Geophysical Research Abstracts Vol. 16, EGU2014-12965, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

Oxygen isotope exchange and isotopic fractionation during N_2O production by denitrification

Dominika Lewicka-Szczebak (1), Reinhard Well (1), and Jan Kaiser (2)

(1) Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany (dominika.lewicka-szczebak@vti.bund.de), (2) Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK

Stable isotopic analyses of N_2O may help in quantification of soil denitrification processes. N_2O reduction to N_2 during denitrification is associated with significant isotopic fractionation. Theoretically, this would allow the product ratio $(N_2O/(N_2+N_2O))$ to be calculated based on the isotopic signature of the remaining N_2O if the isotopic signature of the produced N_2O were precisely predictable. Oxygen isotopes are especially useful, in particular the ^{17}O excess, $\Delta(^{17}O)$, to quantify any oxygen isotope exchange between soil water and intermediate products (NO_2^-, NO) . This significantly influences the $\delta(^{18}O)$ values of the N_2O produced. Previous studies showed this exchange to be nearly complete, up to 90% 1,2 . However, there are very few studies on the associated oxygen isotopic fractionation and its potential coupling to the magnitude of oxygen isotope exchange with soil water 2,3 . We hypothesize that for high oxygen exchange, the oxygen isotopic fractionation will show little variability.

In previous experiments, an ^{18}O -enriched tracer was applied to quantify the magnitude of oxygen exchange 1,2 . Such an approach does not permit determining any oxygen isotope fractionation. Here, we applied two novel experimental approaches: (1) waters of two different $\delta(^{18}\text{O})$ values within the natural range (-1.5 and -14.8 % relative to VSMOW) were used for rewetting the incubated soils and the oxygen exchange was calculated from comparing the relative isotope ratio difference between $N_2\text{O}$ and $H_2\text{O}$ for these two water treatments; (2) soils were amended with Chile Saltpeter characterized by a high ^{17}O excess (20.2 %) and the ^{17}O excess of the $N_2\text{O}$ product was measured. Both approaches were applied simultaneously on the same soil samples, which allowed quantifying the oxygen isotope exchange with two independent methods at the same time. The $N_2\text{O}$ reduction was inhibited with acetylene method and $\delta(^{18}\text{O})$ values of the $N_2\text{O}$ produced were measured to determine the oxygen fractionation during $N_2\text{O}$ production.

Both methods showed nearly complete (95-99%) oxygen exchange with soil water for all soil types (loamy sand and silt loam), water contents (50 to 80% water-filled pore space), temperatures (8 and 22 °C), and N_2O production rates. The oxygen isotope fractionation $\varepsilon(^{18}O,\,N_2O\text{-}H_2O)$, defined as the relative isotope ratio difference between product (N2O) and substrate (soil water), was quite stable between 16 and 20 %. This confirms that $\delta(^{18}O)$ values may be useful in determination of the product ratio. Moreover, the very low ^{17}O excess found in N_2O indicates that the hypothesis of soil denitrification contributing to the oxygen isotope excess of atmospheric N_2O can be rejected 4,5 .

- 1. Kool, et al., 2009. Rapid Communication in Mass Spectrometry 23: 104-108
- 2. Snider, et al., 2013. Geochimica et Cosmochimica Acta 112: 102-115
- 3. Lewicka-Szczebak, et al., 2014. submitted to Geochimica et Cosmochimica Acta
- 4. Kaiser, et al., 2004. Journal of Geophysical Research-Atmospheres 109 (D3): D03305
- 5. Michalski, et al., 2003. Geophysical Research Letters 30 (16): 1870