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Abstract 
 
The submarine hydrothermal system to the east of Panarea Island (Aeolian Islands, Italy) was 

investigated with regard to the geochemistry and rate of emission of the gases discharging on 

the seafloor. During two campaigns in May and September 2008 the sampling of fluids and 

measurements on the seafloor were carried out by scuba diving at 6 different sites within a 

shallow marine fumarolic field, in depths between 8 and 30 m. The gases were analysed for 

CO2, H2S, CO, CH4, light alkanes and elemental composition, thermal waters for on-line 

parameters, TIC, S-species and halogens (Cl-, F- and Br-). For evaluation of the gas 

composition and its responsible processes external data were used, too. The quantification of 

submarine degassing was carried out by both measurements and estimations of gas flow rates. 

The CO2-rich gases are encountered partial dissolution as well as mixing with atmospheric 

compounds saturated in seawater during their migration towards the seafloor. An input of 

deep magmatic gases is provided by isotopic ratios. Distinctive physico-chemical parameters 

of the Black Point fluid discharges in comparison to the other sites may reveal a contribution 

of acid magmatic gases. The dissolution of discharged gases in seawater causes a decrease of 

pH and increase of TIC in vicinity of the emission points.  

The total gas output of the investigation area is 2.3 * 107 L/day, which is 2 to 3 orders of 

magnitude lower than the degassing rate at the submarine gas eruption occurred in November 

2002. But, the system seems to have achieved again a state of constant degassing, although a 

new submarine gas eruption in the future can not be excluded.  

The determined gas output equals the emission of 52.7 t CO2 per day which is marginal 

compared to subaerial volcanoes like Mt. Etna. Again, the global CO2 emission by subaerial 

volcanoes is trivial against the anthropogenic CO2 release. 

 iii 
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1. Introduction and objectives 

1.1 Fundamentals and state of research 

1.1.1 Geothermal/hydrothermal systems 
 

Geothermal systems are found throughout the world in a range of geological settings. These 

different types have a heat source at few kilometres depth in common which sets water in the 

upper Earth’s crust into convection. High-temperature geothermal reservoirs are typical 

settings around plate margins such as subduction zones, spreading ridges, and rift zones and 

within orogenic belts. They are often volcanogenic with heat provided by intrusive masses of 

magma that drive the geothermal convection system (Nicholson, 1993, Herzig and 

Hannington, 2006).  

Traditionally, the research of hydrothermal systems has been divided into deep-sea 

hydrothermal systems (mid-ocean ridges) and sub-aerial hydrothermal or geothermal systems. 

Only recently a third type of hydrothermal system found in marine shallow water near-shore 

environments or on the tops of seamounts has been receiving consideration (Pichler, 2005). 

 
The major source for the composition of the formed hydrothermal fluids are water-rock 

reactions (Nicholson, 1993). Phase separation and subsequent mixing of the brines with more 

dilute hydrothermal fluids during the ascent to the seafloor, the interactions with sediments in 

the upflow as well as the contribution of a degassing magma may dramatically modify the 

initial fluid chemistry (Herzig and Hannington, 2006). 

In the case of mid-ocean ridges (MOR) seawater penetrates deeply into the crust along cracks 

and fissures, then, is heated and in a reaction zone situated close to the top of the subaxial 

magma chamber (Herzig and Hannington, 2006). It reacts with basalts and is converted into a 

highly corrosive and metal-bearing hydrothermal fluid. The major physical and chemical 

changes to seawater include increasing temperature, decreasing pH, and decreasing redox 

potential (Eh) as well as the typical enrichment in elements such as chloride (Cl), lithium (Li), 

potassium (K), calcium (Ca), manganese (Mn), iron (Fe) etc., and the depletion in magnesium 

(Mg) and sulphate (SO4) (Herzig and Hannington, 2006, Nicholson, 1993).  

Due to its buoyancy at high temperatures, the hydrothermal fluid rises to the seafloor. Mostly 

during the ascent, when the hydrothermal fluid intersect the two-phase curve of seawater, it 

undergoes boiling, a process that separates a low-salinity, vapour-rich phase from the liquid 

phase. Phase separation is one of the most important processes controlling chemistry of liquid 
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and vapour hydrothermal discharges (Herzig and Hannington, 2006, Nicholson, 1993). At 

temperatures and pressures higher than the critical point of seawater (407 °C and 298 bars), 

supercritical phase separation involves the condensation of a small amount of high salinity 

brine, which may accumulates to a metal-rich brine (Herzig and Hannington, 2006). 

At the seafloor the hydrothermal fluids discharge along geological faults, particularly where 

these intersect (Dando et al., 1999, Herzig and Hannington, 2006, Italiano and Nuccio, 1991). 

The vapours may migrate to the seafloor independently of the liquid phase and mainly 

discharge as fumaroles (Nicholson, 1993). Gases such as carbon dioxide (CO2), hydrogen 

sulphide (H2S), nitrogen (N2), hydrogen (H2), methane (CH4), carbon monoxide (CO) as well 

as steam (H2O) are typical components in hydrothermal vapour discharges.  

The flux of volatiles in volcanic arc and back-arc hydrothermal systems release is likely much 

greater than that of mid-ocean ridges, because of both degassing of the subducted slab and the 

mantle (Dando et al., 1999, Herzig and Hannington, 2006). Additionally, the direct 

contribution of magmatic gases, such as carbon dioxide (CO2), sulphur dioxide (SO2) and 

hydrogen chloride (HCl), to the hydrothermal systems can result in highly acidic 

hydrothermal fluids with pH < 2 (Gamo et al., 2006, Herzig and Hannington, 2006).  

 

Hydrothermalism in the Mediterranean Sea results from the collision of the African and 

European plates, with the subduction of the oceanic part of the African plate below Europe. 

High heat flows in the resulting volcanic arcs and back-arc extensional areas have set up 

hydrothermal convection systems (Dando et al., 1999). Most of the known submarine 

hydrothermal venting in the Mediterranean is from shallow water (< 200 m depth) (Dando et 

al., 1999). 

   

1.1.2 The hydrothermal system of Panarea 
 
Submarine hydrothermal exhalations, both shallow and deep, occur off the coasts of all the 

Aeolian Islands, Italy (Gugliandolo et al., 2006, Italiano and Nuccio, 1991). Thereby, the 

hydrothermal system located to the east of Panarea Island showed the most active submarine 

emissions at shallow depths (Gugliandolo et al., 2006). Although, the Panarea hydrothermal 

system has been known since the Roman age detailed scientific investigations of the 

discharging fluids at sea bottom were firstly carried out in the mid 1980s by Italiano and 

Nuccio (1991). 
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This study was focused on the fumarolic area of La Calcara on the island of Panarea, but 

mainly on the submarine hydrothermal manifestation east of the coast. The authors identified 

23 fields of submarine gas and thermal water discharges in a 4 km2 wide area along the main 

regional tectonic alignments (NE-SW, NW-SE and N-S). The gas exhalations, with an 

evaluated total gas output of 9 * 106 litres per day, were dominated by CO2 (> 92 vol.%) and 

H2S (0 – 6.5 vol.%), with relatively low amounts of atmospheric species, CH4, H2 and traces 

of CO (Italiano and Nuccio, 1991).  

 

Based on the chemical and isotopic composition of the gas and water discharges as well as 

gaseous and liquid phase geothermometry Italiano and Nuccio (1991) created a semi-

quantitative stratified model for the geothermal system of Panarea (Fig. 1). It was 

hypothesised that magmatic fluids have been intruded in recent times, probably derived from 

a cooling magma body, are the thermal source for the system. The deep geothermal reservoir 

at temperatures more than 270 °C is feeding a relative large main geothermal body, recharged 

by marine waters circulating at depth. Ascending fluids reach two different shallow submarine 

hydrothermal systems, one partially recharged by continental waters from Panarea Island and 

the other one by marine waters. Both systems have temperatures of about 170 – 210 °C and 

feed the hydrothermal emissions at the seafloor.  
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Fig. 1.   Schematic representation of the geothermal system of Panarea (modified from Italiano and 
Nuccio (1991)).  

 

1.1.3 The submarine gas eruption of 2002 
 
Before November 2002 the submarine hydrothermal activity was limited to weak gas 

bubbling that could only be seen on the surface when the sea was very calm and the volcanic 

activity of the Panarea volcano complex was considered to be quiescent (Caliro et al., 2004) 

(Dolfi et al., 2007). However, there are historical reports of intensive gas discharges in this 

area,  so-called “bollitore”, which were described as boiling of seawater with death of fishes 

(Anzidei et al., 2005, Caliro et al., 2004, Dolfi et al., 2007, Esposito et al., 2006, Italiano and 

Nuccio, 1991). Moreover, hundreds of craters on the seafloor were identified suggesting that 

the seafloor in this area was the site of gas eruptions in the past (Esposito et al., 2006).  

 

During the night between November, 2nd and 3rd 2002 a submarine gas burst started offshore 

about 2.5 km east of Panarea Island. The anomalous release of gas together with intense 

sulphurous smell, death of thousands of fishes and the whitening of the sea surface due to 

dispersed fine-grained sediments and colloidal sulphur, was first observed by some local 

fishermen. Three huge plumes of gas bubbles several metres in diameter could be seen on the 
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sea surface. They originated from gas vents have been explosive at the onset of the event 

which produced large craters (Esposito et al., 2006). The crater of the main active exhalative 

centre with an extent of 35 m * 25 m and a depth of 7 m could be related to a sediment 

removal of 3 * 103 m3 (Esposito et al., 2006).  

Although, a seismic event of minor magnitude (M < 1.8) was recorded between 2nd and 3rd 

November 2002 (Esposito et al., 2006) the submarine gas eruption occurred suddenly, without 

a significant geophysical precursory signal (Anzidei et al., 2005, Caracausi et al., 2005b). 

However, the event followed near the end of a prolonged seismotectonic paroxysmal period in 

southern Italy, with a strong earthquake (M = 5.6) in the southern Tyrrhenian Sea on the 6th  

of September and the onset of the strongest Mount Etna eruption in the last decades on the 

27th of October (Dolfi et al., 2007, Esposito et al., 2006, Tassi et al., 2009). Furthermore, it 

preceded the paroxysmal eruption at Stromboli that started on the 28th of December (Dolfi et 

al., 2007, Esposito et al., 2006). The generated landslides at the north-west flank of the 

volcano caused two tsunamis on the December, 30th which attacked the coast of Stromboli 

and other Aeolian Islands like Panarea (Tinti et al., 2005).  

Geochemical investigation of the hydrothermal fluids revealed a very rapid evolution of the 

shallow-water hydrothermal system, both in time and space. The hydrothermal gas output 

suddenly increased by two to three orders of magnitude with respect to the conditions before 

the crisis and progressively decreased again in the following weeks and month towards steady 

state levels, still higher than the pre-crisis conditions (Caliro et al., 2004, Caracausi et al., 

2005b). Also the composition of the gas emissions changed significantly compared to the 

period prior November 2002 (Capaccioni et al., 2007, Caracausi et al., 2005a, Chiodini et al., 

2006, Italiano and Nuccio, 1991). 

 

The event of anomalous gas release was likely due to an increase in the feeding rate of deep 

magmatic fluids into the hydrothermal reservoir (Caliro et al., 2004, Capaccioni et al., 2007, 

Caracausi et al., 2005a, Chiodini et al., 2006). Therefore, two models compatible with the 

chemical and isotopic data of the discharging hydrothermal fluids were established by 

Chiodini et al. (2006). 

On one hand, the submarine explosion would have been generated by a gaseous phase that 

was separated at depth through the increased input of high-temperature magmatic fluids. The 

calculated temperatures ranged from 350 to 450 °C in the hydrothermal system which was 

either partially or even totally vaporised (Caliro et al., 2004). The rising gases lost their 

volcanic acid species due to condensation and interaction with seawater.  
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On the other hand, the input of magmatic fluids in the system caused atypical redox 

conditions, more oxidising than expected compared to normal hydrothermal environments 

(Capaccioni et al., 2007, Chiodini et al., 2006). Thus, the explosive event of November, 3rd 

would have been caused by the achievement of a critical state of overpressure through 

continuous addition of gas and energy from the magmatic source. In this case, temperatures 

up to 340 °C and steam pressures of about 140 bar were calculated (Caliro et al., 2004).  

Esposito et al. (2006) assumed as well that the November 2002 gas eruption was due to the 

sudden release of pressurised gas accumulated at shallow depths, whereas the tensile strength 

of the confining country rock may be periodically overcome, also by means of hydraulic 

fracturing through the micro-seismic event before the eruption. In contrast, Caracausi et al. 

(2005b) supposed that the open, widely fractured hydrothermal system is capable of 

preventing significant overpressure. 

 

For the future the most hazardous scenario is related to phreatic explosive eruptions that may 

occur offshore and also on the inhabited island of Panarea, densely populated particularly 

during summer season (Caracausi et al., 2005b, Esposito et al., 2006). Such an event can 

cause massive releases of toxic gases which are relevant as hazards for fishers, divers and 

boat tourists, who spend time in the area. Although, anomalous waves can reasonably be 

excluded since the energy involved of events like the one in 2002 is much lower than that 

typical for formation of tsunami waves, more energetic episodes in the future due to more 

intense gas releases or a more direct involvement of magma cannot be excluded (Caracausi et 

al., 2005b). 

 

1.2 Fundamentals about carbon dioxide and global biogeochemical 
processes 
 
CO2 is a very important specie for assessing volcanic activity. It is degassing early from the 

ascending magmas because of its low solubility in silica melts (Aiuppa et al., 2006b) and thus, 

becomes the most abundant component of volcanic gases, aside from water vapour (H2O). 

With respect to magmatic SO2, carbon dioxide is less reactive and behaves conservatively 

during gas-water-rock interaction within the volcanic edifice and upon emission into the 

atmosphere and is thus a far more promising target specie for providing deeper geochemical 

insights and early eruption forewarnings based on its emission data than e.g. volcanic SO2 

(Aiuppa et al., 2006b, Burton et al., 2000, De Rosa et al., 2007, McGonigle et al., 2008). 
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In general, CO2 is also the most important component of exchange within the global carbon 

cycle.   

 

1.2.1 The global carbon cycle 
 

The global cycle of carbon involves reactions within and the exchange among the major 

global reservoirs: geosphere (crust and mantle), hydrosphere, biosphere and atmosphere. The 

mantle is rarely connected to the combined near-surface system (Bahlburg and Breitkreuz, 

2004). The atmosphere and biosphere are the smallest reservoirs for carbon in contrast to, for 

instance the global content of total dissolved inorganic carbon (DIC) in the oceans (Table 1). 

But, most of the carbon in the near-surface cycle is concentrated in the Earth crust, in 

sedimentary rocks including their metamorphic derivates. It is estimated that about 18 % of 

the total carbon is bound as organic carbon in the sedimentary rocks, whereas 82 % occurs as 

carbonate (Bahlburg and Breitkreuz, 2004). Within the near-surface compartments carbon is 

moving in the global carbon cycle and can be divided into a long-term and short-term cycle 

(Berner, 2004, Emerson and Hedges, 2008).  

 

Table 1. Global carbon reservoirs excluding terrestrial rocks other than coal 
(according to Emerson and Hedges (2008)). 

Carbon storage [Gt C]
Atmosphere: CO2 (288ppm in 1850) 612

(369 ppm in 2000) 784
Biosphere: Oceans 1 - 2

Terrestrial 600
Oceans: DOC 700

DIC 38,000
Organic C in sediments (1 m) 1000

Terrestrial: Fossil fuels (identified reserves) 3574
Soil humus (1 m) 1500

Reservoirs

 
 

The short-term cycle, having larger fluxes than the long-term cycle, represents the relatively 

rapid transfers among the exogenous systems, in the range from days to tens of thousands of 

years, which is short on a geological time scale. It is primarily controlled by the processes of 

photosynthesis and respiration (Fig. 2). Upon death of living material decomposition by 

micro-organisms produces CO2, which is exchanged between the oceans and the atmosphere 

as well as organic matter is carried in solution by rivers from soils to the sea.  
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The long-term cycle (Fig. 2), on one hand, represents the transfer of carbon from the 

atmosphere to rocks by means of weathering of silicates and carbonates as well as marine 

carbonate sedimentation. The principal restoring process is the degassing of CO2 to the 

atmosphere and oceans through decarbonation via volcanism, metamorphism, and diagenesis, 

described as the silicate-carbonate subcycle. These processes are taking place over several 

million years. Another long-term subcycle is the organic cycle representing the burial of 

organic matter into sediments and the reverse processes of oxidative weathering of organic 

matter in shales and other sedimentary rocks and the microbial or thermal decomposition of 

organic matter. 

 

  

Fig. 2.  The global carbon cycle can be divided into a short-term cycle (left) and a long-term cycle (right) 
(Berner, 2004). 

 

1.2.2 CO2 in the atmosphere 
 

Although, CO2 is only an atmospheric trace component, it is of global importance for the 

climate of the planet. Through the feature of absorbing infra-red (IR) radiation emitted from 

the earth, CO2 is one of the major greenhouse gases and significantly contribute to the natural 

greenhouse effect. However, the global atmospheric concentration of carbon dioxide has 

increased from a pre-industrial value of about 280 ppm to 379 ppm in 2005 and is still 

increasing by an average growth rate of 1.9 ppm per year (IPCC, 2007). This is due to 

anthropogenic processes, primarily the burning of fossil fuels (currently about 26.4 Gt CO2 

per year) (IPCC, 2007). 

 

Volcanic degassing is the primary mechanism for the transfer of mantle-derived CO2 to the 

Earth’s surface and thus, is one form of CO2 reflux to the atmosphere in the long-term carbon 

cycle (Gerlach, 1991). This natural contribution to the atmospheric CO2 concentration is 
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assumed to be significant for climatic changes at geological time-scale (million of years) 

(Morner and Etiope, 2002). At smaller time-scale, the carbon gas output from the solid Earth 

is considered negligible with respect to the biological and anthropogenic fluxes (Morner and 

Etiope, 2002). A conservative estimate of the global CO2 emission of all subaerial and 

submarine volcanoes was made by Gerlach (1991) with 0.13 – 0.175 Gt per year, whereas 

Morner and Etiope (2002) assumed that 0.3 Gt CO2 per year is only the lower limit for all 

subaerial volcanoes.  

Beside the gaseous emission, including the principal components of H2O, CO2, SO2, HCl, HF, 

HBr, H2, H2S and CO, volcanoes emit aerosols to the atmosphere, both during and between 

eruptions.  

Aerosols are suspensions of solid and liquid particles in a gas with a size in the range between 

about 1 nm and 100 µm (Graedel and Crutzen, 1994, Poschl, 2005). They are formed by a 

number of processes, and have widely differing origins and also different chemical 

compositions. Aerosols can act as nuclei for condensation processes and as sites for 

heterogeneous chemical reactions in the atmosphere. Furthermore, they have a direct impact 

on the Earth’s climate by scattering and absorption of sun and IR radiation, respectively 

(Graedel and Crutzen, 1994, Highwood and Stevenson, 2003).  

Volcanic aerosols include ash (silicates), chlorides, sulphates and trace elements (Allen et al., 

2000, Fulignati et al., 2006).  

 

1.2.3 CO2 in seawater: 
 
About 30 - 40 % of the CO2 injected into the atmosphere as a result of anthropogenic 

emissions over the last century has been absorbed by the oceans (Wei et al., 2009), 

representing the particular role of interaction between the atmosphere and the oceans within 

the global carbon cycle. 

 

Because of the unique bonding that occurs among water molecules, the heat capacity of water 

is among the highest of all known substances (Garison 1996). This means that water can 

absorb or release large amounts of heat while changing relative little in temperature. The 

amount of energy required to raise the temperature of a unit of mass by 1 K is quantified by 

the specific heat capacity cp at constant pressure. For seawater (density of 35 g/kg, 20 °C and 

1 atm) cp is 3.993 kJ * kg-1 * K-1 (Hill, 1971). The specific heat capacity (at 0 °C and 1 atm) 

of air is cp = 1.01 kJ * kg-1 * K-1 and for CO2 cp = 0.85 kJ * kg-1 * K-1 (Becker et al., 1994).  
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After transformation into a volumetric specific heat capacity and assuming the same volume 

of 1 L of seawater, air and CO2 at 20 °C the heat capacity C results in Cseawater = 4.073 kJ * K-

1, Cair = 1.216 kJ * K-1 and CCO2 = 1.554 kJ * K-1, respectively. Thus, seawater can store heat 

about 3 times as much as air and about 2.5 times as much as CO2.  

For a hydrothermal system this may mean that ascending hot gases heat the seawater beneath 

the seafloor. When the gases discharge they cool more rapid through the contact with colder 

seawater than the discharging waters which might assumed to be geothermal modified waters. 

 

The surface seawater of the oceans is in equilibrium with the atmosphere. The solubility of 

gases at thermodynamic equilibrium are described by Henry’s law, which states that at 

constant T, the solubility of a gas in a liquid is proportional to its partial pressure (pG) 

(Langmuir, 1997):  

pG = KG * cG         (1) 
with cG = concentration in solvent, KG = Henry’s law constant 

 

Obviously, the larger KG the more soluble is the gas. Beside increasing pressure, the solubility 

of a gas in seawater also increases with decreasing temperature and salinity. However, 

Henry’s Law can only be applied for pressures up to approximately 50 bar, for dilute solution 

with small partial pressures and for conservative components, unlike the reactive carbon 

dioxide in seawater (Chester, 2003). If interactions of molecules with each other diminish the 

reactivity of an individual gas slightly the fugacity ƒ has to be used, an effective partial 

pressure for real gases (Emerson and Hedges, 2008). At atmospheric pressure (1 atm = 

101.325 kPa) the fugacitiy of CO2 is about 99.6 to 99.7 % of the partial pressure over the 

range of 0 and 30 °C (Zeebe and Wolf-Gladrow, 2001). The solubility of CO2 in water and 

seawater is listed in Table 2 in comparison with other gases.  
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Table 2. Henry's law constants (KG [mol * L-1 * atm-1]) of 
several gases for water and seawater. Values 
characterise the solubility of the gases in the 
solvents at 1 atm and 20 °C. 

gas water* seawater** (S = 35)
SO2 1.76E+00
H2S 1.15E-01
CO2 3.92E-02 3.30E-02
CH4 1.23E-03
O2 1.38E-03 1.12E-03
N2 6.89E-04 5.62E-04
He 3.36E-04  

* (Langmuir, 1997) 
** (Emerson and Hedges, 2008) 

 

The dissolution of CO2 increases the content of total dissolved inorganic carbon (DIC) in 

seawater. The carbonate system (equation 2), comprising the components CO2, HCO3
- and 

CO3
2-, is one of the most important chemical equilibria in the ocean and is largely responsible 

for buffering the pH of seawater (Fabry et al., 2008, Zeebe and Wolf-Gladrow, 2001). 

Seawater in equilibrium with atmospheric CO2 is slightly alkaline, with pH of around 8.1 - 8.3 

(Brown et al., 1995). 

H2O + CO2 ↔ H2CO3 ↔ HCO3
- + H+ ↔ CO3

2- + H+   (2) 

 

With Ca2+ there is formed calcium carbonate (CaCO3) which is supersaturated nearly 

everywhere in ocean’s surface waters, but undersaturated everywhere in deep ocean waters 

(Brown et al., 1995). The decreasing saturation of calcium carbonate with increasing depth is 

due to an increasing solubility mainly through the increase of hydrostatic pressure as well as 

the better solubility in colder water. 

However, the increase of the CO2 concentration in the surface ocean through the 

anthropogenic CO2 invasion from the atmosphere has lead to a slight ocean acidification with 

an seawater pH about 0.1 units lower than the pre-industrial value (Fabry et al., 2008). It may 

further drop by up to 0.4 units until 2100 (IPCC, 2007). In consequence, the calcium 

carbonate saturation state in surface seawater will reduce making it more difficult for marine 

calcifying organisms to form biogenic CaCO3 (Orr et al., 2005). Calcification rates in marine 

organisms, coccolithophorids and in particular corals, have been found to be extremely 

sensitive to the increasing CO2 concentration and the level of carbonate saturation (Hall-

Spencer et al., 2008, Wei et al., 2009).  
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The maximum acidification which is theoretically possible only by increasing the CO2 

concentration in an aquatic solution is upon a pH of about 4.3. In this case, all dissolved 

inorganic carbon is existent as CO2. For a further decrease of the pH stronger acids, such as 

hydrogen chloride (HCl) and sulphuric acid (H2SO4), have to be added to the solution.
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1.3. Objectives 
 
The aim of the thesis is the evaluation of the hydrothermal gas discharges. Which processes 

can be inferred by the chemical gas composition and are there indications for the input of 

magmatic fluids into the hydrothermal system? By this means, the attempt was made to 

evaluate the current state of the system with regard to the submarine gas eruptions occurred in 

2002. 

Since the discharging gases predominantly consists of CO2 the effects on the ambient 

seawater is examined. Furthermore, the rate of submarine degassing is quantified including 

the comparison with other CO2 emitters.                                                                                    
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2. Description of the investigation site 

2.1 The Aeolian volcanic arc 
 

Several seamounts and seven islands (Alicudi, Filicudi, Salina, Lipari, Vulcano, Panarea and 

Stromboli belong to the Aeolian archipelago, representing a ring-shaped volcanic arc in the 

south-eastern Tyrrhenian Sea, Italy  (Capaccioni et al., 2005, Esposito et al., 2006, 

Gabbianelli et al., 1990, Gugliandolo et al., 2006). The Aeolian volcanic arc, with a length of 

approximately 200 km, is associated with the Preloritanian-Calabrian orogenic belt to the east 

and is bordered by the abyssal Marsili basin to the west (Capaccioni et al., 2005, Esposito et 

al., 2006, Gabbianelli et al., 1990) (Fig. 3). 

 

The origin of Aeolian volcanism, most authors agree, is due to active subduction of the Ionian 

plate beneath the Calabrian Arc (Calanchi et al., 2002, Capaccioni et al., 2005, Caracausi et 

al., 2005a, Dolfi et al., 2007). Such microplates have been formed in the Mediterranean based 

on convergence of the African and Eurasian plates (Dando et al., 1999). Some authors suggest 

that subduction stagnated about 1 million years, since when a general uplift associated with 

extensional tectonics has affected both the Calabrian Arc and the Aeolian Islands in the last 

0.5 – 0.7 million years (Dolfi et al., 2007, FavalliM et al., 2005). Consequently, a heat flow 

anomaly occurs in relation to slab detachment beneath the Calabrian Arc (Dolfi et al., 2007). 

The volcanic activity took place almost entirely during the Quaternary, starting about 400,000  

years and is still presently existent (Calanchi et al., 2002, Gugliandolo et al., 2006). Magmatic 

products belong to calc-alkaline (CA), high-potassium calc-alkaline (HKCA), shoshonite and 

potassic-alkaline associations (Chiodini et al., 2006, FavalliM et al., 2005). 

 

The Aeolian volcanic arc can divided into three sections. The western part, comprising the 

islands of Alicudi and Filicudi, is located along a WNW – ESE fault system (Esposito et al., 

2006, FavalliM et al., 2005). The central sector includes Salina, Lipari and Vulcano Island 

and is identified by evolution through the major discontinuity crossing the Aeolian Islands, 

the NNW – SSE strike-slip Tindari-Letojanni fault system (FavalliM et al., 2005) (Fig. 3). 

Panarea and Stromboli constitute the eastern sector. Both Islands are arranged along NE – SW 

trending extensional faults  (Esposito et al., 2006).  
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The eastern branch of the Aeolian volcanic arc is being affected by deep-focus seismicity, 

representing a narrow NW-dipping Benioff-Wadati plane (Calanchi et al., 2002, Chiodini et 

al., 2006). 

Currently, the Aeolian volcanic arc is characterised by still active volcanoes, Stromboli and 

Vulcano. The latter one is in a state of solphataric activity as well as hydrothermalism 

(Gugliandolo et al., 2006). Submarine gas emissions occur in the neighbourhood of many of 

the Aeolian Islands, such as Salina, Lipari, Vulcano, Stromboli and Panarea (Chiodini et al., 

2006). The most active submarine fumarolic system at shallow depths is present off the 

eastern coast of Panarea, representing the investigation area for this study (Gugliandolo et al., 

2006).

investigation area

Fig. 3: a) Bathymetry of the Southern Tyrrhenian Sea and location of volcanic edifices of the Aeolian
Arc, b) morphological sketch map of Panarea volcanic complex and the investigation area to the
East of Panarae Island; coordinates conform to Gauss-Boaga-System, depth contour lines in m
b.s.l. (modified from Lucchi et al. (2007)). 

2.2 Panarea 

Panarea, with 3.3 km2, is the smallest island of the Aeolian archipelago (Gabbianelli et al.,

1990). It is the emergent part of a wide stratovolcano rises from a depth of about 1200 – 1700 

m b.s.l. up to 421 m a.s.l. (Calanchi et al., 2002, Gabbianelli et al., 1990). The vast volcanic 

complex sizes at its base 23 km in diameter and covers an area of 460 km2 (Gabbianelli et al., 

1990). The submerged summit has an broad and almost flat surface reaching about 50 km2 at 

a depth of about 100 – 150 m b.s.l. (Calanchi et al., 2002, Chiodini et al., 2006).



2. Description of the investigation area  16 
 

The evolution of the Panarea volcanic structure can be described as a result of three different 

stages of activity (Gabbianelli et al., 1990). The oldest period was characterised by growth of 

the central apparatus with formation of the island and submarine surroundings. Then, the 

volcanic structure was enlarged to east, whereas volcanic activity was regulated by a NE-SW 

oriented fault system. The main island, and likely the minor islets, developed in a relatively 

short time span between about 150 and 100 ka (Capaccioni et al., 2005, Lucchi et al., 2007). 

After 50 ka of quiescence the volcanic activity resumed with emplacement of the endogenous 

dome of Basiluzzo (NE of Panarea Island) (Capaccioni et al., 2005). Recent stage of evolution 

created a huge caldera in the central part of the complex, which is associated with a positive 

gravimetric anomaly due to a magmatic intrusion (Gabbianelli et al., 1990, Italiano and 

Nuccio, 1991).  

 
Panarea is predominantly formed by andesitic and dacitic lava domes, flows and pyroclastica 

(Calanchi et al., 2002, FavalliM et al., 2005, Gabbianelli et al., 1990). Rocks show a dominant 

HKCA petrochemical affinity, some shoshonite and a few CA rocks, as late scoria fall, also 

occur (Calanchi et al., 2002).  

 

Presently, Panarea volcano is characterised by local subsidence and degassing from several 

fumarolic areas, both inland and offshore. A rapid sink of that still collapsing area in historical 

time is proven by the discovery of old Roman ruins at 8 - 14 m water depth, located about 200 

m to the west of Lisca Bianca islet (Gabbianelli et al., 1990, Italiano and Nuccio, 1991) (Fig. 

4). 

 

2.3 The submarine hydrothermal area 
 
The investigation area is located approximately 2.5 km to the east of Panarea Island. It is a 

shallow submarine subcircular field of about 2.3 km2 (Esposito et al., 2006) with a maximum 

water depth of about 30 m and is surrounded by the islets of Datillo, Panarelli, Lisca Bianca, 

Bottaro and Lisca Nera. Those islets are remnants of lava domes, subaerial ruins of an old 

volcanic centre (Capaccioni et al., 2007, Gabbianelli et al., 1990). An area of about 4 km2 to 

the east offshore of Panarea is affected by widespread exhalative and hydrothermal activity at 

the sea floor (Italiano and Nuccio, 1991), whereas main vents of CO2-rich gases as well as 

thermal water discharges are located approximately in the central portion between the islets. 

The seafloor is completely covered by loose-to-partly consolidated Holocene sands and 
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conglomerates, originated from marine erosion of the emerging islets (Capaccioni et al., 

2007). These conglomerates lay on porphyritic basaltic-andesite lavas.  

 

Generally, the discharging fluids escape from open rock fractures, but also several areas with 

diffuse permeation of gases and thermal waters through the sand on the seafloor occur 

(Gugliandolo et al., 2006). Emissions are normally marked by white bacterial mats appearing 

as a white film of colloidal sulphur deposits containing numerous filaments of colourless 

bacteria (Gugliandolo et al., 2006). They are of the genus Thiothrix, being sulphur-oxidising, 

chemoautotrophic bacteria which are supported due to the fact that hydrothermal vent fluids 

are commonly rich in reduced sulphur compounds (Gugliandolo et al., 2006). However, the 

vicinity of vent outlets is generally impoverished in flora and fauna due to acid discharges. 

 

The spatial distribution of fumarolic discharges is dominantly regulated by NE-SW oriented 

fault systems (Esposito et al., 2006, Gabbianelli et al., 1990). A large number of the 

hydrothermal discharges are distributed on exhalative fields covering generally about a few 

hundred square meters. More than 20 exhalative fields were identified by Italiano and Nuccio  

(1991). The submarine sites investigated in May and September 2008 (Fig. 4) will be defined 

in detail in the following. 
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Fig. 4.  Investigated sites (triangles) in the hydrothermal system east of Panarea Island. The shallow 
submarine area is surrounded by the islets  of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca 
Nera (modified from Rohland (2007)). 

 
 

Table 3. Geographical coordinates of the different sites. 
Values are expressed as “degree” “arc minute”  
“arc second” [x° x΄ x.x˝], reference system: 
WGS 84 

Location Northing Easting
Bottaro West* 38° 38΄ 14.4˝ 15° 06΄ 34.1˝
Bottaro North* 38° 38΄ 19.2˝ 15° 06΄ 36.4˝
Hot Lake* 38° 38΄ 24.5˝ 15° 06΄ 35.0˝
Fumarolic Field* 38° 38΄ 24.1˝ 15° 06΄ 35.8˝
Point 21* 38° 38΄ 18.1˝ 15° 06΄ 24.4˝
Area 26** 38° 38΄ 21.2˝ 15° 06΄ 18.5˝
Black Point* 38° 38΄ 16.7˝ 15° 06΄ 17.1˝
Panarea North** 38° 38΄ 42.4˝ 15° 04΄ 40.7˝  
* modified from (Rohland, 2007) 
** modified from (WISTAU, 2008) 
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2.3.1 Bottaro West   
 

The investigation site Bottaro West is located approximately 30 m to the western margin of 

the islet Bottaro (for geographical coordinates see Table 3). The submarine structure was 

formed at the gas burst event in November 2002, representing the most active exhalation 

centre (see section 1.1.3). The original size of the formed ellipsoidal crater (Esposito et al., 

2006) has decreased until September 2008 due to refilling with sediments and rock debris 

resulting in a 2.5 m thick cover. So, actually the crater is a flat gravel field in a depth of 12 -

12.5 m b.s.l. with an extent of about 12 m in the NW-SE axis and about 10 m in the NE-SW 

axis. It is enclosed to the south by a more or less steep slope of subcircular shape and up to 4 

m high (Appendix 1).  

The location features hydrothermal discharges in terms of fumaroles emitting predominantly 

in the gas phase. At clam days the submarine gas emissions can be noticed olfactorily at the 

sea surface through the significant smell of hydrogen sulphur (H2S). The south-western part 

of the crater is separated from residual part by a 60° striking sediment edge of about 50 cm 

height. This sector is characterised by diffusive gas exhalations in a field of almost circular 

shape and a diameter of 5.5 m (Fig. 5a). Within the slope to SE of the sector a wall composed 

of conglomerates is exposed (approximately 7 m long and 1.5 m high). In front of that, in 

vicinity of several boulders, some fumaroles exist, where the highest fluid temperatures were 

determined in situ (Appendix 1). In the NW the residual sector of the crater is characterised 

by several fumaroles of varying intensities, primarily distributed at the crater rim and within 

the slopes. All fumaroles are marked by more or less big whitish mats of sulphur deposits and 

bacteria. Except for the mentioned fumaroles, the outlet temperatures did not distinctively 

differ from the ambient water temperature (about 27 °C).  

 

2.3.2 Bottaro North 
 
Some meters from the northern cape of Bottaro the very shallow submarine site, defined as 

Bottaro North, is located (for geographical coordinates see Table 3). At a maximum depth of 

about 9 m several fumaroles between large boulders occur. Due to some very intensive 

exhaling vents together with the low water depth strong gas bubbling is clearly visible at sea 

surface with no waves. Besides this, the smell of hydrogen sulphur at the sea surface is 

significant during calm days. The location is characterised by a central gravel field 
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surrounded by large boulders up to several meters in diameter. To the south of that field the 

sea bottom steeply rises up to the islet of Bottaro.  

There are five very intensive exhaling vents; one is located at the gravel field, the residual 

ones between boulders to the south and east of the field (Fig. 5b). Many smaller vents of 

varying intensities are located between the boulder deposits. In the north several exhalations 

are situated on a line-like fracture zone of a couple of metres from west to east (Rohland, 

2007). The fluid temperature measured in these vents ranged between 27.9 and 45.7 °C, in the 

large fumarole, located directly at the gravel field, a temperature of 56 °C was measured 

(Appendix 2). Beside the Bottaro West site that area was one of the main exhaling centres at 

the gas burst in November 2002, and was likely formed by this event (Capaccioni et al., 2005, 

Tassi et al., 2009). 

 

2.3.3 Hot Lake 
 

The investigation site Hot Lake is located approximately 300 m to the north of Bottaro islet 

(for geographical coordinates see Table 3). At about 18 m b.s.l. a submarine depression 

having an extent of about 10 m in the NE-SW oriented main axis and about 6.5 m in minor 

axis is embedded in the sea floor (Fig. 5c). The basin is enclosed by vertical and overhanging 

sinters of less than 1 m height in the north-eastern part and up to about 2 m in the south-west. 

To the north-east the basin extended farther eastward. Overhanging walls covered by whitish 

bacteria layers form small caves in the southern part. The bottom of the basin, in a water 

depth of approximately 19.5 m, is covered by sediments and a thick layer of dead Posidonia, 

both coated by whitish bacteria deposits. The basin features diffusive thermal water 

discharges. Since only some small gas bubbles appear from time to time the release of gases 

in the basin is marginal. Some scattered fumaroles of varying intensities are emplaced at the 

surrounding sea floor, loaded by pyroclastic rocks. Over five diving campaigns from 2006 to 

2008 a progressive subsidence of the basin was noticeable. The discharging thermal waters 

are characterised by a temperature of about 96 °C (WISTAU, 2008) and very high salinity 

(Fig. 13).  

 

2.3.4 Fumarolic Field 
  
In the vicinity of Hot Lake, about 50 m course of 150° from Hot Lake (for geographical 

coordinates see Table 3), there is a plane field characterised by numerous exhaling fumaroles. 
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It has an almost square shape with an estimated length of 30 m (E-W) and width of 20 m (N-

S) and is located about 15 – 17 m b.s.l. (Appendix 3). To the north-west there is an almost 

plain northward extension towards a smaller gravel field some meters off the central field. 

The field is covered by fine- to coarse-grained gravel loaded by several boulders in the centre. 

Rocky slopes enclose the gravel field, steeper rising at the western margin than at the others. 

The slopes are characterised by scattered fumaroles of varying intensities between boulders 

and few Posidonia fields, the latter ones being located predominantly at the northern slope. 

Most intensively exhaling fumaroles are situated at the slope some meters to the south-west of 

the central field (Appendix 3). The majority of gas exhalations discharge in the gravel field, 

many are diffusely discharging while others are arranged along lineaments clearly marked by 

white-yellow sulphur deposits and bacteria. Three almost parallel line-like structures, some 

meters distant to each other and striking 195°, 170° and 160°, respectively, were observed in 

September 2008 (WISTAU, 2008) (Fig. 5d). Along the westernmost lineament  distinctive 

increased outlet temperatures were measured ranging from 39.7 °C up to 59.1 °C  in contrast 

to the ambient water temperature of about 27 °C (WISTAU, 2008). 

  

2.3.5 Point 21 
 

The investigation site defined as Point 21 is located approximately 300 m to the north-east of 

Black Point along the route from Black Point to the location of Hot Lake (for GPS 

coordinates see Table 3). It is distinguished by a submarine depression of about 20 m in NW-

SE and about 10 m in NE-SW extension bordered at the south-west by a vertical wall of more 

than 10 m length from about 17 to 22 m b.s.l. (Appendix 4). Both the wall and the depression 

situated in front strike approximately 140°. Surrounding area, extensively covered by seaweed 

(Posidonia) and many fumaroles of varying intensities, gradually rising up to the ambient 

depth of about 17 – 18 m b.s.l..  

The site is characterised by five fumaroles emitting massive amounts of gases associated with 

the discharge of thermal water, whereas it is not clear whether the water is of hydrothermal 

origin or just heated seawater by the ascending hot gases (see section 1.2.3). Two of these 

fumaroles are located in the northern, two in the southern part of the depression in front of the 

wall between rock debris (Fig. 5e). The residual vent is situated directly in the porous rocky 

wall, about 2 m above the bottom of the depression (Fig. 5e). Coatings of white and yellowish 

deposits of elemental sulphur can be seen on the wall. All vents are marked by whitish 

sulphur precipitation and bacterial mats. In situ measurements of fluid discharge temperatures 
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revealed that most fumaroles of the entire site are characterised by outlet temperatures almost 

equal to ambient seawater expect for the large vents (Appendix 4). The location of Point 21 

already existed before the gas burst 2002, since it was reported by Italiano and Nuccio (1991) 

as a major gas exhaling field.  

 

2.3.6 Area 26 
 

Gas and water samples which were taken at this site were named “Area 26”, since the water 

depth is about 26 m. It is located to the north-east of Point 21, tracking the extension of the 

vertical wall in 300° direction for approximately 100 m (for GPS coordinates see Table 3). 

The site is characterised by two distinct sediment fields which together span an area of more 

than 50 m in each direction (WISTAU, 2008). The seafloor is covered by sediment made up 

of grain sizes from coarse sands to fine gravels and crossed by several exposed conglomerate 

bodies which are overgrown by vegetation (Becke, 2009). Gas exhalations are widespread 

over the entire site with fumaroles being scattered over the fields or arranged along a 

lineament as well as diffusely escaping gas bubbles from the sediments (WISTAU, 2008) 

(Fig. 5f). Exhalations were sensed as hot and aggressive to divers (WISTAU, 2008). Larger 

exhalations are marked by conspicuous white sulphur deposits and bacterial mats. Along the 

line-like structure (striking 320°) about 20 gas exhalations were distributed (Becke, 2009).  

Since that location was investigated for the first time by only two dives at the end of the 

diving campaign in September 2008 no further characterisations or a map can quoted here.  

 

2.3.7 Black Point 
 

The investigation site Black Point is located approximately in the middle between the islets of 

Dattilo and Bottaro (for geographical coordinates see Table 3). It is a submarine crater lying 

at a water depth of about 23.5 m and sizes about 25 m in the north-south axis and about 20 m 

in the east-west axis. The sea bottom is covered by gravel of different grain sizes. Formed 

ripples by the current were observed during the diving campaign in September 2007, but not 

in 2008. Many fumaroles of low intensities are diffusely exhaling within the crater, but some 

are also arranged along line-like structures marked by white deposits of sulphur bacteria (Fig. 

5g). Surrounding flanks exhibits an extensive cover of Posidonia and a lot of single fumaroles 
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of varying intensities. Some stronger hydrothermal discharges are emplaced in the south-west 

and north outside the crater.  

The location is named after a black sinter body sticking out morphologically in the SE of the 

crater (Fig. 5h). It is a porous conglomerate body (2.7 m long, at maximum 1 m wide and 0.5 

m high) having a blackish incrustation (Becke, 2009). In the north-eastern part of the body 

massive hydrothermal gases and waters discharge out of a vent, about 10 cm in diameter. 

These hydrothermal discharges are accompanied by metallic precipitations that cause a 

whitish-grey fume. This unique phenomenon has also previously been mentioned by other 

authors who named that location “Black Smoke” (Esposito et al., 2006, Tassi et al., 2009). 

Few metres to the east of the black sinter body there is an area comprising another smaller 

body showing analogous hydrothermal incrustations and further active hydrothermal 

discharges with recent mineral precipitation. In this region and of course in the vent of the 

main sinter body the highest temperatures of 124.5 °C and 134.8 °C, respectively, were 

measured (Fig. 6). But also fluid temperatures of fumaroles measured in the northern and 

western part of the location showed significantly increased temperatures in contrast to 

surrounding sea water. 

 

2.3.8 Lisca Nera 
 
To obtain reference values for the composition of seawater, minor influenced by hydrothermal 

discharges, water samples were also taken close to the islet of Lisca Nera (Fig. 3).  

 

2.3.9 Panarea North (La Calcara) 
 
Beside the submarine hydrothermal discharges to the east of Panarea, several subaerial 

fumaroles occur at the north-eastern shoreline of the island (Fig. 5i). The location is called La 

Calcara. No gas samples were taken by the author of this study, therefore external data from 

these exhalations were used instead. 
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Fig. 5a. The field of diffuse gas exhalations at Bottaro West site, b) large fumaroles between boulders at
the very shallow site of Bottaro North, c) Hot Lake, d) Fumarolic Field with diffusive exhalations
as well as fumaroles located along lineaments, e) large fumaroles in front of a vertical wall at
Point 21 site, f) gas exhalations discharging from huge sediment fields at Area 26 site, g) whitish
marked lineaments of exhalations in the crater of Black Point site, h) the black sinter body at 
Black Point, i) subaerial fumaroles at La Calcara on Panarea Island (WISTAU, 2007, WISTAU,
2008).
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Fig. 6.  Sketch map of the Black Point site including measured temperatures of fluid discharges 
(modified from Becke (2009)).
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3. Methodology 
 
 
Investigations of the submarine hydrothermal fluid emissions at the seafloor were performed 

by scuba diving. This took place during two diving campaigns in the investigation area near 

the island of Panarea (see section 2.3). First period lasted from May, 12th to May, 18th 2008. 

The second campaign, from August, 30th till September, 10th 2008, was performed in the 

framework of the annual diving excursion to Panarea Island of the scientific diving research 

group of the TU Bergakademie Freiberg.  

To characterise the discharging gases and waters samples were taken. Beside that, 

measurements were carried out directly at the emission points. The performance under water 

had been adapted for the prevailing conditions. In addition to common problems confronted 

with on scientific working during dives, e.g. buoyancy effects of equipment and the limited 

time for each trip, the acid waters and gases aggressive to metallic matter necessitated the 

utilisation of rustproof materials. 

 

3.1 Sampling procedures 
 
Escaping gases from the seafloor were sampled by means of a funnel made of stainless steel. 

The funnel was placed directly over the emission point. In a chamber above the funnel the 

collected gas was accumulating until seawater was completely displaced through a bypass. A 

Teflon hose of 50 m length was joined to the funnel by a self-sealing-coupling. Due to 

buoyancy the gas ran to sea surface onto the boat. Because of the self-locking effect of the 

self-sealing-couplings only very little water was infiltrated into the Teflon hose. It was 

removed by the ascending gas for 2 to 5 minutes on the boat, depending on the depth the 

gases were sampled. When dry gas was escaping from the hose the end was joined via a 250 

ml water trap (PTFE) to a gas bag of 16 L volume made of Tedlar polyvinyl fluoride (PVF) 

(DuPont). Before each sampling the bag was flushed with fresh air to remove the previous gas 

sample. The time to fill the 16 L gas bag was dependent on the water depth at the sampling 

point.  

Subsequently, the hose was connected via the 250 ml water trap and 2 filters (200 and 25 nm) 

with washing bottles (PTFE with PTFE Raschig ringes), one filled with 100 ml sodium hypo 

chloride (NaOCl) solution (NaOCl, dilution 1:10 by bidest water). In the NaOCl solution, a 

strong oxidation agent, the gas constituents were trapped. The filters were firstly utilised in 

September 2008 in order to limit the trapping of gases and aerosols < 25 nm. Both the time 
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for trapping and the time for filling the 16 L gas bag was noted in order to calculate the 

trapped volume of gas (Appendix 5).  

 

For water sampling two kinds of syringes were applied (100 ml or 450 ml). A flexible Teflon 

tube was fixed on top of the syringes. The tube was inserted into the sediment or rock 

fractures at the fluid emission points as deep as possible to avoid dilution with sea water. 

Before ultimate sampling the syringes were flushed several times with the geothermal water 

and sealed with a cap after sampling. 

In order to sample the discharging original hydrothermal fluid, undiluted by sea water as 

much as possible, at two emission points special procedures were applied. In the case of Black 

Point a 50 cm hole was drilled into the rock formation, at Hot Lake a PTFE lance was 

penetrated up to 3 m into the sediment (Sieland, 2009).  

 

3.2 Sample preparation 
 

After the dives the gas and water samples were prepared for further analysis and filled into 

glass or plastic bottles for storage and transportation. This was done in the field laboratory at 

Panarea Island.  

 

From the 16 L gas bag 300 ml gas bags (previously flushed with N2) were filled for gas 

chromatographic analysis at the laboratory in Freiberg. The 300 ml gas bags were made of 

Tedlar PVF (DuPont)1 equipped with both an on/off valve and a septum valve. The NaOCl 

solution with the trapped gas constituents was filled into a 100 ml polyethylene (PE) bottle for 

analysis with inductively coupled plasma mass spectrometer (ICP-MS) at ACTLABS 

(Activation Laboratories Ltd., 1336 Sandhill Drive, Ancaster, Ontario, Canada).  

Furthermore shares of the sampled gas were piped through washing bottles by means of an 

electrical diaphragm pump (5002F, Gardner Denver Thomas). In these washing bottles zinc 

sulphide and barium carbonate were precipitated for δ34S (H2S) and δ13C (CO2) analysis, 

respectively (Sieland, 2009).  

 

Water samples were filtered, in order to remove suspended particles and colloids, for the 

analysis by photometry, ion chromatography (IC), and ICP-MS. It was performed by applying 

                                                 
1 http://www.coleparmer.com/catalog/0708_pdf_International/KH_0011.pdf (25/06/2009) 
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cellulose acetate filters with a mesh size of 200 nm (SATORIUS Biolab Products) and a 

filtration apparatus with a hand pump (NALGENE/MITYRAC). 

For analysis of total inorganic carbon (TIC) the water sample was directly filled from the 

syringe into 50 ml glass flasks. That was done with a short flexible hose plugged at the 

syringe so that the flask could be filled from the bottom up to avoid too much contact with 

atmosphere and minimise the loss of dissolved carbon dioxide by degassing. Water sample 

processing for analysis with ICP-MS and IC as well as for isotopic analysis is reported by 

(Sieland, 2009). 

 

3.3 Gas analysis 

3.3.1 Computation of CO2 

 
The content of CO2 in the gas samples was not analysed, but rather calculated.  

It is the most abundant specie in the discharging gas phase. Together with H2S both species 

account for about 99 vol.% and even more in the gases (Capaccioni et al., 2007, Chiodini et 

al., 2006, Italiano and Nuccio, 1991). Thus by subtraction of the analysed contents of H2S, 

CO, CH4 and C2H6/C2H4 from 100 vol.% a quite good estimation of the real CO2 

concentration could be achieved. 

 

3.3.2 Dräger tubes 
 
The determinations of carbon monoxide (CO) and hydrogen sulphide (H2S) content of the 

gases were carried out directly from the gas bag in the field laboratory on Panarea Island. It 

was done by means of DRÄGER tubes (DRÄGER Safety AG & Co. KGaA). Both for 

determination of CO and H2S the respective tube was connected to the gas bag through a short 

flexible hose. The other end of the tube was fixed in the DRÄGER Pumping System 

(ACCURO pump). 

For determination of CO Carbon Monoxide 2/a tubes with a measuring range between 2 and 

60 ppm were used (10 times pumping). The standard deviation of the method was quoted in 

the DRÄGER instruction manual being between ± 10 and 15 %. Basis of the analysis is 

reaction (3). 

5 CO + I2O5   I2 + 5CO2           (catalyst: H2S2O7)    (3) 
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For the determination of H2S Hydrogen Sulphide 0.2 %/A tubes with a measuring range 

between 0.2 and 7 vol.% were used (1 pumping stroke). The standard deviation of the method 

was quoted to be in the range between ± 5 and 10 % (DRÄGER instruction manual). 

Following reaction (4) takes place.  

Cu2+ + H2S  CuS + 2H+    (4) 

 

3.3.3 Gas chromatography 
 
In the laboratory of the section for Hydrogeology, TU Bergakademie Freiberg the gas 

samples, which were stored in the 300 ml gas bags, were analysed for methane and ethane by 

gas chromatography. Therefore, a gas chromatograph HEWLETT PACKARD (HP) GC-FID 

5890 with nitrogen (N2) as carrier gas and make-up gas was applied. During a temperature 

program methane and ethane were separated in an AT-Q column (30 m long, 0.32 mm in 

diameter). Detection was realised by a flame ionisation detector (FID) measuring in the split 

modus. The detection limits for methane and ethane were evaluated to be 0.0002 % and 

0.00005 %, respectively (Kummer, pers. comm., 2009).  

The sampled gases were inserted from gas bags to the injector through microliter syringes of 

25 µl and 50 µl. For calibration a synthetic gas mixture Micro Mat 14 (MATHESON Tri Gas) 

was used. The 14 L gas bottle contained a mixture of the alkane serial C1 – C6 and nitrogen 

with a concentration of 1000 ppm for all compounds (Appendix 7). The following calibration 

functions (5 – 8) were determined: 

May:   methane:    area = 25609846000 * c [vol.%], R2 = 0.9998   (5) 

ethane/ethene: area = 44450160000 * c [vol.%], R2 = 0.9997   (6) 

September: methane:    area = 8098916586.538 * c [vol.%], R2 = 0.9984  (7) 

ethane/ethene: area = 4297318894.2308 * c [vol.%], R2 = 0.9969 (8) 

 

Due to the fact that in the AT-Q column also ethene can be separated and the peaks of ethane 

and ethene in a chromatogram are very close to each other, a mixture of both compounds, 

detected in the executed analysis, can not be excluded (Kummer, 2009, pers. comm.). Thus, 

the peak at the retention time of about 5.4 minutes will be discussed as the ethane/ethene 

peak, although calibration was only done with C1 - C6 alkane standards.  
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3.3.4 Volatile trace elements (ICP-MS) 
 

Gases and aerosols (< 25 nm for the samples of September), trapped in 100 ml of a NaOCl  

solution (1:10 dilution by didest water), as well as the sampled thermal waters were analysed 

with ICP-MS at ACTLABS for trace element contents. The analysis was performed with High 

Resolution Magnetic Sector ICP-MS (Finnegan Mat ELEMENT 2)2. For the samples of May 

2008 the protocol Code 6 MB (for marine water, brines or other aqueous solutions with total 

dissolved solid contents (TDS) > 0.05 %) was used. Samples taken in September 2008 were 

previously diluted (in most cases 1 + 41) in the laboratory of Hydrogeology, TU 

Bergakademie Freiberg. They were then analysed at Actlabs with protocol Code 6 (for natural 

waters with low TDS < 0.05 %)2. The detection limits are listed in (Appendix 5). 

 

The measured element contents in the NaOCl solution have to be processed and converted 

into the contents related to the sampled gas phase.  

It was easy to identify in the original data that the blank of the NaOCl solution was in many 

cases greater or equal to the respective element concentration of the samples (Appendix 5). 

These elements were disregarded. The remaining elements results of below detection limit (“< 

x”) were replaced by 0.5 times detection limit for further data processing.  

In the case of the gas samples of September 2008, statistical methods were applied. The 

software program STATGRAPHICS Plus 5.0 (STATPOINT TECHNOLOGIES, Inc.) was 

used for this purpose. Thereby it was checked whether the measured contents in the six 

samples are significantly different from the blank of the NaOCl solution. Thus for each 

element the KRUSKALL-WALLIS test or STUDENT-t test was used, depending on the 

distribution of the six sample contents, which was previously checked by the 

KOLMOGOROV-SMIRNOV test. Obvious outliers were identified by the GRUBBS test. 

After removal of the outlier the residual samples contents were again checked for distribution 

and significance. For the level of significance α = 0.05 was used for each test. Finally, 12 

elements were found that show significant concentration in the samples with respect to the 

blank (Appendix 6). For these elements both the results and the detection limits from the ICP-

MS analysis were corrected for the dilution (1 + 41). 

For the gas samples of May 2008 the ICP-MS results were not checked for a significant 

difference between the blank and the samples since only 4 samples were not sufficient for a 

                                                 
2 http://www.actlabs.com/gg_hydro_can.htm (25/06/2009) 
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reliable statistical processing. Further calculations were done with these elements for which 

the blank of the trapping solution was lower than at least on sample. 

Now, for the selected elements the blank of the NaOCl solution was subtracted from each 

sample content. By the recorded time for filling the 16 L gas bag during sampling the gas 

flow was calculated. This gas flow associated with the recorded time for gas trapping in the 

NaOCl solution the volume of gas that could be trapped in the solution was computed. By 

multiplying the elemental concentration in the solution (after subtraction of blank) and the 

volume of the NaOCl solution one obtain the respective mass. Relating this mass to the 

volume of dissolved gas in the solution the elemental concentration in the gas phase is 

obtained. 

 

3.4 Water analysis 

3.4.1 On-site parameters 
 
On-site parameters pH-value, specific electrical conductivity (EC), temperature, oxygen 

content and redox potential were determined immediately after sampling in the field 

laboratory on Panarea Island. For this purpose the water samples were directly taken from the 

sampling syringes without filtration. 

 

During the diving campaigns in May and September 2008 the specific electrical conductivity 

(EC) of the water samples was identified with a WTW LF 320 conductivity meter and a 

WinLab Data Line Conductivity-Meter from WINDAUS Labortechnik, respectively, together 

with a WTW TetraCon 325 conductivity electrode. The reference temperature was set to 

25 °C with a linear temperature correction of 2% per K. To check the device the electrical 

conductivity of a 0.5 M KCl standard solution was measured. Thereby a value of 55 mS/cm 

(in May 2008) and 59.2 mS/cm (in September 2008) resulted at a temperature of 28.3°C 

(September 2008). Thus, the measured values differ from the exact value of 54.6 mS/cm. 

 

The pH-value, the water temperature and the content of dissolved oxygen were measured with 

a LDO HQ20 portable dissolved oxygen/pH meter (in May 2008) and a HQ40d multi-

parameter meter (in September 2008) by HACH Company. The pH electrode of HQ20 had a 

4 M KCl inner electrolyte, for the HQ40d a 3 M KCl inner electrolyte. Calibration for 

dissolved oxygen for both devices was not necessary since the sensors contain a LED lamp 
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which acts as internal standard (or reference) for the calibration of the whole optical system3. 

For pH measurements a multipoint calibration was performed with pH standards ranging 

between pH 2 and pH 10 (Appendix 11). The resulting calibration line of HQ20 pH meter had 

the following equation (9):  

  pH = -0.0179 [mV] + 7.1007, R² = 0.9984     (9) 

For the HQ40d multi-parameter meter calibration yielded the regression line (10) as follows:   

pH = -0.0175 [mV] + 7.1783, R² = 0.999    (10) 

After one week the accuracy of the pH-meter was checked again to ensure good values. 

 

The redox potential was determined using a WinLab Data Line pH-Meter from WINDAUS 

LABORTECHNIK together with a silver/silver chloride (Ag/AgCl) electrode from PCE. Both 

electrodes had a 3 mol/L KCl solution as inner electrolyte. During the campaign in September 

2008 the procedure of measurement was improved to avoid contact with the atmosphere as 

much as possible. Immediately after the dives the waters in the sampling syringes were 

cautiously filled into a titration vessel. After inserting the Ag/AgCl electrode through holes in 

the cap, latter ones were sealed with Parafilm.  

Measured values had to be corrected for the temperature of 25 °C and converted to the 

potential of a standard hydrogen electrode in order to get the correct redox potential Eh. 

Correction for the temperature was done by equation 11, whereas Em is the measured redox 

potential and T the water temperature. 

E25°C = Em -0.198 * (T -25°C)      (11) 

The conversion to the potential of a standard hydrogen electrode was realised by adding a 

correction factor (207 mV for the Ag/AgCl electrode with 3 mol/L inner electrolyte at 25 °C  

(Hölting, 1996)) (equation 12).  

Eh = E25°C + 207 mV       (12) 

For varying pH values among different samples the pH-independent rH value is a better 

quantity for the comparison of redox potentials. It was computed by equation 13, whereas EN 

is the Nernst voltage, being 59.16 mV for 25 °C (Hölting, 1996).  

rH = 2 * Eh/EN + 2 * pH      (13) 

                                                 
3 http://www.hach-lange.de/common/documents/1005/1007/10099_LDO_lab_extern_d.pdf (25/06/2009) 

 



3. Methodology  34 
 

 

3.4.2 Ion sensitive electrodes (ISE) 

The activity of fluoride was determined with WinLab Data Line pH-Meter from WINDAUS, 

a fluoride electrode F 500 and a reference electrode from WTW. The calibration was 

performed for standard seawater (SSW) (composition see Sieland (2009)). The following 

equations for calibration were established for the diving campaigns in May (14) and in 

September 2008 (15) (Appendix 12). 

  y [mV] = -60.225 * lg(c) + 63.117, R² = 0.9992   (14) 

y [mV] = -61.333 * lg(c) + 11.067, R² = 0.9996   (15) 
whereas: y = measured potential and c = fluoride concentration in mg/l  

   

A sample volume of 25 ml was utilised mixed with 10 ml TISAB solution (Total Ionic 

Strength Adjustment Buffer) in order to adjust the ionic strength and the pH-value. Instead of 

the sample, for calibration 25 ml of SSW was taken added by 10 ml TISAB and step wise by 

a 1 g/L fluoride standard solution. The mixture was continuously homogenised by a magnetic 

stirrer during the measurement that lasted for approximately 20 min. 

 

Beside fluoride also the iodide concentration in the sampled waters was determined by ion 

sensitive electrodes (Sieland, 2009).  

 
 

3.4.3 Colorimetry 

Filtered water samples were analysed by photometry with respect to sulphide (H2S(aq), HS-, 

S2-), manganese (Mntot), phosphate (PO4
-3), nitrite (NO2

-), iron (Fetotal, Fe2+) and ammonia 

(NH3) (Sieland, 2009). It was realised with a DR/890 Colorimeter (HACH). 

Sulphide compounds could be measured in the range between 0 and 0.07 mg/L with a 

precision of ± 0.02 mg/L. The estimated detection limit (EDL) is 0.01 mg/L (instruction 

manual by HACH). When measuring range was exceeded the procedure was repeated in 

higher dilution. Due to interferences with the seawater matrix measured values had to be 

corrected according to (Rohland, 2007).  
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3.4.4 Ion chromatography 

In the laboratory of Hydrogeology, TU Bergakademie Freiberg water samples were analysed 

be means of ion chromatography (IC) to determine ionic concentrations of lithium (Li+), 

sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), manganese (Mn2+), 

chloride (Cl-), sulphate (SO4
2-) and bromine (Br-).  

For cations an ion chromatography system 6000 from MERCK/HITACHI was utilised 

(Sieland, 2009).  

Anions were determined with ion chromatograh IC 2001 from Eppendorf/Biotronik with an 

anion suppressor column (FGC 1AG-P). As the mobile phase an eluent consisting of 2 mM 

NaCO3 and 4 mM NaHCO3 with a flow rate of 2 ml/min arranged the transport through the 

column. Samples were measured in two different dilutions, 1+300 (for Cl-) and 1+20 (for F- 

and Br-). Sulphate could be determined in both solutions. Calibration was performed by 

measuring series of standards in the respective dilutions (Appendix D1). 

 
 

3.4.5 TIC determination 

Determination of total inorganic carbon (TIC) dissolved in the water samples was performed 

on the one hand by titration and on the other hand with a TIC analyser.  

 

In order to gain first results titration was performed after sampling in the field laboratory on 

Panarea Island. Thereby 25 ml of the unfiltered sampled waters were added by NaOH or HCl 

(0.1 mol/L for the campaign in May, 1.0 mol/L in September 2008) stepwise to reach pH 8.2 

or 4.3, respectively. For performance a digital titrator (by HACH) equipped with a cartridge 

filled with NaOH or HCl was used. With the consumption of NaOH as well as HCl the 

content of dissolved CO2 and dissolved HCO3
- could be calculated. The delivered volume of 

acid or base by titration was quoted as the amount of revolutions of the titrator, whereas 1 ml 

equals 800 revolutions. The concentration of dissolved CO2 (cCO2) and HCO3
- then could be 

computed by equation 16 and 17, respectively.  

cCO2 = cNaOH * VNaOH / Vsample     (16) 

cHCO3
- = cHCl * VHCl/Vsample      (17) 

whereas: cx = concentration [mol/L], Vx = volume of acid or base, Vsample = 25 ml 

 

The pH-value was measured by WinLab Data Line pH-Meter from WINDAUS. For the 

diving campaign in May 2008 the device was previously calibrated by a two point calibration 
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with pH standards of pH 4.0 and 7.0. Therefore the inner calibration stored in the device was 

used. For the diving campaign in September 2008 calibration was performed by the 

measurement of pH standards ranging from pH 2 to pH 10. Following calibration function 

was obtained (equation 18) (Appendix 11):  

pH = -0.0174 * [mV] + 7.0215, R2 = 0.999    (18) 

 

Due to the limited volume of the water sample, in most cases it could only performed one 

titration step either for CO2 or HCO3
-. Based on only one specie no TIC could be determined. 

Furthermore, the results varied between the samples, probably because of different CO2 

degassing during the analysis. Thus, only the TIC results measured by the TIC analyser were 

used for the evaluation. 

This was performed in the laboratory of Hydrogeology of the TU Bergakademie Freiberg. 

The water samples, stored in 50 ml glass flasks, were analysed by a LiquiTOC elemental 

analyser (ELEMENTAR ANALYSENSYSTEME GmbH). Depending on the anticipated TIC 

content sample volumes of 2.38 ml or 1.18 ml (May 2008) and 2.4 ml or 1.4 ml (September 

2008) for the respective infrared (IR) range were applied. Due to detection of carbon dioxide 

(CO2) all water samples were acidified with phosphoric acid (H3PO4) (1.75 mol/L) in order to 

transform all carbonate species into carbon dioxide.  

 

For the further evaluation the TIC results in C mg/l were converted to hydrogen carbonate 

(HCO3
-) and CO2 in mg/L in relation to their respective pH value (in accordance with Kunze 

and Schwedt (2002)). 

 

3.5 Depth profiles of TIC and pH 
 
Discharging gaseous CO2 from fumaroles at the seafloor is dissolving into the seawater during 

their ascent towards the sea surface. To evaluate the enrichment of dissolved inorganic carbon 

in seawater due to the emission of hydrothermal fluids both in the liquid and gaseous state 

water samples were taken at particular depths above seafloor discharges. The water samples 

were analysed for TIC as mentioned above, including the determination of the pH value. In 

this way, for five sites in each case a depth profile of the dissolved inorganic carbon content 

was achieved. The profile was taken at the beginning of a dive while descending at the buoy 

or while descending within a characteristic exhalation spot (e.g. Point 21 and Bottaro West). 
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Beside TIC also profiles of pH, EC and water temperature were taken in the investigation 

area. This was done from a boat, whereas along transect lines 13 and 20 depth profiles were 

measured in May and September 2008, respectively (Fig. 21 and 22). During the diving 

campaign in May 2008 the parameters were measured with a multi-parameter probe 650 MDS 

(YSI Inc.), having a 50 m data cable, coiled up on a cable reel. A Multi-Parameter Water 

Quality Monitor 6820 (YSI Inc.) was plugged into the cable reel. The logging of data was set 

to 1 s. In September the pH values were measured with the pH sensor WQ201 by GLOBAL 

WATER with a data cable of about 30 m length. Water depth, EC and water temperature were 

measured by a CTD-Diver (VAN ESSEN INSTRUMENTS) fixed at a 30 m rope. The data 

cable and rope were bond together. Both instruments logged their measurements every second 

and were synchronised to a computer clock in advance.  

Both the multi-parameter probe and WQ201 pH-sensor were previously calibrated. For latter 

probe pH standards ranging from pH 4.0 and 10.0 were used for an inner calibration that is 

stored in the software of the sensor. Subsequently, the value of a standard with pH 7.0 was 

checked (result: pH 6.99). The multi-parameter probe was also calibrated through an inner 

stored calibration routine with pH standards of pH 4.0 and 7.0. For the EC the multi-

parameter probe was checked by use of a 0.5 M KCl solution. The measured value of 57.2 

mS/cm differed a little from target value of 54.6 mS/cm. EC measured by the CTD-Diver was 

automatically calibrated.  

The profiles were taken by lowering the instruments slowly to the sea floor and slowly lifting 

them up again to the sea surface. Both for the lowering and lift up the geographic coordinates 

were determined by a GPS (GARMIN  E-Trex, geodetic date: WGS84). The coordinates were 

noted every time, no continuos logging of the boat’s track were performed. Before lowering 

the instruments the water depth was determined by a mobile echo sounder (Echotest II, 

PLASTIMO). 

Measured values were stored as ASCII-files (Appendix D2). The parameters of pH (by 

WQ201 pH-sensor) as well as EC, water temperature and water depth (by CTD-Diver) could 

join together based on the synchronised time.  

 

Measured GPS data were processed by TRANSDAT 12.04 software (KILLETSOFT, limited 

version). In order to convert the measured geographic coordinates from [degree. arc minute. 

arc second] to [degree] it was used location ”Italy” and “WGS84 (World wide GPS), 

geocentric, WGS84” as geodetic datum in the software. The “summands” and “multiplier” for 

Northing and Easting were set to 0.0 and 1.0, respectively. 
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Measured depth profiles of pH value, water temperature and EC as well as the corresponding 

coordinates were displayed by means of the software program Ocean Data View (ODV) 

(Schlitzer, 2008). Since GPS coordinates were noted for both lowering and lift up of the 

instruments, both series of measurement were handled as one profile each. For three locations 

only one profile downward or upward could be measured. Logged data between 

measurements, e.g. while driving with the boat, were ignored for the display by ODV. For 

interpolation between the depth profiles in order to create a 2D-face with shading and 

contouring the DIVA gridding tool of the ODV software was utilised.  

The DIVA (Data-Interpolating Variational analysis) gridding tool was developed at the 

University of Liege4. It generally produces better results than the weighted average methods, 

built into ODV, in case of sparse and heterogeneous data coverage (ODV User’s Guide). The 

software allows spatial analysing and interpolating data in an optimal way, comparable to the 

optimal interpolation (OI). But unlike OI it also takes coastlines and bathymetry features into 

account to structure and subdivide the domain where estimation is performed (ODV User’s 

Guide). Calculations are highly optimised and rely on a finite element mesh adapted to the 

specific gridding domains (ODV User’s Guide). DIVA have been successfully performed in 

various oceanic data analysis5. The  DIVA software is an implementation of VIM (Variational 

Inverse Method). VIM was initially designed for climatology, where generally high resolution 

vertical profiles but irregular horizontal coverage demands for a spatial analysis and 

horizontal interpolation. 

 
 

3.6 Gas quantification 

In order to quantify the submarine hydrothermal gas output of the investigation area the gas 

flow rates of all gas exhalations should be determined and summed up. It was restricted to 

five diving sites (Bottaro West, Bottaro North, Fumarolic Field (close to Hot Lake), Point 21 

and Black Point) where quantification was realised during the diving campaign in September 

2008.  

 

Measurements were carried out by means of the stainless-steel funnel, which was also used 

for gas sampling. The funnel (diameter 19.3 cm, height: 45 cm) was placed on seafloor over 

                                                 
4 http://modb.oce.ulg.ac.be/projects/1/diva (25/06/2009) 
5 http://www.stareso.ulg.ac.be/Stareso/Projets_2_files/Poster%20methodes%20inverses.pdf (25/06/2009) 

 

http://modb.oce.ulg.ac.be/projects/1/diva
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the gas emission, covering the whole exhalation area. The captured gas was accumulating in a 

chamber above the funnel until seawater was completely displaced through a bypass. The gas 

was conducted through the bypass and a short flexible hose directly into an inverted high 

density polyethylene (HDPE) bottle with a total volume of 1.2 L. Time for complete water 

displacement in the bottle was noted and based on this, the resulting gas flow rate was 

calculated (Fig. 7). In most cases the outlet gas temperature was measured additionally by 

means of a digital thermometer (GMH 3350, GREISINGER ELECTRONICS) which was 

encapsulated in a home made container. It was performed by inserting the sensor several 

centimetres into the sediment or rock fractures at the emission point of the fumarole. In order 

to compensate varying outlet gas temperatures the measured flow rates were converted with 

respect to a reference temperature. For this purpose the SATP (standard ambient temperature 

and pressure condition) temperature of 25 °C were applied. The conversion was realised by 

the ideal gas law for isobaric change of state (law of GAY-LUSSAC) (19): 

Vm / Tm = Vs / Ts       (19) 
whereas: Vm and Tm are the measured gas flow rate and temperature, respectively; Vs = gas 
flow rate at the standard temperature (Ts) of 25°C 

 
In this way measurements of the gas output rate of 48 fumaroles were carried out at three 

different sites (Appendix 13).  

Since each site is featured by several hundreds of fumaroles, it was practically impossible to 

measure all gas flow rates. Therefore, a clustering was established to classify the fumaroles 

with respect to their intensity of gas release. The established methodology is in accordance 

with Italiano and Nuccio (1991). It was decided for four classes of gas output rates since all 

fumaroles could relate to four groups by divers depending on the extent of the formed column 

of gas bubbles. Based on the measured times for water displacement the range of the gas 

output rate for each class was defined (Table 4). Furthermore, the respective flow rates of the 

48 examined fumaroles were used to compute the average gas flow rate of each class.  

 
Table 4. Classes of gas output based on measurement of 48 fumaroles in September 2008 

class A B C D
range of gas flow rate [L/min] < 2.1 2.1 - 3.6 3.6 - 7.2 > 7.2

number of vents 23 8 6 11
mean [L/min] 1.06 3.04 4.86 9.89

standard deviation [L/min] 0.53 0.47 1.18 2.13  
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Then, all gas exhalations at the five diving sites were counted and sorted into one of the four 

classes. The total gas flow rate of each site was obtained by multiplying the number of 

respective fumaroles and the mean of each class. The result was additionally corrected for the 

hydrostatic pressure, which is represented by the average water depth of each site. Again the 

ideal gas law was used for correction, in this case for isothermal change of state (law of 

BOYLE-MARIOTTE) (20): 

pc * Vc = ps * Vs       (20) 
whereas: Vc and pc are the computed gas output and average hydrostatic pressure of the site, 
respectively; Vs = gas output at the sea surface with pressure ps = 101.325 kPa 

Numerous diffuse gas exhalations in the crater of Bottaro West account considerably for the 

total output of the entire diving site. The field of diffuse exhalations, having an almost circular 

shape, was examined separately. A diameter of 5.5 m was measured which results in a base 

area of 23.8 m2. At six positions within the field the emitting gas rate was measured as 

mentioned above. Again correction was applied for the gas temperature and hydrostatic 

pressure. With the mean of the measured gas flow rates Ψi, the partial area Ai covered with 

the gas sampling funnel (293 cm2) and the whole base area of the field A it was possible to 

calculate the total gas output of the field (21) (Appendix 14).  

Ψ = Ψi * A / Ai      (21) 

 

At least 10 fumaroles in the Panarea area discharge greater amounts of gas (> 40 L/min) and 

can therefore not been determined with the above described technique. It is suggested that at 

maximum a gas flow rate of about 40 L/min could be detected by the method of water 

displacement in the 1.2 L bottle which mean a complete water displacement in less than 2 

seconds. Furthermore, the more intense gas release makes it dangerous for the diver to handle 

with the funnel and bottle due to much higher buoyancy. Hence an improved methodology 

was operated during the diving campaign in September 2008.  

For this type of fumaroles a much larger funnel and a flow through cell measurement device 

was developed, called FSVG (Flowmeter for Submarine Volcanic Gas emission) (Bauer et al., 

2009) (Fig. 7). For two large fumaroles at Point 21, defined as “Melanie” and “Claudia” the 

system was applied to measure the gas flow rates over a period of several hours. It was 

recorded three series of measurement for the “Melanie” and one serial for the “Claudia” 

fumarole (Appendix D3). All measured flow rates were again corrected for the respective gas 

temperature and hydrostatic pressure. 
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Unfortunately, only two fumaroles at Point 21 were examined by the technique. Based on 

these results the gas release of further larger fumaroles at Point 21 and Bottaro North were 

estimated through the comparison of photos (see section 4.2.1).  

 

  
Fig. 7.  Determination of gas flow rates of the submarine discharging gases; left: based on time-

dependent water displacement in a bottle, gases were captured by a gas sampling funnel; right: 
the system of the FSVG for intensely gas emitting fumaroles (WISTAU, 2008).  
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4. Results and evaluation 

4.1 Gas composition 

4.1.1 Results of compositional analysis 
 
In general the emitting fumarolic gases of the Panarea hydrothermal system predominantly 

consist of water vapour. However, in this study it was not looked for water vapour in the 

gases due to lack of an adequate methodology. As water vapour is cooling under the boiling 

point during the ascent of the gas phase towards the seafloor and the contact with cold 

seawater steam condenses and is mixing with the ambient seawater. Thus, it is unlikely that a 

huge content of water vapour can be detected in the vapour phase. But, considering the large 

and very intense exhaling vents it can not be excluded that these gases contain water vapour.  

Measurements of steam concentrations of subaerial fumaroles at La Calcara (on the north-

eastern coast of Panarea Island) have yield 93 vol.% in the mid 1980’s (Italiano and Nuccio, 

1991) and about 95 wt.% in the period between November 2002 and June 2004 (Capaccioni et 

al., 2007). Latter authors had detected water vapour also in the submarine gas samples. For 

the Bottaro West and Bottaro North site they determined concentrations in the range between 

68.74 and 11.16 wt.% as well as between 61.36 and 17.84 wt.%, respectively. Thereby, steam 

concentrations showed a decreasing trend from November 2002, the onset of the submarine 

gas eruption, until June 2004.  

In the dry gas fraction analysed carbon dioxide (CO2) was the most abundant specie, ranging 

from 96.1 to 99.6 vol.%, as average concentration of the samples from May and September 

2008, for the appropriate sites (Fig. 8, Appendix 8). The residual proportion is predominantly 

defined by the concentration of hydrogen sulphide (H2S) reaching up to 4.0 vol.% in the 

sample of Bottaro North in May 2008. Both species show an inverse distribution of the 

concentrations. Additionally, minor gas species like nitrogen (N2), methane (CH4), oxygen 

(O2), hydrogen (H2), carbon monoxide (CO), helium (He) as well as the sum of the 

hydrocarbons ethane and ethene (C2H6/C2H4) were detected in the submarine gases in the 

range between 10-1 and 10-5 vol.%, respectively (Fig. 9 and 10). Volatile trace elements 

detected in fumarolic gas flows will mentioned in more detail in section 4.1.3. 
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Fig. 8:  Average contents of CO2 and H2S of the hydrothermal gases sampled in May and September 
2008 
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Fig. 9.  Average contents of N2, O2 and CH4 of the hydrothermal gases sampled in May and September 
2008 as well as from July 2008 (N2 and O2) sampled and analysed by Dr. Francesco Italiano 
(INGV Palermo). 
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Fig. 10.  Average contents of CO, H2, He and C2H6/C2H4 of the hydrothermal gases sampled in May and 
September 2008 as well as from July 2008 (H2 and He) sampled and analysed by Dr. Francesco 
Italiano (INGV Palermo). 

 

4.1.2 Evidence for sources and hydrothermal processes affecting the 
composition of the gas phase 
 

Due to the sparse amount of species analysed in the gas phase of the sampled hydrothermal 

discharges external data were additionally consulted in order to evaluate the processes that 

have been affected the composition of the emitted gases. 

4.1.2.1 Atmospheric endmember and dissolution processes 
 
The submarine hydrothermal gases were altered on the path towards their emission points. So, 

the composition analysed for the sampled gases did not represent the composition of the 

original deep gases. But it could reveal information about the extent of subsurface processes 

within the hydrothermal system which caused the modification. Two main processes are 

supposed to affect the composition of the hydrothermal gases through interaction with 

seawater. One is based on the equilibrium of seawater with the atmosphere (air saturated 

seawater) which causes an enrichment of atmospheric compounds in the gas phase, such as 

N2, O2 and Ar (Chiodini et al., 2006). These compounds are dissolved in seawater that is 

permeating beneath the sea floor into the hydrothermal fluids. On the other hand the deep 

original gas underwent partial dissolution based on the different solubility of the gas species 
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in water. A further process that influences the physico-chemical conditions of the 

hydrothermal system might be the input of deep magmatic gases.  

In the following the detected gaseous composition of the seafloor discharges will be evaluated 

with respect to these processes.  

 

The submarine gases sampled in May and September 2008 were CO2-dominated, and no 

water vapour was assumed to exist. For the period from November 2002 to June 2004 

concentrations of water vapour in the submarine hydrothermal gases were measured by 

Capaccioni et al. (2007). The authors reported of a progressively decreasing H2O/CO2 ratio in 

the gas phase for the Bottaro West site from about 2.5 in November 2002 to about 0.15 in 

June 2004. Thereby, the predominance of CO2 against H2O was already reached in March 

2003. A significant input of deep magmatic gases into the hydrothermal system was expected 

to cause the degassing crisis in 2002, probably also responsible for the input of magmatic 

derived water vapour. A debilitated condensation of steam due to high velocity of the 

ascending deep gases towards the seafloor might result in the detection of high concentrations 

of water vapour in these gases. After November 2002 the magmatic gas supply from depth 

was progressively decreasing and the hydrothermal system was shifted back towards a liquid-

dominated hydrothermal system with lower temperatures. Thus, less magmatic water vapour 

was added into the hydrothermal system and the removal of water vapour from the gas phase 

by condensation was increasing again, resulting in a return towards CO2-dominated gas 

emissions at the seafloor since March 2003 (Capaccioni et al., 2007). It may also be possible 

that the rise of a small magma chamber was prompt boiling the surrounding water causing  

huge expansion by a factor of about 1000 which finally lead to the explosion and the detection 

of water vapour even at the sea floor. 

 

The occurrence of oxygen in the submarine discharging gases can indicate an atmospheric 

endmember to a certain extent at shallow levels (Caracausi et al., 2005a). Also most nitrogen 

is due to an atmospheric contribution but can also originate from magma (Nicholson, 1993). 

Additionally, noble gases, typically of atmospheric origin, such as He, Ar and Ne, can be 

found in hydrothermal gases (Capaccioni et al., 2007, Caracausi et al., 2005a) and confirm an 

atmospheric contribution either by contamination with ambient air, while sampling 

procedures beneath or above the sea surface or by dilution of original hydrothermal gas with 

air saturated seawater. Although, He and Ar can be leached from rocks, too (Nicholson, 

1993). 
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One gas sample from the Black Point taken and analysed in July 2008 by Dr. Francesco 

Italiano (INGV Palermo) has conspicuous higher concentrations of O2 and N2 than sampled 

gases from other sites (Fig. 9) indicating a higher contribution of air saturated seawater. Two 

other samples from the Point 21 site and Bottaro North, also sampled in July 2008, were 

depleted in O2, which can be explained due to a consumption of oxygen for redox reaction, 

probably oxidation of sulphides (Caracausi et al., 2005a, Italiano and Nuccio, 1991).  

Gases sampled for this study in May and September 2008 might by influenced by air 

contamination since selective diffusion over longer periods of time was likely (see section 

4.1.4). Although, this statement can not be proofed since N2 or O2 in the sampled gases were 

not analysed by the author. 

 

Another tool to evaluate the atmospheric contribution to the hydrothermal gas composition is 

the 4He/20Ne ratio. Primarily, it is used to correct the measurement of He isotopic ratios. 

Again, it was measured for the gas samples of July 2008 by Dr. Francesco Italiano (INGV 

Palermo). For the Bottaro North, Point 21 and Black Point sites ratios of 29.1, 102.1 and 

149.4 were determined, respectively. Ratios determined in former times for the submarine 

hydrothermal field of Panarea ranged between 20 and 630 (Italiano and Nuccio, 1991) for the 

mid 1980’s and between 38 and 389 (Capaccioni et al., 2007, Caracausi et al., 2005a) for the 

period between November 2002 and June 2004, respectively. Since the 4He/20Ne ratio of air is 

0.318, these values suggest a very low air contamination as well as a low atmospheric 

contribution to the geothermal circulation (Italiano and Nuccio, 1991). The 4He/20Ne ratios, 

normally 2 to 3 orders of magnitude higher than the typical atmospheric ratio, provide further 

evidence for the contribution of magmatic fluids (Caracausi et al., 2005a). 

 

Between the most abundant species in the gas phase of our samples, CO2 and H2S, there is a 

correlation, with a Pearson correlation coefficient of R2 = 99.5 % (SPEARMAN rank 

correlation coefficients of -1.0 for each specie and P-values = 0.0000 < 0.05) (Fig. 11). The 

more CO2 occurred in the dry gas phase, the less H2S has been detected. By means of this 

ratio the five investigation sites could be distinguished from each other. The highest 

concentrations of CO2 together with the lowest concentrations of H2S were determined for the 

Black Point site. In contrast, the lowest CO2/H2S ratios were determined for the Bottaro North 

site, Fumarolic Field and Point 21. The gases of Bottaro West and Area 26 show ratios 

between both clusters (Fig. 11).  
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Fig. 11.  CO2 vs. H2S in the sampled gases from May and September 2008 as well as the linear regression 
line 

 

The different CO2/H2S ratios are likely the result of gas scrubbing effects that took place in 

different extension between the sites. The process is due to the interaction of deep gases with 

the thermal modified seawater of the hydrothermal system. The hydrothermal fluids absorb 

volatiles degassed from shallow magmas, but were also fed through condensation of 

magmatic gases upon cooling (Symonds et al., 2001). Gas scrubbing mostly affects well 

soluble acid gases like HCl, HF and the most abundant gaseous S-species (H2S and SO2). The 

process includes dissolution into the aqueous phase (e.g. hydrolysis) and formation of 

precipitates (e.g. elemental sulphur, sulphides, fluorides, sulphates) from gas-water and gas-

water-rock reactions (Symonds et al., 2001).  

Since H2S features an about 3 times higher solubility in water than CO2 (see Table 2) it is 

depleted in the gas phase relative to CO2 in a two-phase hydrothermal fluid at equilibrium. 

Thus, the emitted gases with high values of H2S seemed to be exposed to gas scrubbing to a 

lower extent, probably because of a higher rate of ascent towards the sea bottom. That is 

particularly quite conceivable for the Bottaro North and Point 21 sites, both having several 

large vents with intense gas discharges.  

Furthermore, dissolved H2S is oxidised by seawater sulphate (SO4
2-) as well as by dissolved 

oxygen to form elemental sulphur which is precipitated around the emission point of each 

fumarole as snow-white deposits (Italiano and Nuccio, 1991) and populated by sulphur 

reducing micro-organisms.  

Finally, the author supposed that the CO2/H2S ratio increased with increasing migration of the 

hydrothermal gases due to more intense gas scrubbing and precipitation of elemental sulphur 

by oxidation of H2S. 
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4.1.2.2 Hydrocarbons 
 
For hydrocarbons only the light alkanes methane and in some cases the sum of ethane and 

ethene were detected in the gas samples. Peaking values of hydrocarbons were detected for 

the samples of Black Point and with decreasing concentrations for Area 26 and Point 21 (Fig. 

9 and 10).  

High methane concentrations are typical for organic-rich sedimentary rocks at depth in low 

temperature geothermal systems (Nicholson, 1993). An addition of significant amounts of 

biogenic gases (mainly CH 4) might also be produced at relatively shallow depths (Capaccioni 

et al., 2007). The most likely methane formation is based on the FISCHER-TROPSCH 

reaction (Nicholson, 1993) (22): 

CO2 + 4H2 ↔ CH4 + 2H2O       (22) 

 

On the other hand, CH4 can be removed by oxidation to CO2 from the gas phase.  

Additionally, light alkanes can originate from thermal decomposition of organic matter as 

well as bacterial degradation of organic matter at temperatures lower than 50 °C (Capaccioni 

et al., 2007).  

Furthermore, for the first weeks after the onset of the submarine gas burst in November 2002, 

also light alkenes and isoalkenes were detected by Capaccioni et al. (2007). They used the 

temperature and redox-dependent ratio of Σalkenes/Σalkanes, being about two orders of 

magnitude higher in November 2002 than in previous investigations which indicates an 

increase of temperature or an increase of less reducing conditions or a combination of both 

within the hydrothermal system (Capaccioni et al., 2007).  

 

4.1.2.3 Temperature and redox-dependent gas species 
 
The reactive gas species H2S, H2 and CO in the sampled gas of 2008 differed in their contents 

between the six investigation sites (Fig. 12). Despite partially high standard deviations it is 

obvious that high H2S contents occurred together with high CO contents. Beside very low H2 

concentrations detected for samples from Bottaro North and Point 21 samples, there was 

detected a high concentration of H2 of 107 ppm for the Black Point site (data for H2 from Dr. 

Francesco Italiano (INGV Palermo)).  
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Fig. 12.  Average contents of H2S, CO and H2 in the sampled gases from 2008 of the Panarea submarine 
hydrothermal system. Results of H2 are from Dr. Francesco Italiano (INGV Palermo)  

 
The temperature- and redox-dependent species H2S, H2 and CO equilibrate as SO2/H2S, 

H2/H2O and CO/CO2 redox pairs in the gas phase at magmatic conditions. Thereby, H2S is 

favoured by decreasing reaction temperature and increasing reducing condition while CO and 

H2 are conversely favoured by the increase of both the reaction temperature and reducing 

condition at their equilibrium (Capaccioni et al., 2007). Despite these contradicting conditions 

required for high H2S, CO and H2 contents, the measured concentrations of H2S and CO show 

a correlation (Fig. 12). But the H2 contents show an absolute different spatial distribution 

between the sites. Thus, additional processes than different equilibrium temperatures and 

redox conditions might cause the different concentrations of CO and H2. 

Hydrogen is readily removed in geothermal systems on reaction with wall rocks and is 

thereby commonly lost over time with increased migration (Nicholson, 1993). Furthermore, 

H2 is also a limiting factor for the sulphate reduction by chemolithotrophic microbes to form 

biologically generated H2S (Rouxel et al., 2004). Similar to the different degree of gas 

scrubbing, due to a different velocity of migration towards the seafloor which probably affect 

the H2S content, CO could be encountered to equilibrium reactions to different degrees in 

dependence on its respective gas migration.  

Beside others, Capaccioni et al. (2007) used the temporal and spatial variations of the H2S, 

CO and H2 concentrations to reveal temporal changes in the temperature regime and redox 

condition at different sites of the Panarea hydrothermal system in the period from November 

2002 to June 2004.   
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4.1.2.4 Isotopic ratios of the gas species 
 
The most abundant gas component in geothermal systems is CO2 (Nicholson, 1993). It can 

originate from different sources, which can be defined by the isotopic ratio of 13C/12C of CO2.  

Isotopic ratios of 13C/12C of carbon dioxide, expressed as δ13C (CO2) notation (versus PDB), 

were determined by Sieland (2009) for the gas samples of May and September 2008 (Table. 

5). The values of δ13C (CO2) ranged between -7.30 and +0.3 ‰ PDB, whereas only the Black 

Point sample of September had a slight enrichment of 13C.  

Similar values were reported by Italiano and Nuccio (1991), in the range between -3.20 and -

1.06 ‰ (PDB). Capaccioni et al. (2007) determined values of δ13C (CO2) ranging between -

2.61 and -1.41 ‰ (period from November 2002 to June 2004) for the sites of Bottaro West 

and Bottaro North, respectively. 

Values of δ13C (CO2) lower than -3.0 ‰ PDB are suggested to originate both from a 

decarbonisation process of marine carbonate as well as certainly from degassing of the 

subducted slab and magma (Capaccioni et al., 2007, Italiano and Nuccio, 1991, Dando et al., 

1999). Italiano and Nuccio (1991) assumed more negative δ13C values in original deep gases 

altered due to dissolution processes.  

 
Table 5.  Isotopic ratios of 13C/12C (CO2), 34S/32S (H2S) (from Sieland (2009)) and 3He/4He (by Dr. 

Francesco Italiano (INGV Palermo)) of the gas samples.  

site date δ13C (CO2) 
[‰ PDB]

std δ34S (H2S) 
[‰ VCDT]

std
3He/4He
[R/Ra]

Bottaro West May 08 -7.30 0.06 4.19 0.16
Bottaro West Sep 08 -3.20 0.00  -  - 
Bottaro North May 08 -5.40 0.00 1.59 0.20
Bottaro North Jul 08 4.35
Bottaro North Sep 08 -2.90 0.04 5.73 0.08

Fumarolic Field Sep 08 -4.60 0.03 6.56 0.08
Point 21 May 08 -6.50 0.08 0.78 0.20
Point 21 Jul 08 4.39
Point 21 Sep 08 -2.50 0.04 5.00 0.08
Area 26 Sep 08 -2.70 0.00 3.26 0.05

Black Point May 08 -4.00 0.05 - -
Black Point Jul 08 4.35
Black Point Sep 08 0.30 0.04 7.73 0.06

La Calcara (Panarea) Jul 08 4.34  
 
 

Values for δ34S of H2S determined for the 2008 gas samples (from Sieland (2009)) ranged 

from +0.78 to +7.73 ‰ (VCDT), with the lightest δ34S (H2S) value in the gas samples of May 
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for Point 21 and Bottaro North and the highest δ34S (H2S) value for Black Point sampled in 

September (Table. 5). For the significant lower values of May in contrast to the September 

samples of Bottaro North and Point 21 it was assumed a higher input of magmatic derived 

H2S which is depleted in 34S (Sieland, 2009). The measured values are quite well in the range 

for hydrothermal fluids, from -0.2 to 7.7 ‰ (VCDT), venting on the seafloor of back arc 

basins (Yang and Scott, 2006).  

Sources for sulphur in hydrothermal systems can be sulphur originating from leaching of 

igneous rocks and that from reduction of a small amount of admixed seawater-derived 

sulphate (Rouxel et al., 2004). Thus, the measured δ34S (H2S) values in the range of 0.78 to 

7.73 ‰ (VCDT) might be explained by mixing of these two components, seawater derived 

sulphur with δ34S of about 21 ‰ and rock-derived sulphide with δ34S of about 0 ‰ indicating 

that most of the H2S is derived from leaching of rock (Ono et al., 2007). Beside thermo-

chemical reduction of seawater sulphate also microbial sulphate reduction at temperatures 

below 100 °C is possible (Rouxel et al., 2004). A further supposable process might be the 

dissolution of a magmatic component containing uncontaminated mantle sulphur with δ34S ~ 

0 ‰ (Cortecci et al., 2005). Moreover, fractionation processes has to be considered. 

 

The 3He/4He ratio of the submarine gas samples from July 2008 were analysed by Dr. 

Francesco Italiano (INGV Palermo). The values of the 3He/4He ratio (R), expressed as R/Ra 

(Ra = atmospheric 3He/4He ratio of 1.386 * 10-6 (Caracausi et al., 2005a)) resulted to 4.35 for 

Black Point and Point 21, 4.39 for Bottaro North and 4.34 for the subaerial fumaroles of La 

Calcara on Panarea Island (Table 5). Thus, a 3He-rich magmatic component in the Panarea 

gases is suggested by the high R/Ra ratios (Caracausi et al., 2005a, Italiano and Nuccio, 1991). 

Temporal variations of the R/Ra in the period from November 2002 to June 2004 indicated a 

varying input of deep magmatic fluids into the hydrothermal system (Capaccioni et al., 2007). 

The helium isotopic ratio measured at Panarea after November 2002 was in the range of that 

of the Aeolian Islands, which decreases from 6.2 R/Ra to 3 - 4 R/Ra from Vulcano Island to 

the Stromboli Island, respectively (Capaccioni et al., 2007).  
 

4.1.3 Volatile trace elements 
 
In the following the wording volatile trace elements is used for elements which occur as 

gaseous species or aerosols. However, within this study it was not distinguished whether an 

element formed gaseous species or occurred as aerosol. 
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In general, the detected elements in the sampled gases from May differ from those of 

September (Table 6), latter ones were restricted to aerosols < 25 nm. Only five elements (Mg, 

K, Rb, Co and Pb) were detected in the gases of both sampling periods. In the gases sampled 

in May 2008 16 elements were detected, for the September ones only 12. This might indicate 

the removal of aerosols > 25 nm composed of these elements that were detected in May but 

not in September (Br, Sr, Ba, Zn, Al, Cs, Cu, Zr, Tl, La and Ce). However, there are also 

some elements detected in the gas samples of September but not in May which is not 

explainable with this theory (Ni, Cd, Mn, Hf, Nd, Yb and Au). Looking at the concentrations 

in comparison with the respective elemental abundance in seawater, one can notice that major 

elements in the oceans, such as Mg, K and Br, are also highest concentrated in the gases and 

aerosols. But some minor and trace elements of seawater, like Ba, Ni, Al, Zn, Cu, Mn and Pb, 

were detected in the gases and aerosols of May and/or September in high concentrations, too. 

Some elements occurred only in the gases and aerosols of one site (Mg, Zr, Tl, Co, Cd, Mn, 

Hf, Pb, Yb and Au), in most cases Black Point (e.g. Zr, Tl, Cd, Mn and Hf). Particularly, for 

the gases and aerosols < 25 nm it is also the site where most volatile elements were detected 

in the sample. But, the highest concentration varies among the sites from element to element. 
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Table 6. Volatile elemental concentration in µg/m3 for the hydrothermal gases sampled in May and 

September 2008 in the order of the respective elemental concentration in seawater (from Brown 
et al. (1995))  
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Mg 313 0 0 0 0 0 0 0 0 2242 1290
K 2083 2475 547 1583 7688 0 5125 6406 10250 1281 380
Br 4167 4703 629 1978 0 0 0 0 0 0 67
Sr 18.8 2.5 1.9 0 0 0 0 0 0 0 8
Rb 2 0.248 0.164 0 1.54 0.51 1.54 2.88 8.20 1.28 0.12
Ba 688 272 27.3 135 0 0 0 0 0 0 0.02
Zn 94 0 34.2 344 0 0 0 0 0 0 5.0E-04
Ni 0 0 0 0 205 77 359 320 205 525 4.8E-04
Al 208 743 82 0 0 0 0 0 0 0 4.0E-04
Cs 0.417 0 0 0.158 0 0 0 0 0 0 4.0E-04
Cu 125 50 8.2 7.9 0 0 0 0 0 0 1.0E-04
Cd 0 0 0 0 0 0 0 0 0 1.92 1.0E-04
Mn 0 0 0 0 0 0 0 0 0 32 3.0E-05
Zr 0 0 0 0.791 0 0 0 0 0 0 3.0E-05
Tl 0 0 0 0.119 0 0 0 0 0 0 1.0E-05
Hf 0 0 0 0 0 0 0 0 0 0.064 7.0E-06
Co 0 1.11 0 0 1.67 0.64 0 0 1.15 0.58 3.0E-06
La 0.313 0 0.068 0.119 0 0 0 0 0 0 3.0E-06
Nd 0 0 0 0 0 0.51 0.26 0.32 0.77 0.51 3.0E-06
Ce 0.729 0.124 0.096 0.277 0 0 0 0 0 0 2.0E-06
Pb 4.17 2.48 0.55 6.33 0 0 0 0 15.4 0 2.0E-06
Yb 0 0 0 0 0 0 0 0.16 0 0 8.0E-07
Au 0 0 0 0 0 0 0 7.37 0 0 2.0E-08

May September

 
 

One possible interpretation of the varying values between the gas samples could be the 

different gas flow rates as well as the different durations for conducting the gas samples 

through the washing bottle filled with NaOCl solution. It resulted in total trapped gas volumes 

in the range between 40 L and 110 L for the gases sampled in May 2008 and between 13 L 

and 32 L for the samples of September, respectively. Compared to previous analyses of 

volatile elements in the Panarea submarine gases there were huge differences with respect to 

detected elements due to a different methodology (Rohland, 2007). Otherwise, because of  

filtering of the gases before trapping was performed for the first time during the diving 

campaign in September 2008 in order to remove aerosols and particulates > 25 nm, further 

data is lacking to verify these results.  

 



4. Results and evaluation  54 
 

Among the detected volatile elements K, Cd, Rb, Zn, Cu, Br, Cs Tl, Au and Pb are reported to 

be typical elements carried by fumarolic fluids (Fulignati et al., 2006). Moreover, Cd, Br, Au, 

Cs and Pb are considered to be of magmatic origin (Fulignati et al., 2006). Thereby, most 

trace elements are volatilised from shallow magma degassing as simple chlorides, although, 

some elements can occur as sulphides, oxyacids, oxyhalides, hydroxides, hydrides and as 

native elements (Fulignati et al., 2006).  

Due to dissolution processes the characterisation of pure degassed material in discharging 

hydrothermal fluids is difficult (Rubin, 1997). Furthermore, the representation of the detected 

volatile elements for a magmatic and/or hydrothermal origin is critical since the high 

elemental concentration of the trapping solution itself, may perturb the original composition 

of the discharged gases and aerosols. 

The trace element analyses of the water samples revealed a general enrichment of many 

major, minor and trace elements in the Panarea hydrothermal fluids (Sieland, 2009). Thereby, 

all elements detected in the gas phase are also enriched over seawater in the hydrothermal 

fluid discharges except for Mg and Hf.  

 

4.1.4 Critical evaluation of the applied methodology  
 

Sampling was performed by conduction of the seafloor discharging gases towards the sea 

surface with a Teflon hose. At sea surface the gases were stored in gas bags for transportation 

and analyses. Until analyses they were exposed to pressure and temperature conditions 

different to the conditions at their emission point at the sea bottom. Therefore, possible 

chemical reactions between the gases as well as condensation of vapours and further 

dissolution processes in the condensates due to decreasing pressure can not be excluded. 

Slight compositional changes may also occur in the stored gas bags over the period of several 

hours and days. This may lead to an atmospheric contamination through diffusion of the 

Tedlar (PVF) gas bags (DuPont)6 and other possible weak points for leakage of the bags, like 

the on/off valve and septum valve. Thus, the analysed gas composition might be different 

from the original composition of the hydrothermal gases emitting from the seafloor.  

 

 

                                                 
6 http://www2.dupont.com/Tedlar_PVF_Film/en_US/assets/downloads/pdf/h49725.pdf (25/06/09) 
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Another problem was that only few gas constituents could be analysed in the gas samples 

mainly due to limited instrumentation. Thus, external data had to be used for gas species 

which are also crucial for an evaluation of the hydrothermal conditions.  

 

The problem of the gas sampling at the sea surface instead directly at the emission and the 

storage in gas bags may be solved by applying an alternative method.  

For submarine application many studies reported of sampling discharging gases directly at the 

emission point on sea floor with two-way sampling bottles (Pyrex bottles) filled by the dry 

gases through water displacement (Chiodini et al., 2006, Italiano and Nuccio, 1991, 

Gugliandolo et al., 2006). The sampled gases were analysed for the common gas composition 

of the major and minor gas species as well as isotopic ratios of δ13C (CO2) and 3He/4He. 

Thereby, H2S and CO2 were analysed by use of reactive DRÄGER tubes or by gas 

chromatography (GC) with a thermal conductivity detector (Caracausi et al., 2005a, 

Gugliandolo et al., 2006, Italiano and Nuccio, 1991). However, the determination of H2S by 

Dräger tubes is considered as critical as the analytical tubes are known to provide semi-

quantitative concentrations for H2S in volcanic gases (Capaccioni et al., 2007).  

Furthermore, in order to determine acidic gas species (CO2, SO2, H2S, HCl, and HF), which 

are of very importance indicating variations of the input of deep magmatic gases, the methode 

described by Giggenbach (1975) has been most widely used. It is based on trapping the acid 

condensable species in an alkaline solution when sampling fumarolic gases directly at the 

seafloor emission in Pyrex bottles. However, it is doubtful to assume that no droplet of 

seawater is carried by the gases into the solution and thus, create a bias. Therefore, the gas 

sampling directly at the emission on seafloor is only reliable applied in order to determine 

uncondensable gases (N2, O2, CO, H2, He, Ar, Ne, CH4, and light hydrocarbons) as well as 

acidic species like CO2 and H2S in a sampling bottle unfilled with a solution for gas trapping. 

But the major problem is the limited sample volume of about 300 ml got by using the 

sampling bottles on seafloor. For the determination of 34S (H2S) a particular amount of 

sulphur is necessary which cannot get from a 300 ml gas sample. In this case, the applied 

method for this study had the advantage to obtain a gas sample volume up to 16 L through the 

gas conduction on the sea surface and storage in a 16 L gas bag. 
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4.1.5 Traces of magmatic gases in the liquid phase of the hydrothermal 
fluid discharges  
 

Beside investigations with regard to the submarine hydrothermal gas discharges also thermal 

waters were sampled at the six diving sites Bottaro West, Bottaro North, Hot Lake, Point 21, 

Area 26, Black Point as well as Lisca Nera as a reference sample for non- or less  influenced 

seawater by hydrothermal discharges. The water samples from May and September 2008 were 

analysed for on-site parameters, major, minor and trace constituents as well as isotopic ratios 

(Sieland, 2009). Some parameters will be evaluated in the following (Appendix 9 and 10) 

with respect to an impact of deep magmatic gases that may be dissolved in the liquid phase of 

the hydrothermal fluids in a considerable proportion.  

 

4.1.5.1 On-site parameters 
 
The specific electrical conductivity (EC) varied between 51.3 and 101.1 mS/cm (Fig. 13). 

Except for much higher values of Hot Lake and Black Point the remaining sites showed 

values close to 54 mS/cm, the EC of local seawater (Gugliandolo et al., 2006). 

The pH ranged between 2.9 and 7.9 for the hydrothermal fluids (Fig. 14), whereas the hot 

fluids discharging at Black Point featured the lowest pH. The other sites were between 4.75 

and 5.9, except Lisca Nera which was slightly below the pH of about 8.1 for local seawater 

(Gugliandolo et al., 2006). 

The redox potential (Eh) ranged between -53.7 and +355.7 mV. Because of the significantly 

different pH among the different sites the redox potential was converted into the pH-

independent rH value (Fig. 15). The average Eh of normal surface seawater is about 500 mV 

at pH ~ 8.2 (Merkel and Planer-Friedrich, 2002), which conforms a rH value of about 34. This 

equals the upper boundary for predominantly weak oxidising conditions (Hölting, 1996). The 

rH of the more or less uninfluenced water of Lisca Nera is in the lower field of predominantly 

weak oxidising conditions and is therefore much lower than the normal surface seawater 

redox potential. The samples of the remaining sites except Black Point had rH values between 

7.9 and 12.4 and were characterised by strong reducing to predominantly weakly reducing 

waters. Only the Black Point thermal waters had a higher redox potential with values at the 

interface of predominantly weak reducing conditions to conditions of an indifferent system 

(Fig. 15). 

Since oxygen is a major oxidising agent in natural solutions the redox potential is largely 

defined by the content of dissolved oxygen. Thus, the contents of dissolved oxygen show a 
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similar distribution among the investigated sites (Fig. 16) like the redox potential. High 

standard deviations are predominantly due to errors in measurement, for example based on 

different time until analysis as well as different exposure to atmosphere. Dissolved oxygen 

peaked at Lisca Nera, followed by Black Point. The average oxygen saturation was about 100 

% and 74 % for Lisca Nera and the Black Point samples, respectively. On average the 

samples of Hot Lake were characterised by the lowest saturation of oxygen with about 10 %. 

At Area 26, Point 21, Bottaro North and Bottaro West oxygen was saturated by about 15, 22, 

40 and 43 %, respectively. 
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Fig. 13. Average EC values of the thermal water discharges sampled in May and September 2008. As 
reference the more or less uninfluenced seawater sample of Lisca Nera and the EC of local 
seawater (dashed line) are displayed. 
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Fig. 14.  Average pH of the thermal water discharges sampled in May and September 2008. As reference 

the more or less uninfluenced seawater sample of Lisca Nera and the pH of local seawater 
(dashed line) are displayed. 
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Fig. 15. Average rH values of the thermal water discharges sampled in May and September 2008. As 

reference the more or less uninfluenced seawater sample of Lisca Nera as well as the rH of 
normal seawater (dashed line) are displayed. Between the boundaries (solid lines) of rH = 0 and 
rH = 9 the solution is characterised by strong reducing conditions (sector A). The rH value of 17 
is the upper boundary for predominantly weak reducing conditions (sector B), up to rH of 25 for 
an indifferent system (sector C), 25 to 34 for predominantly weak oxidising (sector D) and up to a 
rH of 42 for strong oxidising conditions (sector E) (Hölting, 1996). 
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Fig. 16. Average dissolved O2 concentrations of the thermal water discharges sampled in May and 

September 2008. As reference the more or less uninfluenced seawater sample of Lisca Nera is 
displayed. 

 

The on-site parameters reveal different types of sampled waters. Predominantly, with respect 

to the EC, the thermal waters of Bottaro West, Bottaro North, Point 21 and Area 26 indicate 

an extensive dilution with ambient seawater. In contrary, the fluids of Hot Lake and Black 

Point were highly mineralised, thus indicating the emission of hydrothermal altered fluids. A 

low share of seawater for samples of these both sites were computed by Sieland (2009).  

The redox potential (rH) of the Black Point site, including the content of dissolved oxygen, 

differed distinctively from the remaining sites. Beside the high EC, a very low pH and high 

fluid temperatures (up to about 135 °C, see Fig. 6) indicate the emission of hardly diluted 
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original hydrothermal fluid on the one hand. But on the other hand higher redox potentials 

and higher contents of dissolved oxygen closer to ambient seawater indicate a dilution by 

seawater. Thus, another process responsible for these values is likely. For example, 

Capaccioni et al. (2007) reported of more oxidising redox conditions for the Bottaro West site 

during the onset of the submarine gas eruption in 2002 caused by the input of magmatic fluids 

into the hydrothermal system. Therefore, it is likely that the Black Point site is fed by a small 

amount of deep magmatic fluids unlike the other sites.  

However, this theory does not explain the high oxygen content also found in the gas phase of 

the Black Point sample (Fig. 9), which again argue for the input of seawater saturated with 

atmospheric oxygen. 

The mainly reducing behaviour of the discharging hydrothermal waters at the different sites is 

also expressed by the measured distribution of dissolved redox-sensitive species (Sieland, 

2009). 

 

4.1.5.2 Dissolved sulphur and halogen species in the hydrothermal fluids  

 
In this study it was not looked for acidic gases, typical for volcanic degassing like SO2, HCl, 

HF and HBr, in the gas phase of the sampled hydrothermal fluids. Their high solubility in 

seawater causes dissolution into the hydrothermal fluid and depletion in the gas phase. Thus, 

the measured contents of some particular species dissolved in the sampled hydrothermal 

fluids will be evaluated in the following.  

 

4.1.5.2.1  Sulphur species 

 
The concentrations of the major dissolved S-species, sulphate (SO4

2-) and sulphide (H2S, HS-, 

S2-) are averaged for all waters sampled in May and September 2008 and displayed in Fig. 17. 

Sulphides analysed by photometry show strong variations between the samples of May and 

September 2008 compared to SO4
2- measured by IC. In general, the total dissolved sulphur 

content of seawater consists predominantly of SO4
2- which is about 29.45 mmol/l in local 

seawater (Gugliandolo et al., 2006).  

The samples of Lisca Nera, Bottaro West and Bottaro North are close to this reference 

sulphate concentration. Thermal waters of Point 21 and Area 26 were somewhat depleted with 

sulphate contents of about 26 and 25 mmol/L, respectively. The strongest depletion of 
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sulphate with respect to local seawater was shown by the water samples from Black Point and 

Hot Lake. This indicates again the lowest intermixing with seawater. 

The distribution of dissolved sulphide is similar to the H2S distribution in the gas phase (Fig. 

8). The average sulphide concentrations ranged between 0.02 and 1.1 mmol/l, whereas for the 

more or less uninfluenced site of Lisca Nera it was below the estimated detection limit (EDL). 

High average values of sulphide were determined for the water samples from Bottaro North, 

Hot Lake, Point 21, and Area 26, the lowest detected average contents were shown by Bottaro 

West and Black Point (Fig. 17). The high standard deviation of the sulphide contents in the 

Bottaro North waters is due to the value detected in May 2008, which is with about 1.1 

mmol/L  more than ten times higher than values measured in September 2008 and in previous 

campaigns. An explanation might be the sampling of thermal water at a different fumarole, 

while gas samples were taken always from the same vent in each campaign.  
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Fig. 17. Dissolved sulphate and sulphide in the water samples taken from the submarine hydrothermal 
discharges in May and September 2008. As reference the less influenced water of Lisca Nera is 
displayed, too, as well as the total sulphur content dissolved in local seawater (dashed line).  

 
Sulphate contents are usually low in deep geothermal fluids, but increase with increasing 

oxidation of hydrogen sulphide (Nicholson, 1993) as well as an increasing input of seawater 

sulphate. Otherwise, the depletion of sulphate from the hydrothermal liquid phase is probably 

due to precipitation of anhydrite and partly by thermo-chemical reduction to sulphide.  

The occurrence of the reduced sulphur specie sulphide in the sampled waters at all sites 

confirms reducing conditions with respect to the reference site of Lisca Nera. Higher contents 

indicate higher reducing conditions as being typical for original hydrothermal fluids (Herzig 

and Hannington, 2006). Conversely, sulphate concentrations close to those of seawater 

indicate high contamination by seawater sulphate of the original hydrothermal fluid. Thus, the 
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less contaminated hydrothermal fluid discharges of Hot Lake and Black Point had lowest 

sulphate concentrations of all water samples. Of the latter both sites, only Hot Lake had high 

sulphide contents since the distinctive higher redox potential of the Black Point fluid 

discharges exclude high contents of sulphide.   

Isotopic analyses of δ34S and partially δ18O for dissolved sulphate and sulphide, H2S(g), 

sulphide minerals as well as native S (S0) revealed four probable distinct sources of sulphur  

as well as different processes affecting the different sulphur species (Sieland, 2009). 

Finally, the acidic gas specie SO2, indicating a deep magmatic input of magma degassed SO2, 

which dissolves into the hydrothermal fluid can not clearly inferred by the contents of 

dissolved sulphate and sulphide. However, sulphur isotopic ratios of H2S(g) indicate a 

magmatic component. Furthermore, a pH of about 3 measured in the water samples of Black 

Point indicate a further contribution than the principal hydrothermal acidification processes 

through water-rock interaction (Herzig and Hannington, 2006) as well as CO2 that can only 

achieve values of pH > ~ 4.3. For lower pH a strong acid like H2SO4 formed from magmatic 

SO2 is necessary.   

 

4.1.5.2.2 Dissolved halogens F, Cl and Br 

 
The detected contents of the halogens fluoride (F-), chloride (Cl-) and bromide (Br-) in the 

sampled thermal waters, as indications for dissolution of the acid magmatic gases HF, HCl 

and HBr, are displayed in Fig. 18 as average enrichment or depletion factors over the seawater 

content.  

Despite partially high standard deviations, the analysed average contents show an enrichment 

of fluoride over the normal seawater content of 6.8 µmol/L (Millero, 1996) except for Hot 

Lake. For chloride only the hydrothermal discharging waters of Black Point and Hot Lake are 

enriched with a mean of 826 and 1217 mmol/L, respectively, over 655 mmol/L chloride in 

local seawater (Gugliandolo et al., 2006). At all other sites discharged waters are depleted 

with respect to the seawater chloride content. A similar distribution is shown for bromide. 

Beside a strong enrichment for Black Point and Hot Lake the other sites show bromide 

concentrations close to 0.99 mmol/L of local seawater (Gugliandolo et al., 2006).  

With regard to the analysed contents of chloride and bromide the sampled water of Lisca Nera 

was similar to the composition of normal or local seawater and appears to be less infected by 

hydrothermal discharges. Only the content of fluoride was slightly enriched over the reference 

values of normal seawater.  
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The high chloride and bromide contents of Hot Lake and Black Point identify the water 

samples of these sites as hydrothermal modified waters, less contaminated by seawater. The 

evaluation of the different fluoride contents is limited by a high variance of the measured 

values, in particular for Black Point. 
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Fig. 18. Average factor of enrichment/depletion over normal or local seawater of fluoride (F-), chloride 
(Cl-) and bromide (Br-) in the water samples taken from the submarine hydrothermal discharges 
in May and September 2008. As reference the less influenced water of Lisca Nera is displayed, 
too.  

 

Geothermal fluids usually have fluoride contents lower than 526 µmol/L (< 10 mg/L, 

(Nicholson, 1993). High Ca concentrations provide the removal of F by formation of CaF 

minerals. Unusual high F- contents, which are accompanied by very high Cl- and SO4
2- levels, 

can be produced by the condensation of volcanic gases (HF) into the hydrothermal fluid 

(Nicholson, 1993). But, all measured fluoride contents were below 526 µmol/L. The highest 

detected value of about 239 µmol/L was measured for one Black Point sample in September 

2008 while another sample some days later only had 99 µmol/L. For the Black Point site 

fluoride contents of about 916 µmol/l were measured in 2006 while samples from other sites 

showed contents quite below 526 µmol/L (Tassi et al., 2009).  

The strong enrichment of chloride in the Hot Lake and Black Point seafloor hydrothermal 

fluids (Hot Lake about 118% and Black Point by about 46% enrichment with respect to 

seawater) may be based on the process of phase separation. Furthermore, supercritical 

condensation and subsequent remixing of the brine and vapour phase as well as the input of 

magmatic derived HCl and the dissolution into the thermal modified waters are considered to 
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cause such high chloride contents in the sampled waters discharging at both sites (Sieland, 

2009). 

Bromide is usually included at very low levels in geothermal fluids, except were seawater is a 

component of the geothermal fluid (Nicholson, 1993). Thus, at all sites except for Hot Lake 

and Black Point the bromide content was close to local seawater, whereas for Hot Lake and 

Black Point a distinct higher bromide enrichment over seawater was measured.  

 

Finally, considering the very low pH values in the thermal waters of Black Point and the high 

enrichment of Cl-, F- and Br- over seawater, it is likely that the hydrothermal fluid at the Black 

Point site is fed by the deep magmatic gases HCl, HF and HBr. These strong acids, as well as 

the already mentioned H2SO4, can cause pH values below about 4.3, which is the maximum 

acidification can be realised only by CO2. 

 

4.1.6 Inorganic carbon 
 
The detected content of total dissolved inorganic carbon (TIC) in the sampled waters is 

displayed in Fig. 19. By means of the respective pH the proportion of HCO3
- from TIC was 

computed (see section 3.4.5). 
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Fig. 19.  Concentrations of TIC and HCO3
- in the water samples taken from the submarine hydrothermal 

discharges in May and September 2008 compared to the total carbon concentration of normal 
seawater (dashed line). As reference the less influenced water of Lisca Nera is displayed, too.   
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The average TIC content in the sampled waters was distinctively enriched at all sites except 

for Black Point and the more or less uninfluenced site of Lisca Nera. The TIC content of the 

latter site was close to the total carbon content of normal seawater of 2.33 mmol/L (Brown et 

al., 1995). For Black Point, the low concentration of inorganic carbon conflicted with the peak 

CO2 concentration in the gas phase. But, due to the low pH values of the sampled waters, 

ranged between 2.9 and 3.4, the predominant species was CO2(aq) which tends to escape as 

CO2(g) into the atmosphere and less TIC was detected in the water sample. Beside the Black 

Point samples all sites were also depleted or close to the total carbon content of normal 

seawater.  

 

4.1.6.1 Depth profiles of pH and TIC 
 

Due to the rapid decrease of pressure and temperature affecting the discharging gases 

condensation and dissolution into seawater take place. Thus the ambient seawater is altered by 

the dissolution of acidic gases as well as by mixing with discharging acidic hydrothermal 

waters. Thus, the seawater may predominantly be altered close to the emission spots on the 

sea floor. To evaluate the extent of influence in the seawater column, depth profiles of TIC as 

well as of the pH, water temperature and EC were measured. Furthermore, the dissolution 

process of the ascending CO2-rich gases will be evaluated in order to derive statements 

whether the gases are completely dissolving or reaching the sea surface and escaping directly 

into the atmosphere.  

 

4.1.6.1.1 Depth profiles of TIC at the investigated sites 

 
Since emitted gases consist predominantly of CO2, water samples were taken from different 

water depths above a venting area on the sea floor to analyse for the TIC content as well as for 

the respective pH value (Fig. 20). Comparing both graphs the profiles of TIC and pH show 

converse variations with increasing depths. The higher the TIC content the lower the pH value 

indicating that the major carbon specie that cause the variations of both parameters is CO2 

which is predominantly emitted in the gas phase and is subsequently dissolving in seawater. 
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Fig. 20.  Depth profiles of TIC and pH above a venting area on the seafloor at the sites of Bottaro West 
B(W), Bottaro North B(N), Fumarolic Field (FF), Point 21 (P21) and Black Point (BP) 

 
 
At all five sites, except for Bottaro North, the TIC content and pH value at sea surface is 

almost equal the TIC content and pH of seawater of about 2.33 mmol/L and 8.1, respectively 

(Brown et al., 1995, Gugliandolo et al., 2006) (Fig. 20). Thus, at the water surface above these 

sites no indications for a CO2-rich gas emission at the seafloor could be detected in the 

seawater composition with regard to the dissolved carbon content and pH value. With 

increasing water depth the TIC increases as well as the pH decreases gradually to the highest 

or lowest value, respectively, which is reached in most cases at the emission centre on the 

seafloor. Thereby, the increase of TIC or the decrease of pH is stronger for Bottaro West and 

Point 21 than for Black Point and the Fumarolic Field. This is likely due to sampling above a 

diffusive exhalation field at Bottaro West and above a large vent at Point 21 with respect to 

the profiles above less strong emission centres at Black Point and Fumarolic Field. In the 

latter cases, only the sample at the seafloor was taken close to an emission spot.  

The profile of Point 21 and Bottaro North show rather variations than a gradually increase or 

decrease of the parameters, unlike the other sites. This can be explained by the strong emitting 

intensity of some large fumaroles which cause the formation of huge gas bubbling columns 

those rise CO2-enriched seawater less laminar. Furthermore, at Bottaro North site the large 

fumaroles are located in a shallow water depth of only about 8 m. The intensity of the rising 
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plume of gas bubbles can still be seen at the sea surface at calm days and causes a strong 

mixing of the discharged hydrothermal fluids and the surrounding seawater. Thus, TIC 

content and pH are higher and lower, respectively, than the values for seawater along the 

whole depth profile. The highest TIC content was measured at 20 m depth (equals about 2 m 

above a large fumarole) at Point 21, followed by the seafloor sample of Black Point which 

was directly taken at the blackish sinter body emitting very hot, acidic and CO2-rich fluids.  

 

4.1.6.1.2 Depth profiles of pH, T and EC along transects  

 
Beside the depth profiles for TIC dissolved in seawater above the investigated emission sites 

also depth profiles were taken between these sites within as well as outside the shallow 

submarine crater surrounded by the outcropping islets. Aim of this investigation was the 

evaluation of the ambient seawater body affected by hydrothermal gas and water emissions 

from the seafloor.  

By lowering and lifting a multi-parameter probe (or individual probes coupled) depth profiles 

of pH, water temperature and specific electrical conductivity were measured along line 

transects. The 2D-face generated by interpolation between the measured profiles (see section 

3.5) is displayed in Fig. 21 and 22 for May 2008 and September 2008, respectively. In May 

the transect crossed the investigation area from the east to the west with a distance of about 

3.5 km between the outermost points and including the profiles at Black Point, Point 21 and 

Hot Lake. In September a shorter distance was covered. Three parallel transects were 

investigated, with the middle line crossing the sites of Black Point, Point 21 and Hot Lake, the 

southern one Bottaro North and Bottaro West and the northern one Area 26.  

 

Generally, in September variations of the pH value were larger than in May. Furthermore, the 

water temperature as well as the EC showed higher values in September than in May. In the 

graphs of May only the emission field of Point 21 can be identified by slight lower pH values 

of 6.5 to 7 with respect to the pH of about 8 of the ambient seawater. Certainly, lower pH 

values were measured in water samples taken directly at the discharging fumaroles. But by 

lowering and lifting the pH probe at sea surface from a boat measurements directly in or very 

close to the vents were practically not possible. However, both in May and September it was 

hit on the submarine depression of Hot Lake which is marked by distinctive high temperature 

and EC values in Fig. 21 and 22.  
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In the profiles of May, one can see that the pH of the surrounding seawater was only 

influenced in the vicinity of Point 21 site up to some meters towards the sea surface, and at 

Black Point directly at the seafloor. Otherwise the residual profiles along the transect show no 

influence on the seawater pH within and outside the crater area. Except for the Hot Lake 

emission point no significant variation can be observed in the T and EC profiles. 

 

In the profiles of September 2008 (Fig. 22) several emission fields at sea floor can be clearly 

identified with pH values below 6 with respect to pH of about 8 of the ambient seawater. At 

the northern transect several venting areas are revealed up to a water depth of about 25 m, 

whereas profile d corresponds the Area 26 site. Distinctive fields between the profiles are 

probable but cannot be verified because of data lacking. The low pH fields displayed between 

the depth profiles seems to be the result of the interpolation procedure. Nevertheless, the 

regions of lower pH than ambient seawater reaches several meters up from the seafloor 

emission. For profile a and b the influence extents almost over the whole seawater column. 

Conversely, for the profiles d and e the low pH only reaches up to a particular water depth 

where it is changed rapidly into the pH of ambient seawater.  

Similar different types can be observed for the middle transect, where the emission fields of 

Black Point and Point 21 are clearly observable. Also at the southern transect the Bottaro 

North site can be clearly identified, but to a more less extent the Bottaro West site which 

indicates a lateral uninfluenced profile rather than the measurement directly above the gas 

emissions of the site. The pH depth profile at Bottaro North shows almost no variations but in 

general lower pH values with respect to ambient seawater. As already mentioned for the TIC 

profiles the large fumaroles were exhaling in a very strong intensity forming columns of 

bubbling gases reaching the seawater surface. Thus, there was a strong mixing of the 

discharging fluids with seawater along the whole seawater column. 

Profiles of T and EC identify again the Hot Lake seafloor emission. The anomalous T and EC 

values for profiles along the northern transect line cannot be explained. They can be 

interpreted as artefacts by interpolating slightly different values at the same depths of adjacent 

profiles. 

Finally, for the profiles taken in September 2008 one can infer by the height of lower seawater 

pH above the seafloor emission the intensity of gas discharge as well as the height of the 

formed gas bubbling column affecting the water column directly by gas dissolution and 

indirectly by carrying low-pH water towards the surface. Thus, the measured profiles may 

indicate the height of the CO2 bubbles before their complete dissolution. Otherwise, low pH 
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values restricted to the fumarolic emissions on the sea floor indicate the discharge of acid 

hydrothermal fluids including only slight degassing activity. By evaluating the trend of 

seawater pH from the emission point towards the sea surface it has to be considered that it is 

also affected by the current that forces the rising gas bubbles to a less vertical ascent.  
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Fig. 21.  Depth profiles of pH, water temperature and EC (point a to point m) along a line transect crossing the investigation area between the islets. Most readings 
from points a to point m consists of both a profile measured in May 2008 while lowering and lifting the probe. Profiles at point f match with the location of 
Black Point, point h with Point 21 and point j with Hot Lake. 2d-faces of pH, T and EC generated by ODV (Schlitzer, 2008), map modified after Rohland 
(2007). 
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Fig. 22.  Depth profiles of pH, water temperature and EC along three line transects. It is displayed as one transect from profile a to t.  Most readings from points a 
to t consists of both a profile measured in September 2008 while lowering and lifting the probes. Profiles at point d match with the location of Area 26, 
point g with Black Point, point j with Point 21, point m with Hot Lake, point p with Bottaro North and point q with Bottaro West. 2d-faces of pH, T and 
EC generated by ODV (Schlitzer, 2008), map modified after Rohland (2007). 
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4.2 Gas quantification 

4.2.1 Results of flow rate determinations 
 
Gas flow rates of fumaroles were measured by water displacements in a HDPE bottle of 1.2 L 

volume (see section 3.6). Based on 48 measurements all fumaroles were classified into four 

classes of flow rates (Table 4). At each site, except for Hot Lake and Area 26, all gas 

exhalations were counted and sorted into the respective class A to D (Table 7). Very large 

fumaroles that showed rates of gas release quite beyond about 40 L/min, the upper limit of 

that what could be measured by the water displacement methodology, were measured 

separately by means of a special system called FSVG (see section 3.6). For these few 

fumaroles located at Bottaro North and Point 21 a class E was established. 

 

Table 7.  Number of fumaroles observed at the five investigated sites. Depending on their 
estimated gas flow rate they were classified into four classes A to D. Class E 
represents few very large fumaroles that were examined separately. 

class A B C D E
range of gas flow rate [L/min] < 2.1 2.1 - 3.6 3.6 - 7.2 > 7.2 > 40

Bottaro West 591 39 9 2
Bottaro North 144 11 14 6 5

Fumarolic Field 549 90 37 4
Point 21 297 61 24 10 5

Black Point 546 36 8 2  
 

Most gas exhalations occurred at Fumarolic Field, Black Point and Bottaro West with about 

600 – 700 observed individual vents as the sum of all classes. For the Bottaro West site the 

field of numerous diffuse gas exhalations within the crater was thereby not taken into account. 

Due to the lower extent of Bottaro North site and a quite different morphology in respect to 

the other locations there were counted only 180 vents.  

Fumaroles showed predominantly small degassing activity with gas flow rates less than 2.1 

L/min. At all investigation sites fumaroles of this class accounted for about 75 – 92 %. It 

followed more intense gas exhalations with flow rates in the range of 2.1 – 3.2 L/min, 3.2 – 

7.2 L/min and more than 7.2 L/min with decreasing frequencies. Additionally, in each case 

five very strong exhaling fumaroles were located both at Point 21 and Bottaro North with 

flow rates clearly exceeding 40 L/min.  
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Based on the measured average flow rate of each class and the respective number of 

fumaroles the total gas output of each site was computed. Beforehand, the measured gas flow 

rates were corrected for the individual outlet gas temperature and finally, for the hydrostatic 

pressure based on the average water depth of each site (Appendix 15 and 17).  

The gas output of the almost circular field of numerous diffusive gas exhalations within the 

crater of Bottaro West was determined apart and the corrected result was added to the total 

output of the Bottaro West site (Appendix 14). 

 

Two large fumaroles at Point 21 which have been characterised by a massive gas discharges 

were measured by means of the special device “FSVG” (Kleutges, 2009). This took place in 

three series of measurements for the fumarole called “Melanie” and one serial of 

measurement for the fumarole called “Claudia” (Appendix D3). These results were again 

corrected for the individual gas release temperature and the hydrostatic pressure affecting the 

gases at the flow through section on top of the device. After correction the determined series 

of measurements yield average gas flow rates of about 346 ± 79 L/min and 869 ± 61 L/min 

for “Melanie” and “Claudia”, respectively.  

For the three remaining massive gas exhaling vents at Point 21 as well as five ones located at 

Bottaro North site no individual measuring was performed during the diving campaign in 

September 2008. An estimation of their gas flow rates was executed by visually comparison 

with respect to the two measured fumaroles. The comparison was carried out by means of 

photos (Appendix 18 and 19). 

At the investigation site Point 21 the five big fumaroles are located in a depression in front of 

a natural wall or in case of “Wanda” escaping directly from a small cavity in the wall 

(Appendix 18a - e). The vent next to “Melanie” called “Patricia” is approximately half as 

intense as “Melanie”. The twins in the northern part of the depression called “Claudia” and 

“Mandy”, are showing an almost equal gas output. From gas bubbling of the vent “Wanda” it 

is inferred a gas release to a lower extent than the release of “Melanie”, “Mandy” and 

“Claudia” but comparable with the output of “Patricia”. Thus, based on the measured rates for 

“Melanie” and “Claudia” (307 L/min and 302 L/min, respectively, for both vents “Patricia” 

and “Wanda” a gas flow rate of 200 L/min is constituted, while for “Mandy” 350 L/min is 

assumed. Taking into account the individual gas release temperature and the hydrostatic 

pressure the corrected gas flow rates range from about 210 to 870 L/min for the five large 

fumaroles at Point 21(Appendix 16). 
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Comparing the two measured fumaroles at Point 21 with the five most active gas vents at 

Bottaro North it is noticeable that vent 5, the strongest gas exhalation at that site, features a 

gas output comparable with “Melanie” and “Claudia” at Point 21 (Appendix 19a – i)). The 

remaining vents are less active. Thereby, vents 2, 3 and 4 show equal quantities of gas release, 

only vent 1, located in the small gravel field, is more less strong, having a gas output 

comparable with “Patricia” at Point 21. According to that, the individual gas flow rates were 

estimated for the five massive exhaling vents at Bottaro North. The corrected estimates are in 

the range between 161 L/min to 630 L/min (Appendix 16). 

 

Finally, all results of gas flow rates were added for each location and finally for the whole 

investigation area (Appendix 17, Fig. 23).  
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Fig. 23.  Total gas output for the five investigated sites and the contribution of the respective classes of gas 

flow rates (A to E) (see also Appendix 17). 

 

Highest rates of gas release were determined for the Point 21 site with 4617 L/min, followed 

by the Bottaro West site with 3518 L/min. For the latter site the field of diffusive gas 

exhalations contributes to the total gas output by approximately 49 %. The locations of 

Bottaro North, Fumaroles Field and Black Point have nearly equal quantities of gas emission, 

ranging between 2485 and 2737 L/min.  

Thereby, only fumaroles of the classes of weak to moderate flow rates (classes A to D) 

provide for the determined gas outputs at Bottaro West, Fumaroles Field and Black Point. At 

Point 21 and Bottaro North the five massive gas exhaling vents of each site (class E), with 

flow rates up to two orders of magnitude higher than the weak to moderate fumaroles, 

contribute in a considerable proportion to the total gas output. Particularly, for the Bottaro 
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North site, where the five large vents along provide for a significant gas emission with about 

79 % of the total gas output. 

Thus, it results in an individual daily gas output between 3.6 * 106 – 6.7 * 106 L/day for the 

five locations. In sum it is 2.3 * 107 L/day as the total gas output of the whole investigation 

area assuming that these five investigated sites represent most of the whole submarine crater 

area of about 2.3 km2.  

 

The distribution of the submarine gas exhalations reveals a significant gap between the weak 

to moderate fumaroles (classes A to D) and the more intense gas exhaling fumaroles of 

Bottaro North and Point 21 (class E). In other words, no gas exhalations were measured 

having gas flow rates (uncorrected for hydrostatic pressure) more than 16 L/min and less than 

302 L/min, whereas for less intense larger fumaroles 200 L/min were estimated as lower limit 

(Appendix 13 and 16). Possibly there have been few fumaroles, which were counted and 

sorted into the class D (> 7.2 L/min), but possessed flow rates exceeding 16 L/min and 

perhaps also 40 L/min, the upper limit for class D. It can also not ruled out that fumaroles 

occur with gas release in the rate between 16 L/min and 200 L/min at locations apart from the 

observed submarine investigation sites. But, based on measurements and observations at the 

investigated locations, the few large fumaroles of class E exhibit outstanding formations with 

respect to the rate of gas discharge and thus, considerably differ from the predominantly 

appearing weak and moderate gas emitting fumaroles. 

 

4.2.2 Quality of the quantification 

4.2.2.1 Consideration of gas temperature 
 
The rates of submarine gas discharges had to be corrected on the one hand for the hydrostatic 

pressure due to different water depths of the emission sites and on the other hand for the 

different temperatures of the gases when they escape from sea floor. Thus, all results of 

measured gas flow rates, i.e. both by means of water displacement in the HDPE bottle and the 

special system FSVG, as well as the results of estimation based on the comparison of photos 

were subsequently corrected for their measured gas temperature. As reference the standard 

ambient temperature of 25 °C (from SATP conditions) was applied since it differs less strong 

from the ambient water temperature of about 27 °C in September 2008 than the normal 

temperature of 0 °C (from STP conditions). Corrections for temperature and also for 
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hydrostatic pressure were done by the ideal gas law, assuming that gases behave like ideal 

gases since the absolute pressure at the outlets is only slightly elevated compared to P = 0 bar.  

Most fumaroles have outlet gas temperatures close to the water temperature of ambient 

seawater (Appendix 1 - 4). But several ones differ distinctively from the water temperature.  

 

The aim of the temperature correction was to achieve a more precise quantification of the total 

gas output. But, temperature measurements were carried out only at the fumaroles that were 

examined for their gas flow rate, all other vents were thus treated as possessing gas 

temperatures equal to standard ambient temperature of 25 °C, which almost correspond the 

ambient water temperature of about 27 °C. This constitutes no major problems at the locations 

of Bottaro North, Bottaro West, Point 21 and Fumaroles Field, where for these few vents 

characterised by the discharge of warmer gases with respect to ambient seawater, the 

temperature was measured and taken into account for their gas flow rate. However, for Black 

Point no measurements were carried out. Here all fumaroles were only counted and sorted 

into defined classes. Since the Black Point site showed a heterogeneous temperature 

distribution (Fig. 6) unconsidered elevated gas temperatures of the fumaroles might cause a 

major uncertainty for the quantification of the total gas output of this site. 

A further critical point is the determination of the water temperature rather than the 

temperature of the discharged gases by means of a digital thermometer. Thus, the temperature 

measurement some centimetres deep in the sediment or rock fracture of the respective 

seafloor gas emission led to an underestimation of the temperature of the discharging gases 

since the temperature of the liquid phase was measured, actually. And discharging gases are 

cooling faster by mixing with cold seawater based on their lower heat capacity compared to 

seawater (see section 1.2.3). Enhanced measurement instrumentation will lead to more 

representative values of the fumarolic gas temperature. 

Furthermore, since the discharging hot gases are rapidly cooling the difference in the gas 

temperature at the seafloor emission and in the measuring system for gas flow determination 

could be very high, in particular for the FSVG, where the measuring section is located on top 

of the whole system, about 2 m above the seafloor.  

Although, the correction for different gas temperatures should achieve more precise gas 

quantification, by taking into account the mentioned critical issues of representation of the 

measured temperatures for the gases that were examined for their flow rate as well as the 

small number of measured temperatures, this approach seems less successful than it was 

expected. But, the author suppose that a complete disregard of the individual gas 

 



4. Results and evaluation  76 
 

temperatures, particular for the very intense gas exhaling fumaroles, would lead to a much 

higher uncertainty of the quantification.  

 

4.2.2.2 Error of the quantification 
 
To evaluate the quality of the quantification some facts have to be considered. To measure the 

gas flow rates by means of water displacement in a bottle seems to be very accurate in the 

case the funnel covers the whole fumarolic emission and captures all bubbles. More 

problematic seems to be the comparison of all fumaroles with regard to their gas bubbling 

columns in order to classify them with respect to the assumed gas flow rate. Incorrect 

classification as well as miscounts is likely.  

Further challenge was the bordering of the submarine sites, and therefore the decision which 

gas emanations should be included for the gas output quantification. For crater shaped 

locations the enclosing slopes could be regarded as the borders, but Bottaro North as well as 

Point 21 are not entirely enclosed by distinct morphologies. In these cases all fumaroles inside 

a particular radius from the central structure of the location, i.e. the natural rocky wall at Point 

21 and the small gravel field at Bottaro North, were taken into account. At the remaining sites 

all gas exhalations inside the crater were considered as well as fumaroles located at the slopes 

and being in field of vision when diving along the crater margin.  

For the large fumaroles that were measured by the special system FSVG the obtained values 

are supposed to be of quite good quality (Johannes Kleutges, 2009, pers. comm.). However, it 

is likely that the big funnel captured not all discharging gas bubbles of the two large 

fumaroles measured at Point 21 and, thus, discount a relevant proportion of the released gas. 

The gas flow rates of the residual large fumaroles at Point 21 and Bottaro North were then 

estimated by comparison of their bubble columns by means of photographs. Of course these 

estimations might be very error-prone since the real magnitude of the gas flow rate emerges 

not explicit from the photos. Errors in the determination of the gas flow rates of these large 

vents are most serious since these fumaroles contribute to a significant proportion to the total 

gas output of the respective site.   

Furthermore, there are probably numerous fumaroles scattered between the investigated 

emission sites, but they were not considered. This might led to a higher rate of gas release of 

the whole submarine hydrothermal area. 

Taking into account the mentioned uncertainties as well as the fact that much more gas flow 

rates were estimated than directly measured, the determination of the submarine gas output 
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should be deemed as semi-quantitative. That is why influences to the gas output due to 

different atmospheric pressures, tidal influences and height of waves were neglected.  

Finally, the author suppose a possible error up to 100 %, including over- and underestimation, 

for the determined total gas output of 2.3 * 107 L/day of the whole investigation area. But 

even in this case the order of magnitude of 107 L/day remains the same. 

 

4.2.3 Temporal development of the submarine gas output 
 
The total gas output of 2.3 * 107 L/day determined in September 2008 is more than twice as 

high as the output occurred before the submarine gas explosion event at November, 3rd 2002 

(Fig. 24).  

Since the mid 1980’s, first results were determined by Italiano and Nuccio (1991). The total 

gas output of the submarine hydrothermal field east of Panarea remained almost constant at 

about 9 * 106 L/day, except for a decrease by one-half the rate in 1989 (Caliro et al., 2004). 

The submarine gas eruption in 2002 caused a gas discharge in a rate about two to three orders 

of magnitude higher than previous rates (Caracausi et al., 2005b). It was followed by a rapid 

decrease by one order of magnitude only during two weeks after the onset of the crisis to 

about 4 * 108 L/day (Caliro et al., 2004, Caracausi et al., 2005b). The total submarine gas 

output in the investigation area progressively decreased to 2 * 107 L/day in July 2003 (Caliro 

et al., 2004). About five years later the measured total gas output was in the same order of 

magnitude indicating that the system has again reached a period of almost constant degassing 

like before 2002.  

However, except for the results of Italiano and Nuccio (1991), it was not definitely declared 

which exhalation fields were taken into account for the quantification of the entire area by 

Caliro et al. (2004).  
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Fig. 24. Temporal development of the total submarine gas output of the Panarea hydrothermal system.  

 

4.2.4 Short-term variations of the gas flow rates 
 

The submarine gas outputs were determined by several dives within several days during the 

diving campaign in September 2008. Thus, the results depict the state of the Panarea 

hydrothermal system for this period of time. However, the gas flow rates are not constant over 

time. Beside the mentioned long-term variations also internal and external factors affect the 

gas flow rates of the hydrothermal system in shorter periods of time.  

By means of the system FSVG three series of measurement were achieved for the “Melanie” 

fumarole and one serial for the “Claudia” fumarole at Point 21 (Appendix D3). The four 

series were measured at four consecutive days, having periods ranging from about 30 minutes 

to almost 10 hours. The “Claudia” fumarole showed an almost constant gas flow rate over the 

period of measurement apart from normal fluctuations. In contrast to that, the flow rate of the 

“Melanie” fumarole revealed jumps to about double rates and a subsequent decreasing till the 

next jump within two series of measurements (Fig. 25). These jumps have varying 

periodicities in the range of about two hours to almost five hours.  

Because errors due to the measurement procedure are unlikely (Johannes Kleutges, 2009, 

pers. comm.) these variations of gas release may originate from a varying permeability 

beneath the sea floor. The gas passage seems to clog periodically until the pressure is high 

enough to remove the blockage and to force a gas release in a much higher rate. No jumps 
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occur at the serial of gas flow rate of the “Claudia” fumarole, so both vicinal vents probably 

have different pathways for their fluids towards the sea floor. 
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Fig. 25:  Times series of measurement for the “Melanie” fumarole (04/09/08 – 05/09/08) as well as for the 
“Claudia” fumarole (06/09/08) at the Point 21 site. Values are corrected for gas temperature and 
hydrostatic pressure (data from Kleutges (2009)). 

 

Short-term temporal variations of the gas flow rates may also be caused by changes of both 

the weight of the water column including atmospheric pressure on the submarine fumaroles 

and gravity forces of sun and moon on the magma chamber. The local weather situation 

causes variations of barometric pressure, whereas the water level is affected by earth-tides but 
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also storms. Tides in general cause amplitudes of water level less than 40 cm typical of the 

central Mediterranean Sea (Anzidei et al., 2005).  

 

The gas output of the submarine hydrothermal system of Panarea is also affected by seismic 

events as well as volcanic activity and could therefore treated as an indicator in the case that 

gas flow rates will be monitored continuously. Heinicke et al. (2009) revealed coincidences of 

the gas flow rate of a fumarole at Point 21 and seismic events that occurred at the nearby 

Stromboli volcano. Thus, the authors suggest an interconnection of the gas feeding systems 

affecting both the submarine hydrothermal fluid discharges of Panarea as well as the 

Stromboli volcano activity. Thereby, the volcanic fluids are able to interact with the 

geothermal system of Panarea through a deep tectonic connection.  

 

 

4.2.5 Output of CO2 and H2S 
 

To take into account the different rates of gas emission and the respective relative 

concentrations of the gas species the output rates of CO2 and H2S were computed for each site 

(Fig. 26). The output for CO2 ranged between 6.4 and 11.6 tons per day, while the emission of 

H2S ranged between 15 and 296 kg per day between the investigated sites. In general, sites 

characterised by a high gas emission rate had also the highest output of CO2 since it has been 

by far the most abundant specie for all submarine gas discharges in the investigation area. So, 

differences in the CO2 content between the sites have been of minor consequence for the total 

output of CO2. For the output of hydrogen sulphide differences in the gas contents are more 

substantial. Thus, Black Point emit distinctive less hydrogen sulphide than Bottaro North, 

although both sites have almost equal total gas flow rates.  

The total rate of the seafloor CO2 output for the entire submarine hydrothermal area east of 

Panarea accounted for 40.5 ± 0.2 t/day and the H2S output was about 806 ± 13 kg/day. 
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Fig. 26. Total output of the gas species CO2 and H2S of the five sites both investigated for their gas 
composition and gas output.  

 

The abundance of seawater in the shallow subsurface region of the hydrothermal system can 

be expressed by a gas/water ratio of below 0.2 which was modelled by Caracausi et al. 

(2005a). This caused a removal of soluble gases like CO2 and H2S from the gas phase to a 

large extent. Based on their model of gas dissolution in seawater the authors ascertained that 

20 – 40 % (even up to 60 % at maximum) of CO2 was generally lost by dissolution in 

seawater before the gas phase escape from the sea floor. So, they corrected the submarine gas 

output for this loss to estimate the total CO2 gas output from the geothermal system.  

Taking into account dissolution of CO2 in the hydrothermal fluid by likely 30 % on average 

prior the discharge at sea bottom the total emitted CO2 at seafloor in the investigation area 

results to 52.7 ± 0.2 t/day.  

When the gases escape at the sea floor into the cold ambient seawater further dissolution takes 

place during ascending to the sea surface due to buoyancy. The dissolved gases influence the 

original physico-chemical parameters of the seawater (see section 4.1.6). A sink for CO2 in 

seawater is the formation of carbonates as well as photosynthesis of marine organisms (see 

section 1.2.3). If gas bubbles reach the sea surface before they are completely dissolved in 

seawater they escape directly into the atmosphere. Since the seawater is in equilibrium with 

the atmosphere an input of CO2 from a sub-seafloor hydrothermal system will cause the CO2 

release into the atmosphere sooner or later in the course of time. 
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4.2.6 Comparison with subaerial CO2 quantifications  
 

Based on the determined output of about 53 tons per day for September 2008 the shallow 

submarine hydrothermal system of Panarea can be considered as a minor CO2 emission source 

with respect to subaerial volcanic emissions (Table 8). The CO2 degassing of Vulcano and 

Stromboli, both belonging to the Aeolian volcanic arc, is characterised by CO2 emission rates 

of about three times the determined output of Panarea for Vulcano and about 2 orders of 

magnitude higher than the submarine Panarea output for Stromboli. 

Mt. Etna is considered to be one major volcanic gas emitter in the world in the long term 

(Aiuppa et al., 2006b) with on average 9000 t CO2/day, more precisely about 2000 t/day 

during passive degassing and up to 40 times larger emission rate during effusive eruptions  

(Aiuppa et al., 2006b). Thus, Mt. Etna accounts for about 10 % of world-wide average 

volcanic emission of CO2 and, moreover, can also be considered as the world’s major point 

source for the gases of SO2, HCl and HF (Aiuppa et al., 2006a).   

Dando et al. (1999) assumed that the total CO2 output from all hydrothermal sources in the 

Mediterranean region (mainly Tyrrhenian and Aegean Seas) could well be of the order of 

10,000 – 100,000 t/day, including the submarine hydrothermal system of Panarea.  

Submarine volcanic carbon degassing is assumed basically (> 90 %) related to mid-ocean 

rigdes in divergent plate margins (Morner and Etiope, 2002). Thereby, the CO2 output rate of 

the entire 60,000 km long mid-ocean ridge (MOR) volcanic systems was estimated to be in 

the range between about 80,000 and 180,000 t/day (Gerlach, 1991). So, the CO2 emission of 

the entire MOR system is assumed to be in the same order of magnitude as the estimated total 

Mediterranean hydrothermal CO2 emissions which indicate a global importance of the 

Mediterranean sources.  

Finally, the global emission rate of CO2 by all subaerial and submarine volcanoes is uncertain 

but was firstly estimated to be about 360,000 – 480,000 tons per day (Gerlach, 1991). 
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Table 8. CO2 output (in tons per day) of several volcanoes and hydrothermal/volcanic systems 
for evaluation of the determined submarine CO2 release of the hydrothermal system 
of Panarea. 

emitter output [t/day] reference
Panarea submarine hydrothermal system 52.7 ± 0.2 own data (Sep 2008)

Vulcano 180 ± 10 Baubron et al., 1990
Stromboli 2900 - 5800 Allard et al., 1994

Etna 35,000 ± 8000 Allard et al., 1991
900 - 67,500 Aiuppa et al., 2006b

Masaya 2800 - 3100 Burton et al., 2000
all Mediterranean hydrothermal sources 104 - 105 Dando et al., 1999

entire MOR volcanic system (82 - 178) * 103 Gerlach, 1991
global volcanic emissions (3.6 - 4.8) * 105 Gerlach, 1991  

 

Estimates of global subaerial volcanic CO2 emissions are very uncertain and usually very 

underestimated since (1) degassing is usually estimated from direct flux observations 

operating only over a year time-scale and, thus, hardly representing any steady-state 

degassing, (2) measurements or rough estimates of CO2 emission rates are only available for 

less than 20 volcanoes and (3) the principal mode of volcanic CO2 release by quiescent, non-

eruptive diffuse degassing, including the flanks, is strongly underestimated (Morner and 

Etiope, 2002). Thus, these authors suggested a more realistic global CO2 emission rate from 

subaerial volcanoes by at least 820,000 t/day (300 Mt/year), taken into account 500 

historically active subaerial volcanoes with an average conservative output of 0.1 - 0.5 

Mt/year by plume as well as diffusive degassing. 

 
However, CO2 is also the most important anthropogenic greenhouse gas (see section 1.2.3). 

Thereby, the primary sources of the increased atmospheric CO2 concentration since pre-

industrial time results from use of fossil fuel, with an annual average CO2 emission of 26.4 

Gt/year as well as land-use change (about 5.9 Gt/year) (IPCC, 2007). Compared to this, the 

atmospheric impact from global volcanic CO2 degassing of about 0.3 * Gt/year is trivial.
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5. Final discussion 
 
The submarine discharging gases of the hydrothermal system of Panarea were investigated in 

respect of their chemical composition as well as their emission rate.  

Unfortunately, only few gas compounds could be determined, others were evaluated by means 

of external data. The most abundant species was CO2 (> 96 vol.%), followed by H2S (up to 4 

vol.%). For each investigation site both species accounted for more than 99 vol.% of the gas 

that emits on the seafloor. The occurrence of O2 and N2 indicate an atmospheric endmember 

by subsurface dilution of the hydrothermal fluid with air saturated seawater. However, 
4He/20Ne ratios in the gases which were more than 100 times the ratio of air suggest a very 

low atmospheric contribution to the geothermal circulation. The different ratio of CO2 and 

H2S between the sites indicates the occurrence of gas scrubbing, whereas the extent of partial 

gas dissolution in respect to the different solubility in seawater might be an indicator for the 

velocity of gas ascent towards the seafloor. Therefore, the gases of large fumaroles which are 

probably characterised by a rapid gas migration, were least encountered to the dissolution of 

the more soluble H2S, which explains the lowest CO2/H2S ratio analysed in these gas samples. 

Thus, such large fumaroles located at Point 21 and Bottaro North may provide the most 

reliable data on the subsurface composition since through the rapid and direct gas migration 

there is less time for gas-water-rock interactions.  

When the gas phase is ascending and cooling condensation will occur. The condensed water 

vapour may dilute the hydrothermal fluid. Thus, an open question may be whether the thermal 

waters associated with the hot gas discharges of the large fumaroles at Bottaro North and 

Point 21 are only seawater heated by the ascending hot gases, condensed vapours of a biphase 

hydrothermal fluid, diluted hydrothermal waters, or a mixture of all. The measured EC 

provide no conclusion since it was close to that of local seawater.  

It was not looked for water vapour in the sampled gases but it is not excluded that it could be 

detected in the discharges of the large fumaroles as well as in the hot gas discharges at Black 

Point, because in the subaerial fumaroles of La Calcara on Panarea Island water vapour was 

detected with about 93 vol.% (Italiano and Nuccio, 1991). Here, a reliable method to analyse 

for water vapour in the discharging gases has to be designed. 

Regarding the analysed elements in the sampled gases and aerosols some differences of the 

elemental composition is noticeable, particular between the gas and aerosols sampled in May 

2008 and the gases and aerosols restricted to the size < 25 nm (September 2008). Most 

elements were detected in the sample of Black Point. Some of the elements are considered to 
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be of magmatic origin, other ones might originated from gas-water-rock interaction. However, 

an evaluation of the detected elemental compositions is difficult since the trapping solution 

had high elemental concentrations itself and comparable data of previous studies are lacking. 

One aim of this study was the detection of an input of magmatic gases to the hydrothermal 

fluid based on the feeding of the system by of deep magmatic fluids. The chemical 

composition of the sampled gases provided no evidence. However, isotopic ratios of 13C/12C 

(CO2), 34S/32S (H2S) and 3He/4He argued for a magmatic contribution for the contents of these 

gases.  

When looking to the results of hydrothermal water samples it is obvious that Black Point 

deserve special attention. It had the second highest EC, indicating a low dilution of the 

original hydrothermal fluid with seawater, the lowest pH (mean of 3.1) and highest redox 

potential and oxygen concentration, compared to all other investigation sites. The more 

oxidising redox conditions unlike the typical hydrothermal fluid redox state might also caused 

by the input of small amount of magmatic fluids as it was reported by Capaccioni et al. (2007) 

for the submarine gas eruption in 2002. The enrichment of Cl-, F- and Br- over seawater might 

also indicate for a contribution of magmatic derived acid gases, such like HCl, HF and HBr, 

in order to decrease the pH of the fluid more than the typical hydrothermal acidification as 

well as CO2 can provide for. Another strong acid, H2SO4 derived from magmatic SO2, might 

be also be reasonable for low pH in the fluid, although the fluid samples of Black Point were 

depleted in total dissolved sulphur over seawater.  

Based on all mentioned geochemical parameters for the Black Point fluids one could infer that 

Black Point was significantly more affected by the input of deep magmatic fluids than the 

fluids at the other sites. 

 

The highest gas output of five investigated sites provided Point 21, followed by the site of 

Bottaro West. Together they account for a total submarine gas emission of 2.3 * 107 L/day of 

the investigation area, assuming that the five sites represent most of the entire submarine 

crater area of about 2.3 km2. A maximum error of ± 100 % was estimated for this semi-

quantitative determination.  

All fumaroles, up to 600 – 700 in the case for Fumarolic Field, Bottaro West and Black Point 

site, were therefore classified with regard to their gas flow rate. Most of them (75 – 92 %) 

were weak discharging fumaroles. At least 10 fumaroles were found that are characterised by 

a very intense gas release. These fumaroles, located at Point 21 and Bottaro North, 

contributed significantly to the total gas emission of the respective site. Thus, for a correct 
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quantification it is very important that the gas flow rates of these vents are determined as 

precise as possible.  

After a period of nearly constant degassing before November, 3rd 2002, when the activity of 

Panarea volcanic complex was considered to be quiescent, the submarine gas eruption caused 

an increase of gas release by 2 to 3 orders of magnitude. Since July 2003 it can assume that 

the hydrothermal system of Panarea has again reached a state of constant degassing, still more 

than twice the rate than the period before 2002.  

With regard to CO2 the system is emitting 52.7 t/day, including the subsurface dissolution of 

30 % prior the discharge on seafloor. Although, at first the discharged CO2 predominantly 

dissolve in the seawater sometime it will be degassed into the atmosphere. Through the CO2 

input in the ambient seawater the TIC increases and the pH decreases, particularly over 

intense gas discharges, revealed by measured depth profiles. For the very shallow site of 

Bottaro North the pH was decrease as well as the TIC was increased along the entire water 

column of about 8 m. Over deeper emissions there is a region of the lower pH up to a 

particular water depth where the pH equals again the ambient seawater pH. The height over 

the emission might be depending on the intensity of gas release. 

In comparison with subaerial volcanoes like Vulcano, Stromboli and Etna the determined CO2 

emission rate is trivial. A global CO2 emission by subaerial volcanoes is estimated to be least 

0.3 Gt/year (Morner and Etiope, 2002). This is again trivial against the average CO2 emission 

caused by burning of fossil fuel of about 26.4 Gt/year (IPCC, 2007). 

 

What might be a future scenario? All researchers agree that a gas eruption like the one in 2002 

may occur again in the future. The system seems to be capable of gathering and transferring a 

particular amount of magmatic fluids towards the seafloor emissions. Will there be a strong 

and rapid increase of the feeding rate, e.g. induced by seismic events, then a new gas eruption 

can not be excluded. This poses hazards for inhabitants and tourists on the sea as well as on 

Panarea Island, e.g. by the exposure of huge amounts of toxic gases. Thus, by monitoring of 

the geochemical parameters of the hydrothermal gas and water discharges as well as of the 

gas output rate it might be possible to identify significant variations that make forewarnings 

possible. 
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Appendix 3.  Map of Fumarolic Field, including the classification of the examined fumaroles with regard to their measured gas flow rate (map modified 
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Appendix 4.  Map of Point 21, including the classification of the examined fumaroles with regard to their measured gas flow rate (map modified from 
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Appendix 5a. ICP-MS results for the gas samples trapped in NaOCl solution (1:10) from May and September 2008 (analysis by Actlab, Canada) 

Analyte B Na Li Be Mg Al Si K Ca Sc Ti V Cr Mn Fe
Unit µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L

Site Detection Limit 3 5 1 0.1 1 2 200 30 700 1 0.1 0.1 0.5 0.1 10
Bottaro West May 08 75 225 < 300 3500000 < 100 < 10 200 20020000 700070000 < 100 < 10 < 10 < 50 < 10< 1000
Point 21 May 08 35 240 < 300 3500000 < 100 < 10 < 100 40020000 800070000 < 100 < 10 < 10 < 50 < 10< 1000
Bottaro North May 08 95 240 < 300 3500000 < 100 < 10 < 100 40020000 700070000 < 100 < 10 < 10 < 50 < 10< 1000
Black Point May 08 38 240 < 300 3500000 < 100 < 10 < 100 < 20020000 800070000 < 100 < 10 < 10 < 50 < 10< 1000
Blank NaOCl (1:10) May 08 < 300 3500000 < 100 < 10 < 100 < 20020000 600070000 < 100 < 10 < 10 < 50 < 10< 1000
Black Point Sep 08 1:41 180 360 < 3 > 35000 < 1 < 0.1 18 < 2 < 200 150 < 700 < 1 < 0.1 < 0.1 < 0.5 0.3 < 10
Bottaro North Sep 08 1:41 240 240 < 3 > 35000 < 1 < 0.1 2 < 2 < 200 140 < 700 < 1 < 0.1 < 0.1 < 0.5 < 0.1 < 10
Bottaro West Sep 08 1:41 300 300 < 3 > 35000 < 1 < 0.1 2 < 2 < 200 170 < 700 < 1 < 0.1 < 0.1 < 0.5 < 0.1 < 10
Fumarolic Field Sep 08 1:41 240 240 < 3 > 35000 < 1 < 0.1 < 1 < 2 < 200 160 < 700 < 1 < 0.1 < 0.1 < 0.5 < 0.1 < 10
Point 21 Sep 08 1:41 240 240 < 3 > 35000 < 1 < 0.1 < 1 < 2 < 200 160 < 700 < 1 < 0.1 < 0.1 < 0.5 < 0.1 < 10
Area 26 Sep 08 1:41 240 240 < 3 > 35000 < 1 < 0.1 2 < 2 < 200 180 < 700 < 1 < 0.1 < 0.1 < 0.5 0.1 < 10
Blank NaOCL (1:10) Sep 08 1:41 < 3 > 35000 < 1 < 0.1 < 1 < 2 < 200 140 < 700 < 1 < 0.1 < 0.1 < 0.5 < 0.1 < 10
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Appendix 5b. ICP-MS results (continuation) 

Analyte Co Ni Cu Zn Ga Ge As Se Br Rb Sr Y Zr Nb Mo
Unit µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L

Site Detection Limit 0.005 0.3 0.2 0.5 0.01 0.01 0.03 0.2 3 0.005 0.04 0.003 0.01 0.005 0.1
Bottaro West May 08 75 225 < 0.5 < 30 190 70 < 1 < 1 < 3 < 20 2300 2.1 46 < 0.3 2 < 0.5 < 10
Point 21 May 08 35 240 < 0.5 < 30 160 150 < 1 < 1 < 3 < 20 2600 1.7 44 < 0.3 2 < 0.5 10
Bottaro North May 08 95 240 0.7 < 30 150 < 50 < 1 < 1 < 3 < 20 2200 1.2 38 < 0.3 2 < 0.5 < 10
Black Point May 08 38 240 < 0.5 < 30 140 460 < 1 < 1 < 3 < 20 2800 < 0.5 35 < 0.3 3 < 0.5 < 10
Blank NaOCl (1:10) May 08 < 0.5 < 30 130 < 50 < 1 < 1 < 3 < 20 300 1.1 37 < 0.3 2 < 0.5 10
Black Point Sep 08 1:41 180 360 0.007 4.6 3.7 1.2< 0.01< 0.01< 0.03 < 0.2 52 0.04 1.25 0.01 0.02 0.005 < 0.1
Bottaro North Sep 08 1:41 240 240 0.005 0.8 3.4 < 0.5< 0.01< 0.01< 0.03 < 0.2 51 0.03 0.73 0.01 0.01 0.005 < 0.1
Bottaro West Sep 08 1:41 300 300 0.009 1.3 4.7 < 0.5< 0.01< 0.01< 0.03 < 0.2 63 0.04 1.01 0.01 0.02 0.005 0.1
Fumarolic Field Sep 08 1:41 240 240 < 0.005 1.9 3.9 0.8< 0.01< 0.01< 0.03 < 0.2 58 0.04 0.87 0.01 0.02 0.005 < 0.1
Point 21 Sep 08 1:41 240 240 < 0.005 1.5 3.9 0.7< 0.01< 0.01< 0.03 < 0.2 56 0.04 0.81 0.01 0.02 0.005 0.1
Area 26 Sep 08 1:41 240 240 0.007 1.3 3.9 1.1< 0.01< 0.01< 0.03 < 0.2 54 0.06 0.79 0.01 0.02 0.005 < 0.1
Blank NaOCL (1:10) Sep 08 1:41 < 0.005 0.5 3.5 1.6< 0.01< 0.01< 0.03 < 0.2 64 0.03 0.84 0.01< 0.01 0.005 < 0.1
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Appendix 5c. ICP-MS results (continuation) 

Analyte Ru Pd Ag Cd In Sn Sb Te I Cs Ba La Ce Pr Nd Sm
Unit µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L

Site Detection Limit 0.01 0.01 0.2 0.01 0.001 0.1 0.01 0.1 1 0.001 0.1 0.001 0.001 0.001 0.001 0.001
Bottaro West May 08 75 225 < 1 < 1 < 20 < 1 < 0.1 < 10 < 1 < 10 < 100 0.4 350 0.2 0.4 < 0.1 < 0.1 < 0.1
Point 21 May 08 35 240 < 1 < 1 < 20 < 1 < 0.1 < 10 < 1 < 10 < 100 0.2 120 0.3 0.4 < 0.1 < 0.1 < 0.1
Bottaro North May 08 95 240 < 1 < 1 < 20 < 1 < 0.1 < 10 < 1 < 10 < 100 0.2 130 < 0.1 0.1 < 0.1 < 0.1 < 0.1
Black Point May 08 38 240 < 1 < 1 < 20 < 1 < 0.1 < 10 < 1 < 10 < 100 0.4 190 0.2 0.4 < 0.1 < 0.1 < 0.1
Blank NaOCl (1:10) May 08 < 1 < 1 < 20 < 1 < 0.1 < 10 < 1 < 10 < 100 0.2 20 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Black Point Sep 08 1:41 180 360 < 0.01 0.01 < 0.2 0.02 0.001 < 0.1< 0.01 < 0.1 < 1 0.01 1.6 0.01 0.01 0.001 0.01 0.001
Bottaro North Sep 08 1:41 240 240 < 0.01 0.02 < 0.2< 0.01 0.001 < 0.1< 0.01 < 0.1 < 1 0.01 0.5 0.01 0.01 0.001 0 0.001
Bottaro West Sep 08 1:41 300 300 < 0.01 0.01 < 0.2< 0.01 0.001 < 0.1< 0.01 < 0.1 < 1 0.01 0.6 0.01 0.01 0.001 0 0
Fumarolic Field Sep 08 1:41 240 240 < 0.01 0.02 < 0.2< 0.01 0.001 < 0.1< 0.01 < 0.1 < 1 0.01 0.5 0.01 0.01 0.001 0 0
Point 21 Sep 08 1:41 240 240 < 0.01 0.06 < 0.2< 0.01 0.001 < 0.1< 0.01 < 0.1 < 1 0.01 0.8 0.01 0.01 0.001 0 0
Area 26 Sep 08 1:41 240 240 < 0.01 0.07 < 0.2< 0.01 0.001 < 0.1< 0.01 < 0.1 < 1 0.01 18.8 0.01 0.01 0.001 0.01 0.001
Blank NaOCL (1:10) Sep 08 1:41 < 0.01< 0.01 0.2< 0.01 0.001 < 0.1< 0.01 < 0.1 < 1 0 139 0.01 0 0.001 0 0.001
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Appendix 5d. ICP-MS results (continuation) 

Analyte Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Pt
Unit µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L

Site Detection Limit 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.02 0.001 0.002 0.3
Bottaro West May 08 75 225 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 2 < 0.1 < 0.2 < 30
Point 21 May 08 35 240 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 2 < 0.1 < 0.2 < 30
Bottaro North May 08 95 240 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 2 < 0.1 < 0.2 < 30
Black Point May 08 38 240 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 2 < 0.1 < 0.2 < 30
Blank NaOCl (1:10) May 08 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 2 < 0.1 < 0.2 < 30
Black Point Sep 08 1:41 180 360 < 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0 0.001< 0.02 0.001 0.002 < 0.3
Bottaro North Sep 08 1:41 240 240 < 0.001 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001< 0.02 0.001 0.002 < 0.3
Bottaro West Sep 08 1:41 300 300 < 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001< 0.02 0.001 0.002 < 0.3
Fumarolic Field Sep 08 1:41 240 240 < 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001< 0.02 0.001 0.002 < 0.3
Point 21 Sep 08 1:41 240 240 < 0.001 0 0.001 0 0.001 0.001 0.001 0 0.001 0.001 0.001< 0.02 0.001 0.002 < 0.3
Area 26 Sep 08 1:41 240 240 < 0.001 0.001 0.001 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001< 0.02 0.001 0.002 < 0.3
Blank NaOCL (1:10) Sep 08 1:41 0.005 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001< 0.02 0.001 0.002 < 0.3
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Appendix 5e. ICP-MS results (continuation) 

Analyte Au Hg Tl Pb Bi Th U
Unit µg/L µg/L µg/L µg/L µg/L µg/L µg/L

Site Detection Limit 0.002 0.2 0.001 0.01 0.3 0.001 0.001
Bottaro West May 08 75 225 < 0.2 < 20 < 0.1 3 < 30 < 0.1 < 0.1
Point 21 May 08 35 240 < 0.2 < 20 < 0.1 3 < 30 < 0.1 < 0.1
Bottaro North May 08 95 240 < 0.2 < 20 < 0.1 2 < 30 < 0.1 < 0.1
Black Point May 08 38 240 < 0.2 < 20 0.2 9 < 30 < 0.1 < 0.1
Blank NaOCl (1:10) May 08 < 0.2 < 20 < 0.1 1 < 30 < 0.1 < 0.1
Black Point Sep 08 1:41 180 360 0.003 < 0.2 0.001 0.09 < 0.3 0.001 0.01
Bottaro North Sep 08 1:41 240 240 0.01 < 0.2 0.001 0.06 < 0.3 0.001 0.001
Bottaro West Sep 08 1:41 300 300 0.003 < 0.2 0.001 0.05 < 0.3 0.001 0.01
Fumarolic Field Sep 08 1:41 240 240 0.009 < 0.2 0.001 0.06 < 0.3 0.001 0.001
Point 21 Sep 08 1:41 240 240 0.027 < 0.2 0.001 0.08 < 0.3 0.001 0
Area 26 Sep 08 1:41 240 240 0.005 < 0.2 0.001 0.16 < 0.3 0.001 0
Blank NaOCL (1:10) Sep 08 1:41 0.004 < 0.2 0.001 0.1 < 0.3 0.001 0
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Appendix 6. Statistical analysis for significant difference of the ICP-MS results of September 2008 gas samples against the blank of NaOCl solution (1:10), values "< 
dection limit" were replaced by 0.5 times detection limit, bold values represent significance. 

Site Mg K Mn Co Ni Cu Rb Sr Zr Mo Pd Cd Cs La Ce Nd Sm Dy Yb Hf Au Pb U
Black Point 18 150 0.3 0.01 4.6 3.7 0.04 1.25 0.02 0.05 0.01 0.02 0 0.01 0.01 0.01 0 0 0 0 0 0.09 0.01
Bottaro North 2 140 0.05 0.01 0.8 3.4 0.03 0.73 0.01 0.05 0.02 0.01 0 0.01 0.01 0 0 0 0 0 0.01 0.06 0
Bottaro West 2 170 0.05 0.01 1.3 4.7 0.04 1.01 0.02 0.1 0.01 0.01 0 0.01 0.01 0 0 0 0 0 0 0.05 0.01
Fumarolic Field 0.5 160 0.05 0 1.9 3.9 0.04 0.87 0.02 0.05 0.02 0.01 0 0.01 0.01 0 0 0 0 0 0.01 0.06 0
Point 21 0.5 160 0.05 0 1.5 3.9 0.04 0.81 0.02 0.1 0.06 0.01 0 0.01 0.01 0 0 0 0 0 0.03 0.08 0
Area 26 2 180 0.1 0.01 1.3 3.9 0.06 0.79 0.02 0.05 0.07 0.01 0 0.01 0.01 0.01 0 0 0 0 0.01 0.16 0
Blank NaOCl (1:10) 0.5 140 0.05 0 0.5 3.5 0.03 0.84 0.01 0.05 0.01 0.01 0 0.01 0 0 0 0 0 0 0 0.1 0

KOLMOGOROV-SMIRNOVp-value< 0.01≥ 0.10< 0.05≥ 0.10< 0.05< 0.05< 0.05≥ 0.10< 0.01< 0.01< 0.05< 0.01< 0.01< 0.01< 0.05≥ 0.10≥ 0.10< 0.01< 0.01< 0.01< 0.10≥ 0.10≥ 0.10
KRUSKALL-WALLIS p-value 0.28 0.53 0.13 0.30 0.13 0.06 0.53 0.13 0.68 0.09 0.09 0.10 0.53 0.68 0.68 0.61
STUDENT-t test p-value 0.02 0.04 0.41 0.03 0.09 0.36 0.81
GRUBBS test p-value 0.00 0.76 0.00 0.98 0.01 0.10 0.01 0.15 1 1 0.68 0 1 1 0.42 0.63 1 1 0 0 0.03 0.04 1
outlier: "18" "0.3" "4.6" "0.061" "0.027"0.16"
without outlier:
KOLMOGOROV-SMIRNOVp-value< 0.05 < 0.01 ≥  0.10 ≥ 0.10 - - ≥ 0.10≥  0.10
KRUSKALL-WALLIS p-value 0.32 0.65 - -
STUDENT-t test p-value 0.01 0.01 - - 0.25 0.01

statistical processing (α = 0.5)
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Appendix 7. GC analysis of the gases sampled from May and September 2008 

Volume
methane ethane/ethene [µl] methane ethane/ethene methane (corrected)

Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 5190146 9073608 50 0.020% 0.020%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 10127294 17441376 100 0.040% 0.040%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 15276450 26563048 150 0.060% 0.060%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 20391308 35494024 200 0.080% 0.080%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 25773798 44666032 250 0.100% 0.100%
blank 250 µl blank 147788 0 250 0.0006% 0.000% 0.000%
PAN_150508BP_G1 Black Point 17091012 173186 250 0.067% 0.00039% 0.066%
PAN_130508_B(W)_G1 Bottaro West 159942 0 250 0.001% 0.00000% 0.000%
PAN_150508_B(N)_G1 Bottaro North 142642 0 250 0.001% 0.00000% 0.000%
PAN_140508_P21_G1 Point 21 5376500 37995 250 0.021% 0.000085% 0.020%

Volume
methane ethane/ethene [µl] methane ethane/ethene methane (corrected)

Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 1589936 2769662 50 0.020% 0.020%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 1606052 2822819 50 0.020% 0.020%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 3125458 5459445 100 0.040% 0.040%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 4800654 8494337 150 0.060% 0.060%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 6317298 11222992 200 0.080% 0.080%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 7642058 13542552 250 0.100% 0.100%
blank 250 µl blank 41238 0 250 0.0005% 0.00000%
PAN_310808_B(N)_G1 Bottaro North 175699 0 250 0.0022% 0.00000% 0.0022%
* PAN_040908_B(W)_G1 Bottaro West 315300 0 250 0.0039% 0.00000% 0.0039%
PAN_080908_Area26_G1 Area 26 6240142 53322 250 0.0770% 0.00037% 0.0770%
blank 250 µl blank 45771 0 250 0.0006% 0.00000%
PAN_290808_P21_G1 Point 21 1116213 0 250 0.0138% 0.00000% 0.0138%
PAN_040908_HL(F)_G1 Fumarolic Field 100353 0 250 0.0012% 0.00000% 0.0012%
blank 250 µl blank 32944 0 250 0.0004% 0.00000%
PAN_040908_HL(F)_G1 Fumarolic Field 100483 0 250 0.0012% 0.00000% 0.0012%
PAN_280808_BP_G1 Black Point 10752447 93033 250 0.1328% 0.00065% 0.1328%
PAN_280808_BP_G1 Black Point 4142664 32357 100 0.1279% 0.00057% 0.1279%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 8001785 13858208 250 0.100% 0.100%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 8584873 15191009 250 0.100% 0.100%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 11562362 20575666 350 0.140% 0.140%
Std. Mix C1-C6, 14l Flasche, 1000 ppm standard 15479699 26969568 500 0.200% 0.200%
mean blank blank 39984.333 0 0.0005% 0.00000% 0.0005%

May 2008

Area Concentration [vol.%]Sep 08

Area Concentration [vol.%]
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Appendix 8. Composition of the sampled gases from May and September 2008. Additionally, external data were used 

CO2 H2S CO CH4 C2H6/C2H4 N2 O2 H2 He
[mol.%] [vol.%] [mol.%] [vol.%] [vol.%] [mol.%] [mol.%] [mol.%] [mol.%]

PAN-150508-BP-G1 May 08 Black Point 99.7 0.2 0.0001 0.0660 3.9E-04
PAN-280808-BP-G1 Sep 08 Black Point 99.5 0.4 0.0001 0.1323 6.5E-04

PAN-150508-B(N)-G1 May 08 Bottaro North 96.0 4.0 0.0036 0.0001 2.5E-05
PAN-310808-B(N)-G1 Sep 08 Bottaro North 96.3 3.7 0.0080 0.0017 0.0E+00
PAN-130508-B(W)-G1 May 08 Bottaro West 98.1 1.9 0.0050 0.0001 2.5E-05
PAN-040908-B(W)-G1 Sep 08 Bottaro West 99.2 0.8 0.0025 0.0034 0.0E+00
PAN-040908-HL(F)-G1 Sep 08 Fumarolic Field 96.5 3.5 0.0070 0.0007 0.0E+00
PAN-140508-P21-G1 May 08 Point 21 96.4 3.6 0.0060 0.0200 8.5E-05
PAN-290808-P21-G1 Sep 08 Point 21 97.2 2.8 0.0060 0.0133 0.0E+00

PAN-080908-Area 26-G1 Sep 08 Area 26 98.7 1.2 0.0015 0.0766 3.7E-04

Jul 08 Black Point 97.9 0.6 0.0002 0.0898 0.44 0.045 0.0107 0.001
Jul 08 Point 21 96.5 1.8 0.0007 0.0195 0.24 bdl 0.001 0.0006
Jul 08 Bottaro West 1.5
Jul 08 Bottaro North 95.4 2.6 0.0001 0.0002 0.25 bdl bdl 0.0008

external data*

Sample-ID Date Site

 
* data from Dr. Francesco Italiano (INGV, Palermo), bdl – below detection limit 
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Appendix 9. On-site parameters of the sampled waters from May and September 2008 

sample ID location pH Eh [mV] rH LF [mS/cm] O2 [mmol/L] O2 [%] T [°C]
PAN-130508-BW-W1 Bottaro West 5.54 54.6 0.135 30 k.A.
PAN-040908-BW-W1 Bottaro West 5.25 33.0 18.6 55.2 0.130 55 29.4
PAN-150508-BN-W1 Bottaro North 5.71 -35.3 17.2 55.5 0.047 17.4 21.7
PAN-310808-B(N)-W1 Bottaro North 5.91 18.5 19.4 55.3 0.148 63.3 30.1
PAN-160508-HL-W1 Hot Lake 5.37 -12.7 17.3 75.6 0.010 3.5 19.9
PAN-310808-HL-W1 (1m) Hot Lake 4.75 -49.1 14.8 92 0.025 10.6 28.7
PAN-310808-HL-W2 (2m) Hot Lake 4.79 -42.6 15.1 100 0.038 15.1 26.7
PAN-070908-HL(80 cm)-W3 Hot Lake 4.95 217.3 24.2 93.4 0.026 10.9 29
PAN-080908-HL(80 cm)-W4 Hot Lake 4.85 -53.7 14.9 97.2 0.029 12.2 29.2
PAN-140508-P21-W1 Point 21 5.11 4.0 17.4 52.5 0.065 23 19.7
PAN-150508-P21-W1 Point 21 5.51 3.5 18.2 52.9 0.057 20.6 22.3
PAN-290808-P21-W1 Point 21 5.02 -18.2 16.4 53.4 0.052 21.6 28.5
PAN-070908-Area 26-W1 Area 26 5.17 -47.3 15.7 54.8 0.016 6.7 30.4
PAN-080908-Area 26-W2a (BM) Area 26 5.06 -32.2 16.0 55.5 0.042 18.8 32.8
PAN-080908-Area 26-W2b (MS) Area 26 5.12 -26.0 16.3 55.5 0.044 19.7 32.2
PAN-150508-BP-W1 Black Point 3.02 355.7 25.1 66 0.238 85.1 20.7
PAN-280808-BP-W1 Black Point 2.94 293.9 22.8 73.7 0.151 61.6 27.4
PAN-030908-BP-W2 Black Point 3.41 261.4 22.6 65.5 0.189 75.4 26.1
PAN-060908-BP(N)-W3 Black Point North 5.74 n.d. n.d. 54 0.180 75.6 28
PAN-030908-BP-EX Black Point n.d. n.d. n.d. n.d. n.d. n.d. n.d.
PAN-070908-BP(N)-EX1 Black Point North 5.28 n.d. n.d. 51.3 0.070 32.4 34
PAN-060908-BW(LB)-Ref Lisca Nera 7.89 286.2 32.4 55.4 0.239 101.8 29.5
Panarea Hafen_120508 Hafen 8.10 n.d. n.d. 49.4 n.d. n.d. n.d.  

n.d. – not determined 
 

 

Appendix 10. Chemical parameters of the sampled waters from May and September 2008 
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sample ID location S2- [mmol/L]F- [mmol/L]Cl- [mmol/L] SO42- [mmol/L] Br- [mmol/L]TIC [mmol/L]HCO3- [mmol/l]CO2 [mmol/l]
PAN-130508-BW-W1 Bottaro West n.d. n.d. 644.8 29.84 1.15 n.d. n.d. n.d.
PAN-040908-BW-W1 Bottaro West 0.052 0.076 590.8 30.72 0.95 15.79 1.65 14.14
PAN-150508-BN-W1 Bottaro North 1.101 0.069 666.6 28.11 1.06 19.78 4.96 14.81
PAN-310808-B(N)-W1 Bottaro North 0.112 0.088 554.6 30.65 0.93 7.81 2.61 5.19
PAN-160508-HL-W1 Hot Lake 0.112 n.d. 976.3 20.18 1.79 8.38 1.16 7.22
PAN-310808-HL-W1 (1m) Hot Lake 0.262 0.049 1283.0 9.20 1.85 19.12 0.63 18.49
PAN-310808-HL-W2 (2m) Hot Lake 1.011 0.068 1346.4 7.13 2.01 18.08 0.65 17.43
PAN-070908-HL(80 cm)-W3 Hot Lake 0.412 0.053 1229.3 9.12 1.79 17.81 0.98 16.83
PAN-080908-HL(80 cm)-W4 Hot Lake 0.472 0.056 1250.0 9.12 1.96 17.61 0.75 16.86
PAN-140508-P21-W1 Point 21 0.681 0.111 635.0 27.18 0.93 13.31 1.06 12.24
PAN-150508-P21-W1 Point 21 0.442 0.114 636.6 27.35 1.17 15.89 2.86 13.03
PAN-290808-P21-W1 Point 21 0.082 0.130 417.6 23.66 0.86 25.63 1.66 23.96
PAN-070908-Area 26-W1 Area 26 0.621 n.d. n.d. n.d. n.d. n.d. n.d. n.d.
PAN-080908-Area 26-W2a (BM) Area 26 0.262 0.106 547.5 23.98 0.99 25.55 2.09 23.46
PAN-080908-Area 26-W2b (MS) Area 26 0.262 n.d. 561.3 25.75 0.87 22.09 1.58 20.51
PAN-150508-BP-W1 Black Point 0.022 0.084 855.3 12.17 1.65 2.50 0.00 2.50
PAN-280808-BP-W1 Black Point 0.082 0.239 828.3 11.23 1.36 4.55 0.00 4.55
PAN-030908-BP-W2 Black Point 0.022 0.099 793.7 11.16 1.08 3.39 0.00 3.39
PAN-060908-BP(N)-W3 Black Point North -0.007 0.085 550.3 31.05 0.82 8.41 2.21 6.20
PAN-030908-BP-EX Black Point n.d. 0.082 560.9 30.51 0.97 6.96 n.d. n.d.
PAN-070908-BP(N)-EX1 Black Point North n.d. 0.104 551.4 26.82 0.95 13.27 n.d. n.d.
PAN-060908-BW(LB)-Ref Lisca Nera n.d. n.d. 520.8 26.41 0.98 12.89 1.49 11.39
Panarea Hafen_120508 Hafen <EDL 0.083 500.6 29.05 0.90 2.71 2.67 0.04  
n.d. - not determined, <EDL - below estimated detection limit 
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Appendix 11. Calibration of pH meter HQ20 (May) and HQ40d 
(September) from HACH, as well as WinLab Data 
Line (September) from WINDAUS 

HQ 20 HQ 40d WinLab Data Line
pH
2.0 290.6 296.4 288.0
3.0 233.6 242.5 230.7
4.0 175.3 184.7 173.3
5.0 107.8 120.0 116.0
6.0 58.0 60.2 58.6
7.0 -1.2 5.1 1.3
8.0 -48.4 -46.3 -56.1
9.0 -108.2 -105.5 -113.4

10.0 -152.7 -152.6 -170.8

potential [mV]

 
 
 
Appendix 12. Calibration for fluoride determination (by ISE) in seawater with a 1 g/L fluoride solution 

Addition step Total addition Concentration log concentration
[10-6 L] [L] [mg/L] May September

pure
 + 10 mL TISAB

10 1.0E-05 0.400 -0.398 84.4 36
15 2.5E-05 0.999 0.000 63 11.6
25 5.0E-05 1.996 0.300 45.7 -10.1
50 1.0E-04 3.984 0.600 27.9 -25.2
150 2.5E-04 9.901 0.996 4.4 -50.1
250 5.0E-04 19.608 1.292 -13.5 -67.5
500 1.0E-03 38.462 1.585 -30.7 -84.8
1500 2.5E-03 90.909 1.959 -54.1 -108.3
2500 5.0E-03 166.667 2.222 -71.4 -125.3
5000 1.0E-02 285.714 2.456 -87.7 -141

Seawater [mV]
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Appendix 13a. Measurements of the flow rate of fumaroles at Point 21 and Fumarolic Field. Based 
on the time for water displacement and fluid temperature the flow rate was 
determined 

depth T time flow rate flow rate (corrected for T)
[m] [°C]  [s]  [L/min]  [L/min]

1 17.8 20 3.60 3.60 B
2 18.0 8 9.00 9.00 D
3 17.5 15 4.80 4.80 C
4 17.8 7 10.29 10.29 D
5 17.6 57 1.26 1.26 A
6 18.8 64 1.13 1.13 A
7 18.4 8 9.00 9.00 D
8 18.0 53 1.36 1.36 A
9 18.7 17 4.24 4.24 C

10 17.8 37 1.95 1.95 A
11 18.5 8 9.00 9.00 D
12 16.7 123 0.59 0.59 A
13 16.3 73 0.99 0.99 A
14 16.0 63 1.14 1.14 A
15 15.5 12 6.00 6.00 C

24.6

1 15.0 27.4 10 7.20 6.57 C
3 14.9 26.0 232 0.31 0.30 A
4 15.8 27.3 30 2.40 2.20 B
5 15.7 27.4 20 3.60 3.28 B
6 14.9 27.5 33 2.18 1.98 A
7 14.3 27.5 181 0.40 0.36 A
8 14.5 30.3 18 4.00 3.30 B
9 13.2 32.3 5 14.40 11.15 D

10 13.9 28.0 7 10.29 9.18 D
44 15.4 27.2 50 1.44 1.32 A
48 16.5 27.1 100 0.72 0.66 A
41 17.2 26.3 225 0.32 0.30 A
60 16.3 57.6 11 6.55 2.84 B
15 15.7 42.9 42 1.71 1.00 A
42 15.9 28.0 80 0.90 0.80 A
59 16.6 33.7 55 1.31 0.97 A
56 17.2 26.5 90 0.80 0.75 A
62 16.2 32.0 15 4.80 3.75 C
31 15.0 27.9 36 2.00 1.79 A

27.0sea water:

Point 21 (29.08.08)

Fumarolic Field (30.08.08)

classnr.

sea water:
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Appendix 13b. Flow rate measurements at Bottaro North (continuation) 

depth T time flow rate flow rate (corrected for T)
[m] [°C]  [s]  [L/min]  [L/min]

60a 8.2 33.7 7 10.29 7.63 D
60b 8.2 33.7 6 12.00 8.90 D
62 8.7 27.9 24 3.00 2.69 B
42a 8.1 28.5 18 4.00 3.51 B
42b 8.1 28.5 22 3.27 2.87 B
31 8.0 28.3 7 10.29 9.09 D
56 7.9 28.6 4 18.00 15.73 D
15 7.6 28.2 178 0.40 0.36 A
44a 8.1 45.7 4 18.00 9.85 D
44b 8.1 45.7 20 3.60 1.97 A
41 7.6 27.9 45 1.60 1.43 A
59a 6.9 27.9 17 4.24 3.80 C
59b 6.9 27.9 60 1.20 1.08 A
48 8.6 27.9 75 0.96 0.86 A

27.9

nr. class

sea water:

Botaro North (31.08.08)

 
 
 

Appendix 14. Gas flow rates measurements and determination of the total gas output of the diffusive 
fumarolic field within the crater of Bottaro West 

depth T time flow rate flow rate (corected for T and P)
[m] [°C]  [s] [L/min] [L/min]

1 12.2 43.6 27 2.87 3.65 A
2 12.1 29.0 88 0.82 1.55 A
3 12.2 31.0 103 0.70 1.24 A
4 12.3 29.0 213 0.34 0.64 A
5 12.3 29.4 33 2.20 4.17 A
6 12.3 29.0 96 0.74 1.43 A

27.3
2.11 ± 1.43

812.1
1717

mean:
area(entire field)/area(funnel):
total gas flow rate [L/min]:

classnr.

Bottaro West (field of diffusive exhalations) (06.09.08)

sea water
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Appendix 15. The average gas flow rate for each class as well as the classified 
fumaroles observed at the five sites 

A B C D

mean [L/min] 1.06 3.04 4.86 9.89
std [L/min] 0.53 0.47 1.18 2.13

Bottaro West 2 9 39 591
Bottaro North 6 14 11 144
Fumarolic Field 4 37 90 549
Point 21 10 24 61 297
Black Point 2 8 36 546

measured flow rates (corrected for T)

observed fumaroles

 
 

 
Appendix 16. Estimated gas flow rates of the large fumaroles at Point 21 and Bottaro North 

gas flow rate [L/min] T [°C] depth [m] flow rate (corrected for T and P) [L/min]

#1 "Melanie" 345.6* 71 20 345.6
#2 "Patricia" 200 71.8 20 208.9
#3 "Wanda" 200 34.8 18 402.3
#4 "Claudia" 868.8* 31.3 20 868.8
#5 "Mandy" 350 32 20 820.3

#1 200 56 8 160.7
#2 250 8 450
#3 250 8 450
#4 250 8 450
#5 350 8 630

Large fumaroles

Bottaro North

Point 21

 
* data from Kleutges (2009) 
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Appendix 17. Calculation of the respective gas outputs (corrected for the average hydrostatic pressure of each site) 

average water
depth [m] A B C D Σ (A to D) E [L/min] L/day]

Bottaro West 1395.9 264.1 97.5 44.1
Bottaro West (diffuse field) 1716.8
Bottaro North 7.9 273.4 59.9 121.9 106.4 562 2141 2702 3.89E+06
Fumarolic Field 15.5 1481.8 696.4 458.1 100.8 2737 2737 3.94E+06
Point 21 17.6 866.9 510.5 321.3 272.6 1971 2646 4617 6.65E+06
Black Point 23.3 1925.7 364.0 129.4 65.9 2485 2485 3.58E+06

total gas output (Σ (A to E))

12.3 3518 3518 5.07E+06

site gas flow rate [L/min]
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Appendix 18a - e.  Photos of the five large fumaroles (1 - 5) located at Point 21 site for comparison of the 

gas flow rates (modified from WISTAU (2008)). 
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Appendix 19a - i.  Photos of the five large fumaroles (1 - 5) located at Bottaro North site (photo a – g) for 

comparison of the gas flow rates with respect to the measured fumaroles “Melanie” 
and “Claudia” (photo h and i) at Point 21 (modified from WISTAU (2008)). 
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