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1 Abstract

1 Abstract

Lake Urema is one of the most important ecological features of the Gorongosa National Park, 

Central  Mozambique. It  is located in the Urema Rift  which is a part  of the East African Rift 

System.  The  understanding  of  the  geo-ecology  of  the  lake  and  its  tributaries  is  particularly 

important for the conservation of its floodplain habitats. There are recent concerns that the lake 

has changed during the last years. A multi-temporal and multi-disciplinary approach was applied 

to investigate the dynamics and control mechanisms of the lake. Principal methods adopted were: 

remote  sensing  analyses  of  time  series  of  Landsat  and  ASTER  data,  geomorphological 

interpretations of SRTM (Shuttle Radar Topography Mission) data as well as field investigations 

such as water and sediment analyses and vegetation mapping.

The  study  showed  that  the  water  of  Lake  Urema  and  its  in-  and  outflow  has  very  low 

concentrations of total dissolved solids (TDS) between 20 to 100 mg/l. The pH is on average about 

7, regulated by a CO2  -  HCO3
—-  CO3

2_ buffering system. The water  transparency is  very low, 

mostly  less  than half  a  meter.  During the  period of  investigation no outflow of  the  lake was 

observed,  but  the  Vunduzi  River,  one  of  the  tributaries  to  Lake  Urema,  had  a  considerable 

discharge.  A decrease of  the  lake level  height  was detected over  a  period  of  two months.  In 

addition to the evaporation from the open water surface of the lake, water is probably also lost 

through spreading into the adjacent floodplain grasslands, through evapotranspiration as well as 

through infiltration.  A significant  enrichment  of  the  water  constituents  in  the  dry  season  did 

obviously not occur.

The widespread distribution of clayey sediments over large parts of the lake and the evidence of 

sandy sediments in the narrowing part of the lake towards its outflow suggest a temporally and 

spatially constrained pattern of transport and deposition. It is supposed that the axial part of the 

lake is characterized by a more energetic flow and the lateral areas by quiescent conditions.

The results  of  the  supervised classification of the  satellite  images from 1979 to 2000 did not 

indicate a trend for the variations of the lake's size. The area of Lake Urema ranged from 17.4 km² 

(09/1995) to 25.1 km² (08/1979). A rainfall anomaly was responsible for the outstanding lake size 

in May 1997. Investigations showed that alluvial fans limit the Urema Basin from all sides and 

make Lake Urema a kind of “reservoir lake”.

Further  studies  should  focus  on  the  enlightenment  of  the  water  balance  of  the  lake  system. 

Especially the contribution of groundwater to the water balance of the lake is not yet understood.
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2 Introduction

2 Introduction

Approximately 1% of the African surface area is floodplain1 [SHUMWAY,  1999]. Floodplains are 

assigned to freshwater wetlands2 whose conservation and use is object of the Ramsar Convention3 

[web_17]. 

The importance of wetlands arises from their contribution to groundwater recharge and discharge 

regulation, flood- and erosion control as well as to the retention of sediments, nutrients and toxic 

substances.  Wetlands  provide  habitats  for  wildlife  and  are  characterized  by a  high  biological 

diversity [MATIZA & CRAFTER, 1994]. Causes of global wetland losses through human activities are 

drainage,  groundwater  abstraction,  discharge  of  pollutants,  impacts  of  hydraulic  engineering 

facilities and filling [BREEN at al., 1997]. Droughts, erosion and biotic effects are common natural 

causes for the loss of wetlands.

Lake Urema and the adjacent  floodplains  are  very important,  if  not  even the  most  important 

ecological feature in the Gorongosa National Park. The Gorongosa National Park is located in 

Central Mozambique at the southern end of the East African Rift Valley. This wetland is part of 

the Lower Zambeze-Gorongoza-Buzi-Pungue Flood Plain System [BREEN at al., 1997]. Prior to the 

civil war in Mozambique (1976-1992), the Gorongosa National Park was called the “jewel in the 

crown of  Mozambique’s  National  Parks”.  Until  then,  Urema  Floodplains  inhabited  –  at  least 

periodically - a variety of wildlife comprising hippo, buffalo, elephant, zebra, waterbuck, impala, 

oribi,  sable,  wildebeest  and  eland  [TINLEY,  1977].  The  armed  conflicts  came  along  with  the 

decimation of local populations of animals in the National Park. Numbers of large mammals were 

reduced by as much as 95% [web_1]. Bird species remained largely untouched by the poaching 

and  killing  and  spectacular  concentrations  of  waterbirds  can  be  observed  on  the  Urema 

Floodplain. 

Former studies on the Gorongosa Ecosystem in the 1960s-1970s [TINLEY, 1977] indicated that the 

size of Lake Urema varies strongly between dry and rainy season with extensions ranging from 

approximately 10 km2 to 200 km2. These variations are triggered by the timing and amount of the 

water flows from the adjacent mountains, which therefore hold a key position for the maintenance 

of the floodplain ecosystem. 

1 “A floodplain is any region along the course of a river where large seasonal variations in rainfall result in 
overbank flooding into the surrounding plains”. [SHUMWAY, 1999] 

2 “For the purpose of this Convention wetlands are areas of marsh, fen, peatland or water, whether natural 
or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, 
including areas of marine water the depth of which at low tide does not exceed six meters."[web_17]

3 The mission of the Ramsar Convention “is the conservation and wise use of all wetlands through local, 
regional and national actions and international cooperation for the conservation and wise use of wetlands 
and their resources”.
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2 Introduction

Now that  the  park experiences an ecological  rehabilitation and attempts  to attract  tourists  are 

undertaken, an update inventory of the lake's ecosystem seemed to be expedient. 

This is essential as concerns about a change of the lake's extent and its hydrological regime are 

expressed. 

The analysis of a multi-temporal remote sensing image dataset for change detection is reasonable 

as other data sources about the lake's state in the last 20 years are sparse. The approach of wetland 

change detection with remote sensing data was well proven e.g. by NELLIS et al. (1998), MUNYATI 

(2000) and FRAZIER & PAGE (2000). 

Subsequently, the objectives of this thesis about Lake Urema are presented. The study area will be 

characterized  in  chapter  4.  Chapter  5  describes  the  methods  which  were applied.  Results  are 

presented in chapter 6 and comprehensively discussed in chapter 7. The achievements of the study 

are highlighted. This report ends with recommendations for future investigations.

12



3 Assumptions and research questions

3 Assumptions and research questions

There is a recent concern in the local park staff community that the extent of Lake Urema has 

decreased over the last decades. Another concern deals with sediment accumulation which would 

trigger the siltation of the lake. Reasons for such developments can be diverse: natural factors 

include climate, neo-tectonical movements and morphology. Land use changes in the catchment 

area (deforestation, flood regulation) and the nearly complete eradication of hippopotamus, a key 

species in the wetland ecosystem, during the civil war are possible anthropogenic causes.

Already BURLISON et al. (1977) attempted to solve the question whether a drying up of the area of 

the Gorongosa National Park occurred. In their work they discussed possible reasons without a 

definite  conclusion.  However,  the  concern  was expressed,  that  a  drying out  of  the floodplain 

grasslands could lead to bush encroachment with all its consequences for the ecosystem, e.g. a 

shift from grassland species towards savanna woodland species. 

Since the comprehensive study of  TINLEY (1977) few studies were undertaken to understand the 

lake's ecosystem.  SWECO&ASSOCIATES (2004) dealt with the hydrological regime of the Pungoe 

River Basin and OWEN (2004) with that of the Gorongosa Ecosystem. 

But  still  the  hydrological  regime  of  Lake  Urema  is  not  yet  fully  understood.  Therefore  an 

interdisciplinary approach was used to solve the following questions:

1) What  is  regulating  the  hydrological  regime  of  Lake  Urema  (groundwater,  surface  water, 

morphology, neo-tectonical movements)?

2) How much did the extent of Lake Urema vary over the last 20 years?

3) Are there changes in the lake's system and what are potential reasons?

2) What is the state of Lake Urema in dry season 2004 regarding hydrochemistry, sedimentation 

and littoral vegetation?

Due to the poor knowledge on the lake's recent state field investigations were conducted in the dry 

season 2004. They comprised analyses of water chemistry, sediments and littoral vegetation. The 

field work was completed by laboratory analyses of water- and sediment samples. 

Eleven satellite scenes from dry and rainy seasons (1979-2000) were used to describe the intra- 

and inter-annual variations of the extent of Lake Urema. A Digital Terrain Model served for the 

description and interpretation of the morphology of the lake and its surroundings.

The results of this study were to be discussed comprehensively in the context of the catchment 

area of Lake Urema. Finally, recommendations for further investigations should be given.

13
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4 Study area

4.1 Lake Urema in the Gorongosa National Park

Lake Urema is located in southern Africa, at 18°52'S and 34°30'E in the Sofala Province / Central 

Mozambique. It is part of the Gorongosa National Park (established in 1960) which covers an area 

of 5370 km2 [SWECO&ASSOCIATES_X, 2004]. The Pungoe River represents the southern border of 

this protected conservation area [Figure 1, Figure 2].4

4  all location names were adopted from topographical map 1 : 250 000 [DINAGECA, 1997/1998].
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Figure 1: Location of the Gorongosa National Park (green colored in the right picture) in Central  
Mozambique, Southern Africa (map created with GMT by Wobbe)
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Figure 2: Location of Lake Urema in the Gorongosa National Park (rivers and park boundaries from IGN.FI  
CENACARTA, 1999, some additional rivers digitized from DINAGECA, 1997/98)



4 Study area

4.2 Geology and Geomorphology

LÄCHELT (2004) considers the rifts in Mozambique to be an integrated part of the East African Rift 

System (EARS). They are characterized by less vulcanic activity than the further northern parts of 

the EARS, and those south of 15°S also show less seismic activity. Rifting is mainly implied by 

grabens, fractures and vulcanic pipes.

During the Gondwana Period (Karoo Period, Upper Carboniferous-Middle Jurassic: 300-175 Ma), 

when  southern  Africa  was  located  in  the  interior  of  the  supercontinent  Gondwana,  large 

intracratonic  basins  developed which were filled with sediments  and volcanics  composing the 

Karoo  supergroup.  In  Mozambique  this  period  lasted  up  to  the  Lower  Cretaceous  (140 Ma) 

[LÄCHELT, 2004].

Seafloor  spreading  related  to  the  disintegration  of  Gondwana  followed  an  initial  phase  of 

extensive  rifting  between  300  and  205  Ma  which  left  rift  structures  located  in  the  southern 

continuation of the later East African Rift and Mozambique Channel [LÄCHELT, 2004].

During the Post-Gondwana Period (Lower Cretacous to Cenozoic) the western flank of the Urema 

Rift formed by reactivation of a structure from the Gondwana Period while the eastern flank was 

initiated [LÄCHELT, 2004] [Figure 3]. 

In the last rifting phase of the Post-Gondwana Period, refered to as “Neorifting phase” (35-5 Ma), 

the EARS formed and pre-existing rift faults were repeatedly activated [LÄCHELT, 2004].

Figure 4 visualizes the halbgraben-like profile of the Urema Rift which is due to differences in 

timing and amount of displacement at the eastern and western boundary faults. Urema Rift has a 

N-S extension of 280 km and ranges from the Zambeze-Chire junction to the Indian Ocean at 

Beira and Sofala. 

16
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Figure 3: Geologic-tectonic correlation of the Mozambique Basin (from LÄCHELT, 2004)
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The rift floor is covered with unconsolidated pleistocene to recent alluvial deposits [DNA, 1987] 

[Figure 5]. The sediment distribution shows coarse proximal facies sediments of the alluvial fans 

at the margins of the rift floor and fine-grained silts and clays in the central part forming slacks 

and  basins.  Sediments  are  underlain  by  Mazamba  Sandstone  (Miocene)  and  Cheringoma 

Limestone (Eocene) over cretaceous continental arkosic sandstones and conglomerates (within a 

calcareous matrix) of the Sena Formation [LÄCHELT, 2004].

The Báruè Midlands are part of the former Miocene planation surface [TINLEY, 1977]. Westwards 

the Midlands turn over into the Great Escarpment. The Báruè Formation consists of Precambrian 

quartzose,  feldspatic  and  micaceous  gneisses  and  migmatites  [LÄCHELT,  2004].  Quartzites  and 

marbles occur locally. The landform is undulating to incised. 

The Gorongosa Massif is a cretaceous granitic intrusive complex (gabbro, granite) extending 30 

km in N-S direction and 20 km E-W. The highest elevation is at GoGoGo peak with 1863 m a.s.l. 

The massif rises about 1400 m above the surrounding Midlands. The slopes of the Gorongosa 

Mountain are approximately 30-40 degrees. 
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Figure 4: Cross-section of the Urema Rift (from LÄCHELT, 2004)
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The Urema Rift is flanked by the Cheringoma Plateau to the east, which rises up to 300 m a.s.l. 

The Cheringoma Plateau is  underlain by a 1-2° seaward dipping sequence from Cretaceous to 

Pleistocene [EDIÇÃO, 1968a]. Pleistocene sandy alluvium and Miocene Mazamba Sandstone (arkosic 

and conglomeratic sands containing relics of molluscs) lay on top of the Cheringoma Formation 

(Middle-Upper  Eocene).  The  Cheringoma  Formation  is  characterized  by  the  presence  of 

nummulitic  limestones  or  limestones  containing  gastropodes  and  echinoderm  fauna.  The 

limestones  include  layers  of  clay  and  calcareous  sandstone.  Towards  the  north  the  limestone 

bedrock of the Cheringoma Plateau caused the development of karst features which can be seen at 

the interrupted drainage system (pans, sinkholes) [OWEN, 2004]. The cretaceous Grudja Formation 

on top of Sena Sandstones contains calcareous and glauconitic sandstones.
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Figure 5: Geology of the Urema Rift and adjacent units (SRTM data (90 m resolution) superposed with 
geology data from Edição, 1968a)
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4.3 Climate

The study area is influenced by the monsoon circulation. With the southward migration of the 

Inter-Tropical  Convergence  Zone  (ITCZ)  across  Southern  Mozambique  from  December  to 

February, the northeast monsoon causes air stream flow from the high pressure centers of the 

Indian Continent. This period represents the principal rainy season in southern Africa. 

In austral winter the wind systems are reversed thus flowing as southwest monsoons from the 

equator to Arabia, India and Burma. 

The de Martonne's Index of Aridity (P/(T+10); T = air temperature, P = precipitation) indicates 

that the Gorongosa Mountain, the Báruè Midlands, the Cheringoma Plateau and the rift valley are 

different physiographic regions [TINLEY, 1977]. The average monthly rainfall for all units is shown 

in Figure 6. 

The floor of the Urema Rift is the driest section among the four described physiographic regions. 

After KÖPPEN it is assigned to Wet-Dry Tropical Savanna Climates (Aw) with a moist, warm 

season from November to April and a cool, dry period from May to October [COBA, 1977?]. The 

annual  precipitation  is  between  600  and  1000  mm/y  [OWEN,  2004].  The  mean  annual  air 

temperature at Chitengo, located at the rift floor, is 25.7 °C (21.5 °C in winter, 28.6 °C in summer) 

[COBA, 1977?]. 
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Figure 6: Average monthly rainfall for the major landscape units in the Gorongosa  
Ecosystem; derived from FAO LocClim Climate estimator (from OWEN, 2004), location 
of landscape units in Figure 5
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The water deficit5 at the floor of the rift valley comprises 600-800 mm on an annual basis, with a 

dry season deficit of 700 to 850 mm and a wet season surplus of 0-150 mm (results from global 

FAO LocClim Climate estimator [OWEN, 2004]).

The sum of annual rainfall in the Báruè (Barwe) Midlands is between 800 and 1200 mm [OWEN, 

2004] whereas rainfall is decreasing with distance from the sea but is also subject to orographic 

effects in western direction [TINLEY, 1977].

Gorongosa  Mountain receives  up  to  2000  mm rainfall  per  year  due  to  orographic  rainfalls 

[TINLEY, 1977]. The most constant among the moisture-bearing winds come from SE. 

The lowest numbers for the annual potential evaporation among the four physiographic regions 

were modeled with FAO LocClim Climate estimator for the Gorongosa Mountain (around 1000 

mm/y) and the highest values for the rift valley (up to 1600 mm/y) [OWEN, 2004]. The modeled P-

PET water balance indicates that only the Gorongosa Mountain has an annual water surplus of 300 

to 500 mm. 

The crest of the  Cheringoma Plateau receives on average between 1000 and 1400 mm rainfall 

[OWEN, 2004].

5 water deficit = precipitation – potential evaporation
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4.4 Soils

The  soils  of  the  Gorongosa  Mountain  and  the  Midlands  developed  under  the  influence  of 

denudation  and  colluvation  while  those  of  the  rift  valley  are  influenced  by  accretion  and 

hydromorphism (flood-ebb regime,  seasonal  climatic regimes) [TINLEY,  1977].  The soils  of  the 

Cheringoma  Plateau  developed  under  the  influence  of  eluviation  and  illuvation.  For  the  soil 

formation at the riftward slopes erosive processes were important. 

The rift floor is built up by fluvio-lacustrine alluvium [DNA, 1987]. Differential sorting of coarse 

and fine sediments occurred in the course of alluvial fan formation or shifting of river courses 

[TINLEY, 1977]. The coarser, leached sandy soils are associated with the alluvial fans, splays and 

colluvium at the rift sides as well as with river stream beds. Soils with fine clayey texture are 

located in interdistributary slacks and interfan slacks or basins. They are saturated with calcium, 

magnesium and sodium [FERNANDES, 1968]. In addition, their extractable phosphorous content is 

relatively high. Hydromorphic clays are mostly built  up of montmorillonite which can form a 

gilgai microrelief due to the expansion and contraction of clays overlaying a sand layer [TINLEY, 

1977]. Floodplain grasslands are bound to saline, black, hydromorphic, humic clays.

The diversity of deposits on the rift floor is responsible for the high variance of pH and salinity 

whereas the salinity is quite high compared to the other morphological units of the Gorongosa 

Ecosystem [FERNANDES, 1968]. 

The gneisses and migmatites of the crystalline Báruè Midlands were the base for the formation of 

mostly sandy skeletal fersiallitic soils [TINLEY, 1977]. Their excessive permeability results in rapid 

infiltration  and  is  therefore  responsible  for  the  strongly  seasonal  nature  of  the  rivers  which 

originate in the Midlands. 

The general nutrient deficiency of the Midland soils is ameliorated by basic and pegmatitic dykes 

contributing to deeply weathered latosols. 

At  the  Gorongosa  Mountain ferrallitic  soils  developed  on  fine  grained  acid  granite.  The 

intensive weathering which lead to the soil formation also gave rise to the leaching of bases. 

Prior to the downthrow of the Cheringoma Plateau alluvial sandy fan material was cemented by 

calcic clay of the Mazamba formation [TINLEY, 1977]. When the calcareous material was leached 

laterally and downward, an impermeable clayey illuvial subsoil with lime concretions formed. The 

sesquioxide-rich quartz sands build up leached,  infertile (deficient  in extractable phosphorous) 

soils at the surface. From the colluvium of the Cheringoma Plateau heavy textured melanic black 

soils developed. Where marls are exposed they form aridosols.

22



4 Study area

4.5 Hydrology / Hydrogeology

Lake Urema is part of the Pungoe River catchment which has an area of 31,150.5 km2 with 1,460.7 

km2 (4.7%) in  Zimbabwe and 29,689.8 km2 (95.3%) in Mozambique   [SWECO&ASSOCIATES_I, 

2004]. 

The main water sources of Lake Urema are located in the Gorongosa Mountain, in the  Báruè 

Midlands,  in  the  Cheringoma  Plateau  and  in  the  rift  valley.  Due  to  the  different  underlying 

geology and landscape geomorphology, in addition to the distribution of rain, the contribution of 

these rivers to the waterbalance of Lake Urema differs in time and amount. According to TINLEY, 

(1977)  the extent  of  the  lake  varied  between  10  km2  (dry  season  minimum)  and  200  km2 

(maximum during flooding). 

On the rift floor a shallow watershed separates the southern Urema catchment from the northern 

Zangoe catchment which is part of the Zambeze catchment. During high floods both catchments 

can be linked although BURLISON et al. (1977) considered that with the closure of the Kariba dam 

“on  the  Zambeze  in  1958,  flooding  was  reduced,  and  the  quantity  of  water  passing  through 

decreased.”

The underlaying hardrock fracture system and the seaward dip of the strata control the south-east 

trend of the rivers crossing the rift valley [TINLEY, 1977].  The low elevation gradient of the rift 

floor gives rise to a meandering of the streams which traverse the rift valley and retards water in 

swampy areas, wetlands, “shallow lakes, flow reversals, interrupted drainages and other features 

associated with impeded drainage.” [OWEN, 2004] Thus an estimation of the runoff coefficient is 

only between 20 to 30% of effective rainfall6.

The river Mucombeze originates at the rift valley floor and discharges directly into the lake. After 

its confluence with the Nhandugue River, it forms an extensive delta with the Mucoza and the 

Vunduzi7 at the head of Lake Urema [Figure 2].

Urema River is the only outflow of the lake and drains into the Pungoe River. According to flow 

measurements in the 1950s to 1970s its flow varied between less than 5 m3/s at the peak of the dry 

season and up to 56 m3/s in high flood period [Figure 7] [ARAC, 2004]. Low flow periods with 

less than 5 m3/s lasted from July to November, peak flow period from January to May (26 to 56 

m3/s). 

6 Effective rainfall is estimated by OWEN (2004) as monthly P-100 mm, 100 mm/month interception
7 There are two Vunduzi Rivers within/close to the catchment area of Lake Urema. One of them is draining 

Gorongosa Mountain in eastern direction. The other one is flowing in southern direction (OWEN, 2004 
refers to it as Vanduzi River). In this work emphasis is given to the eastern Vunduzi.
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At Chitengo Camp in the rift valley the phreatic watertable laid at about 8 m below the surface 

[TINLEY,  1977].  TINLEY reasoned  “that  an  impervious  stratum  occurs  below  that  level.” 

Groundwater recharge should occur at the edges of the trough. The surface soils of the rift floor 

are characterized as impervious to percolation beyond 1 m depth. However, cracks in the vertisols 

of the floodplain and slack-basins could enable recharge during the time of flooding in the rift 

before the sealing off of the clays by swelling. The underlaying Sena Sandstones are characterized 

as “not very favorable for groundwater development” [SWECO&ASSOCIATES_IV] because of their 

low permeability. 

The rivers raising in the Báruè Midlands strongly follow rainfall changes and show little system 

memory [OWEN, 2004]. Impermeable and shallowly weathered crystalline gneisses cause relatively 

high runoff coefficients (0.505 of effective rainfall). The  Nhandugue River [Figure 2], which is 

originating in the Midlands, plays an important role for the water supply during flood periods 

[TINLEY, 1977]. It is partly a dry sand river with accessible water below the sand. During floods it 

carries large amounts of sandy sediments. Occurrence of groundwater in the Báruè Midlands is 

mostly  associated  with  geologically  weak  zones,  expressed  by  folds,  faults  and  fractures  or 

occures in valley bottoms [OWEN, 2004]. 

The steep slopes of the  Gorongosa Mountain release water all year through orographic rains. 

Thus it is acting as one of two major aquifers in the Gorongosa region. The runoff coefficient is 

with estimated 0.65 of effective rainfall high to very high [OWEN, 2004]. 
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Figure 7: Flow measurements at the Urema River (station E81, elevation 12 m a.s.l.,  
close to the southern boundary of the Gorongosa National Park, see figure 2) 10/1956-
09/1978, data from ARAC, 2004
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The Vunduzi River, which is originating at the Gorongosa Mountain, is the only perennial surface 

flow to Lake Urema  [TINLEY,  1977]. Through headward erosion it  capped a part  of  the upper 

catchment of the Nhandare River which has a high rainfall catchment. 

The Cheringoma Plateau is the second major aquifer in the Gorongosa system due to the highly 

permeable  surface  of  quartz  rich  sands  [TINLEY,  1977].  Rivers  originating  at  the  Cheringoma 

Plateau mostly trickle away in the sandy beds and alluvial fans at the rift  margins during dry 

season and therefore do not reach the rift floor. They are only perennial in their middle courses. 

The runoff coefficient should be low due to rapid infiltration (0.3 of the effective rainfall, in OWEN, 

2004). 

Due to the seaward dip of the underlying strata of the Cheringoma Plateau it is assumed that the 

subsurface drainage is feeding into the coastal plain and discharging into the ocean [OWEN, 2004]. 

LÄCHELT (2004) specifies 53 thermal springs in Mozambique. The thermal waters in the Sofala and 

Manica districts are characterized as chloride-sulphate alkaline water with sodium as the major 

cation and chloride as the major anion [MARTINELLI et al., 1995]. Silica content is below 100 mg/kg. 

The Chicheri springs are located at the southwestern boundary of the Gorongosa National Park 

(approximately 19° 01' 00'' S, 34°11'00 E) [LÄCHELT, 2004]. The springs are associated with the 

western flank  of  the  Urema Rift  and have a  water  temperature  of  50°C. Their  localization is 

determined by bordering zones between basement and sedimentary sequences.
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4.6 Ecology and Land Use

The land use and land cover database of CENACARTA (1999) shows that the different vegetation 

types  around Lake  Urema are  circularly  arranged  [Figure  8].  The  inner  zone  is  described  as 

“aquatic meadow” which is joined by “bare soils” southwest to northeast of the lake and in further 

distance to the lake by “meadow, liable to flood”. Southeast to southwest of the lake “wooded 

grasslands”  are  attached  to  the  zone  of  “aquatic  meadow”.  The  outermost  zone  consists  of 

“inundable sparse meadow”. 

The rift floor, the driest part of the Gorongosa Ecosystem, is built up of different base saturated 

alluvial soils which together with changing flood levels enable the development and preservation 

of a mosaic of ecosystems [Table 1]. 
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Figure 8: Land use around Lake Urema (after IGN.FI CENACARTA, 1999)
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Table 1: Overview about ecosystems and vegetation types in the rift valley (after TINLEY, 1977)

ecosystem vegetation types

Forest - Dry
- Riverine

Thicket & Shrub-Thicket - Riverine
- Termitaria
- Fan & Splay
- Secondary

Savanna - Tall Piliostigma-Acacia
- Palm Savannas
- Short Acacia
- Mopane Woodland
- Sand Savanna

Rockfaces

Grassland - Drainage line
- Floodplain
- Saline

Warm Freshwater System - Lakes, pans, marshes
- Rivers, streams

The requirements towards the soil moisture balance differ between forest habitats and savanna/ 

grassland: Forests prefer well drained sites, e.g. duplex sands of fan deposits or riverine sites on 

free draining loamy soils. In contrast, open grasslands and savanna develop on clayey soils as well 

as on deep horizonless sands [TINLEY, 1977]. 

This study focuses on the  open,  high productive floodplain grasslands which require seasonal 

flooding and thus demarcate the total seasonally inundated area of the rift floor. The extension of 

the  flooded area  is  marked by a  “tree-line  junction of  the  savannas  and other  woody cover.” 

[TINLEY, 1977] 

When flood water ebbs away, a zone of changing widths follows the ebb line, leaving a green 

flushing zone on moist soil around Lake Urema [TINLEY, 1977]. This zone plays an important role 

for the support of the population of waterbuck, impala and hippo during the peak of the dry season 

[TINLEY, 1977].

A number of 35 000 wild ungulates on the rift floor is given for the time prior to the civil war 

(1976-1992) [TINLEY, 1977]. 27 ungulate species inhabited the mosaic of forest, thicket, savanna 

and floodplain grassland. Their population numbers were radically reduced in times of civil war 

when the Gorongosa National Park was occupied by opposing armed forces. The numbers for 

hippopotamus (Hippopotamus amphibius) are presented in Table 2. 
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Table  2: Population estimates for Hippopotamus in the Gorongosa National Park from 1968 to 2004, 1  
Figures from TINLEY, (1977), 2 figures from SWECO&ASSOCIATES_X (2004), 3 figure from FALKER (2005)

year 11/19681 19702 10/19721 19792 20032 20043

population 
estimate

2972 3200 3483 4800 25 62

According to TINLEY (1977), 80% of the hippos in the Gorongosa Ecosystem were confined to the 

margins of Lake Urema – thus representing the single largest hippo population in Mozambique at 

that time [Figure 9]. 

Adequate aquatic habitats for hippos are deep enough to cover their bodies and are within a certain 

distance from pastures. By means of their habitually wandering between the grazing grounds on 

land (during the night) and the open water of rivers, lakes and basins (at daytime) hippos transfer 

soil matter and nutrients from the land to the aquatic environment. When ground is soft during the 

rains and flood periods their paths become channels which aid spreading and draining of flood- 

and rain water [TINLEY, 1977]. Thus, hippos act as “ecosystem engineers”.
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Figure 9: Dry season distribution and abundance of hippo from aircounts in  
November 1972 (after TINLEY (1977), figure 9.11), circles represent # of individuals
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4.7 Human factor

10 000 to 15 000 people are supposed to live within the Gorongosa National Park (GNP) while 

“Several communities live within the boundaries of GNP, whilst others straddle the boundaries” 

[LYNAM et al., 2003]. 

Agriculture  (cultivation  of  crops,  vegetables  and  fruits,  domestic  animals),  fishing,  hunting, 

collection of wild foods, timber extraction and bee keeping are the basics for the livelihood of the 

people living in and around the Gorongosa National Park,  although there exist regulations and 

prohibitions in the park area, e.g. regarding the killing of animals and cutting of timber [LYNAM et 

al., 2003].

During the period of investigation (August to November 2004) temporary camps of fisherman 

were encountered at Lake Urema. Four teams with two fishermen worked at the lake for few days. 

After successful catches they moved back to their village (Muaredzi). They are permitted to fish 

on Lake Urema, but such activities are regulated.

During the civil war (1976-1992) the flora and fauna of the park was seriously affected and the 

infrastructure destroyed. Since the end of the civil war big efforts were and still are undertaken to 

rehabilitate  the  Gorongosa  National  Park  through  demining,  re-establishment  of  management 

activities,  rebuilding of the infrastructure,  anti-poaching operations and restocking of wildlife. 

Sustainable land use in the buffer zone of the park is enforced [web_1, web_4].

29



5 Methods
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5.1 Remote Sensing and GIS

5.1.1 Data sources and software products

Eleven  satellite  images  from  Landsat  sensors  MSS,  TM,  ETM+ and  ASTER were  available. 

Topographical information were available as SRTM data (90 m resolution).

Image analyses were conducted using PCI Geomatica, V9.1.x. ESRI ArcGIS, V8.6 was used for 

data  storage,  administration  and  presentation.  Parameters  for  datum  shift  were  used  from 

TNTmips V6.8. Graphics were created in GMT 3.4.4, Gimp 2.2, Gnuplot 4.0 and OpenOffice.org 

1.1.3, statistics in STATGRAPHICS Plus 5.1, hydrochemical modeling in PhreeqC V2.2.

5.1.2 Analysis of remotely sensed data

5.1.2.1 Geometric and atmospheric correction

Topographical maps of the study area were available at the scale of 1 : 50 000 and 1 : 250 000 

([DINAGECA, 1997/98], [DINAGECA, 1960?]). The maps were digitized with a pixel size of  

10 m x 10 m (1 : 50 000) and 50 m x 50 m (1 : 250 000). A datum shift to WGS 84 Datum was 

necessary as the maps were registered to Tete Datum. 

With these maps the satellite images were geometrically corrected. The pixel size of the output 

image was chosen according to the spatial resolution of the input scene. The ground control points 

(GCPs) were distributed over the whole scene. The nearest neighbour resampling algorithm was 

used and residuals were less than 2 pixel. 

Subsets of the satellite scenes (upper left limit: 7930110N, 636750E; lower right limit: 7901040N, 

671760E) were created to reduce memory requirements and calculating capacity. 

The  module  ATCOR2 in PCI Geomatica  [RICHTER,  2005] was applied to  perform radiometric 

correction  through calculating  an atmospheric  correction  for  flat  areas.  Calibration  files  were 

available for Landsat 4/5 MSS, Landsat 4/5 TM and ASTER.

It was not possible to correct the scenes  09/04/1995 and 10/02/2000 for haze with this method 

(error  warning).  The  scenes  from  09/09/1991,   07/04/1996   and   12/30/2000   could   not   be 
corrected for influences of haze and clouds as there were gaps in the spectral coverage or not 

assignable bands. However, the lake area was without atmospheric disturbance through clouds.
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5.1.2.2 Extraction of the lake's contour from NDVI

The  Normalized  Difference  Vegetation  Index  (NDVI)  -  where  possible  calculated  from 

radiometrically corrected scenes - proved to be a suitable instrument to distinguish the open water 

surface from terrestric habitats [Equation 1]. 

Equation 1

NDVI = (NIR-Red)/(NIR+Red)

where:

NIR = reflectance in the near infrared portion of the spectrum (band 4 

Landsat 5 and 7, band 3 Landsat 2, band 3 ASTER)

Red = reflectance in the red portion of the spectrum (band 3 Landsat 5 and 7, band 2 

Landsat 2, band 2 ASTER)

In general, NDVI values are in the range between -1 and +1. A threshold value THR for the NDVI 

was chosen to extract the water body of the Lake Urema (Landsat TM areas: THR = 0, Landsat 

MSS = 0.03). Pixel with gray values below the THR (= water) were extracted and converted into 

vector shapes. Only directly connected pixel were considered as part of the water body of Lake 

Urema. The NDVI could not be calculated from the Landsat scenes from 1991 and 1996 due to 

gaps in the spectral coverage and not assignable bands.

5.1.2.3 Extraction of the lake's contour and of the floodplain grasslands using supervised 
classification

There was a rough notion about the distribution of floodplain grassland around Lake Urema from 

several field trips between August and November 2004 and from an overflight over the lake in 

November 2004.

However,  the  spatial  distribution  of  different  grassland  types  (short  grassland,  tall  grassland, 

medium high grassland) was not known.

To distinguish  open  water  from  floodplain  grassland  and  surrounding  savanna  a  Maximum 

Likelihood Classification with null classes was used. It  considers the variability of Brightness 

values in the training areas of each class in addition to the mean values. A classification with null 

classes gives the user the chance to avoid that all  pixel must be assigned to classes. This was 

especially important as it was known that much more classes would have been to be distinguished 

for ground coverage of the satellite images [CUNCLIFFE, 2004]. Due to the gaps in spectral coverage 

and  not  assignable  bands  different  procedures  were  applied  to  the  scenes  in  advance  of  the 

classification, such as Tasseled Cap Transformation, PCA and NDVI.

31



5 Methods

The Tasseled Cap Transformation produces images with three bands interpreted as Brightness, 

Greenness  and  Yellowness  (Landsat  2)  and  Brightness,  Greenness,  Wetness  (Landsat  5  and 

Landsat 7) [CAMPBELL, 2002]. The method may be sensitive to atmospheric turbidity and angle of 

illumination. Therefore a direct comparison of spectral values between scenes from different times 

is only possible for the radiometrically corrected images.

A sieve filter  was applied to the output  of the classification procedure. Image value polygons 

smaller than a certain threshold (THR) were merged with the largest neighbouring polygon. The 

THR for the class “open water” in Landsat TM was eight pixel (= 7200 m2, pixel size 30 m x 30 

m), in Landsat MSS it was three pixel (= 9747 m2, pixel size 57 m x 57 m), in ASTER 32 pixel (= 

7200 m2, pixel size 15 m x 15 m). 

For “grassland” a THR of 22500 m2 was chosen (equals to 25 pixel in Landsat TM, 100 pixel in 

ASTER, in Landsat MSS no class grassland distinguished). The intention for the use of different 

THR values for grassland and water was to detect large water bodies as well as little ponds while 

only large grassland areas should be extracted.

5.1.2.4 Calculation of a DTM from ASTER data 

Although of a good relative quality, the ASTER DTM was too erroneous in the flat terrain of the 

rift valley floor for precise absolute height measurements.

5.1.2.5 Extraction of the drainage system and the catchment area from SRTM data (Shuttle 
Radar Topography Mission)

Subsets of USGS SRTM data (90 m resolution) for the area covered by Landsat path 167 and 168, 

row 072 and 073 were available and used to extract the catchment area of the Lake Urema and its 

drainage system [JENSON & DOMINGUE, 1988].

5.1.2.6 Calculation of the lake's volume

It  was  observed  in  the  Landsat  scene  from  May  1997  that  the  extent  of  Lake  Urema  was 

significantly larger at that time than in the other years. The question was how big the difference in 

the water volume between May 1997 and a “normal” year (e.g. October 2000) was. 

The DTM generation from the ASTER scene (10/02/2000) was imprecise at the floor of the rift 

valley  around  Lake  Urema.  Therefore  the  SRTM  data  were  used  for  the  calculation  of  the 

difference in water volume [Figure 10].

First of all, the altitude of the lake's shoreline8 in October 2000 was determined from SRTM data. 

8 shoreline = delineation between the open water surface and swampy grassland
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This was done by creating an elevation profile around the lake and extracting the mean elevation 

of this contour line (= 21 m). In order to fill the holes in the DTM at the lake and to get a plane 

water surface, the DTM elevation values under a mask with the lake's extent in October 2000 

(result from supervised classification) were replaced with the value of 21 m.

Contourlines (1 m interval) were generated from this modified DTM. The contourline at 24 m 

a.s.l. proved to fit best with the contourline of Lake Urema in May 1997.

Consequently, the difference in altitude between the shoreline in October 2000 and May 1997 was 

about 3 m.

GEOMATICA FOCUS algorithm VLM (Volume Report) calculates the volume between a DTM 

and a specified elevation base under a user-selected bitmap mask.

The elevation base for the volume calculation was set at 24 m (settings: pixel size 90 m, elevation 

step size 1 m). The bitmap mask had the extent of Lake Urema in May 1997. The volume between 

the mask and the terrain surface approximates the difference of water volume between 2000 and 

1997. There is a certain percentage of pixel which lie above this mask but can be disregarded.
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Figure 10: Differences in water volume and extent of Lake Urema between 05/1997 and 10/2000
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5.2 Field sampling & Mapping

5.2.1 Sampling schedule and logistics

The field work in dry season 2004 was conducted with the help of 

the staff of the Gorongosa National Park, to point out Fernando 

Januario. The field work on the lake was performed with a rubber 

boat  of  the  type  AVON Rover  VER R3.41  or  a  dugout  canoe 

[Figure 11], depending on the requirements. For the positioning a 

handhold GPS of the type GARMIN etrex (12 channel GPS) was 

used.

5.2.2 Hydrology and hydrochemistry

5.2.2.1 Lake level height

A lake level gauge was established at the 4th of 

September at the southwestern shoreline not far 

from  Mira  Hippo  [Figure  12].  The  wooden 

stick had  a  length  of  2  m and was anchored 

approximately 0.3 m in the lake bottom. The 

lake level height was measured until the 28th of 

October.

5.2.2.2 Bathymetry

The depth profiles 1-4 were measured at the 16th of August. The lake was traversed with a rubber 

boat in SW-NE direction at a velocity of approximately 8 km/h. A sonar, type LCX-18C, was used. 

The  data  were  post-processed  by  removing  zero  and  faulty  values  as  well  as  including  the 

correction for the transducer depth (= 0.25 m).
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Figure 11: Dugout canoe for the 
transport on Lake Urema (photo:  
Beate Böhme)

Figure 12: Lake level gauge at Lake Urema (photo:  
Beate Böhme)
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In order to get an overview of the lake's extent at that time, the shoreline was tracked with the 

Garmin GPS. The distance of the track to the shoreline varied between 20 and 30 m. It was not 

possible to get closer  because of  shallow water, floating mats of  vegetation and several  times 

because of disturbance of a hippo.

5.2.2.3 Measurement of discharge

The current meter, type  Teledyne Gurley 622 [Figure 13],  was made 

available by ARA-Centro, Beira (Administração Regional de Aguas do 

Centro). The cross-section of the Vunduzi River river was subdivided 

into segments with a certain depth and width. Within these segments 

the number of rotations of the current meter was counted acoustically 

in  a  definite  period  of  time  (15  to  40  s).  The  velocity  was  then 

calculated with the rating curve equation [Equation 2]9.

Equation 2 (for cable measurements):

R< 0,025 --> v = 0.0

R< 5 --> v = 0.00828 m/s+0.67463 m*R

where R = number of rotations per second [1/s]

v = flow velocity [m/s]

For each segment the cross-sectional area A [m2] was multiplied by the velocity v [m/s] of the 

water [Equation 3] to get the discharge. Finally, the discharges of all segments were added up.

Equation 3: Calculation of  discharge

D = A*v

where  D = discharge [m3/s]

A = area of flow profile [m2]

v = flow velocity [m/s]

The water velocity was additionally estimated with a floating piece of wood.

9 measurement device non­calibrated
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Figure 13: Current meter  
(photo: Beate Böhme)
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5.2.2.4 On-site measurement of water chemistry

The sampling scheme for the water analyses was more and more refined during the period of 

investigation. A first screening of the parameters

– water temperature 

– pH

– electrical conductivity EC

– Secchi-disc transparency

was conducted at the 12th, 14th and 15th of August when the lake was surrounded by boat. Redox 

potential  Eh was  not  measured as  it  requires  some more time for stabilization which was not 

feasible during the trip over the lake.

The water analyses between the 6th and the 10th of September focused on the water chemistry 

along the four depth profiles.

The following parameters were measured: 

– water temperature

– pH

– electrical conductivity EC

– redox potential Eh

– concentration of dissolved oxygen

– Secchi-disc transparency

At  those  sites  which  seemed  to  be  representative  for  certain  compartiments  of  the  lake 

(littoral, pelagial, inflow region, outflow region, bays...), measurements of ammonium, nitrate, 

phosphate  and  sulphate  were  conducted  at  the  15th and 16th of  September   in  addition  to  the 

determination of the above listed parameters.

Between the 6th and 11th of October the water samples for laboratory analyses were taken at the 

lake, one of its tributaries, Vunduzi River, and its outflow, Urema River. Nutrient concentrations, 

pH, temperature, EC, Eh, water transparency and concentration of dissolved oxygen were measured 

on site.

At  the  end  of  the  period  of  investigation,  at  the  28th  of October,  all  field-parameters  were 

repeatedly measured at two sample sites to check whether the lake underwent significant changes 

since the last measurements.
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The measurement of  water  temperature,  pH, EC and concentration of dissolved oxygen in the 

tropholytic zone was conducted with a one liter water bottle, which was weighted by a heavy 

stone.  After  10 to  15  minutes  the  bottle  was  lifted  and  the  measurements  conducted.  Redox 

potential was not measured with this method.

The water transparency was measured with a Secchi-disc [Figure

14]. This white plate was lowered into the water until its contours 

disappeared. It was lowered some more and then raised while the 

depth at  which it  reappeared was observed.  The average of both 

depths was calculated. The Secchi-disc transparency was measured 

at different locations and at different times of the day so that the 

light conditions varied. This error source was unavoidable during 

the field work.

During all samplings air-temperature, wind conditions and currents 

as  well  as  the  cloud coverage were noted.  The water  depth  was 

measured with a bamboo stick. 

During the period of investigation ARA-Centro (Administração Regional de Aguas do Centro), 

Beira, measured precipitation at Chitengo, located at about 18 km distance from the lake on the 

floor of the rift valley (7900934.6N, 642380.0E, 34.4 m a.s.l.).

5.2.3 Sediment cores

A polyacrylate-core with a length of  0.5 m and a diameter  of  0.06 m was used for sediment 

sampling [Figure 15]. The equipment was only applicable at a water depth of less than one meter 

and sampling therefore limited to the shallower areas of the lake.

The core was manually pressed into the sediment as deep as possible. 

One cap closed the top of the core already under water. When the 

core was lifted to the water surface, the lower end of the core was 

closed with the second cap.

A  PVC  hose  was  used  to  remove  the  water  column  above  the 

sediment. Afterwards the sediments were pushed out of the core with 

the  help  of  a  stopper,  analyzed  with  respect  to  sediment  texture 

(finger  probe),  color  (Munsell  color  chart),  characteristics  like 

hydromorphic  signs,  roots  and  colonization  and  finally  packed in 

pre-labelled  PVC bags.  For  later  laboratory  analyses  in  Freiberg, 

Germany, the sediments were air-dried for at least one week.
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Figure 15: Sediment core 
(photo: Beate Böhme)

Figure 14: Measurement of  
water clarity with Secchi-disc  
(photo: Beate Böhme)
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5.2.4 Vegetation transects and mapping of reference biotopes

Vegetation  transects  at  the  transition  from  the  littoral  zone  to 

temporally  inundated  areas  were  investigated  along  accessible 

paths  of  hippopotamus,  elephant  and  one  path  of  fishermen 

[Figure 16].

The length of  the  transects  varied between 20 and 300 m.  The 

distances were estimated with the step length. In deeper water, the 

investigation was conducted from the boat otherwise by wading. 

The coverage of the plant species was estimated at a scale of five 

intervals  according to  the  method of  Braun-Blanquet  [Table 3]. 

The length of adjacent plots comprised 1.5 to 2 m, the width 1 m.

Water  depth,  vegetation  height  and  additional  significant 

characteristics were noted for each plot of the transect.

Table 3: Modified coverage scale after Braun-Blanquet

scale percentage of coverage

1 <5%

2 5-25%

3 25-50%

4 50-75%

5 75-100%

The  reference  sites represent  some  of  the  habitat  types  located  in  the  floodplain  grasslands 

southwest of the lake. They were included into the supervised classification of the satellite images. 

The sites were mapped with a GPS, documented with photos and verbally described (dominant 

species, estimation of ground coverage, height of vegetation layers). 

5.3 Laboratory analyses

5.3.1 Water chemistry: major ions, TIC, DOC

The filtered (pore size 200 nm, cellulose acetat membrane) water samples for the measurement via 

Ion Chromatography (IC) were stored in polyethylene (PE) bottles in the refrigerator until being 

analyzed. 
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Figure 16: Vegetation transect  
V01, supposed path of hippo  
(photo: Beate Böhme)
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The unfiltered samples for the determination of the carbon species were stored in glass bottles in 

the refrigerator.

The  major  ions  Li+,  Na+,  K+,  Ca2+,  Mg2+,  Cl-,  SO4
2-,  NO3

-,  Br- were  analyzed  via  Ion 

Chromatograph,  measurement  device  MERCK-HITACHI  D  6000  (cation  column:  MERCK 

LiChrosil  IC  CA-2,  RT  125-4.6;  anion  column:  MERCK  Polyspher  IC  AN-1,  RT  100-4.6; 

detectors: anions: conductivity detector, UV-VIS detector (254 nm), cations: conductivity detector; 

eluent cations: 750 mg/l tartaric acid, 167 mg/l Pyridine-2,6-dicarboxylic acid, eluent anions: 415 

mg/l phthalic acid, 278 mg/l Tris-(hydroxymethyl-aminomethane)).

The  concentrations  of  PO4
3- and  NH4

+ were  photometrically  determined  (measurement  device 

Hach DR/ 2000) in addition to the field measurements. The determination of NH4
+ is based on the 

Nessler-Method  (HACH  mineral  stabilizer  (Cat.  23766-26),  HACH  Polyvinyl  alcohol  (Cat. 

23765-26),  HACH Nessler  reagent  (Cat.  21194-49)).  The determination of  PO4
3- based on  the 

Ascorbic  Acid  Method  (HACH  Foil  Pillows  Ammonia  Salicylate  Reagent  (Cat.  26532-99), 

Ammonia Cyanurate (Cat. 26531-99)).

With the exception of NH4
+,  the above mentioned ions were determined both in the pure sample 

and in the enriched sample (enrichment factor 10 for IC; factor 5 for PO4
3- except sample 402: 

without enrichment, sample 318 factor 2.4).

An ion-sensitive electrode and measurement device (WTW Microprocessor pH/ION Meter pMX 

3000) was used for the determination of fluoride in the unfiltered pure water samples. 10 ml of 

TISAB (Total Ionic Strength Adjustment Buffer) were added to 25 ml of calibration solution/water 

sample. The measurement time was between 10 and 20 minutes until  the result  was stable. A 

calibration line was drawn over the range of 0.05 mg F-/l to 10 mg F-/l. 

For the measurement of TIC (Total inorganic carbon) and DOC (Dissolved organic carbon) two 

replicates  of  each  sample  were  analyzed.  Each  measurement  was  conducted  twice  with  the 

measurement device liquiTOC (elementar Analysensysteme GmbH, detection limit for DOC 0.1 

mg/). The average of both results was calculated.

The error of analysis, the percentage of oxygen saturation (from oxygen concentrations) and the 

concentrations of HCO3- (from TIC) were modeled in PhreeqC, V2.2.

39



5 Methods

5.3.2 Sediment analyses

5.3.2.1 Grainsize distribution, determination of TC and TIC

The grainsize distribution of the sediment samples was determined according to the guidelines in 

DIN ISO 11277 (2002). 20 to 25 g sediment sample were used. Pre-treatment with H2O2 removed 

organic matter. 25 ml 0.4N Na4P207 solution were added to disperse the samples. Grains with 

diameters smaller than 63 µm (silt and clay fraction) were fractionated by sedimentation. Grains of 

the sand fraction and bigger (63-2000 µm) were separated by dry sieving. 

The concentrations of Total Carbon TC and Total Inorganic Carbon TIC were determined with C-

Mat 5500 (Ströhlein).  The difference between the concentration of TC and TIC equals  to the 

concentration of Total Organic Carbon TOC. Detection limit for TIC was estimated with 0.05 

mass% (subject to measuring conditions, composition of sample,...) [HAHNEWALD, 2005].

5.3.2.2 X-ray diffraction (XRD)

The fraction up to 63 µm (clay and silt) and the fraction  between 63 to 2000 µm were separately 

handled for the X-ray diffraction (XRD). These subsamples were recovered in the course of the 

determination of the  grainsize  distribution.  The air  dried subsamples  were finely ground in  a 

McCrone Mill to a size between 6 to 20 µm and/or manually in an agate morter to a size of 30 µm. 

The homogenized samples were analyzed via XRD (type of device: Philips PW 3020, cobalt tube, 

graphite secondary monochromator). 
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6 Results

6.1 Tectonics

Figure 17 gives an overview of the recent seismic activity in the Urema Rift. Earth tremors along 

the fracture lines in the rift occur repeatedly. Four earthquakes were detected close to Lake Urema 

in the 1980s: In March 1981 in the area of the Nhandugue River in the rift valley and south of the 

Muanza River (focus in 33 km depth), in April 1983 west of the Urema River and in May 1986 in 

the Dingue Dingue area (focus in 10 km depth). The magnitude of the earthquakes was 4.4 to 4.7 

(for 1983 no information about magnitude available).

The Centroid Moment Tensor (CMT) focal mechanisms indicate a E-W expansion of the rift and 

attest its tectonic activity10

10 details of CMT: Date: 1991/7/24, Centroid Time: 13:54:52.4 GMT, Lat= ­18.30, Lon=  34.62, Depth= 
24.7, Half duration= 2.3, Centroid time minus hypocenter time: 0.8, Moment Tensor: Expo=23, ­5.632, 
0.911, 4.721, 0.000, 0.000, ­0.069, Mw = 5.1, mb = 5.1, Ms = 4.7, Scalar Moment = 5.18e+23, Fault 
plane: strike=180, dip=45, slip=­90, Fault plane: strike=0, dip=45, slip=­90
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Figure 17: Seismic activity in the Urema Rift between 1973 and 2004, data acquired 
from Harvard Seismology CMT catalog [web_11], the size of the bubbles represents  
the magnitude of the earthquake, the color represents its depth in km, underlying relief  
from GTOPO30 [web_12], map processed in GMT
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6.2 Morphology

6.2.1 The rift valley 

Lake Urema is located at the floor of the Urema Rift flanked by the Cheringoma Plateau to the 

east and the Báruè Midlands to the west. The overview in Figure 18 (lower left) shows the Urema 

Rift from the Zambeze-Chire junction to the sea. Initially, it shows a NNE-SSW trend which turns 

into a N-S trend near the Pungoe River and into a NW-SE trend where it  joins  Mozambique 

channel.

The deepest parts  of the Urema Rift between the Pungoe-Zambeze-Watershed and the Pungoe 

delta are situated at the foot of the Cheringoma Plateau at the Lake Urema, Urema River and its 

outlet into Pungoe River (less than 28 m a.s.l.) (figure in the upper right). In the following, this 

area is refered to as Urema Basin. The longitudinal profiles (1v and 3v in Figure 18) through the 

rift show elevations of about 100 m a.s.l. at its margins. The central part decreases from about 60 

m at  the  Pungoe-Zambeze-Watershed to  less  than  30 m a.s.l.  in  the  area  of  the  Lake Urema 

(profile 2v). Following the southward trend of profile 2v towards the Pungoe River, the terrain 

rises up to little less than 50 m. The width of the rift valley floor is about 40 km in the adjacency 

of the Urema Basin. 

Profiles 2h, 3h and 4h indicate a steeper slope from the rift valley floor to the Cheringoma Plateau 

(0.42°) than to the Báruè Midlands (0.37°) (numbers from cross-section 2h,  Figure 18).  TINLEY 

(1977)  justifies  this  trend  with  geologically  recent  fault  lines  at  the  Cheringoma  side.  The 

outstanding elevation in Profile 4h at 15 000 m is the Buè Maria Ridge. 

In  the  detailed  subset  in  Figure  18 (upper  right)  the  alluvial  fans  of  the  Pungoe  River,  the 

Nhandugue River and the Nhampasa River are clearly visible. Beside of them also the Vunduzi 

River,  Mucoza  River,  Mepuaze  und  Sungue  River  built  up  fans  from  the  west  and  Muanza, 

Nhaciquideze, Condue, Nhandinde and Mazamba River from Cheringoma side. Alluvial fans from 

the Nhampasa  River,  originating at  the  Midlands,  and  the  Mazamba River,  originating at  the 

Cheringoma Plateau  are  responsible  for  the  watershed  between  the  Pungoe  and  the  Zambeze 

catchment.

Generally, fans are characteristic accumulation forms of streams where they lose much gradient 

while flowing from the mountains on to a plain and therefore deposit parts of their load [AHNERT, 

1998]. The alluvial fan of the Nhandugue River reaches up to 20 km east-southeast-wards from the 

margins of the rift  valley floor. The fan of the Nhampasa River is even larger reaching to the 

middle  of  the  rift  floor.  From the opposite  site,  from the Cheringoma Plateau,  the  fan of  the 

Mazamba River elongates up to 14 km. The majority of the alluvial fans built up by the rivers 

from the Cheringoma Plateau are smaller than those from the Midlands and from the Gorongosa 

Mountain.
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Figure 18: Overview of Urema Rift from SRTM data, rivers from IGN.FI CENACARTA (1999) and digitized from DINAGECA 
(1997/98)
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The largest fan in Figure 19 is built up by the Pungoe River whose course is totally separated from 

the Urema Basin. The alluvial fan extents approximately 47 km from the western rift margin and 

fills nearly the whole width of the valley. 

Conclusions about the effectivity of erosion, sedimentation and denudation can be drawn from 

longitudinal stream profiles. Stream profiles of rivers have to be differentiated from valley profiles 

because they also consider meandering of rivers within their valleys. Subsequently, the stream 

profiles  for  the  Pungoe,  Muredeze,  Nhandugue  and Nhampasa River  are  shown as  they were 

created  from  topographical  maps  (DINAGECA,  1997/98),  satellite  imagery  and  SRTM 

topographical information [Figure 20, Figure 21, Figure 22, Figure 23].
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Figure 19: Detail of the Urema Basin, with lake's extent of 05/1997, from SRTM data, rivers from 
DINAGECA 1997/98
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The Nhandugue River and the Nhampasa River [Figure 21,  Figure 22] show a concave stream 

profile in the upper reaches of their courses. The profile of the Nhandugue River then turns into a 

slightly  convex form while  that  of  the Nhampasa River is  nearly linear.  The Pungoe River is 

characterized by a convex profile on its course through Mozambique.

The Pungoe River [Figure 20] and the Nhandugue River show a clear break in slope where they 

enter the floor of the rift valley (from about 0.27° to 0.06°, 0.3° to 0.07°). 

Among these four rivers the Muredeze River [Figure 23] has the steepest slope on the rift floor 

(0.17 to 0.28°).

After the classification scheme of slope types in AHNERT (1998) the four profiles can be assigned as 

follows:

– Pungoe: XvR

– Nhandugue: VXvR

– Nhampasa: VR

– Muredeze: XR

while X = convex, V = concave, R = rectilinear, v = concave slope break
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Figure 20: Stream profile of the Pungoe River within Mozambique
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As indicated in Figure 24 the alluvial fan of the Muredeze River together with Pungoe sediments 

forms a “bottleneck” at the outflow of Lake Urema through Urema River. TINLEY (1977) ascribes 

this “alluvial plug” an important role in the control of the outflow and water storage of lake water. 

Figure 24 shows the depth of this bottleneck with approximately 5 m over a width of 500 m. To 

the west the terrain is undulating while the terrain to the east rises slightly up by 0.4°.
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Figure 22: Stream profile of the Nhampasa River

Figure 23: Stream profile of the Muredeze River

Figure 24: Elevation Profile through the so-called “Muredeze-plug”, location of cross-
section shown in Figure 19

Figure 21: Stream profile of the Nhandugue River
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6.2.2 Definition of the catchment area

The  modeling  of  the  catchment  area  of  the  Lake Urema  from SRTM data  gave a  result  of  

8755 km2  [Figure 25,  Table 4]. The extraction of the catchment divides at the floor of the rift 

valley  retrieves  a  certain  amount  of  risk  due  to  small  differences  in  altitude  and  a  vertical 

resolution of the SRTM data of just 1 m. 

According to IGN.FI CENACARTA data (1999), the Nhandugue River is the longest tributary 

within the catchment of the Lake Urema. Together with the Mucombeze River and some other 

smaller tributaries its catchment comprises about 68% of the whole lake's catchment area.

The subcatchment of the Sungue River and the Muredeze River comprises 18 percent of the total 

catchment area of Lake Urema. The rest of 14 percent is made up by the Vunduzi subcatchment.

Table 4: Area of subcatchments and sum of length of all rivers in these subcatchments after modeling from  
SRTM data and from IGN.FI CENACARTA (1999)

subcatchment area after

SRTM [km2]

length of all rivers after

SRTM [km]

length of main 
tributary after IGN.FI 
CENACARTA (1999) 

[km]

Vunduzi 1224 229 Vunduzi: 90.6

Nhandugue - 
Mucombeze

5935 858

Nhandugue: 214.1

Mucombeze: 90.6

Sungue-Muredeze 1596 187 Sungue: 36.9

total catchment of the 
Lake Urema 8755 1274

total Urema catchment 
at hydrometric station 
E81; from 
SWECO&ASSOCIATES_I 
(2004) 8060
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Two outcrops are visible at the floor of the rift valley [Figure 26]. The western one is an inselberg 

formed  by  quartz  breccia  while  the  eastern  one  is  a  rounded  horst  block  of  Precambrian 

migmatitic gneiss with dykes of granophyre [TINLEY, 1977]. A fault line goes through the Sungue 

swamps. The ridge in the lower left corner is Buè Maria Ridge.
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Figure 25: Catchment of the Lake Urema with subcatchments and drainage system as derived from 
SRTM data, sun elevation angle 30°, sun azimuth angle 90°
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According to the results from the modeling of the drainage network the Vunduzi subcatchment 

owes the highest drainage density, followed by the Nhandugue – Mucombeze subcatchment and 

the Sungue - Muredeze subcatchment. As illustrated in  Figure 25 the drainage network of Lake 

Urema shows a dendritic pattern. The watershed of the Cheringoma Plateau is N-S orientated with 

a riftward and a seaward drainage system.

6.2.3 Lake basin

The lake area as derived from ASTER data, acquired in October 2000, is a good approximation of 

the lake size during the period of investigation. This was recognizable when comparing the track 

of the shoreline in September 2004 with the shoreline extracted from satellite imagery.

Four depth profiles were measured from the southwestern shoreline to the northeastern shoreline 

of the Lake Urema [Figure 27, Figure 28].
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Figure 26: Morphology around Lake Urema as derived from SRTM, sun 
elevation angle 30°, sun azimuth angle 90°
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Assuming that the profiles represent the lake bottom over a 100 m wide stripe and considering a 

lake size of approximately 18.5 km2 (October 2000), the profiles cover 4% of the lake area during 

the period of investigation [Table 5]. Profile 1 and 2 are located in the northwestern and central 

part of the Lake Urema while the other two profiles are situated in the southeastern part where the 

lake is getting narrow, forming a lake arm.

Table 5: Length of the depth profiles 1 to 4, Lake Urema

profile ID 1 2 3 4

length [km] 2.8 2.7 1.1 0.72
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Figure 27: Location of the four depth profiles in Lake Urema, curves smoothed using a  
moving average (over 10 values), profiles from left to right: no 1 - 2 – 3 – 4 
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The average depth of  the four profiles measured 1.64 m with a standard deviation of 0.13 m  

[Table 6].

Table 6: Average and standard deviation of the depth profiles 1 to 4, Lake Urema

profile ID
1 2 3 4

average over 1 
to 4

average depth [m] 1.59 1.66 1.69 1.82 1.64

minimum depth [m] 1.28 1.31 1.32 1.37

maximum depth [m] 1.93 1.87 2.00 2.31

standard deviation of depth 
[m]

0.12 0.09 0.13 0.13 0.13

Profile 1 is the shallowest profile [Table 6]. Profile 4 is the deepest profile. Its maximum depth is 

2.31 m at about 180 m distance from the northeastern shoreline.

Generally, the variations in depth are very small. Nevertheless few remarkable structures of the 

lake bottom can be observed [Figure 28].
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Figure 28: Depth profiles measured from the southwestern shoreline to the northeastern shoreline,  
curves smoothed with moving average (over 10 measurements) and csplines
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Two deepenings are conspicuous in profile 1. Over a length of about 750 m the water depth drops 

from about 1.5 m to 1.7 m and 1.9 m. Profile 2 is barely deeper than 1.8 m over most of its cross-

section. Profiles 3 and 4 are characterized by steeper flanks than profiles 1 and 2. 

The deepest part of profile 3 is approximately in its center, forming a channel of 80 m width there. 

Profile 4 has a more asymmetrical shaped cross-section.

Considering a lake area of  18.5 km2 and an average depth of 1.64 m (mean of all  four depth 

profiles)  the  water  body  of  Lake  Urema  comprised  30.34*106 m3  during  the  period  of 

investigation.

A modeling of the lake basin was not successful due to the lack of depth measurements between 

the four profiles.

6.3 Change detection

Figure 29 visualizes the extents of Lake Urema as they were derived from NDVI thresholds of 

satellite images. The lake size in May 1997 is the most striking observation. The lake's extents in 

1993  and  1979  are  somewhat  larger  than  in  the  rest  of  the  years  which  do  not  show much 

variations.
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Figure 29: Open water surface of Lake Urema from NDVI, note that no NDVI was calculated for 1991 
and 1996



6 Results

The lake's extent as it was derived through supervised classification of the satellite scenes and 

from  topographical  maps  [DINAGECA,  1960?]  ranges  from  7.9  km2 (1960)  to  104.1  km2 

(05/04/1997) [Table 7,  Figure  30]. Excluding these  two extremums the mean area  comprises  

20.5 km2 with a standard deviation of 2.8 km2.

All differences in size smaller than about 1 km² can be disregarded for the reason of accuracy of 

the  data  source.  A  simple  demonstration  of  that  is  as  follows:  A  lake  perimeter  of  43  km 

corresponds to a line of 1433 pixel (pixel size 30 m x 30 m). A difference in the lake size of 1 km² 

corresponds to 1111 pixel (pixel size 30 m x 30 m). Thus a difference in the lake's size of 1 km² is 

comparable to a lake expansion or contraction by one pixel in the radius of the lake. 

For the majority of the images the lake area is bigger using the NDVI threshold than using the 

approach of a supervised classification (difference less than or equal to 1 km²) [Table 7].
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Figure 30: Comparison of the area of Lake Urema from supervised classification and NDVI, note that the  
area of 1960 is digitized from topographical maps (DINAGECA, 1960?)
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Table  7: Area of Lake Urema; lake contour derived from satellite images through application of a NDVI 
threshold (1979 NDVI < 0.03, otherwise NDVI < 0) or of a supervised classification, figure for 1960 from  
topographical map [DINAGECA, 1960?], d = dry season, w = wet season, d/w = transition between dry and  
wet season, average and standard deviation without values for 1960 and 1997

1960 1979/
08/29

1991/
09/09

1993/
07/28

1994/
05/28

1994/
07/15

1995/
05/31

1995/
09/04

1996/
07/04

1997/ 
05/04

2000/
10/02

2000/
12/30

A area [km2] 

from NDVI

7.9 25.6 25.5 19.4 19.4 18.4 17.7 111.9 19.1 19.1

B area [km2] 

from classi-

fication

7.9 25.1 23.0 24.3 19.6 18.9 18.0 17.4 22.0 104.1 18.5 18.6

(A/B-1)*100 

[%]

- 2 - 5 -1 3 2 2 - 7 3 3

season
? d d d w/d d w/d d d w/d d/w w

average area from NDVI [km²]
20.5 standard deviation of area from NDVI [km²] 3.2

average area from classification 

[km²]

20.5 standard deviation of area from classification 
[km²]

2.8

The difference between the smallest and the largest lake's extent for the years except 1960 and 

1997 is 7.9 km² (NDVI) or 7.7 km² (classification).

When the lake's extent is compared within one year it is conspicuous that the seasonal difference 

comprises less than one square kilometer. A correlation with climate data could not be conducted 

due to a lack in precipitation data for the major part of the time series. Rainfall data for the study 

area are only available between 1956 and 1982 and since 1997.

In  addition  to  the  size  of  the  Lake  Urema,  the  course  of  the  shoreline  and  the  surrounding 

floodplain grasslands [Figure 32] were investigated via supervised classification. In this context 

the study area was limited to the Guinha and Sungue Floodplain grasslands as they are described 

in TINLEY (1977). Results are given in Figure 31. The Landsat MSS scene aquired in October 1979 

did not allow to extract the floodplain grassland via supervised classification. This was also not 

possible for the scene from 1996 because of a gap in the spectral range. In 1997, the grassland area 

was completely flooded.
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The images from 1993, 1995 and 2000 show a distinct white stripe between the classes “open 

water”  and  “grassland”  which  was  not  assigned  to  one  of  these  classes  in  the  course  of  the 

supervised classification [Figure 31]. The stripe is expanding from the first to the second image of 

the year. White patches are also located within the lake and are supposed to represent islands of 

aquatic vegetation or shallowly flooded areas. 

Through the sieving process, ponds within the grassland class were only detected when they were 

larger than 0.72 hectares. In 1996 such open water surfaces were extensive southwest of the lake 

and in the Sungue plain. In the scene from 1993 open water was detected between the Sungue 

plain and the lake, and in the scenes from 1979, 1991 and October 2000 south of the lake. Not all 

of these open water areas were detected in the course of the classification procedure. They were 

later recovered through the comparison of the original images with the output of the classification. 

In  Figure 31 such ponds appear as white patches within the floodplain grasslands: in July 1993 

south of the narrowing part of the lake (where there is a pond in 1991), in October 2000 around the 

whole lake and in December south of the lake.

What  seems  to  be  an  uniform  green  area  around  the  lake  after  supervised  classification  can 

actually be quite heterogeneous according to species composition, soil characteristics, exposure to 

flooding  and  so  on.  The  results  of  the  Tasseled  Cap Transformation  were  subject  of  a  more 

detailed analysis to discover differences within the floodplain grassland. 

Four  profiles  were  laid  through  the  BGY/BGW  (Brightness/Greenness/Yellowness; 

Brightness/Greenness/Wetness)  images. They cover different parts  of the  floodplain grasslands 

adjacent to the Lake Urema [Figure 33]. 
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Figure 32: Floodplain grassland at the northeastern part of the Lake Urema 
from airplane, height above ground 150-200 m (photo: Beate Böhme)
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Figure 31: Output of the supervised classification, lake's extent from 1960 from 
topographical map (DINAGECA, 1960?)
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The image from 1997 is outstanding due to its high Wetness values. The Greenness values in the 

four - completely water logged - profiles are lower than in the other images (exception profile 2). 

Peaks in Brightness and Greenness can probably be ascribed to only shallowly inundated areas or 

islands of vegetation within the flooded areas.

The image from September 1995 has clearly lower Greenness and higher Brightness values than 

the other years. It has to be emphasized that this image did not undergo haze correction. July 1993 

seemed  to  have  been  moister  which  is  shown  by  higher  Wetness  and  Greenness  values. 

Additionally, the lake was larger as the profiles 1 and 4 indicate by the sudden increase of the 

Wetness values at the lake's shoreline.
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Figure 33: Location of profiles in BGY and BGW images, background image from Landsat TM 
05/28/1994, Brightness (red), Greenness (green) and Wetness (blue)
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With  proceeding  dry  season  the decreasing  Greenness  goes  together  with  an  increase  in 

Brightness (1994, 1995). In this context note the shift of the lake's shoreline inwards from May 

1994 to July 1994 and from May 1995 to September 1995 (profile 4). 

Profile 3 shows the intra- and inter-annual behavior of the Sungue plain. The area which is most 

likely water logged or at least characterized by high moisture and vitality of the vegetation is at 

about 1800 m distance from the starting point of the profile. In all years, except in 1993 and 1997, 

it is characterized by a definite peak in Greenness. In 1993 there is a decrease in Greenness but 

instead a local peak in Wetness indicating open water conditions.

Comparing the lake's shoreline - as it is indicated by a sudden increase in Wetness in BGW images 

- with the results of the classification (gray lines in Figure 34, Figure 35) it can be seen that there 

is good consistence (profile 2 and 4). 
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Figure 34: Pattern of Brightness (red), Greenness (green) and Yellowness (1979:  
blue)/Wetness (other years: blue) along profiles in the floodplain around Lake Urema,  
profiles show west-east-orientation
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Figure 35: Pattern of Brightness (red), Greenness (green) and Yellowness (1979:  
blue)/Wetness (other years: blue) along profiles in the floodplain around Lake Urema,  
profiles show west-east-orientation
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6.4 Hydrology

6.4.1 Change of the lake level height during the period of investigation

Between the 4th of September and the 28th of October the lake level height fell  by 32 cm. An 

attempt  was  undertaken  to  estimate  the  water  balance  of  Lake  Urema for  that  time  to  draw 

conclusions about the contribution of different water sources and losses to the hydrological regime 

of the lake. Equation 4 was used under the assumption that the fluctuation of the lake level height 

over the time is caused by the change of the lake's water volume.

Equation 4 (after MERCIER et al., 2002): 

dV/dt = (R+P+Gi)-(D+E+GO)

whereas 

V = lake's volume [m³]

t = observation time, e.g. one year, one month

R = rate of surface runoff [m³/time]

P = rate of precipitation at the surface of the lake [m³/time]

Gi = rate of incoming groundwater seepage [m³/time]

D = discharge rate [m³/time]

E = evaporation rate at the surface of the lake (Epot = potential evaporation) 

[m³/time]

GO = rate of outgoing groundwater seepage [m³/time]

Subsequently, the acquisition of these parameters is described.

Precipitation P

According to ARA-Centro, Beira, there was no precipitation in August and September 2004. Little 

rainfall was measured at the 12th of October (0.8 mm) and at the 31st  of October (1.6 mm). The 

reliability of these information has to be questioned because rainfall was observed several times 

during the field work.
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Surface runoff R, Discharge D

At the Urema River, which is the only 

outflow of  Lake  Urema,  estimates  of 

flow velocities  were  performed  at  the 

6th of  September  approximately  7  km 

downstream  from  the  mouth  of  Lake 

Urema [Figure  36].  At  this  site  water 

plants did not yet close the river. Yet, a 

flow of water was not detectable.

The  cross-section  of  the  Urema 

River at the former hydrometric 

station E81 [Figure 2] was nearly 

closed by vegetation [Figure 37] 

so  that  a  flow  measurement 

could not be conducted.

At the 6th of October a flow measurement was undertaken at the Vunduzi River, which is joining 

the Mucombeze River, a tributary to the Lake Urema. The sample site is approximately 60 km 

upstream (air-line distance) from the mouth of the Mucombeze River into the lake.
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Figure 36: WP 96; Urema River about 7 km downstream the  
mouth of the Lake Urema (photo: Beate Böhme)

Figure 37: Hydrometric station E 81 at the Urema River in  
September 2004 (photo: Beate Böhme)
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The  riverbed  at  site  318  was  inhomogeneous:  big  stones  and  a  high  flow  velocity  made  it 

impossible to measure the exact depth and the flow velocity within each segment [Figure 38]. The 

discharge of the Vunduzi River – based on the measurement with a current meter – was 1.65 m3/s )

.

The result of a simple estimation of the flow velocity was 0.3 m/s and the discharge therefore 2.33 

m3/s. 

Groundwater seepage Gi, GO

Groundwater seepage could not be included in the calculations due to lack in data.

Evaporation E

For Chitengo historical data for the potential  evaporation - calculated with the energy balance 

method -  were  available  [COBA, 1977?].  It  is  supposed  that  the  figures  are  from the  period 

1956/57-1969/70 when an A-pan was run in Chitengo.
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Figure 38: Cross-section of the Vunduzi River at site 318
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Conclusion

Just  considering  the  water  loss  through  potential  evaporation  and  the  water  input  through 

precipitation, (disregarding in- and outflow of the lake), the water table of Lake Urema (lake area 

approximately 18.5 km2, extent from satellite image, October 2000) should drop by 23 cm during 

the period from September to October [Table 8]. Actually, a drop of 32 cm was measured.

Including the inflow through the Vunduzi River (1.65 m3/s = 8,696,160 m3/September to October) 

and assuming that all the water is entering the lake, its level should finally rise by 0.24 m during 

the  period  from September  to  October  (loss  through  potential  evaporation  and  input  through 

precipitation included, no outflow).

Table 8: Water loss through Potential Evaporation (Epot), water input through precipitation (P) and surface  
runoff (R) during September to October 2004, all numbers referred to an lake area of 18.5 km2

September October whole period

P [m3] 0 44,400 44,400

Epot [m3] 1,831,500 m³/mon 2,405,000 m³/mon 4,236,500

R [m3] 1.65 m3/s 8,696,160

P-Epot [m3] -4,192,100

P-Epot+R [m3] 4,504,060

6.4.2 How much rain is required to fill the lake's 1997 extent?

The volume of Lake Urema in October 2000 was estimated with 30.34*106  m3 (area 18.5 km2, 

mean depth 1.64 m). The water volume of the lake in May 1997 was 248.9*106 m3 bigger than in 

October  2000.  SWECO&ASSOCIATES_I,  2004  give  numbers  for  the  Mean  Annual  Precipitation 

(MAP)  and  the  Mean  Annual  Runoff  (MAR)  in  the  catchment  area  of  Lake  Urema.  In  the 

Nhandugue subbasin the MAP is numbered with 850 mm/y, in the Urema subbasin11 with 900 

mm/y.  The  annual  water  input  through  rainfall  over  the  whole  catchment  area  (Urema  plus 

Nhandugue subcatchment) comprises therefore 7,420.3*106 m3. Using their numbers for the Mean 

Annual  Runoff  (SWECO&ASSOCIATES_I,  2004)  the  annual  runoff  from  the  catchment  area  is 

498,548*103 m3. An increase in the lake's extent as observed in 1997 equals to 50% of the Mean 

Annual Runoff and three percent of the Mean Annual Precipitation in the catchment area of Lake 

Urema.

Using the average volume of Lake Urema, its water body is renewed 16 times per year assuming 

that  all  runoff  from the  catchment  area  is  flowing into  the  lake.  When the  discharge  of  the 

Vunduzi River in the dry season 2004 is interpolated over a whole year and it is assumed that all 

the water is feeding the lake, the lake's volume should be renewed 1.7 times/y.

11 note that SWECO&ASSOCIATES_I (2004) confined Urema subcatchment different than done in this study
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6.5 Water chemistry

Figure 39 shows the sample sites for water analyses. Three compartiments of the lake system were 

sampled during the period of investigation: Vunduzi River, a tributary of the Mucombeze River 

which drains into Lake Urema; Urema River, which is the outflow of the Lake Urema, and Lake 

Urema itself (pelagic zone including trophogenic and tropholytic zone, inflow and outflow region 

and littoral zone)12.

12 Note in the following figures that circles at the same location do not automatically belong to the same 
sampling. Superposition of circles of one parameter represents repetitions of measurements at different 
dates and times. Arrow points towards site 318 which is not in the area covered by the maps.
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Figure 39: Sample sites at Lake Urema, white numbers are labels of water sample sites, dotted blue line is  
linking sites of detailed laboratory water analyses , V01-V06 are vegetation transects, background Landsat  
ETM+ 4/3/2, 12/30/2000, image stretch by standard deviation (n=2)
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At most sample sites the water temperature [Figure 41[ was between 24 and 28°C. Air and water 

temperature were correlated at the 95% confidence level [Figure 40] (Spearman Rank Correlation 

Coefficient  R =  0.5995,  N = 47, p  <  0.0001, N = number  of  observation pairs,  p  = level  of 

significance).

The  pH of  the  surface water  samples varied between 5.9  (moderate  acidic)  and 9.1 (strongly 

alkaline)  [Figure  42]  (graduation according to  AG BODEN,  1996).  Values of  pH below 7 were 

measured in areas with little water circulation or stagnant conditions in bays, such as in the inflow 

region of the Mucombeze (49, 402) or the Sungue (111, 53), in the outflow region (99, 102, 103) 

or close to/within the littoral (97). Also the water of the Urema River (400, 96) was moderate 

acidic in comparison to the central part of the lake which showed pH values higher than 7. 
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Figure 40:  Air temperature vs. water temperature of Lake Urema
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Figure 41: Measurements of water temperature at Lake Urema between 08-10/2004, Landsat ETM+ 4/3/2,  
12/30/2000, image stretch by standard deviation (n=2)

Figure 42: Measurements of pH at Lake Urema between 08-10/2004, background Landsat ETM+ 4/3/2,  
12/30/2000, image stretch by standard deviation (n=2)
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The values for the electrical conductivity [Figure 43] indicate a low mineralization of the water 

of Lake Urema and its  tributaries.  The lowest value among all  measurements was in Vunduzi 

River (site 318), 60 km upstream of Lake Urema (32 µS/cm). Conductivities below 100 µS/cm 

were also measured in the inflow region of the Mucombeze River (sites 402, 49, 109). Towards the 

narrowing outflow region of the lake and Urema River the electrical conductivity increased to 

more than 150 µs/cm (Urema River 168.6 µS/cm, 160.4 µs/cm). There is a correlation at the 95% 

confidence  level  between  EC  and  Secchi-disc  transparency  (Spearman  Rank  Correlation 

Coefficient R = 0.5105, N = 39, p = 0.0016).
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Figure 43: Measurements of electrical conductivity (EC) at Lake Urema between 08-10/2004, Landsat  
ETM+ 4/3/2, 12/30/2000, image stretch by standard deviation (n=2)
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The  Secchi-disc transparency varied between 0.24 and 0.7 m whereas the higher values were 

measured in the outflow region and the lower values in the inflow region [Figure 44]. Along the 

depth profile 1 (chapter 6.2.2.1) the visibility was generally between 0.3 and 0.4 m while in profile 

3 and 4 it was about 10 cm higher. From the comparison of the transparency measurements during 

the period of investigation the conclusion could be drawn that the transparency decreased, e.g. 

sample site 97: 0.45 m (09/07/2004), 0.3 m (10/10/2004); site 115: 0.44 m (09/07/2004), 0.35 

(10/11/2004); site 105: 0.35 m (09/09/2004), 0.25 m (10/28/2004). Nevertheless there are daily 

variations in transparency, depending on the sun elevation, currents and subjective influences.

A general trend of decreasing transparency during the period of investigation was confirmed by 

visual inspection of Lake Urema as a whole. Especially the narrowing part of Lake Urema seemed 

to be affected by increasing turbidity.
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Figure 44: Measurements of Secchi-disc transparency at Lake Urema between 08-10/2004, background 
Landsat ETM+ 4/3/2, 12/30/2000, image stretch by standard deviation (n=2)
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The Secchi-disc transparency was correlated with the pH value at the 95% confidence level (R = 

0.3613, N = 40, p = 00241) and with the electrical conductivity (R = 0.5105, N = 39, p =0.0016).

The suspended matter which caused the high turbidity of the lake water, consisted mainly of fine 

grained  clayey-silty  particles,  detritus  and  parts  of  plants  [Figure  45].  Organisms,  such  as 

Flagellates (Protozoa) and representatives of the group of the diatoms (e.g.  genera  Melosira and 

Navicula, class Bacillariophyceae), were detected but not quantified. No representatives of green 

algae were observed.

The color of the water of Lake Urema was typically yellowish-greenish, in the outflow region 

often reddish.

The  Redox potential indicated partly oxidizing to oxidizing conditions (Eh > 400) [Figure 46]. 

Reducing conditions were nowhere observed. 
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Figure 45: Top view at a water filter (200 nm mash size, magnification 
8 x) after filtration of 90 ml water from site 115, lower half of picture 
shows scale paper: box equals to 1 mm² (photo: Beate Böhme)

http://dict.leo.org/se?lp=ende&p=/Mn4k.&search=scale
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The saturation of dissolved oxygen (expressed as percent saturation) varied over the lake and 

during the period of investigation, ranging from 15% to 115% [Figure 48]. At sites 97 and 99, both 

located  close  to/within  the  littoral,  two measurements  of  dissolved oxygen were conducted at 

different  times  of  the  day  whereby  the  measurement  in  the  afternoon  gave  a  higher  oxygen 

saturation.

97: 7.45 am: 23%, 3.30 pm: 35%

99: 10.00 am: 52%, 3.00 pm: 59%

Super-saturation  of  dissolved  oxygen (>100%)  occurred  at  sites  99  (10/28/04,  11.45 am),  105 

(10/28/04, 09.15 am), 106 (09/16/04, 00.45 pm) and 110 (09/10/04, 01.15 pm). 

The  Spearman  Rank  Correlation  Coefficient  indicated  a  correlation  between  the  pH  and  the 

saturation of dissolved oxygen at the 95% confidence level (R = 0.8956, N = 28, p < 0.0001) 

[Figure 49]. The correlation between the oxygen saturation and the water temperature was also 

significant (R = 0.4380, N = 28, p = 0.0229).

72

Figure 46: Measurements of redox potential at Lake Urema between 08-10/2004, background Landsat  
ETM+ 4/3/2, 12/30/2000, image stretch by standard deviation (n=2)
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Figure 47: Correlation of saturation of dissolved oxygen, pH and water temperature, each block  
represents the relationship between the parameters in the adjacent fields

Figure 48: Measurements of saturation of dissolved oxygen at Lake Urema between 08-10/2004, background 
Landsat ETM+ 4/3/2, 12/30/2000, image stretch by standard deviation (n=2)

Figure 49: Correlation of saturation of dissolved oxygen, pH and water temperature, each block represents  
the relationship between the parameters in the adjacent fields
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The  concentrations of nutrients in the water of Lake Urema were mostly below the detection 

limit of the measurement device. For nitrate no concentrations above the detection limit (0.5 mg/l) 

were measured. Ammonium (detection limit 0.1 mg/l) was detected at a concentration of 0.2 mg/l 

in  the  Urema  River.  Phosphate  (detection  limit  0.2  mg/l)  was  detected  at  the  inflow  of  the 

Mucombeze River (site 402) and at site 115 where the lake is getting narrow. The concentrations 

were 0.3 and 0.7 mg/l. Sulfate concentrations were below 5.5 mg/l: 97 (2.6 mg/l), 99 (2.6 mg/l), 

105 (1.3 mg/l), 115 (2.6 mg/l), 318 (1.3 mg/l), 400 (5.2 mg/l).

At few sites measurements of water chemical parameters were conducted in both the trophogenic 

and the tropholytic zone. Values of the pH in the tropholytic zone were some 0.1 units lower than 

in the trophogenic zone (maximal difference to surface water 1.1 pH-unit in 106) [Table 9]. The 

electrical  conductivity was mostly lower in the trophogenic zone than in the tropholytic zone; 

maximal difference comprised 68 µS/cm (site 116). The saturation of dissolved oxygen seemed to 

be higher in the trophogenic zone than in the tropholytic zone, about twofold at site 99 [Table 10]. 

Table 9: Water depth, pH and electrical conductivity EC in the trophogenic and tropholytic zone, site 109a  
and b close to each other

sample 
ID

water 
depth 
[m]

T 
trophogenic 

zone [°C]

T 
tropholytic 
zone [°C]

pH 
trophogenic 

zone

pH 
tropholytic 

zone

EC 
trophogenic 

zone 
[µS/cm]

EC 
tropholytic 

zone 
[µS/cm]

99 1.87 28.5 25.6 7.2 6.9 164 180

105 1.43 31.6 28.6 9.1 7.3 152 155

106 1.83 28.6 26.6 9.0 7.9 152 151

109a 1.55 27.7 23.5 6.4 6.1 101

109b 1.75 26.1 24.7 6.4 6.1 107 105

110 1.14 29.4 29.7 8.1 7.5 135

111 1.15 30.8 30.0 6.7 6.7 147

115 1.60 26.8 26.8 7.8 7.4 153 196

116 1.36 28.2 23.0 6.7 6.6 162 230

Table 10: Saturation of dissolved oxygen in the trophogenic and tropholytic zone

site ID date time trophogenic zone tropholytic zone

99 10/28/04 11:45:00 am 115 55

105 10/28/04 09:15:00 am 104 77

106 09/16/04 00:45:00 pm 102 87
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In  Figure 50 and Figure 51 the results of laboratory water analyses via Ion Chromatography are 

presented. The sampling points can be interpreted as a transect from the Vunduzi River (site 318) 

through the lake towards the outflow (site 400) [Figure 39]. 

Hydrogen carbonate was the major anion in the water samples [Figure 50]. Concentrations were 

generally higher in the central part of the lake than in the Vunduzi River (site 318: 10.3 mg/l), the 

inflow region (site 402: 16.4 mg/l) and in the Urema River (site 400: 47.3 mg/l). Chloride, the 

second most common anion in Urema water, occured with concentrations between 2.7 mg/l and 

8.4 mg/l showing a similar pattern of distribution as hydrogen carbonate.

Note that the concentrations of nitrate as well as those of sulphate showed a local peak (0.14 mg/l 

and 0.37 mg/l) at the Vunduzi River (site 318). In the inflow region of the lake, at site 402, the 

nitrate concentration was similar high (0.13 mg/l) and then again in the Urema River (site 400: 

0.12 mg/l). Within the lake the nitrate concentration was below 0.1 mg/l. Sulphate concentrations, 

except in the Vunduzi sample, were not reliable as values were close to the detection limit of the 

IC device.

Sodium was the dominant cation, occurring at levels of about 10 mg/l in the lake and in the Urema 

River and a third of this value in the Vunduzi River and half of it in the inflow region at site 402. 

The concentrations of potassium, calcium and magnesium were similar at sites 105, 115, 097, 099 

and 400: potassium concentrations at these sites varied between 2 mg/l and 3.7 mg/l,  calcium 

concentrations between 8.2 and 9.8 mg/l and magnesium concentrations between 2.9 and 3.9 mg/l. 
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Figure 50: Concentration of major anions in the water of Lake Urema and tributaries
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At  sites  318  and  402  the  concentrations  of  these  major  ions  were  approximately  half  the 

concentrations in the lake or even less.

Along the sampled transect the concentration of total dissolved solids (TDS) increased from the 

tributary Vunduzi River (site 318) towards the outflow of the lake and slightly decreased in the 

Urema River [Figure 52].

The plausibility of the water analyses can be evaluated through the comparison of the measured 

electrical  conductivity  with a conductivity value calculated with Kohlrausch's  Law (calculated 

with  an  internal  program  of  the  chair  of  hydrogeology,  TU  Freiberg).  The  equivalent 

conductivities of the major an- and cations of the samples are included in this calculation. Figure

53 shows  that  the  calculated  values  of  the  electrical  conductivity  were  generally  below the 

measured values. This suggests a lack of ions in the water analyses. The error of analysis was 

modeled  in  PhreeqC  [Table  11]  and  a  positive  value  indicates  a  deficiency  of  anions  (with 

exception of site 097). Errors smaller than 2% testify the reliability of the analysis. The samples 

318, 402 and 400 had much higher errors up to 23.5%. For samples 318 and 402 this phenomenon 

resulted probably from the low concentrations of water constituents close to the detection limit.
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Figure 51: Concentration of major cations in the water of Lake Urema and tributaries
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Table 11: Error of analysis, modeled in PhreeqC, analysis is satisfying if error is below 2% (+)

sample ID 318 402 105 115 097 099 400

analysis error [%] 22.8 23.5 2.6 -0.5 -2.7 1.6 18.8

interpretation of 
error

deficiency 
of anions

deficiency 
of anions

deficiency 
of anions

+ deficiency  of 
cations

+ deficiency  of 
anions
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Figure 52: Concentration of total dissolved solids (TDS) along the transect  
through Lake Urema and its tributaries
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Comparing a rainwater  sample from Beira (located 120 km southeast  of  the  lake at  the Indic 

Ocean)  with  the  water  samples  from  Lake  Urema,  its  inflow  and  outflow,  the  similarity  is 

particularly obvious for the sample from the Vunduzi River [Table 12]. The concentrations of the 

major  ions  were  in  most  cases  slightly  below the values  of  the  Vunduzi  water.  However,  for 

chloride it was slightly above. Concentrations of nitrate and sulphate were significantly higher (23 

and six times) in the rainwater than in the Vunduzi water. 

The pH value of the rainwater sample was within the range of all lake and river water samples (pH 

= 5.9-8).

Table  12:  Composition of  rainwater in Beira,  sampled in  March 2005,  concentration in  mg/l,  note:  no  
complete analysis

T [°C] pH
EC 

[µS/cm]
Na+ 

[mg/l]
K+ 

[mg/l]
Ca2+ 

[mg/l]
Mg2+ 

[mg/l]
NH4

+ 

[mg/l]
Cl- 

[mg/l]
SO4

2- 

[mg/l]
NO3

- 

[mg/l]

22.8 6.8 30.4 2.78 0.91 1.18 0.18 0.07 3.2 2.35 3.19

6.6 Sedimentation

6.6.1 Sediment coring

Five sediment cores were collected at a water depth between 0.5 m (S00) and 0.9 m (S04) [Figure

54]. The sample sites are located at the southwestern shoreline within the lower infralittoral. The 

thickness of the sediment cores varied between 0.17 m (S03) and 0.28 m (S02). 
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Figure 53: Comparison of the measured electrical conductivity EC with the  
calculated electrical conductivity 



6 Results

All sediment cores show a dark brown to black organic rich top layer of 4 to 10 cm thickness. It is 

characterized by a mouldy smell and a mushy, liver like consistency due to a high water content 

and  the  richness  in  decomposed  organic  matter.  Except  some (fine)  plant  roots  it  is  poor  in 

unbroken detritus. Under the magnifying glass the matter appears to be composed of tiny light 

loose particles. The characteristics described here are typical for Gyttja, a coprogenous subhydric 

sediment  containing  inorganic  precipitates,  minerogenic  matter  and  particulate  organic  matter 

[WETZEL, 2001]. Its theoretical organic carbon content is less than 50% but was not determined. 

Gyttjas can be found in well aerated, nutrient rich limnic systems [SCHEFFER, 2002].

Three types of sediment texture can be distinguished among all mineral samples. 

Below  the  organic  sediment  layer  the  cores  S00  and  S01  were  assigned  to  pure  sand Ss 

(predominant grainsize 0.2-0.63 mm). The other samples were either assigned to  pure clay Tt 

(S02, S04, S03-3) or to medium sandy clay Ts3 (S03-2). Grains bigger than 2 mm were barely 

observed. Only in the upper part of the samples S01 and S03 some rounded grains accounted for 

less than one mass% of the whole sample.

Figure 54 shows a first estimation of how these sediment types are distributed over the lake. 
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Figure 54: Location and appearance of the sediment cores at Lake Urema, sediment distribution after  
Januario (2004), warden of the National Park, background picture Landsat ETM+ 4/3/2, 12/30/2000,  
image stretch by standard deviation (n=2)
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The silt-clay fraction and the sand fraction were separately analyzed via XRD. The XRD results 

were set in ratio to the proportion of the clay+silt  fraction and the sand fraction in the whole 

sediment sample. 

Eight minerals were detected via XRD: quartz, kali feldspar, plagioclase, hornblende, goethite, 

muscovite,  smectite and kaolinite.  The latter  three  were found mainly in  the  silt-clay fraction 

(except muscovite in S04) while the others were mostly present in the sand fraction.

In sample S04 muscovite was slightly higher or equally represented in the sand fraction than in the 

silt-clay fraction.

According to the results of the XRD, the dominant mineral components in S00 and S01 were well-

rounded quartz minerals (57 and 63 mass%), kali feldspar (16 mass%) and plagioclase (15 and 16 

mass%)  [Figure  55].  The  clay  minerals  smectite  and  kaolinite  accounted  together  for  3  to  5 

percent. Hornblende and muscovite were present with 2 to 3 percent each.

Figure 55: Mineral composition of S00-2 and S01-2 according to the results of XRD, outer segment = sand 
fraction (0.063-2 mm), middle segment = clay and silt fraction (<0.002-0.063 mm), inner segment = whole  
sample, figures rounded to whole numbers

S02 and S04 were characterized by a  massive,  heavy, very  dark gray/black (S02)  to  greenish 

gray/black (S04) sediment with a clayey texture and shiny cutting areas. At both sample sites there 

was a transition layer between the organic rich top layer and the massive clayey layer. In S02 this 

transition zone (S02-2) measured 7 cm, in S04 (S04-2) 4 cm. It showed both a decrease in water 

content and organics. In comparison to the underlying layer (S02-3, S04-3) it was more rooted 

through and stronger inhabited by worms as worm tunnels indicated. 

Signs  for  oxidizing conditions,  e.g.  rust  brown spots  (diameter  4-6 mm) or  streaks  (in  worm 

tunnels) were observed especially in S02.

Because of the similiarity of S02 and S04 with respect to their sediment texture, an analysis via 

XRD was only conducted for the sample S04-2 and S04-3 [Figure 56].

80



6 Results

In  contrast  to  the  other  samples,  S04 had  a  distinct  proportion  of  clay  minerals  in  the  sand 

fraction.  According  to  the  personal  comments  of  the  analyzing  laboratory  [KLEEBERG,  2004] 

cementation  through  goethite  (11  and  18  mass%)  and  potentially  amorph  iron  oxides  are 

responsible for this characteristic. 

The main difference between the upper layer S04-2 and the lower layer S04-3 is visible in the sand 

fraction.  While  in  S04-2  quartz  dominated  with  33  mass%,  in  S04-3  smectite  was  the  most 

common mineral with 27 mass% (quartz 18 mass%). 

The mineral composition of the silt-clay fraction was similar in both samples: less than or equal to 

5 mass% of quartz,  kali  feldspar,  plagioclase and muscovite  and smectite between 43 and 45 

mass% of kaolinite and smectite each. 

The mineral composition of S04-3 could not be referred to the whole sample due to an error in the 

grainsize distribution. It can be assumed that the figures are similar to those of S04-2.

Figure 56: Mineral composition of S04-2 and S04-3 according to the results of XRD, outer segment = sand 
fraction (0.063-2 mm), middle segment = clay and silt fraction (<0.002-0.063 mm), inner segment = whole  
sample, figures rounded to whole numbers

Sample S03 is the only one where a remarkable difference in the sediment texture between the two 

layers S03-2 (6 cm) and S03-3 (7 cm) was observed. The upper layer was specified as medium 

sandy  clay,  the  lower  layer  as  pure  clay.  This  difference  is  also  reflected  in  the  mineral 

composition [Figure 57]. S03-2 had a higher proportion of quartz in the sand fraction (64 mass%) 

than S03-3 (56 mass%). An extrapolation over the whole sample displays significant differences 

(S03-2: 38 mass% of quartz; S03-3: 8 mass% of quartz) due to the bigger sand fraction in S03-2. 

This is also alienable to kali feldspar. 
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Consequently, the larger clay fraction in S03-3 resulted in the double concentration of smectite 

and kaolinite in the whole sample in comparison to S03-2. S03-3 showed the highest content of 

plagioclase among all samples. Observations of few single spot-like rust signs indicated oxydizing 

conditions in sample S03.

Figure 57: Mineral composition of S03-2 and S03-3 according to the results of XRD, outer segment = sand 
fraction (0.063-2 mm), middle segment = clay and silt fraction (<0.002-0.063 mm), inner segment = whole  
sample, figures rounded to whole numbers

Figure  58 summarizes  the  results  of  the  mineral  analyses.  Two  types  of  sediment  were 

differentiated. S00 and S01 were dominated by their sand fraction. The sand fraction contained 

mainly quartz, kali feldspar, plagioclase and hornblende. S02, S03 and S04 were characterized by 

a clay texture and contained mainly kaolinite and smectite. S03-2 can be regarded as a transient 

stage between the two sediment types.

Total carbon (TC) in the sediment samples comprised basically Total Organic Carbon TOC. The 

concentration  of  Total  Inorganic  Carbon  (TIC)  was  below  the  detection  limit.  Lowest 

concentrations of TOC were measured in the sandy samples (0.18 mass% and 0.14 mass% in S00-

2 and S01-2), highest values in the clayey samples (about 2 mass% in S02 and S04) and medium 

values around 1 mass% TOC in S03 (medium sandy clay on top of pure clay).
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Table 13: Concentration of Total Organic Carbon (TOC)

S00-2 S01-2 S02-2 S02-3 S03-2 S03-3 S04-2 S04-3

TOC 
[mass%]

0.18 0.14 2 1.81 0.81 1.4 2.16 2.08

6.6.2 Siltation

Visual inspection of all available satellite images was conducted with respect to the development 

of new islands at the Lake Urema. 

There were some rather small islands detected on the majority of the satellite scenes. They owe 

their existence to a falling water level. In 1993, the lake's extent was bigger than in most  other 

years. Consequently the islands south of where the lake starts to narrow had disappeared. Small 

islands,  less  than  five  hectares  in  size,  were  visible  in  the  southwestern  part  of  the  lake  in 

December 2000 and at the Mucombeze inflow in May 1995. They can be composed of aquatic 

plants or represent dry falling lake bottom colonized by grasses or herbs.
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Figure 58: Mineral composition of the whole samples
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6.7 Vegetation investigation

6.7.1 Transects 

Six  transects  (V01,  V02,  V03,  V04,  V06,  V07)  along  channels,  presumably  created  by 

hippopotamus  or  elephant,  were  investigated  according  to  their  floristic  species  composition. 

Their location is shown in Figure 39. The transect length varied between 20 and 300 m, starting in 

the pelagic zone or lower littoral and ending in the seasonally inundated floodplain grassland. 

In  V07 the area  between 0 and 50 m distance  from the  open water  was not  accessible.  It  is 

assumed that this region is similar to V06 and thus its species composition was adopted from V06.

The transects (exemplified in Figure 59, Figure 60, Figure 61) cover the following zones (notation 

of zones after WETZEL (2001)):

1. Pelagic zone (free open water)

2. Lower infralittoral with dominance of submerged aquatics

3. Middle  infralittoral  with  dominance  of  floating  aquatics  and  rooted  aquatics  with  floating 

aerial parts

4. Upper infralittoral with dominance of rooted aquatics with floating aerial parts and emergent 

aquatics

5. Floodplain grassland interspersed with shrubs and trees

1.   Pelagic zone  

Some rafts of  Eichhornia crassipes  were detached from the littoral and dislocated by wind and 

currents.

2. Lower infralittoral

Ceratophyllum demersum was the dominant species within this zone. It was found in all transects 

with a coverage of up to 5 (V02), normally 1 to 2. The extension of this zone was on average 2 to 

4 m (V01, V03, V04, V06). In V02, a transect along a path used by fishermen, the species was still  

detected at a distance of 12 m from the beginning of the littoral zone. 

During the period of investigation it became obvious that this species was expanding over the lake. 

Additionally, the  water  turbidity  was increasing,  potentially  correlated with the  distribution of 

seeds of Ceratophyllum demersum or other aquatics [web_15].
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3.   Middle infralittoral  

The zone of floating aquatics was characterized by the dominance of Eichhornia crassipes. Single 

individuals or small groups of Azolla nilotica, Trapa natans and Pistia stratiotes were observed in 

other parts of the lake (e.g. the inflow region of the Mucombeze River), but not represented in the 

transects.  The  middle  infralittoral  flanked  the  zone  of  submerged  aquatics.  The  height  of 

vegetation seldom exceeded 1 m.

Eichhornia crassipes formed populations with coverages up to 5 (V01). 

4.   Upper infralittoral  

Alternanthera sessilis and Ipomoea aquatica were found between the floating aquatics as well as 

in  the  moist  floodplain  grasslands.  Cyperus  pectinatus and  Cyperus  difformis represented  the 

group of sedges in the investigated transects. The vegetation height seldom exceeded 0.3 m. 
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Figure 59: Vegetation transect V01 (photos: Beate Böhme)
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5.   Floodplain grassland interspersed with shrubs and trees  

Echinochloa pyramidalis was distributed over major parts of the transects with varying coverages. 

In V01, V02, V03 and V06 this species was becoming dominant (coverage bigger than 4) at a 

distance between 6 to 10 m from the open water surface. In V04  this was already observed at a 

distance of 3 meters. With the dominance of  Echinochloa pyramidalis the height of vegetation 

increased to over 1 m. 

Dry ground began at varying distances from the open water: in V01 at 21 m, in V02 at 12 m, in 

V03 at 7.5 m, in V06 at 28 m and in V07 at approximately 50 m. 

The transects  V06 and V07 covered not  only the  infralittoral  but  also the  zone of  temporary 

inundated  regions.  Some  shrubs  and  trees  were  interspersed  into  the  floodplain  grassland  as 

groups or single individuals.

Mimosa pigra? was present in the shrub layer, while Faedherbia albida (V06, V07) and Kigelia  

africana (V07) grew in the  tree layer to  a  height  of  15 m at  dry  sites.  A flood mark at  one 

individual of Faedherbia albida was observed at a height of 0.65 m above ground.
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Figure 60: Vegetation transect V06, tree layer linked with inner scale (photos: Beate Böhme)
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The paths of hippopotamus and elephant form a microrelief around the lake with differences in 

height of 0.5 m in the sample transects. They are partly filled with water and link aquatic and 

terrestric  habitats.  Ipomoea  aquatica grows  mainly  on  the  bare  ground  around  the  paths  of 

elephant in V06. The ground coverage of this herb was mostly smaller than 50%. 

6.7.2 Reference sites in the floodplain around Lake Urema

Reference sites are obligatory for the performance of a supervised classification (chapter 5.1.2.3). 

Due to limited accessibility of the floodplain grasslands and due to limited logistic facilities only a 

small part of the floodplain grasslands around Lake Urema was inspected. 

In  doing  so  six  reference  sites  northwest  of  Mira  Hippo  were  mapped.  They  represent  the 

following  vegetation  classes  according  to  the  classification  scheme  of  CUNCLIFFE (2004)  and 

demonstrate the heterogeneity of what is referred to in general as floodplain grassland: 

• Floodplain wetland – moist grassland

• Floodplain grassland to open palm-Acacia woodland

• Floodplain aquatic vegetation

• Floodplain open water
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Figure 61: Vegetation transect V07, tree layer and termite hill (right image border) measured at inner  
scale (photos: Beate Böhme)
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A flight  over  Lake  Urema gave the  chance  to  get  a  much  better  overview of  the  floodplain 

grasslands.

6.8 Fisheries

According to personal comments from JANUARIO (2004), warden of the Gorongosa National Park, 

the following species of fish were identified to be living in Lake Urema.

• Sharptooth catfish (Electric catfish)

• Banded tilapia

• Redeye labeo

• Rock catfish

• Tigerfish

• Cornish jack

At least one species of turtles inhabits the lake.

- Serrated hinged Terrapin

About 300 fishes from the catches are sold weekly, mainly Rock Catfish, but also Cornish jack and 

Banded tilapia. Fresh fish is only sold to Muanza, which is at about 30 km distance from the lake. 

Gutted and smoked fish is sold mainly to Muanza, Beira and Mafambisse. The fish is caught with 

nets and spears from dugout canoes.

The fishermen at Lake Urema have been fishing there for several generations. Therefore they are 

supposed to know the lake and its ecology very well. They reported an increase in Rock catfish 

population since 1998 until now. In contrast the population of Banded tilabia was decreasing. The 

number of caught fish seems to have diminished to almost half of what was obtained in 1998. The 

fishermen  attribute  this  decrease  in  population  to  the  influence  of  drought  since  1998.  Rock 

catfish prefers small, shallow water whereas Banded tilabia prefers broader, cooler water and that 

makes them more susceptible to drought than Catfish.
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7 Discussion

7.1 Evaluation of methods

7.1.1 Remote Sensing and GIS

The delineation of the catchment area and the extraction of the river network is on the one hand 

controlled by the accuracy and the spatial resolution fo the available DTM and on the other hand 

by the threshold values used in the WTRSHED module in PCI Geomatica [JENSEN & DOMINGUE, 

1988]. The vertical resolution of the SRTM data is one meter. This  resolution  can be already 

critical in areas with small elevation differences such as at the floor of the rift  valley. For the 

modeling of the drainage network a threshold of 5000 cells was used. Generally, the density of the 

network increases as the threshold value decreases. 

The calculation of the water volume for the flood event in May 1997 can be only as accurate as 

the  topographical  data  from  SRTM  are.  Own  measurements  with  a  Trimble  DGPS  gave  an 

elevation of 18.69 m a.s.l.  (vertical  precision 0.862 m)13 for a site close to the lake while the 

SRTM data showed an altitude of 23 m a.s.l. The difference of more than 4 m between these two 

results  probably  arises  from inaccuracies  of  the  SRTM data.  Yet,  their  overall  accuracy  was 

sufficient for the tasks to be solved in this study.

Using a supervised classification for the delineation of the open water surface of the Lake Urema 

and the floodplain grasslands was an appropriate approach. Extracting the lake's contour with a 

threshold for the NDVI was also feasible. The lake's extents from the NDVI were mostly larger 

than those extracted with the classification procedure. The results of the supervised classification 

are supposed to be more reliable because the definition of an overall boundary value for the NDVI 

is too strict, especially when the multi-temporal image dataset is not radiometrically normalized. 

This  constrains  a  direct  comparison of  gray values  from different  images.  A normalization is 

recommended by MUNYATI (2000) in his multi-temporal remote sensing study on the Kafue Flats, 

Zambia. 

The  residuals of the geometric registration of the satellite scenes were smaller than 2 pixel (in 

Landsat TM, pixel size 30 m x 30 m). Ground control points were mainly road junctions as well as 

river  bends.  Residuals  smaller  than  two  pixel  were  barely  achievable  because  the  1:50  000 

topographical maps were from 1960 (the 1:250 000 were from 1997/98) and many roads and river 

courses have changed since then. Therefore, variations of the lake's extent can not be detected with 

an accuracy better than two pixel.

13  real­time corrected, location 658409.838, 7909395.8600; 9/14/2004, 03:48:12PM
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In the course of this study the floodplain grasslands around Lake Urema were regarded as a more 

or  less  homogeneous  unit.  CUNCLIFFE (2004)  in  accordance  with  TINLEY (1977)  and  own 

observations demonstrated the diversity of the Urema Floodplain ecosystem.

The use of  a  Tasseled Cap Transformation on satellite  imagery produces images with three 

channels  which  can  be  interpreted  as  Brightness,  Greenness  and  Wetness/Yellowness.  This 

approach has proven to be suitable for the monitoring of the ecological responses of the floodplain 

grasslands.  The  Tasseled  Cap  Transformation  is  sensitive  towards  atmospheric  influences. 

Therefore an atmospheric correction prior to the transformation process is recommended. For the 

Landsat TM scene from 09/1995 no haze correction was conducted by ATCOR2. Therefore it is 

possible, that the Greenness values are lower than in the other years.

It has to be kept in mind that some of the satellite scenes had gaps in their spectral coverages due 

to  missing  or  not  assignable  bands.  Therefore  the  procedures  NDVI  and  Tasseled  Cap 

Transformation could not be applied on all images ahead of the classification process. These gaps 

also prevented the extraction of the class “floodplain grassland” through supervised classification 

of the  Landsat  TM scene from 1996. The Landsat  MSS scene (1979) did not allow a distinct 

delineation of the floodplain grassland.

Elaborate pre-processing of the data would possibly have reduced the described error sources. 

However, for the purpose of this study the applied procedures were sufficiently accurate.

The generated ASTER DTM had a good relative quality but was too erroneous for absolute height 

measurements in the flat terrain of the rift valley floor. It has to be proven whether the collection 

of additional Ground Control Points (GCPs) and Tie Points will improve accuracy.

7.1.2 Field sampling and mapping

The major constraints for the field work were the simple sampling methods on the one hand and 

on the other hand the limited logistic facilities and the available time.

Sediment coring was limited to the shallow parts of the lake close to the shoreline and therefore 

may  not  be  representative  for  the  rest  of  the  lake.  However,  information  from  local  people 

confirmed the  widespread  distribution  of  clayey sediments  over  the  lake.  It  would  have been 

desirable to sample the sediments deeper than 30 cm but this was not possible with the available 

equipment.

Vegetation analyses were restricted to paths of hippopotamus, elephants and one of fisherman 

because an abundant population of crocodiles is  inhabiting the lake.  Therefore,  the vegetation 

transects  were  located  at  somewhat  disturbed  sites  (especially  V02  by  fishermen).  It  was 

attempted to avoid the investigation of the vegetation close to the path. Fragmentary plant species 

lists result from the lack of appropriate field guides.
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The reference sites for the supervised classification were limited to the area southwest of the lake 

because of limited time and accessibility. Reference site 4 is not really representative for pristine 

floodplain grassland. By its even-aged stands of Abutilon sp. it was identified as secondary growth 

on fallow fields (in accordance with observations of TINLEY (1977)). The final flight over the lake 

gave a better overview over the extension of the floodplain grasslands.

The results of the  bathymetric survey have a horizontal resolution of about 2 m. At least one 

additional  depth profile perpendicular to the other  four profiles should have been done.  For a 

satisfying modeling of the lake basin more depth measurements in between the four profiles would 

have been necessary. 

The methods related with the hydrology and hydrochemistry are discussed in the next section.

7.1.3 Hydrology and hydrochemistry

The calculation of the water balance of Lake Urema for the period of investigation was based on 

several assumptions and simplifications and is therefore more an estimation than an exact number. 

Some uncertainties are as follows:

– The flow measurement at the Vunduzi River was associated with some uncertainties as the 

river cross-section was very inhomogeneous. Only one measurement was carried out during the 

period of investigation. It is conjecturable that not all water of the Vunduzi River will feed the 

lake. A part will get lost on its course, such as by seepage or evapotranspiration. Possibly, other 

tributaries than the Vunduzi River delivered water to Lake Urema at that time but were not 

investigated. 

– The available current meter was not calibrated and probably not sensitive enough for discharge 

measurements in the Urema River.

– The data for the evaporation are from more than 30 years ago. Possible climate changes since 

then  could  have  caused  changes  of  the  amount  of  water  lost  by  evaporation.  Additional 

evapotranspiration from the floodplain grassland may not be disregarded.

– Subsurface flow and groundwater seepage were disregarded due to the lack in data.

– Precipitation data for the period of investigation did not always agree with own observations. 

Several times rainfall was noted at Lake Urema but not at the climate station in Chitengo.

The  runoff  factor  of  7%  for  the  Urema  and  the  Nhandugue  catchments,  given  in 

SWECO&ASSOCIATES_I  (2004),  has  to  be adopted carefully. Water  storage in  the  lake and the 

surrounding floodplains was not sufficiently incorporated in the modeling. However, for this study 

the figures given in SWECO&ASSOCIATES_I (2004) were used.
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Concentrations of nitrate, ammonium, sulphate and phosphate were mostly below the detection 

limit of the measurement device. Determinations of other water constituents, such as of dissolved 

silicic acids, were not conducted during the field investigations. Concentrations of dissolved silicic 

acids are generally high in tropical freshwater [WETZEL, 2001] and should therefore be a part of the 

water analysis.

As some of the major ions (nitrate, sulphate, lithium) were not detectable in the unaltered water 

sample, enrichment procedures (by evaporation) were applied. Comparing the concentrations of 

calcium and  magnesium before  and  after  the  enrichment,  discrepancies  of  up  to  550% were 

observed  and  ascribed  to  the  precipitation  of  carbonates.  Therefore  the  results  from  the  IC 

measurements  of  the  unaltered  samples  were  used  for  these  two  ions.  Lithium  and  sulphate 

concentrations were still very close to the detection limit after the enrichment and results for these 

ions are not reliable.

7.1.4 Sediment analyses

According to  SCHLICHTING et al. (1995) an error of analysis smaller than 3% is acceptable for the 

determination of grainsize distributions. The errors for the samples S02 and S04 were about 4%, 

the errors for the other samples below 3%. However, the error of about 4% did not affect the final 

declaration of the samples as pure clays. 

7.2 Does Lake Urema undergo changes?

MERCIER et  al. (2002) gives an overview of geophysical processes that may result in lake level 

height fluctuations of continental lakes. These are changes in water temperature or composition, 

surface pressure changes, water circulation processes, wind-driven events and tides. However, the 

importance  of  these  factors  is  supposed  to  be  negligible  for  African  lakes.  Instead,  tectonic 

processes, such as earthquakes, are considered to be more important. Even more attention is paid 

to the variability of precipitation regimes and evaporation conditions over pristine lakes and their 

catchment areas.

Already BURLISON at al. (1977) attempted to solve the question whether a drying up of the area of 

the Gorongosa National Park occurred. A flow reduction of the perennial Vunduzi River in the 

Park,  the increasing drying up of annual  rivers in the dry season, a reduction of the flooding 

period during  the  rainy season and a  lowering of  the  water  table  were indications  for  such a 

development.  The  authors  discussed  climate  and  land  use  changes,  changes  in  the  flooding 

between  the  Urema  and  Zambeze  catchments  due  to  the  closure  of  the  Kariba  dam  on  the 

Zambeze  (1958)  and  seismological  activity  as  possible  reasons.  All  these  factors  seemed  to 

contribute to the drying up, but no ranking of their importance was given by the authors. Rainfall 

changes in the catchment area seemed to have only temporary effects due to “cyclical variations in 

precipitation patterns.” 
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Following, the results of own investigations on the current state of Lake Urema in the dry season 

2004 and its development over the last 20 years are presented.

The lake's extent as it was derived from satellite images did not show any trend in the period 

between 1979 and 2000. Already slight fluctuations in the lake level height are supposed to cause 

considerable variations in the lake's extent due to the very flat surrounding. Thus, the conclusion 

is drawn, that Lake Urema did not undergo large fluctuations of the lake level height between 

1979 and 2000. The standard deviation of the lake's extent (from classification) was 2.8 km², the 

average lake size 20.5 km². 

On the topographical map from 1960 (DINAGECA) Lake Urema has an extent of only 7.9 km². 

This figure is not plausible because Lake Urema should then have increased by 17.2 km² from 

1960 to 1979. Between 1979 and 2000 it did not undergo such extreme changes. The lake's extent 

showed similar dimensions when different methods were applied to extract the shoreline (NDVI, 

supervised classification). Thus the results are considered to be consistent and reliable.

Unfortunately,  the  relation  between  the  inter-annual  variability  of  precipitation  and  the  lake's 

extent could not be evaluated due to the lack of precipitation data for this period. However, it is 

known that Mozambique experienced several El Ninõ/Southern Oscillation (ENSO) events in the 

last  twenty  years:  e.g.  a  warm  phase  event  with  severe  droughts  in  1991-92  and  in  1994-95 

[EASTMAN et al., 1996] (for definitions of ENSO, cold and warm events see web_19). They were not 

reflected by the lake's extent.

In  May 1997, Lake Urema had five times its  average size.  The water  surplus  equals  to  three 

percent of the modeled annual precipitation in the catchment area (SWECO&ASSOCIATES_I, 2004). 

The sudden rise in the lake level height and the extent of Lake Urema can be associated with three 

cyclones which have caused extensive flooding in Mozambique in the rainy season 1996/1997. 

This is visible in the interpolated, estimated rainfall diagrams from NOAA/CPC - USAID/FEWS - 

USGS/EDC for the period 1993 to 1998 [Figure 62] [web_6]. 
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A period of investigation of 20 years is probably too small for the discussion of climate driven 

changes of the extent of Lake Urema. SWECO&ASSOCIATES_I, 2004 discuss: “21 years of data on 

river runoff in southern Africa is, however, generally too short to give reliable long-term flow 

characteristics. The reason is that the region suffers from clear cycles in the climate where wet and 

dry periods alternate. Normally at least 30 years are therefore considered to be required for good 

estimates of e.g. mean annual runoff.”

The intra annual variations of the open water surface in the years 1994, 1995 and 2000 were less 

than one square kilometer. Yet, among the available scenes there was none from the peak of the 

rainy season (December to February) which could demonstrate the maximal extent of the lake.

In the following chapter control mechanisms for the hydrological regime of Lake Urema beside of 

climatic reasons are discussed.

7.3 Which factors influence the hydrological regime of Lake Urema?

7.3.1 Neo-tectonics

Seismic activity is present in the catchment area of Lake Urema. Four shallow earthquakes were 

recorded  close  to  the  lake  and  the  Urema  River  in  the  1980s  but  no  evaluation  of  possible 

consequences was done. Neo-tectonic movements could play a role for the hydrological regime of 

the lake, e.g. through landslides and spillage, but no evidences are at hand. The presence of hot 

springs proves the seismic activity of the rift.
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7 Discussion

7.3.2 Morphology and Sedimentation

Its origin makes Lake Urema to a kind of Reservoir Lake which owe their existence per definition 

to an “impounding structure” [WETZEL et al., 2000]. The alluvial fan of the Pungoe River is this 

impounding structure in the study area. It dams up the drainage from the adjacent rift escarpments 

and the rift  floor to form Lake Urema. Only a small outlet is left for the lake's drainage. This 

“bottleneck” is controlled by the fan of the Muredeze River which originates at the Cheringoma 

Plateau. The term “alluvial plug” [TINLEY,  1977]  describes this  circumstance adequately. Other 

alluvial  fans  limit  the  Urema Basin  from the  east,  north  and  west.  As  illustrated  during  the 

anomalous flood event in May 1997, these fans are both a morphological barrier for the extent of 

the lake and a natural dam, controlling its outflow. 

The morphology of reservoir basins is typically characterized by a dentritic drainage system and a 

narrow, elongated form of the lake [WETZEL, 2001]. This is true for Lake Urema [Figure 25]. A 

shoreline  development  significantly  bigger  than  2  is  representative  for  flooded  river  valleys 

[WETZEL et al, 2000]. This parameter amounts to 3.1 for Lake Urema. 

Due to its low location on the rift valley floor, Lake Urema serves as a local base level for erosion 

and deposition (in accordance with TINLEY, 1977).

From the size and the slope of alluvial fans one can draw conclusions about the size of the stream 

itself, its load and thereby the intensity of weathering in its catchment area [AHNERT, 1998]. Large 

fans  such  as  those  from  the  Pungoe,  Nhandugue  and  Nhampasa  are  formed  where  much 

mechanical weathering in the catchment occurs and much bedload is delivered. 

The input of sediments from the rift escarpments plays obviously a major role for the existence of 

Lake Urema and the floodplain ecosystem. Therefore, a bathymetrical survey of the lake's basin as 

well as sediment analyses were conducted to get an idea of the sedimentation pattern.

Two sediment textures were distinguished. These are on the one hand pure sand and on the other 

hand pure clay. One sample shows a transition type. The Hjulström diagram (in  AHNERT, 1998) 

provides estimations of flow velocities which enable erosion, transport or deposition of particles 

of a certain diameter. The critical velocity for the erosion of particles of 0.002 mm diameter (clay) 

is approximately 100 to 240 cm/s. Transport occurs at velocities below that value. For deposition 

of clays water has to stagnate. The sand fraction with diameters between 0.2 and 0.63 mm can be 

eroded at velocities above 15 to 30 cm/s. The critical velocity for deposition is about 1.3 to 4.5 

cm/s. Sediment transport occurs between these boundary values.  The widespread distribution of 

clayey  sediments  over  large  parts  of  the  lake  and  the  occurrence  of  sandy  sediments  in  the 

narrowing part  of  the  lake towards  its  outflow suggest  a  temporally  and spatially  constrained 

pattern of transport and deposition. 
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The deposition configuration and types as well as the incised lake floor (shown by bathymetric 

profiles) concur with the hypothesis that  the axial part  of  the lake is characterized by a more 

energetic flow and the lateral areas by calm conditions. Web_14 (2004) recommend a length-to-

width-ratio  of  minimum 2:1 for improving the sediment trapping efficiency of impoundments 

(Lake Urema: ratio 2.5:1). The functioning of Lake Urema as a sediment trap is proven by the 

increasing transparency towards the lake's outflow controlled through in situ measurements of the 

Secchi-disc transparency. MCCARTHY et al. (1991) described a decrease in turbidity downstream of 

Dxhereaga lediba (lake) in the Okavango Delta resulting from sediment settling, although this lake 

is much smaller (diameter approximately 500 m) than Lake Urema.

The  underlying  geology  and  the  soils  in  the  catchment  area  have  to  be  included  into  the 

interpretation of the  mineralogical composition of the sediments.

Free carbonates were not detected in the samples. The dominant minerals in the sandy samples 

were quartz,  kali  feldspar, hornblende and plagioclase while kaolinite,  smectite and muscovite 

were dominant in the clayey samples.

Quartz  components,  mica and  feldspars are  supposed  to  originate  from  the  gneisses  and 

migmatites of the Báruè formation (introduced e.g. through Nhandugue River, in accordance with 

TINLEY, 1977)  or  from  the  gabbros  and  granites  of  the  Gorongosa  Mountain.  In  soils  which 

developed on acidic igneous and metamorphic rocks, quartz, orthoclase and muscovite are likely 

to  occur  because  of  their  stability  towards  weathering.  Subsequently  these  minerals  will  be 

recovered in river and lake sediments. This suggests that the constituents of the samples S00 and 

S001 originated from the granites and gneisses west of the rift valley.

Goethite probably results from iron-oxide enriched ferrallitic/fersiallitic soils of the Gorongosa 

Mountain or the Midlands.

Under tropical conditions  kaolinite and smectite result mainly from the intensive weathering of 

feldspars [JASMUND, 1993]. With increasing intensity of weathering of primary minerals, silica is 

more and more lost  while  new formed clay minerals  dominate.  Three  phases  of  residual  soil 

development in tropical soils can be distinguished [FOOKES, 1997]. The first stage of this process 

are fersiallitic soils (occurring in the Midlands according to TINLEY, 1977). Quartz, alkali feldspars 

and muscovite remain unaffected, released silica and bases are retained in the soil profile. The 

main new clay mineral is smectite, especially where drainage is impeded.  The second phase are 

ferruginous soils and the third phase are ferrallitic soils (as described for the Gorongosa Mountain 

in TINLEY, 1977) where all primary minerals – except quartz - are weathered and much of silica and 

bases are removed. The remaining silica build up kaolinite with alumina.

In the tropics, montmorillonite (a subtype of smectites) will form instead of kaolinite in slucks or 

basins with insufficient drainage [JASMUND,  1993]. Such conditions are present at the floor of the 

rift valley with its small gradients. 
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With decreasing silica concentration smectite will turn to kaolinite. According to  TINLEY (1977), 

the clayey soils of the rift valley floor (Vertisols) contain mainly montmorillonite. Smectites were 

very present in samples S02, S03 and S04. 

The co-existence of kaolinite and smectite in the same sediment sample represents different stages 

of  soil  development  or  different  catchment  areas.  It  is  supposed  that  smectites  are  either 

introduced from the vertisols of the rift valley floor or from the fersiallitic soils of the Midlands, 

and Kaolinite from the ferrallitic soils of the Gorongosa Mountain. 

7.3.3 Quantity of surface water

In October 1971, TINLEY (1977) measured a discharge of 0.6 m³/s at the Vunduzi River whereas a 

discharge of 1.65 m³/s was estimated in October 2004. The mean outflow of Lake Urema through 

the Urema River in October 1956/57-1978/79 was 2.61 m³/s [ARAC, 2004]. Some efforts were 

undertaken to detect any outflow of Lake Urema during field investigations in the dry season 

2004, but water stagnated. This can be ascribed to low water condition or/and the closure of the 

Urema River through sediments or vegetation. The latter was observed during field trips. 

Although there was no outflow of the lake detected during that time, a non-negligible discharge of 

the Vunduzi River was observed. This rises the question where the water is “disappearing”.

The water balance for the dry season 2004 has to be understood as a first estimate. After temporal 

interpolation  of  all  water  inputs  (discharge  of  Vunduzi  River,  precipitation)  and  water  losses 

(evaporation)  the  lake  level  height  should  theoretically  raise  by  0.24  m  in  the  period  from 

September to October. Actually, the lake level height sank by 0.32 m. It is assumed that infiltration 

in the underground occurs, as well as the spread of surface water into the adjacent floodplain 

grasslands and extensive evapotranspiration. The low mineralization of the lake water suggests 

that  an  enrichment  of  dissolved  solids  through evaporation  does  not  happen on  a  high  level. 

However, the rate of 16 complete renewals per year must be considered to be too high and the 

estimation of two complete circulations per year from the Vunduzi discharge is more reliable. It is 

supposed that major circulations occur during flooding while only small circulations happen in the 

dry  season  and  therefore  enable  the  deposition  of  fine-grained  sediment.  The  increasing 

concentrations of TDS towards the outflow of the lake suggest that there is at least a small water 

flow in the lake in the dry season.

OWEN (2004) emphasizes the delayed peak runoff of the Urema River in comparison to the peak 

rainfall  which is  “typical  of  surface  water  retention in  wetlands and lakes  and for  permeable 

catchments  that  have  high  groundwater  recharge.”  In  contrast  to  the  Urema  River  the  rivers 

draining the crystalline basement have a faster runoff component.
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Field investigations which were carried out later in the year (in the dry season as well as in the 

rainy  season)  proved  that  surface  water  flow  was  little  and  also  groundwater  levels  in  the 

catchment area were dramatically low [STEINBRUCH, 2004]. This supports own observations at the 

Urema River and also at the Sungue River.

7.3.4 Water chemistry

According  to  the  classification  system of  the  Ramsar  Convention  [web_17] Lake  Urema is  a 

permanent freshwater lake (> 8 ha). It is supposed to be a “warm polymictic” lake which is per 

definition  [WETZEL,  2001]  characterized  by  frequent  periods  of  circulation  with  small  annual 

temperature variations.

However, evidences for this supposition are rare because Lake Urema was only sampled during 

the dry season and not over its complete depth. Stratification of the water body is supposed to be 

weak and of short duration due to the small area and depth of the lake, the mixing through wind 

and the activity of animals (crocodiles, hippopotamus).

Short term fluctuations (episodic, seasonal, inter-annual) in water column nutrient levels of Lake 

Urema can be generally expected from freshwater input, physical disturbance, macrophyte growth, 

mineralization and nutrient uptake. Therefore the sampling results from the dry season 2004 have 

to be understood as indications for processes but not as fixed values.

The  water  analyses  of  the  Vunduzi  River,  Lake  Urema  and  the  Urema  River  show  a  low 

mineralization  (20-100 mg/l  TDS,  32-171 µS/cm),  comparable  to  that  of  rainwater  or  poorly 

mineralized groundwater (100-300 µS/cm, KÖLLE, 2003).

The concentrations of dissolved inorganic macro nutrients such as nitrate, ammonium, sulphate 

and ortho-phosphate in the study area were mostly below the detection limit of the measurement 

devices. This nature is common for freshwater ecosystems, especially when they are characterized 

by  a  high  primary  productivity  of  the  surrounding  floodplain  grasslands.  In  pristine,  well 

oxygenated systems (saturation 80-120%) more than 80% of inorganic nitrogen typically occurs as 

nitrate  [DWAFa,  1996].  Ammonium  arises  from  the  decomposition  of  organic  matter  by 

heterotrophic bacteria and is contained in excretory products of higher aquatic animals.  Under 

oxidizing conditions it is converted into nitrate (nitrification). The high proportion of ammonium 

in the water samples in comparison to nitrate suggests that a major part of nitrate is consumed by 

the vegetation during the  period  of  growth  and  ammonium is  relatively enriched.  The higher 

nitrate concentration in the Vunduzi River in comparison to the central part of the lake enforces 

this  assumption.  The  increased  sulphate  concentration  at  that  site  can  also  result  from 

anthropogenic influences as local people use the river for washing.
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Montaneous regions of crystalline rocks, such as the Gorongosa Massif and the Báruè Midlands, 

have typically low phosphate concentrations. Therefore high concentrations in phosphorous were 

not expected. Pristine water in RSA are below 1g/l [DWAFa, 2004]. Phosphate can be introduced 

in lentic systems by erosional processes because it is mainly associated with the suspended matter. 

Carbon,  nitrogen  and  phosphorous  occur  not  infrequently  in  organic  form  in  freshwater 

ecosystems, such as as DOC, DON and DOP [CONNELL & HAWKER, 1991]. However, only DOC was 

measured in the samples of Lake Urema. The major sources of organic carbon are photosynthesis 

by aquatic macrophytes, macroalgae and phytoplankton and terrestrial detritus. 

In the Urema River (site 400), in the outflow region of Lake Urema (site 99) as well as within the 

littoral (site 97), DOC values were higher than in the central part of the lake and in the inflow 

region (sites 105, 115, 318, 402). At the sites 400 and 99, which showed little water movement, 

higher concentrations of DOC were related to a higher electrical conductivity (EC), a lower pH 

and a lower saturation of dissolved oxygen. Probably this is due to the formation of organic acids 

and  CO2 and the  consumption  of  oxygen through decompositional  processes  and biochemical 

oxidations.  The  positive  correlation  between  the  saturation  of  dissolved  oxygen  and  pH was 

statistically  significant.  Sites  97, 105,  115 and 318 (Vunduzi  River)  showed a  lower electrical 

conductivity and a higher saturation of dissolved oxygen. This observation can be attributed to 

oxygen solution in the turbulent water  of  the Vunduzi River and the permanent mixing in the 

central part of the lake. In the littoral zone (site 97) oxygen saturations were increased (especially 

in the afternoon) due to photosynthetic activity.

Generally, the electrical conductivity increased from the inflow to the outflow of Lake Urema. 

Enrichment through evaporation and decomposition of organic matter are considered to be the 

major  reasons.  As  the  water  transparency  also  increased  towards  the  outflow of  the  lake the 

electrical  conductivity  was  positively  correlated  with  Secchi-disc  transparency  (pretended 

correlation).

The few samplings of the tropholytic zone showed that the pH and the saturation of dissolved 

oxygen were lower there than in the trophogenic layer. Electrical conductivity was higher. This 

indicates decompositional processes in the tropholytic zone. 

The following section attempts to investigate the effects of the population of hippopotamus on the 

nutrient pool of Lake Urema. Hippopotami are described as a key species in the Urema Floodplain 

system [TINLEY, 1977], though their numbers have dramatically decreased during the civil war.

GREY & HARPER (2002) estimated in their study about Lake Naivasha, Kenya, a dunging rate of 

hippo at one  per night on land. The  maximum dung wet weight was approximately 8 kg. The 

authors  assumed  that  a  hippo  ingests  40  kg  biomass  per  night,  excretes  8  kg  faeces  on  the 

catchment and the remainder in the lake. 
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A population of 2500 hippos at Lake Urema (including direct tributaries) (November 1968, TINLEY, 

1977) would have introduced 29,200 tonnes of dung into the lake annually. Nitrogen accounts for 

1.5% of dung dry weight, carbon 37% (dung wet weight = 5.8 x dry weight). Consequently, the 

annual input of nitrogen into Lake Urema was at that time approximately 75.5 tons. Assuming a 

lake area of 19 km2 (area of October 2000) and a water depth of 1.6 m the water body of Lake 

Urema comprises 30.4*106 m3  (= 30.4*109  l). If all nitrogen was converted into nitrate (334.2 t) 

and no removal of nitrate occurred, the concentration of nitrate after one year should be 11.0 mg/l. 

A population of 62 hippos thus would rise the nitrate concentration by 0.27 mg/l.

ARMAN et al. (1975) number the nitrogen concentration of faecal of nun-ruminants (e.g. warthog, 

hippopotamus)  with 5.9  g N/kg faecal  dry mass.  This  value was determined in  the  course  of 

experiments  about  nitrogen-balance  trials  with  grass  fodder.  Using  the  excretion  numbers  of 

hippos after GREY & HARPER (= 32 kg wet dung per night per individual; dung wet weight = 5.8 x 

dry weight), the annual nitrogen input of 2500 hippos into the lake comprises 29.7 t. Consequently 

the nitrate concentration after one year would have rised by 4.3 mg/l. 62 hippos would have caused 

a rise by 0.1 mg/l.

These  nitrate  concentrations  are  close  to  the  detection  limit  of  simple  field  measurement 

devices(0.5 mg/l). The influence of hippopotamus on the eutrophication of Lake Urema can be 

therefore disregarded.  However, substantial nutrient  balances must  also consider nutrient  sinks 

such as the uptake by plants.

Based on its organo-leptic properties, such as Secchi-disc transparency and color, the water of 

Lake Urema and Urema River can be assigned to “whitewaters” as propagated by TINLEY (1977). 

Values  of  pH  of  “whitewaters”  should  be  about  6  at  the  peak  of  the  dry  season.  Own 

measurements gave values of about 7. The rivers originating at the Gorongosa Mountain, such as 

the Vunduzi River, are classified by TINLEY (1977) as “clearwaters” with a pale green color, a high 

transparency and a pH between 5.5 and 6. The pH value of the Vunduzi River in the dry season 

2004 was not  significantly lower than the pH values of  the lake as is  should be according to 

TINLEY's classification.

After all, the water of Lake Urema belongs to the bicarbonate type which is characterized by a 

CO2-HCO3
- -CO3

2- buffering system. 

The majority of the analyzed parameters of the seven water samples were below or within the 

SAWQG (South African Water Quality Guidelines) target  range for aquatic systems, irrigation 

water  use  and  domestic  use  [DWAFa/b/c,  1996].  Only  the  concentration  of  dissolved  organic 

carbon was above the target range of 0-5 mg C/l (maximum 7.35 mg C/l at site 99 close to the 

outflow region of the lake), except for the samples 318 at the Vunduzi River and 402 in the inflow 

region of the lake. 
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The  average  summer  inorganic  phosphorous  concentration  as  well  as  the  concentration  of 

inorganic nitrogen are indicators  for  the  trophic  state  of  a limnic system. With respect  to  the 

concentration of inorganic nitrogen Lake Urema is  assigned to oligotroph systems (<0.5 mg/l) 

[DWAFa,  1996].  With  respect  to  the  average  summer  inorganic  phosphorous  concentration  it 

shows eutrophic conditions (25-250 µg/l). 

The  comparison  of  historical  water  chemical  analyses  of  the  Urema  River  (in 

SWECO&ASSOCIATES_VI,  2004)  with actual  data  shows that  the  concentration of sulphate  was 

significantly lower in the dry season 2004 than in the 1970s. 

7.3.5 Groundwater fed?

The low concentrations of major an- and cations allow to hypothesize

1. that the water feeding Lake Urema is ground water which is in contact with hardly soluble 

underground and/or which has a short contact time with the underlying geology because of a 

high permeability 

2. that Lake Urema is fed by surface water. 

Because of a short retention time the lake water is not significantly enriched through evaporation. 

The general absence of saline surface water can also be due to transpiration exceeding by far the 

evaporation as it was suggested by MCCARTHY & ELLERY (1998) for the swamps of the Okavango 

Delta.

It is supposed that both water sources play a role for the chemical characteristics of the lake water. 

explanation to point  1: Groundwater  from the western rift  escarpements  could originate from 

fractures and fissures intersecting the main rift-parallel fracture system of the crystalline rocks. 

The quartz sands of the Cheringoma Plateau on the eastern side of the rift can form groundwater 

traps  when  they  lay  over  a  clayey  subsoil  (perched  groundwater).  This  local  phenomenon  is 

described in  TINLEY (1977). The seaward dip of the strata of the Cheringoma Plateau will allow 

preferential groundwater flow eastwards towards the sea.

Water in contact with granite, siliceous sands and well leached soils has typically a concentration 

of dissolved solids below 30 mg/l [DWAFa, 2004]. The catchment area of the Okavango River, 

taken as an example, is underlain by windblown Kalahari sands and bedrock outcrops consisting 

primarily of granite. Thus, its concentration of dissolved solids is typically around 40 mg/l.
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The Báruè Midlands as well as the Gorongosa Mountain consist of hardly soluble material: gneiss, 

granite, migmatites. Sands and limestones occur in the Cheringoma Plateau. The Vunduzi River 

had a concentration of 22.5 mg TDS/l and the sample site 115 in the central part of the lake 100.1 

mg TDS/l. These results coincide with the specifications in DWAFa (1996).

There is still the question about groundwater infiltrating through the coarse sediments at the rift 

flanks. OWEN (2004) draws the conclusion from historical flow data and a rainfall-runoff-modeling 

of the Urema River that groundwater flow and surface storage in wetlands should be responsible 

for the excess of runoff in comparison to rainfall in several months.

If there is a significant subsurface flow to Lake Urema, it has to be checked out whether it has the 

same catchment boundaries as the surface drainage basin which was modeled in the course of this 

thesis.  Phreatic  divides  are  particularly  important  in  areas  which  are  underlain  by  relatively 

permeable rock such as the alluvia of the rift valley floor.

explanation to point 2: The comparison of the water from the Vunduzi River with rainwater from 

Beira showed a similarity (e.g. electrical conductivity below 50 µS/cm), although this was not 

statistically proven due to the small amount of data. Chloride concentrations in the rainwater were 

higher than in the lake and river water, probably due to sea spray. Concentrations of nitrate and 

sulphate were significantly higher in Beira, probably due to the impact of industrial emissions. 

7.3.6 Ecological responses of Lake Urema

Due to the flat terrain of the rift  valley floor (less than 0.1° seawards dipping) the tributaries 

originating at the rift escarpments and on the floor of the rift valley feed extensive swampy areas 

(floodplain grasslands), ponds and the shallow Lake Urema. 

The intra-annual response of the grasslands surrounding the lake was subject of the interpretation 

of  Tasseled  Cap  transformed  satellite  scenes  providing  three  channels  coded  as  Brightness, 

Greenness and Wetness/Yellowness. The images from 1994 and 1995 demonstrated the regression 

of the shoreline of the lake from wet to dry season. Following this zone is a belt characterized by 

high  Greenness  values  (=  floodplain  grasslands).  Its  vitality  is  probably  supported  by  a) 

infiltration of lake water into the underground, b) the spreading of lake water into the floodplain 

and c) the water retention in ponds and channels after the end of the flooding. 

This zone showed significantly lower Greenness values in September 1995. This could be due to 

drier conditions and/or due to the lacking haze correction for this scene. Unclassified stripes in 

this scene, located between the open water and the floodplain grasslands, were supposed to be 

shallowly flooded areas (swamps). The existence of such belts is an indication for drought which 

would prove the lower Greenness values in September 1995.
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TINLEY (1977)  anticipated  bush  encroachment  into  the  floodplain  grasslands  because  of  the 

channelling  activity  of  hippopotamus  and  the  resulting  drainage  of  water  holding  ponds.  The 

opposite development, diminished bush encroachment, should be expected on the long term as a 

consequence of the decimation of this key species. On a short term, these channels will maintain 

their draining function.

It  is  expected that  the rehabilitation of the hippo population will  lead to an increase in water 

turbidity because hippopotami churn up the sediments and keep them in suspension. 

The species composition of the littoral zone of Lake Urema can serve as an indicator for water 

quality. The low nutrient concentrations agree with the observation of relatively small populations 

of Eichhornia crassipes. Although this species was widely distributed over the lake it can not be 

regarded as an invasive species. With adequate nutrient supplies, high temperatures and irradience 

levels,  Eichhornia crassipes can spread over large areas in floodplain lakes, whereby it occludes 

the  water  surface,  limits  growth  of  phytoplankton  and  submerged  macrophytes  and  ingests 

nutrients [CONNELL & HAWKER, 1991]. Finally, it provides large amounts of detritus when decaying 

and enhances the spread of schistosomiasis. 

Ceratophyllum demersum was widely distributed in the littoral zone. It is a species that indicates 

neutral or alkaline water. Because of its adaptation to relatively low light intensities it can tolerate 

shade better than most aquatic plants which may be essential for surviving in the turbid water of 

Lake Urema.
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close to Mira Hippo (visible in upper middle of the photo, note  
green belt around Lake Urema during dry season 2004 (photo:  
Beate Böhme)
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A siltation process, possibly expressed through the development of islands, could not be shown on 

the satellite scenes. There were small islands on some satellite images visible but their presence 

seemed  to  be  more  dependent  on  the  lake  level  height  than  to  be  the  result  of  increasing 

sedimentation. 

7.4 Will Lake Urema disappear?

From the evaluation of the satellite images from 1979 to 2000, there was no trend for an increase 

or  decrease  of  the  lake's  extent  detectable.  The  extensive  flooding  in  1997  was  a  result  of 

anomalous rains. The buffering capacity of the ecosystem seems to be working although it is not 

yet fully understood what is controlling the system.

However, two major threats – both short term and long term – have to be discussed (partly in 

accordance with TINLEY (1977) and SWECO&ASSOCIATES_V (2004)):

1) Sedimentation and maintenance of local base levels  

Lake Urema owes its existence to alluvial fans which limit the Urema Basin. The benefit of the 

sediment input from the adjacent mountains can turn into a threat for the wetland system when it 

results in the siltation of the shallow lake due to increased sediment input from the catchment 

area. This could arise from increasing erosion after forest clearings. The local base level at the 

outlet of Lake Urema triggers whether Lake Urema will be able to keep its water or whether it will 

drain  through  the  Urema River.  It  is  supposed  (in  accordance  with  TINLEY,  1977)  that  at  the 

confluence of the Urema River with the Muredeze River there is the first local base level. Under 

certain conditions “the Muaredzi stream [Muredeze, the author] which joins the Urema River at 

the lake's outlet floods into the lake and only when the lake water have reached sufficient height to 

cross the sill formed by the Muaredzi alluvial plug do the water reverse and flow back down the 

Urema River.” [TINLEY, 1977].

The second local base level is the confluence of the Urema River with the Pungoe River. A change 

in  gradient  between  the  lake  basin  and  the  Pungoe  River  will  either  result  in  accelerated  or 

decelerated drainage. Accelerated drainage is  related to an increase in gradient,  e.g.  when the 

lake's basin is filled with sediments or when the Pungoe River is deeper incised at the confluence 

with  the  Urema  River  [LYNAM,  2004].  The  latter  process  could  be  a  consequence  of  the 

construction of the Bué Maria Dam at the Pungoe River. The construction of this impoundment is 

a major water resources development goal for hydro power production, irrigation, increase of low 

floods,  flood  control  and  increase  in  tourism  [SWECO&ASSOCIATES_V,  2004].  The  planned 

reservoir will have a storage capacity of 987 Mm³, an area of 67.9 km² and the dam will have a 

height of 70 m [SWECO&ASSOCIATES_V, 2004]. It will act as a sediment trap and therefore will 

increase the flow velocity of the Pungoe River behind this construction. Faster drainage of the 

Pungoe River probably leads to an incision in its course and therefore to a lowering of the base 

level at the confluence with the Urema River. 
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7 Discussion

TINLEY (1977)  described  that  during high flooding  the  Pungoe River  was able  to  dam up the 

outflow from the Urema catchment and therewith maintained the critical height of the lake's outlet 

by increased sediment accumulation. Such events would be impeded by a regulation of the Pungoe 

River.

2) Water input

As was observed during the period of investigation, the Vunduzi River which is originating at the 

Gorongosa Mountain, is one of the important (the only?) surface water sources for Lake Urema in 

the  dry  season.  Deforestation  in  the  catchment  area  could  result  in  reduced  infiltration  and 

enhanced occurrence of flush floods, possibly limiting the water supply to the wetland system 

[TINLEY, 1977]. Extreme events such as cyclones, are capable to influence the water input to the 

wetland in both directions: drying or flooding (e.g. in 1997).
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8 Conclusions and recommendations

The evaluation of time series of satellite images covering a period of 20 years does not indicate 

any shrinking or even disappearance of Lake Urema. The results from this multi-disciplinary study 

conclude that its extents and dynamics are largely controlled by morphological barriers buffering 

the drainage and in turn influence the whole ecosystem. The profiles through the Tasseled Cap 

transformed satellite images together with the results from the supervised classification witnessed 

the response of the wetland ecosystem to proceeding drying of the floodplain grasslands towards 

the peak of the dry season and therefore proved to be a valuable monitoring instrument.

The water feeding the lake is lowly mineralized and its retention time is supposed to be small (few 

months). The configuration of sediment depositions and sediment types as well as the incised lake 

floor (showed by bathymetric profiles) concur with the hypothesis that the axial part of the lake is 

characterized by a more energetic flow and the lateral areas are quiescent regions. 

Many  of  the  factors  triggering  the  floodplain  ecosystem  are  potent  during  the  rainy  season 

(erosion & deposition, turnover of water body) and should be therefore investigated at that time. 

However, the field work of this study was carried out in the dry season 2004 due to logistical 

problems associated with the rainy season. Further field studies are essentially combined with 

Remote Sensing and GIS.

Based on this study, further work should focus on the following points:

• Contribution of groundwater

Groundwater flow and the groundwater recharge rate in the catchment area should be quantified. 

This will enable a more reliable calculation of the water balance. 

• Hydrology in the catchment area

A consistent nomenclature for the rivers in the catchment area of Lake Urema facilitates future 

work. During literature studies the occurrence of two Vunduzi Rivers and one Vanduzi River was 

confusing. Historical hydrological data from the Pungoe River catchment were recently evaluated 

with  satisfying  results.  Future  work  should  focus  on  the  maintenance  of  existing  and  the 

establishment of new hydrometric gauging stations.

• Siltation

To quantify the current rate of siltation of Lake Urema two aspects should be considered, namely 

the  sediment delivery from the catchment area  and the  sediment deposition in  the  Urema 

Basin. 
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• Pollution

It  has to be investigated whether gold mining activity is  a relevant  source of pollution in the 

catchment area of Lake Urema. SWECO&ASSOCIATES_VI (2004) detected a local deterioration of 

the water quality in the Pungoe River Basin in Mozambique due to gold mining operations. 

• Morphology of the lake's catchment area 

An actual  high resolution DTM should be compared with that  extracted from available aerial 

photographs from the 1970s. This will enable the verification of possible morphological changes 

in the Urema Floodplain and in the catchment area of Lake Urema, e.g. as a result of seismic 

activity or channeling activity of hippopotamus. 

• Vegetation changes

Floodplain grasslands are susceptible to changes of environmental conditions, such as of water 

availability  and  flood  regime.  Thus  they  can  be  used  as  indicators  in  ecosystem monitoring, 

including field studies and remote sensing. 

An integrated approach, comprising the catchment area of the wetland system, is of fundamental 

importance in obtaining data that are required in formulating its protective atmosphere. 
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