Geophysical Research Abstracts Vol. 16, EGU2014-13245, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

Well-based stable carbon isotope leakage monitoring of an aquifer overlying the CO₂ storage reservoir at the Ketzin pilot site, Germany

Martin Nowak (1,2), Anssi Myrttinen (1), Martin Zimmer (2), Robert van Geldern (1), and Johannes A.C. Barth (1)

(1) Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen (mnowak@bgc-jena.mpg.de), (2) Max-Planck Institute for Biogeochemistry, Hans Knoell Strasse 10, 07745 Jena, (3) GFZ German Research Centre for Geosciences, Helmholtz Centre, Telegrafenberg, 14471 Potsdam

At the pilot site for CO_2 storage in Ketzin, a new well-based leakage-monitoring concept was established, comprising geochemical and hydraulic observations of the aquifer directly above the CO_2 reservoir (Wiese et al., 2013, Nowak et al. 2013). Its purpose was to allow early detection of un-trapped CO_2 .

Within this monitoring concept, we established a stable carbon isotope monitoring of dissolved inorganic carbon (DIC). If baseline isotope values of aquifer DIC (δ 13CDIC) and reservoir CO₂ (δ 13CCO₂) are known and distinct from each other, the δ 13CDIC has the potential to serve as an an early indicator for an impact of leaked CO₂ on the aquifer brine.

The observation well of the overlying aquifer was equipped with an U-tube sampling system that allowed sampling of unaltered brine. The high alkaline drilling mud that was used during well drilling masked δ 13CDIC values at the beginning of the monitoring campaign. However, subsequent monitoring allowed observing on-going re-equilibration of the brine, indicated by changing δ 13CDIC and other geochemical values, until values ranging around -23 % were reached. The latter were close to baseline values before drilling.

Baseline δ 13CDIC and δ 13CCO $_2$ values were used to derive a geochemical and isotope model that predicts evolution of δ 13CDIC, if CO $_2$ from the reservoir would leak into the aquifer. The model shows that equilibrium isotope fractionation would have to be considered if CO $_2$ dissolves in the brine. The model suggests that stable carbon isotope monitoring is a suitable tool to assess the impact of injected CO $_2$ in overlying groundwater aquifers. However, more data are required to close gaps of knowledge about fractionation behaviour within the CO $_2$ (g) - DIC system under elevated pressures and temperatures.

Nowak, M., Myrttinen, A., Zimmer, M., Wiese, B., van Geldern, R., Barth, J.A.C., 2013. Well-based, Geochemical Leakage Monitoring of an Aquifer Immediately Above a CO₂ Storage Reservoir by Stable Carbon Isotopes at the Ketzin Pilot Site, Germany. Energy Procedia 40, 346-354.

Wiese, B., Zimmer, M., Nowak, M., Pellizzari, L., Pilz, P., 2013. Well-based hydraulic and geochemical monitoring of the above zone of the CO_2 reservoir at Ketzin, Germany. Environmental Earth Sciences, 1-18.