Geophysical Research Abstracts Vol. 16, EGU2014-10953, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

Detecting a subsurface cylinder by a Time Reversal MUSIC like method

Raffaele Solimene, Angela Dell'Aversano, and Giovanni Leone

Dipartimento di Ingegneria Industriale e dell'Informazione, Seconda Università di Napoli (raffaele.solimene@unina2.it)

In this contribution the problem of imaging a buried homogeneous circular cylinder is dealt with for a twodimensional scalar geometry. Though the addressed geometry is extremely simple as compared to real world scenarios, it can be considered of interest for a classical GPR civil engineering applicative context: that is the subsurface prospecting of urban area in order to detect and locate buried utilities.

A large body of methods for subsurface imaging have been presented in literature [1], ranging from migration algorithms to non-linear inverse scattering approaches. More recently, also spectral estimation methods, which benefit from sub-array data arrangement, have been proposed and compared in [2].Here a Time Reversal MUSIC (TRM) like method is employed.

TRM has been initially conceived to detect point-like scatterers and then generalized to the case of extended scatterers [3]. In the latter case, no a priori information about the scatterers is exploited. However, utilities often can be schematized as circular cylinders. Here, we develop a TRM variant which use this information to properly tailor the steering vector while implementing TRM. Accordingly, instead of a spatial map [3], the imaging procedure returns the scatterer's parameters such as its center position, radius and dielectric permittivity.

The study is developed by numerical simulations. First the free-space case is considered in order to more easily introduce the idea and the problem mathematical structure. Then the analysis is extended to the half-space case. In both situations a FDTD forward solver is used to generate the synthetic data. As usual in TRM, a multiview/multi-static single-frequency configuration is considered and emphasis is put on the role played by the number of available sensors.

Acknowledgement

This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."

[1] A. Randazzo and R. Solimene, "Development Of New Methods For The Solution Of Inverse Electromagnetic Scattering Problems By Buried Structures: State of the Art and Open Issues,"in COST ACTION TU1208: CIVIL ENGINEERING APPLICATIONS OF GROUND PENETRATING RADAR, Proceedings of first Action's General Meeting, 2013. ISBN: 978-88-548-6191-6.

[2] S. Meschino, L. Pajewski, M. Pastorino, A. Randazzo, G. Schettini, "Detection of subsurface metallic utilities by means of a SAP technique: Comparing MUSIC- and SVM-based approaches, Journal of Applied Geophysics, vol. 97, pp. 60–68, 2013.

[3] E. A. Marengo, F. K. Gruber, F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Trans Image Process. vol. 16, pp. 1967-84, 2007