @

Sc Zwiebel

<Ebnlxx

UPDATE REFSYS 9001 ALTER(90000082)n(90000100)

x (-3 94 40);

DEACTIVATE (90000100) .

CREATE z=0OWN (-30000000 0)

NORME (1) ORIGIN (90000100) ROTPAR (51) GESTALT 151
TAKE (m9001 i 15100-15199).

CREATE z=OWN(-30000000 0)
NORME (1) ORIGIN (90000100) ROTPAR (63) GESTALT 163
TAKE (m9001 i 16300-16399) .

CREATE z=OWN(-30000000 0)
NORME (1) ORIGIN (90000100) ROTPAR (71) GESTALT 171
TAKE (m9001 i 17100-17199).

CREATE z=0OWN (-30000000 0)

NORME (1) ORIGIN (90000100) ROTPAR (88) GESTALT 188
TAKE (m9001 i 18800-18899) .

Sed

Dieser Code soll vor allem ORIENT Beniitzern beim Erzeugen solcher Ebenen helfen.
Auf ein paar Details soll noch hingewiesen werden: Erzeugt man die Ebenen in Form von
z-GESTALTen und verwendet die Rotationen der entsprechenden Bilder, so hat man
bereits bewerkstelligt, dal die Ebenen normal auf den Hauptstrahl stehen. Der
Turmmittelpunkt wurde mit (-3/94/40) angenommen. Die Numerierung der Ebenen ist 3-
stellig und die Interpretation erfolgt analog zu den ersten drei Stellen des
Punktnummernschemas (tpp) von Tabelle 8-4.

Die Niherungswerte wurden mit folgendem Befehl in ORIENT berechnet:

$d ADJUST PHOTO=OBJECT (51 63 71 88) GESTALT=OBJECT (151 163 171 188
651 663 671 688) SHOW;

Da sowohl bei den PHOTOs als auch bei den GESTALTen nur die Objektpunkte frei
waren, entsprach das dem Schneiden der Sehstrahlen mit den entsprechenden Ebenen.

102



8.4 Erzeugen von Schaft- und ZwiebelGESTALTen

Das Erzeugen von GESTALTen in Orient soll hier vorab an zwei einfachen Flichen
gezeigt werden. Im Kapitel 8.8 werden geeignete Flichen fiir die Turmzwiebel gesucht.
Der Schaft des Turmes soll durch einen geraden Kreiskegel modelliert werden.

Die implizite Gleichung eines geraden Kreiskegels lautet [Netz, p 456], siehe auch
Abbildung 8-4:

(8.4-1)

Nach Multiplikation von (8.4-1) mit a’c? gelangt man zu:

(8.4-2)

Die Koeffizienten A* ;s der Flichengleichung lauten, siehe auch Kapitel 6.2:
Zuweisung der Parameter:

s:=c
f'=a
Koeffizienten:
8 _ y
A%2000020 = 1 fest
Af 0200020 = 1 fest
Af 020002 = -1 fest
A 39000001 = 4 frei !
A* 39990002 = 500 fest s

Um die Form eines Kegels beschreiben zu kdnnen, reicht das Verhiltnis — aus, daher
s

wird auch nur der Parameter ¢ freigelassen. Wirde man beide Parameter s und ¢
freilassen, wiirde das zu einer Singularitit fiihren.

Das Erstellen des Kegels in ORIENT geschieht wiederum iiber ein dokumentiertes CMD-
File, das hier abgebildet ist (Erkldrungen sind durch $¢ gekennzeichnet):
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<Kglgst6000

UPDATE REFSYS 9001 ALTER(90000081)n(90006000)

$c aendern des Namens eines unbenutzten Punktes in den Namen der

Sc gewilinschten Kegelspitze

x(-16 90 440);

Sc setzen der Naherungswerte flir die Kegelspitze
REACTIVATE(90006000) .

Sc wird fir den Ausgleich freigegeben, kann sich verdndern

CREATE z=0OWN obs (

Sc Koeff.nummer Wert Genauigkeit der Beobachtung (bei 0 unbeobachtet)

Sc ,-, vor dem Koeffizienten bedeutet, dafd er inaktiv ist beim

$Sc Ausgleich

-32000020 1 O Sc x,°2 s™2

-30200020 1 O Sc X, 2 s™2

-30020002 -1 O Sc *ao2) =2

-39990002 500 O Sc s... <c: Hoehe d Spitze Uber Basiskreis
39990001 4 0 ) Sc t... a: Basiskreisradius=4

GESTALT 6000 NORME(1) ORIGIN(90006000)

ROTPAR=OWN=OMFIKA (0.00 0.00 0.00)

Sc GESTALT wird erzeugt mit NORME=1 Bezugspunkt (Q) 90006000 und den
Sc Drehungen (0 0 0)

SIGMA (0.25) TAKE(M9001 i 60000-69999) .

Sc Genauigkeit wird auf 0.25m gesetzt Punkte 6000-6999 liegen auf

Sc GESTALT

UPDATE GESTALT 6000 TYPE=3.

Sc implizite z-GESTALT

UPDATE ROTPAR 6000 DEACTIVATE all.
Sc Rotation wird nicht freigegeben
UPDATE ADPAR 6000 TYPE=1.

$c Minimumkriterium wird auf Typ El gesetzt
Sed

Die Zwiebel des Turmes soll fiir Ubungszwecke durch eine Kugel modelliert werden.
Die implizite Gleichung einer Kugel lautet [Netz, p 456]:

(8.4-3)

Die Koeffizienten A*"',-jk,,,,,,,, der Flichengleichung lauten, siehe auch Kapitel 6.2:
Zuweisung der Parameter:

t=r

Koeffizienten:

Afoo00002 = -1 fest
A% 2000000 fest
A* 0200000 | fest
Afv020000 = 1 fest
A¥ 39990001 = 8 frei
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Das Erstellen der Kugel in ORIENT geschieht wiederum iiber ein CMD-File, das hier
abgebildet ist :

<KugGst1000 $c KUGEL

$d UPDATE REFSYS 9001 ALTER(90000083)n(90001000) ;
UPDATE REFSYS ALTER (90001000)x(-3 90 200);
REACTIVATE (90001000) .

Sd CREATE z=0OWN=obs (

-30000002 -1 O $c

-32000000 1 O $c x1°2

-30200000 1 O SE X2

-30020000 1 O $c X372
39990001 8 0) $c r=8 t=r

GESTALT 1000 NORME(1.00) ORIGIN(90001000)

ROTPAR=0OWN=OMFIKA (0.00 0.00 0.00)

SIGMA (0.10)

TAKE (M9001 i1 15100-15199 16300-16399 17100-17199 18800-18899) .
UPDATE GESTALT 1000 TYPE=3. $c implizite z GESTALT

UPDATE ROTPAR 1000 DEACTIVATE ALL.

UPDATE ADPAR 1000 TYPE=1.

Sed

8.5 Erzeugen von Schaft- und Zwiebel- SILHOUETTEn

Das Erzeugen von SILHOUETTEn in Orient soll hier ganz ausfiihrlich erklirt werden, da
dieser Raum im Zuge dieser Arbeit in ORIENT entstanden ist. Die Raumstruktur und die
notwendigen Parameter fiir das Erzeugen einer SILHOUETTE wurden im Kapitel 6.1
behandelt, die Syntax fiir das Erzeugen wird hier ausfiihrlich erklirt:

Sc Kommentar

CREATE Sc Erzeugt Raum

SILHOUETTE (silhouette_id) S$c Name der SILHOUETTE

TAKE (selection) Sc Alle Punkte, die auf der
Sc SILHOUETTE sind

EXTREFPO (viewpoint_id) Sc Name des Standpunktes der
Sc der Beobachtung

SURFACE (gestalt_id) Sc Name der GESTALT

SIGMA (0.10) Sc Genauigkeit der SILHOUETTE-

$Sc Beobachtung
Sc Abschlufd der Direktive

Der ,,Subtyp® von SILHOUETTE wird, wenn er nicht in der Direktive gesetzt wird,
automatisch auf null gesetzt

Fiir Schaft und Zwiebel lauten die Direktiven:

<Si1h6000 S$Sc Schaft

CREATE SILHOUETTE 6051 TAKE(m9001 i 65100-65199) EXTREFPO 90000044
SURFACE 6000 SIGMA (0.10).

CREATE SILHOUETTE 6063 TAKE(m9001 i 66300-66399) EXTREFPO 90000057
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SURFACE 6000 SIGMA (0.10).

CREATE SILHOUETTE 6071 TAKE(m9001 i 67100-67199) EXTREFPO 90000067
SURFACE 6000 SIGMA (0.10).

CREATE SILHOUETTE 6088 TAKE(m9001 i 68800-68899) EXTREFPO 90000075
SURFACE 6000 SIGMA (0.10).

Sed @

<Si1h1000 $c Zwiebel

CREATE SILHOUETTE 1051 TAKE(m9001 i 15100-15199) EXTREFPO 90000044
SURFACE 1000 SIGMA (1.10).

CREATE SILHOUETTE 1063 TAKE(m9001 i 16300-16399) EXTREFPO 90000057
SURFACE 1000 SIGMA (1.10).

CREATE SILHOUETTE 1071 TAKE(m9001 i 17100-17199) EXTREFPO 90000067
SURFACE 1000 SIGMA (1.10).

CREATE SILHOUETTE 1088 TAKE (m9001 i 18800-18899) EXTREFPO 90000075
SURFACE 1000 SIGMA (1.10).

$ed

8.6 Syntax und Strategie beim Ausgleich von SILHOUETTEn

Syntax fiir den SILHOUETTEn Parameter beim Ausgleich:

ADJUST
SILHOUETTE = OBJECT = EXTREFPO = ROTPAR = ADPAR = PRJCTR

bei
SILHOUETTE = OBJECT freilassen der Objektpunkte
SILHOUETTE = EXTREFPO freilassen des GESTALT Bezugspunktes
SILHOUETTE = ROTPAR freilassen der ROTPAR der GESTALT
SILHOUETTE = ADPAR freilassen der Koeffizienten des ADPAR-
Raumes
SILHOUETTE = PRIJCTR freilassen des Standpunktes der
SILHOUETTE- Beobachtung
Strategie:

Fiir eine Konvergenz des Ausgleichssystems ist, wie bereits im Kapitel 4.3 ausfiihrlich
untersucht wurde, das Minimumkriterium entscheidend. In sehr vielen Fiilen hat sich
bewiihrt, zu Beginn des Ausgleiches den ,,Subtyp* des ADPAR-Raumes auf 1 zu setzen
und, sobald die Konvergenz sichergestellt ist, auf des gewiinschte MinimummaR
umzusetzen. Weiters hat sich gezeigt, dal gemeinsame Freiheitsgrade (ADPAR
EXTREFPO ROTPAR), die sowohl von der GESTALT als auch von der SILHOUETTE
gesteuert werden konnen, parallel gefiihrt werden sollen. Das heif3t, sind diese Parameter
bei der GESTALT frei, so sollen sie auch bei der SILHOUETTE frei sein, ansonsten
kann das zu einem nicht ausiterierbaren Gleichungssystem fiihren. Es sollen ADPAR,
EXTREFPO und ROTPAR nicht alle am Anfang der Iteration freigegeben werden,
sondern in der Reihenfolge EXTREFPO, dann ADPAR und dann erst ROTPAR und
dazwischen sollte ausiteriert werden. Fiihrt diese Vorgangsweise nicht zur gewiinschten
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Konvergenz, so kann moglicherweise durch Anderung der Reihenfolge der Freigabe
Konvergenz erzielt werden.
8.7 Ergebnisse der Schaftvermessung

Bei der Form des Schaftes war es offensichtlich, dal es sich hier um einen Kegel handelt.
Die GESTALT wurde durch das in Kapitel 8.4 aufgelistete CMD-File erzeugt, Parameter
siehe Abbildung 8-4. Die implizite Gleichung des Kegels lautet:

8.7-1)

-20

-15

10

15

-10 -5 0 5 10
Abbildung 8-4: Meridianschnitt eines Kegels

107



Der Ausgleich lieferte folgendes Ergebnis:

Wert |

(Quadratsumme der gewichteten Verbesserungen) 70.02
Anzahl der Beobachtungen 3238
Anzahl der Unbekannten 886
Redundanz 2351
Standardabweichung a PHOTO 1.5 pix
Standardabweichung a priori GESTALT

700 bis 799 0.05m

3000 bis 3999 0.0l m
Sigma0 a priori 0.1 pix
Sigma0 a 0.1728

Tabelle 8-5: Auflistung der wichtigsten statistischen Groflen der Ausgleichung
in ORIENT bei der Kegelberechnung

Die Werte der Parameter ergaben sich zu:

Parameter Wert [m] Mittlerer Fehler [m]
a 5.11 +2.17
Radius des Basiskreises
c 500 fest

Hohe der Kegelspitze liber
dem Basiskreis

Q -4.21 +0.041
Koordinaten der 123.33 +0.037
Kegelspitze 506.62 +93

Tabelle 8-6: Parameter des Schaftes approximiert durch einen Kegel

Aus den Parametern « und ¢ ergibt sich ein Offnungswinkel « von 0.6 Gon. Dieser
geringe Offnungswinkel ist auch der Grund fiir die schlechte Genauigkeit der Kegelspitze
in der x; Koordinate (schleifender Schnitt der Erzeugenden).

Drei weitere Groflen sind bei Fliichenbestimmungen von Interesse:

Mittlerer Fehler a priori angenommene Genauigkeit der Fliche
Mittlerer Fehler a posteriori tatsiichliche Genauigkeit der Fliche
Maximale Fehler maximale Fehler eines Punktes auf der Fliche
Mit. Fehler a riori [m] Mit. Fehler a osteriori [m] Max. Fehler [m]
+0.10 +0.11 +0.19

Tabelle 8-7: Fehler des durch einen Kegel approximierten Schaftes
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Betrachtet man die Genauigkeiten des Basiskreisradius a und der x;- Koordinaten von Q,
so stellt sich die Frage, ob es moglich ist durch eine ,,geschicktere® Formulierung des
Kegels bessere Genauigkeiten zu erzielen. Durch geometrische Uberlegungen wurde
folgende alternative Formulierung gefunden: Der Bezugspunkt Q des Kegels wurde nicht
in die Spitze gelegt sondern in den Basiskreis. Die Hohe des Basiskreises wurde auf Null
gesetzt (daraus folgt: gQ; = 0)’, das entspricht in etwa der Aufnahmehohen der
Standpunkte am Polizeigebiude. Die Gleichung des Kegels fiir Q am Basiskreis lautet
und kann aus (8.7-1) abgeleitet werden, Parameter siehe Abbildung 8-5:

(8.7-2)

3115}

-10

10
IS

20
-10 ) 0 5 10

Abbildung 8-5: Meridianschnitt eines Kegels

Multipliziert man Gleichung (8.7-2) mit @’ und setzt man fiir — = tan(a’) den neuen
C

Parameter &, so gelangt man zu folgender Kegelgleichung:

(8.7-3)

7 Genau genommen wurde die xi-Koordinate von zQ nicht festgehalten, sonder mit einer Genauigkeit von
+0.01'm beobachtet, daher wird auch in Tabelle 8-9 fiir diese Koordinate eine Genauigkeit ausgegeben.
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Die Koeffizienten A'”,_—,-k,,,,,,,, der Flichengleichung lauten, siehe auch Kapitel 6.2:
Zuweisung der Parameter:

5 =g
t=a/c

Koeffizienten:
A¥p000020 = -1 fest
A¥2000020 = 1 fest
A® 9200020 = 1 fest
A¥p020002 = -1 fest
A¥010011 = 2 fest
A¥39990001 = 0.01 frei ¢
A¥ 30990002 = 5 frei s

Die GESTALT wurde durch das hier aufgelistete CMD-File erzeugt:

<Kegel KEGEL

$d UPDATE REFSYS 9001 ALTER(90000084)n(90006010) ;
UPDATE REFSYS ALTER (90006010)x(-16 90 0); Sc
REACTIVATE (90006010) .

Sd CREATE z=0WN=obs (

-30000020 -1 O S& s™2

-32000000 1 0 S$c x"2

-30200000 1 0 Ssc y"2

-30020002 -1 0 Sc Z P, £
-30010011 +2 0 sc z™1 sS40 £l

39990002 5 0 Sc s=a Radius des Basiskreises
39990001 0.01)sc k=a/c
GESTALT 1000 NORME(1.00) ORIGIN(90006010)
ROTPAR=0OWN=OMFIKA (0.00 0.00 0.00)
SIGMA (0.10) TAKE(M9001 i 60000-69999).
UPDATE GESTALT 6010 TYPE=3. $c implizite z GESTALT

UPDATE ROTPAR 6010 DEACTIVATE all.
Sc Rotation wird nicht freigegeben
UPDATE ADPAR 6010 TYPE=1.

$d EDIT CONPOI DATA (kegel.con) FORMAT=FREE ENDCODE(-99) .

Sc Einlesen eines Passpunktraums, der
Sc die z Koordinate von Q beobachtet (entspricht “festgehalten")
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Der Ausgleich lieferte folgendes Ergebnis:

Wert
(Quadratsumme der 70.03
Anzahl der 3238
Anzahl der Unbekannten 886
Redundanz 2351
a PHOTO 1.5
Standardabweichung a priori GESTALT
700 bis 799 0.05m
3000 bis 3999 0.0l m
Sigma0 a priori 0.1 pix
a 0.1728

Tabelle 8-8: Auflistung der wichtigsten statistischen Grofen der Ausgleichung
in ORIENT bei der Kegelberechnung

Die Werte der Parameter ergaben sich zu:

Parameter Wert [m] Mittlerer Fehler [m]
a 5.18 +0.057
Radius des Basiskreises
k=c/a 0.0102 +0.002

Verhiltnis aus Hohe und
Basiskreisradius

Q -4.21 +0.041

Koordinaten der 123.33 +0.037

Kegelspitze 0 +0.017

Tabelle 8-9: Parameter des Schaftes approximiert durch einen Kegel

Aus dem Parameter k ergibt sich wieder ein Offnungswinkel a von 0.6 Gon. Vergleicht
man Tabelle 8-6 mit Tabelle 8-9, so erkennt man, daf3 durch diese Kegeldarstellung ein
besseres Ergebnis, was die mittleren Fehler betrifft, erzielt wurde.

Mittlerer Fehler a priori, mittlerer Fehler a priori und maximale Fehler ergaben sich zu:

| Mit. Fehler a [m] - Mit. Fehler a - [m] Max. Fehler [m]

| +0.10 +0.11 +0.19
Tabelle 8-10: Fehler des durch einen Kegel approximierten Schaftes



8.8 Ergebnisse der Zwiebelvermessung

Bei der Form der Zwiebel wurden verschiedene Flichen fiir eine Approximation
verwendet. Das Spektrum reichte von einer einfachen Kugel bis hin zu Rotationsflichen
vierter Ordnung. Zur Auswahl passender Flichen konnen ,Flichenlexika* wie [Loria,
1910] verwendet werden, oder auch ausfiihrlichere Formelsammlungen wie [Netz, 1992].
Fir die Bestimmung dieser Zwiebel wurde zusitzlich noch [Wunderlich, 1979]
herangezogen. Diese Publikation beschiftigt sich mit der Bestimmung der Geometrie der
Vogeleier. Drei Flichen wurden ausgewiihlt und auf die Eignung zur Approximation der
Zwiebel untersucht:

8.8.1 Approximation mittels Kugel

Die GESTALT wurde durch das in Kapitel 8.4 aufgelistete CMD- File erzeugt,
Die implizite Gleichung einer Kugel lautet:

(8.8-1)

Parameter, siehe Abbildung 8-6:

-10 -5 0 5 10

Abbildung 8-6: Meridianschnitt eines um die x;-Achse rotierenden Kreises
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Der Ausgleich lieferte folgendes Ergebnis:

N Wert

(Quadratsumme der 77.84
Anzah| der 3842
Anzahl der Unbekannten 1343
Redundanz 2499
Standardabweichung a PHOTO 1.5
Standardabweichung a priori GESTALT

700 bis 799 0.05 m

3000 bis 3999 0.0l m
Sigma0 a priori 0.1 pix
Sigma0 a 0.1765

Tabelle 8-11: Auflistung der wichtigsten statistischen Grofen der Ausgleichung
in ORIENT bei der Kugelberechnung

Die Werte der Parameter ergaben sich zu:

Parameter Wert [m] Mittlerer Fehler [m]
r 10.05 +0.026
Radius der
Q -4.62 +0.047
Koordinaten des 123.64 +0.041
55.82 +0.048

Tabelle 8-12: Parameter der durch eine Kugel approximierten Zwiebel

Mit. Fehler a riori [m] Mit. Fehler a osteriori [m] Max. Fehler [m]
+0.10 +0.13 -0.37

Tabelle 8-13: Fehler der durch eine Kugel approximierten Zwiebel

Gemessenen Verkniipfungspunkte, die nicht zur Bestimmung der Flichengestallt
verwendet wurden, wiesen einen maximalen und mittleren Abstand (in erster Niherung)
zur Fliche von 1.05 m bzw. + 0.35 m auf.
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8.8.2

Die implizite Gleichung der Rotationskardioide lautet:

Approximation mittels Rotationskardioide

Parameter, sieche Abbildung 8-7:

Abbildung 8-7: Meridianschnitt einer um die x;-Achse rotierenden Kardioide
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Die GESTALT wurde durch das hier aufgelistete CMD-File erzeugt:

<Kdgst100

UPDATE REFSYS ALTER

0

KARDIOIDE
$d UPDATE REFSYS 9001 ALTER(90000083)n(90001000) ;
(90001000)x (-3 94 41);

REACTIVATE(90001000) .
$d CREATE z=0WN=obs (

-30000000
-34000000
-30400000
-30040000
-32200000
-32020000
-30220000
-32000002
-30200002
-30020002
-30010003
-30000004

o

0

[eNeololoNeoNoNoNeNoNeNe)

Sie
S'e
St
ol
SE
Sc
Yol
Se
Sie
Ye!
Sc
Sc

x4

X2
X172

X1A2

X2A4
X2A2
X2A2

X2A2

X3A4
X372

X372

X3A2
X372

tn2
£t"2
g2
£*3
t~4
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39990001 3 0 S$c r=-~3 t=r
99990001 3 0) $c

GESTALT 1000 NORME(1.00) ORIGIN(90001000) ROTPAR=OWN=OMFIKA (0.00 0.00
0.00)

SIGMA (0.10) TAKE(M9001 i 15100-15199 16300-16399

17100-17199 18800-18899) .

UPDATE GESTALT 1000 TYPE=3. $c implizite z GESTALT

Der Ausgleich lieferte folgendes Ergebnis:

Wert
(Quadratsumme der 77.26
Anzahl der Beobachtungen 3842
Anzahl der Unbekannten 1343
Redundanz 2499
a PHOTO 1.5 pix
Standardabweichung a priori GESTALT
700 bis 799 0.05m
3000 bis 3999 0.0l m
a 0.1
a 0.1758 pix

Tabelle 8-14: Auflistung der wichtigsten statistischen GroBlen der Ausgleichung
in ORIENT bei der Rotationskardioideberechnung

Die Werte der Parameter ergaben sich zu:

Parameter Wert [m] Mittlerer Fehler [m]
r 3.95 +0.010
Q -4.64 +0.048
Koordinaten des 123.65 +0.044
Kardioidenmi 53.64 +0.045

Tabelle 8-15: Parameter der durch eine Rotationskardioide approximierten Zwiebel

Mit. Fehler a riori [m] Mit. Fehler a osteriori [m] Max. Fehler [m]
+0.10 +0.13 + 0.38

Tabelle 8-16: Fehler der durch eine Rotationskardioide approximierten Zwiebel
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Gemessenen Verkniipfungspunkte, die nicht zur Bestimmung der Fliachengestallt
verwendet wurden, wiesen einen maximalen und mittleren Abstand (in erster Niherung)
zur Fliche von 0.50 m bzw. + 0.23 m auf.

Da die Approximation der Zwiebel durch eine Rotationskardioide keine Verbesserung
zur Kugel darstellte (vergleiche Fehler a posteriori), wurde ein MaBstabsfaktor /i in der
x3-Richtung zusiitzlich modelliert.

Die implizite Gleichung der Rotationskardioide mit x; Faktor (/1) lautet:

(8.8-3)

Das modifizierte CMD-File lautet:

<Kdgst1000 KARDIOIDE mit x3 Faktor

$d UPDATE REFSYS 9001 ALTER(90000083)n(90001000) ;
UPDATE REFSYS ALTER (90001000)x(-3 94 41); Sc
REACTIVATE (90001000) .

$d CREATE z=0OWN=o0Dbs (
-30000000 0 O sc

-34000000 1 0 $c x,~4

-30400000 1 0 Sc x4

-30040040 1 0 &c x3"4  s~4
-32200000 2 0 S$c x;°2 x,°2

-32020020 2 0 S$c x;72 %32 s~2
-30220020 2 0 Sc 02 2 s
-32000002 -6 0 S$c x;72 £~2
-30200002 -6 0 $c "7 £~
-30020022 -6 0 Sc x3*2 s~2  t°2
-30010013 -8 0 Sc 2 ) med e
-30000004 -3 0 Sc t~4
39990001 3 0 Sc r=~3 t=r
39990002 1 0) $c s=~1 s=h

GESTALT 1000 NORME(1.00) ORIGIN(90001000)
ROTPAR=OWN=OMFIKA (0.00 0.00 0.00)

SIGMA (0.10)

TAKE (M9001 i 15100-15199 16300-16399 17100-17199 18800-18899) .
UPDATE GESTALT 1000 TYPE=3.

Sc implizit z GESTALT
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Der Ausgleich lieferte folgendes Ergebnis:

Wert
pll (Summe der Zuschlige) 77.58
(Summe der 77.58
Beobachtungen 3842
Unbekannte 1343
Redundanz 2499
Standardabweichung a priori PHOTO 1.5 pix
Standardabweichung a priori GESTALT
700 bis 799 0.05m
3000 bis 3999 0.0l m
SigmaO a priori 0.1 pix
a 0.1742

Tabelle 8-17: Auflistung der wichtigsten statistischen Gréfen der Ausgleichung
in ORIENT bei der Rotationskardioideberechnung (mit x; Faktor)

Die Werte der Parameter ergaben sich zu:

Parameter Wert [m] Mittlerer Fehler [m]
r 3.95 +0.010
h 0.92 +0.008
x3 Faktor '
Q -4.63 +0.047
Koordinaten des 123.65 +0.044
Kardioidenmittelpunktes 53.49 + 0.054

Tabelle 8-18: Parameter der durch eine Rotationskardioide mitx; Faktor approximierten Zwiebel

Mit. Fehler a priori [m] Mit. Fehler a osteriori [m] Max. Fehler [m]
+0.10 +0.11 + 0.28

Tabelle 8-19: Fehler der durch eine Rotationskardioide mit x ; Faktor approximierten Zwiebel

Gemessenen Verkniipfungspunkte, die nicht zur Bestimmung der Flichengestallt
verwendet wurden, wiesen einen maximalen und mittleren Abstand (in erster Niherung)
zur Flache von 0.40 m bzw. + 0.19 m auf.

Der mittlere Fehler a posteriori war von + 0.13 auf + 0.11 gefallen und der maximale
Fehler von + 0.37 auf + 0.28. DaB3 die Fehler kleiner werden, war zu erwarten, da ein
weiterer freier Parameter eingefiihrt wurde. Ein Signifikanztest wurde durchgefiihrt, der
gepriift hat, ob sich der zusitzliche Parameter signifikant von | unterscheidet [Kreyszig,
1979, p 203ff]. Dabei wurde die maximale Abweichung vom Referenzwert unter der
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Annahme von einer 99%igen Wahrscheinlichkeit berechnet. Dieser Test lieferte als
maximale Abweichung 0.0186, der berechnete x; Faktor weist eine Abweichung von 0.08
auf und liegt daher auBlerhalb des Intervalls. Was wiederum heif3t, daf3 der Faktor zurecht
eingefiihrt wurde.

8.8.3 Approximation mittels parabolischer Rotationskubik

Die implizite Gleichung der Rotationskkubik lautet:

(8.8-4)

Parameter, sieche Abbildung 8-8:

10

[x, x]

-10.

o Pq
b*(p-q)
-25
-15 -10 -5 0 5 10 15

Abbildung 8-8: Meridianschnitt einer um die x;-Achse rotierenden parabolischen Kubik

Die GESTALT wurde durch das hier aufgelistete CMD-File erzeugt:

< Kdgst1000 Parabolische Kubik

UPDATE REFSYS 9001 ALTER(90000083)n(90001000)
x(-4 123 65);

REACTIVATE (90001000) .

CREATE z=0WN=obs (

-30000000 O O Sc

-32000100 -1 0 $c x;72 t~1
-30200100 -1 0 $¢ X2 chal !
-30030000 1 0 Sc X373
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-30020010 1 0 Sc X372 s™1
-30020001 -1 0 S$c X3"2 g |

-30010011 -1 0 S$c xX3"2 s”1 =1
39990001 6 0 sc t=6 r=m
39990002 20 0 Sc s=20 s=1
39990003 19 0) Sc t=19 t=c

GESTALT 1000 NORME(1.00) ORIGIN(90001000)
ROTPAR=OWN=OMFIKA (0.00 0.00 0.00)

SIGMA (0.10)

TAKE (M9001 i 15100-15199 16300-16399 17100-17199 18800-18899) .
UPDATE GESTALT 1000 TYPE=3. $c implizit z GESTALT

Der Ausgleich lieferte folgendes Ergebnis:

Wert
(Quadratsumme der 77.78
Anzahl der Beobachtungen 3842
Anzahl der Unbekannten 1343
Redundanz 2499
a PHOTO 1.5
Standardabweichung a priori GESTALT
700 bis 799 0.05m
3000 bis 3999 0.0l m
a 0.1
Sigma0 a posteriori 0.1719 pix

Tabelle 8-20: Auflistung der wichtigsten statistischen Grofen der Ausgleichung
in ORIENT bei der Rotationskubikberechnung

Die Werte der Parameter ergaben sich zu:

Parameter Wert [m] Mittlerer Fehler [m]
[ 21.18 +0.49]
c 18.70 + 1.330
m 5.44 +2.340
Q -4.68 +0.040
Koordinaten des 123.62 +0.034
Kubikbezugpunktes 68.12 +0.531

Tabelle 8-21: Parameter der Zwiebel approximiert durch eine parabolische Rotationskubik

Fehler a priori [m] Fehler a posteriori [m] Maximaler Fehler [m]
+0.10 +0.08 -0.27

Tabelle 8-22: Fehler der Zwiebel approximiert durch eine parabolische Rotationskubik
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Gemessenen Verkniipfungspunkte, die nicht zur Bestimmung der Flichengestallt
verwendet wurden, wiesen einen maximalen und mittleren Abstand (in erster Niherung)
zur Fliache von 0.24 m bzw. + 0.12 m auf.

Die Approximation der Zwiebel durch eine parabolische Rotationskubik brachte eine
weitere Verbesserung zur Rotationskardioide mit MaBstabsfaktor in der x; Richtung
(vergleiche Fehler a posteriori). Hingegen verschlechterten sich die Genauigkeiten der
Formparameter (vergleiche Tabelle 8-21 mit Tabelle 8-18). Das ist darauf
zuriickzufiihren, dafl bei der Kubik drei Parameter zu bestimmen waren. Die
Uberbestimmungen teilten sich daher auf diese drei Parameter auf, was zu diesem
Genauigkeitsverlust fiihrte.

8.8.4 Zusammenfassung

Sowohl die Rotationskardioide mit MaBstabsfaktor als auch die parabolische
Rotationskubik approximieren die Zwiebel sehr gut. Bei beiden Kurven bewegen sich die
mittleren Fehler im 10 cm Bereich. Welche der beiden Kurven fiir den Benutzer die
bessere ist, muf3 von ihm selbst entschieden werden. Eine mdgliche Entscheidungshilfe
wiirden Punkte am unteren Ende der Zwiebel liefern, da sich hier die beiden Flichen am
stirksten unterscheiden. Leider werden diese Punkte vom Schaft verdeckt.

Anmerkung: Die angegebenen mittleren Fehler fiir die Zwiebelvermessung beziehen sich
auf das fest gelagerte lokale Koordinatensystem. Mit Hilfe einer freien Netzlagerung
konnte man ein Loslosen vom festen System bewirken.
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9 Zusammenfassung und Ausblick

Das Ziel der Objektrekonstruktion unter Mithilfe von Umri3punkten wurde erreicht. Die
dafiir entwickelte Theorie wurde allgemein fiir unterschiedliche Flichendarstellungen
abgeleitet, durch Erklirungen, Abbildungen und Tabellen dem Leser verstindlicher
gemacht, soda die Grundidee besser zu erkennen ist.

Speziell wurde die Theorie der Objektrekonstruktion durch beobachtete Umri3punkte fiir
das Programmpaket ORIENT aufbereitet und implementiert. Die Schritt fiir Schritt
aufbereiteten Teilkapitel des Theorieteils finden in der Vermessung des Wiener
Fernwirmeturms Anwendung. Dieses Beispiel veranschaulicht nochmals ausfiihrlich die
Vorgangsweise bei der Objektrekonstruktion mit Hilfe von Umripunkten und kann
daher als Musterbeispiel fiir Folgeprojekte dienen. Die Vermessung des Turmes erfolgte
ausschlieflich unter der Verwendung von Umrilpunkten.

Ziel ist es, die Umrisse automatisch zu detektieren und sie den entsprechenden Flichen
zuzuordnen. Erste vielversprechende Vorstudien wurden vom Verfasser bereits in dieser
Richtung unternommen [Legenstein, 2000].

Abbildung 9-1: Fernwiarmeturm und automatisch detektierter Umrif} des Turmes

Abbildung 9-1 zeigt den Fernwirmeturm und das Ergebnis einer automatischen Objekt-
und Umrifldetektion. Fiir die Objektdetektion wurden Farbe und Textur verwendet, fiir
die anschlieBende Bestimmung des Umrisses ein ,.einfacher® Kantenextraktor. Eine
Zuordnung der einzelnen Umrilteilstiicke zu ihren Flichenteilen konnte iiber die
unterschiedlichen Farben von Schaft und Zwiebel erfolgen.

Eine teilweise oder vollstindige Automation wiirde (grob geschitzt) in jedem zweiten
photogrammetrischen Projekt zu Zeitersparnissen und Erleichterungen fiihren.

Ein weiterer Bereich, bei dem Umri8punkte zum Einsatz kommen konnten, wire die
Bildorientierung. Es  soll  hier eine  Auflistung der unterschiedlichen
Bildorientierungsverfahren und eine grobe Abschitzung iiber den Einsatzbereich von
Umripunkten dabei erfolgen:
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e Einzelbildorientierung

Die Einzelbildorientierung erfolgt iiber PaBpunkte oder Pallinien [Kraus,
1994] [Forkert, 1994]. Ein beobachteter PaBpunkt liefert zwei
Beobachtungsgleichungen - je Bildkoordinate eine Beobachtungs-
gleichung. Ein beobachteter Punkt auf einer Pal3linie liefert hingegen nur
eine Uberbestimmung - den beiden Bedingungsgleichungen fiir die
Bildkoordinaten steht der unbekannte Parameter des Punktes auf der Linie
gegeniiber. Ein Umrilpunkt wiirde ebenfalls bei gegebener Fliche eine
Uberbestimmung liefern. Eine Bildorientierung ausschlieBlich mit
UmriBpunkten wird sicher versagen, wenn die Fliche eine oder mehrere
Rotationsachsen besitzen wiirde. In allen anderen Fillen wire eine
Bildorientierung mit UmriBpunkten theoretisch moglich.

e Relative Orientierung

Die relative Orientierung von Photos erfolgt iiber Verkniipfungspunkte
und  Verkniipfungslinien.  Eine ,direkte relative  Orientierung
ausschlieBlich mit UmriBpunkten ist nicht moglich, da es sich bei
beobachteten Umri8punkten - in verschiedenen Bildern - um keine
homologen Punkte handelt. Denn der wahre Umril setzt sich aus
unterschiedlichen Punkten - von jeder Blickrichtung aus betrachtet -
zusammen. Jedoch wiire es moglich, die gegebene Fliche zu einem Photo
relativ zu orientieren und anschlieBend die weiteren Photos relativ zur
Fliche zu orientieren. Es ist zu beachten, dafl ein beobachteter
UmriBpunkt drei Beobachtungsgleichungen liefert und daf3 neben diesen
Objektpunkten auch die Orientierung der Fliche bestimmt werden muf.

e Absolute Orientierung relativ orientierter Stereomodelle
Die absolute Orientierung relativ orientierter Modelle erfolgt iiber
PaBpunkte und PaBlinien. Dabei ist der Einsatz von Umrillpunkten nicht
moglich, da UmriBpunkte nur in Kombination mit Flichen moglich sind.
Werden aber auch Pafiflichen dazu verwendet, so liefern auch hier
UmriBlpunkte zusitzliche Informationen.

e Hybride Biindelblockausgleichung
Die hybride Biindelblockausgleichung bestimmt die Relative Orientierung
und die Absolute Orientierung simultan. Hierbei gelten die gleichen
Uberlegungen wie bei den ersten drei Methoden.

Eine potentielle Anwendung wire die Orientierung von Landschaftsphotos, bei denen
von einem Standpunkt aus Konturen der Berge photographiert wurden. So kénnte man
die Orientierung von Photos mit Hilfe eines DHM der Landschaft berechnen
[Finsterwalder, 1994].
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