Geophysical Research Abstracts Vol. 18, EGU2016-4071, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License. ## Adsorption of Acetylene and Formation of Benzene on Cosmic Dust in Titan's Atmosphere Victoria Frankland (1), Alexander James (1), Juan Carrillo Sanchez (1), Thomas Mangan (1), Karen Willacy (2), and John Plane (1) (1) School of Chemistry, University of Leeds, Leeds, UK, (2) Jet Propulsion Laboratory, California Institute of Technology, California, US The formation of the haze layers and tholins in Titan's atmosphere is unclear. One potential mechanism is that small precursors, such as acetylene (C_2H_2), adsorb onto un-ablated cosmic dust particles as they sediment through Titan's atmosphere. The uptake coefficient of C_2H_2 onto cosmic dust analogues was measured using low temperature dual flow tube apparatus. Synthesized olivines analogues ($Mg_{2-2n}Fe_{2n}SiO_4$ where $1 \ge n \ge 0$) were used to represent the cosmic dust particles based on investigations of cometary dust. The results indicated that the adsorption of C_2H_2 was independent of the Mg:Fe ratio in the dust analogue with the mean uptake coefficient (at 181 K) as 1.7 \times 10⁻⁴. In some cases, the uptake experiments were left until the surface had become saturated with C_2H_2 . Here, a small benzene (C_6H_6) mass trace was detected indicating that cyclotrimerzation of C_2H_2 into C_6H_6 was occurring on the surface. Further experiments using ultrahigh vacuum apparatus were used to confirm this observation. The rate of C_6H_6 (formed through C_2H_2 cyclotrimerization) desorbing from un-ablated cosmic dust particles sedimenting through Titan's atmosphere was explored using a 1D model. The results revealed that this heterogeneous formation and desorption route was competitive with gaseous C_6H_6 formation rates suggesting that the dust could be acting as a seed for the formation of complex organic molecules (such as PAHs) and tholins and, through this, the formation of the haze layers.