Geophysical Research Abstracts Vol. 19, EGU2017-582, 2017 EGU General Assembly 2017 © Author(s) 2016. CC Attribution 3.0 License. ## How much CO_2 is trapped in carbonate minerals of a natural CO_2 occurrence? Csilla Király (1), Zsuzsanna Szabó (2), Ágnes Szamosfalvi (2), Dóra Cseresznyés (1), Edit Király (2), Csaba Szabó (1), and György Falus () (1) Lithosphere Research Group, Eötvös University, Budapest, Hungary, (2) Geological and Geophysical Institute of Hungary, Budapest, Hungary Carbon Capture and Storage (CCS) is a transitional technology to decrease CO₂ emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO₂ geological storage reservoir is that it must hold the injected CO₂ for geological time scales without its significant seepage. The injected CO₂ undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO₂ into their crystal structures. The study of natural CO₂ occurrences may help to understand the processes in CO₂ reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO₂ occurrence as our research area, which is able to provide particular and highly significant information for the future of CO₂ storage. The area is one of the best known CO₂ fields in Central Europe. The main aim of this study is to estimate the amount of CO₂ trapped in the mineral phase at Mihályi-Répcelak CO₂ reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre- CO_2 flooding stages of the Mihályi-Répcelak natural CO_2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAl $CO_3(OH)_2$, max. 16 m/m%) precipitated in the rock due to its reactions with CO_2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO_2 at Mihályi-Répcelak area, which is an unexpectedly high proportion of total amount of CO_2 . Further results enlightened that other carbonates, ankerite, calcite and siderite have precipitated in two generations, the first before and the second after the CO_2 flooding. Further laboratory analysis and geochemical models allow us to estimate the ratio of these two generations and also to understand how far the reservoir rock is in the CO_2 mineral trapping process.