BULLETIN

DE LA

SOCIĖTÉ GÉOLOGIQUE

DE FRANCE

Troisième Serie. - Tome Vingt-Cinquième
(EXTRAIT)

PARIS

au siège de la société géologique de france
7, rue des Grands-Augustins, 7
1897

FACIĖS AMMONITIQUE ET FACIĖS RÉCIFAL
 DU TURONIEN PORTUGAIS

par M. Panl CHOFFAT.

La classification du Crétacique de l'Europe centrale a subi de profondes modifications depuis l'époque où je publiais la description de ce terrain dans les environs de Lisbonne (1). On peut facilement se rendre compte des progrès accomplis dansle parallèlisme en comparant les différentes éditions du savant traité de géologie de M. de Lapparent.

Ces changements entraineraient par eux-mèmes la suppression des termes Rotomagin et de Carentonin, puisqu'il est reconnu qu'ils désignent des couches contemporaines et non pas des étages superposés, ainsi quel'admettait Coquand, mais cette rectification s'impose plus impérieusement encore à la suite de l'étude des affleurements septentrionaux du Crétacique portugais, car elle m'a fait voir que tout ce que j'ai désigné du nom de Carentonin doit étre rapporté au Turonien.
Je prépare sur cette région un mémoire très développé, dans lequel on trouvera les détails qui manquent forcément dans une notice sommaire.

Jetons d'abord un coup d'æil rapide sur la succession des assises crétaciques des environs de Lisbonne, en tenant compte des modifications à apporter aux dénominations des espèces, tant par suite des belles études sur les Rudistes, de M. Douvillé et de celles de M. de Loriol sur les Echinides, que par suite d'études personnelles sur d'autres groupes de fossiles. Pour plus de détails, on voudra bien se rapporter au mémoire de 1880.

Dans les environs de Lisbonne, le groupe néocomien succède sans interruption au Jurassique supérieur et ce n'est qu'au-dessus des couches d'Almargem (correspondant probablement à l'Aptien) que l'on peut supposer une première lacune.
(1) Recueil de monographies stratigraphiques sur le système crétacique du Portugal. Première étude: Contries de Cintra, de Bellas et de Lisbonne. Lisbonne, 188:

Vient ensuite une nouvelle série de strates, sans trace d'interruptions, commençant par un massif marno-calcaire, arénacé, que j'ai d'abord désigné comme couches de position douteuse, dénomination substituée un an plus tard (1) par celle de Bellasien.
Ce complexe présente une faune à Ostracées, ayant, de la base au sommet, Ostrea flabellata (Ost. Boussingaulti Coq. non d'Orb.) tandis que les Orbitolina concava, conica et aperta ne se trouvent que dans les trois assises inférieures. La première de ces espèces existe déjà dans les couches d'Almargem.

Le Bellasien comprend quatre assises, qui sont de bas en haut:
1° Niveau a Placenticeras Uhligi. - La présence de Schloenbachia inflata fait voir que ces couches appartiennent soit au Gault supérieur, soit probablement, au Vraconnien.
2° Niveau du Polyconites Verneuli, contenant en outre des Rudistes qui, d'après leur forme extérieure, se rapportent en partie aux espèces pyrénéennes décrites par M. Douvillé : Sphaerulites cantabricus, Sphaerulites de petite taille, Caprinula, sp. nov., Toucasia Santanderensis.

30 Niveau de l'Ostrea pseudo-Apricana, contenant aussi des Rudistes: Ichthyosarcolithus triangularis, Polyconites operculatus, Horiopleura Lamberti, Toucasia Santanderensis, Sphaerulites et Caprotina de petite taille.

L'unique échantillon de Turrilites costatus trouvé en Portugal, provient de la partie supérieure de cette assise.

40 Premier niveau du Pterocera incerta. - Faune de Gastropodes, de Lamellibranches et d'Oursins provenant des couches sousjacentes, et n'ayant que peu de liens avec la faune suivante.
Massif calcaire (Cénomanien calcaire, 1885). - 1° Couches sans Rudistes (Rotomagin, 1885).

Couches 7^{a} et ${ }^{\mathrm{b}}$ (2m20). Rares Lamellibranches, sans importance.
C. $7^{c}(1 \times 75)$. Gastropodes et Lamelibranches passant aux couches suivantes, Heterodiadema Ouremense, Hemiaster Alcantarensis, Alveolina cretacea.
C. $7^{\text {d, e }}\left(1^{\mathrm{m}} 30\right)$. Même faune, avec Neolobites Vibrayanus dès la base. Hemiaster Lusitanicus.

Acanthoceras pentagonum Jukes Browne and Hill (Quart. Journ. Geol. Soc., vol. LII, 1896, p. 156, pl. V, fig. 1), que j'avais désigné sous le nom de Acanth. Rotomagensis en 1880̈, provient soit de cette couche, soit de la base de C. 8 .
(1) Recueil d'études paleontologiques sur la faune crélacique du Portugai. Vol. I, première série. Lisbonne, 1886.
C. $8\left(2^{2 m} 50\right)$. Mème faune que dans la couche 7^{d}; Alveolina cretacea ne passe pas plus haut.
C. 9 (1m). Un lit séparant c. 8 de c. 9 m’a fourni Goniopygus Menardi, un petit exemplaire d'Anorthopygus ? et Heterodiadema Ouremense.

Le corps de la couche ne contient que des fossiles peu abondants, sauf Ostrea pseudovesiculosa et Ostrea columba major et var. media. Dernière apparition de Hemiaster lusitanicus.
C. $10(1 \mathrm{~m})$. Fossiles très rares, se trouvant déjà dans les couches précédentes, sauf Panopæa sulstriata d'Orb.
C. $11(0 \mathrm{~m} 30$ à 0 m 50$)$. Calcaire cristallin, blanc, à Nérinées et Polypiers. Panopæa substriata, Ostrea pseudovesiculosa et Ostrea columbia var. media.
2° Couches a Rudistes (Carentonin 1885). - C. 12 (0 m 30 à 0 m 50). Belle faune de Gastropodes et de Lamellibranches, parmi lesquels prédominent les Caprinula Sharpei, Boissyi et Olisiponensis et Sauvagesia Sharpei. On y rencontre encore Panopæa substriata. A la faune citée en 1885, je n’ai à ajouter que Ostrea carinata Lam., unique exemplaire trouvé en Portugal.
C. 13 (8 à 20 m). Calcaire cristallin, translucide, presque entièrement formé de débris de Sanvagesia Sharpei et des Caprinula. A la partie supérieure: Sphærulites lusitanicus.
C. 14 et 15 (3 à 4^{m}). Marno-calcaires et calcaires à Nerinea nobilis, Toucasia Favrei, Caprinula, Sauvagesia Sharpei, Sphærulites lusitanicus et rares Biradiolites arnaudi Choff. (1).
C. $16\left(4^{\mathrm{m}}\right)$. Faune abondante de Gastropodes et de Lamellibranches se trouvant presque tous dans les couches inferieures. Nous remarquerons pourtant Ostrea Olisiponensis Sharpe, qui, dans cette partie du Portugal, ne se trouve pas plus bas. Ostrea flabellata est moins massive que dans le Bellasien, et en outre de la forme Boussin. gaulti elle présente des formes se rapprochant de Ostrea Matheroniana. Citons encore un Pleuromya nouveau, très important en Portugal, et que nous désignerons provisoirement par la lettre A.

Les coupes du Monte-Serves et de Runa (2) (20 et 40 kil. au NordEst et au Nord de Lisbonne), nous montrent à peu prés la même succession d'assises que la coupe d'Alcantara, seulement les siradiolites y deviennent fréquents, et descendent à un niveau inférieur

[^0]à celui où je les ai observés à Lisbonne. Ce dernier fait tient peutêtre simplement à ce que ces localités présentent des lits marnocalcaires au milieu du calcaire cristallin à Sauvagesia Sharpei, ce qui permet de reconnaitre les fossiles, tandis qu'ils sont rarement déterminables dans le calcaire cristallin de Lisbonne.

Le faciès à Sauvagesia Sharpei s'étend vers le Nord jusqu'à une ligne reliant à peu près Ourem à Monte-Real ; au NE de cette ligne se trouve le faciès ammonitique.

Examinons une coupe prise immédiatement au Sud de cette ligne, soit à Calanguejeira (8 kil. à l'Est de Leiria).
C. 1. En discordance sur le Jurassique se trouvent des graviers à gros galets, subarrondis ou arrondis, contenant un peu plus à l'Est des blocs atteignant jusqu'a 1 m 20 de plus grand diamètre. Lentilles d'argile avec feuilles de Conifères et de Dicotylées.
C. 2-12 (22m). Premier niveau à Pterocera incerta.

Massif calcaire. - C. 13. Couches à Neolobites Vibrayamus (4^{m} à $4 \mathrm{~m} 50)$. Le calcaire crayeux joue le rôle principal, landis qu'il ne joue qu'un role secondaire dans les environs de Lisbonne; cependant l'ensemble de la faune est le même que dans cette dernière région, et nous y trouvons encore Alveolina cretacea, qui disparait complètement plus au Nord.
Neolobites Vibrayanus est aussi abondant qu'à Lisbonne. Un échantillon voisin de acanthoceras Mantelli Sow. est le seul compagnon que je lui aie trouvé parmi les ammonitidés, tandis qu'un peu plus au Nord, plusieurs échantillons d'Acanthoceras mamillare ont été recueillis au même niveau.
C. 14 (1 m 50). Calcaire rognoneux, à aspect plulôt crayeux que oolithique. Nerinea nobilis, Ptygmatis Olisiponensis, Panopæа sulstriata, Janira laevis, Ostrea Columba, Archiacia Delgadoi P. de L. Anorthopygus orbicularis (r), an. Michelini (r.r.) et passages entre ces deux espèces (c. c.).

Généralement c'est un calcaire oolithique à Anorthopygus .1/ichelini et Polypiers.
C. 15 (1 m 50). Calcaire blanchàtre, faune de Gastropodes et de Lamellibranches, parmi lesquels Ostrea columba major joue le rôle principal.
C. 16 à $18\left(11^{\mathrm{m}} 50\right)$. Calcaire à Caprinula età Sphicrulites paraissant appartenir à Sph. Lusitanicus. Sauvagesia Sharpei y est rare, du moins dans les lits permettant de reconnaitre la forme des fossiles. Ostrea Joannae.
C. 19 (3m). Calcaire compact, blanc, ou blanc rosé, laiteux, empà-
tant quelques grains de quartz à la partie supérieure. Nombreux exemplaires de Acteonella (Trochactaeon) gigantea et d'une Nérinée nouvelle; débris de Sphærulites et de Biradiolites.
C. $20(3 \mathrm{~m})$. Sable quartzeux, faiblement agglutiné.
C. 21 (2m). Marne avec nombreux Tylostoma et Lamellibranches; Pleuromyat.
C. 22 ($\mathbf{1 m}^{\mathbf{m}} 0$). Marne a Sphærulites Peroni Choff. et Toucasia Favrei (Sh.).
C. 23. Grès compact, de $0^{\mathrm{m} 30}$, puis sables pliocènes.

C'est une coupe sensiblement analogue que nous trouvons de Juncal à Nazareth (20 à 40 kil. au Sud de Caranguejeira), seulement les strates correspondant à C. 19, contiennent une graude quantité de Radiolites, ce qui paraît être lié à une nature plus argileuse de la roche.

Passons maintenant au N.-E. de la ligne séparant les deux faciès, sans nous arrêter aux environs d'Ourem, qui présentent une transition entre deux, mais en allant directement à l'affleurement de l'embouchure de Mondégo (depuis les bains d’Amieira à Figueira-da-Foz), où l'on trouve le plus beau développement du facies ammonitique.
J'ai relevé plus de 20 coupes dans la région à faciès ammonitique, toutes peuvent se rapporter à celle du Mondégo, mais il y a souvent réunion de plusieurs bancs qui sont séparés dans cette dernière contrée.
A. - Le Jurassique supérieur est recouvert en discordance par des graviers avec cailloux subarrondis, et avec lentilles d'argile contenant une belle flore, de près de 60 espèces, dont un tiers de Dicotylées, flore qui a été décrite par M. de Saporta (1). La puissance de ces graviers peut être évaluée à 200 mètres.
B. - (10 à 14^{m}) Alternance de grès très fins, en partie marneux, avec des calcaires marneux ou arénifères, à fossiles marins, surtout des moules de Lamellibranches.
C. $-\left(4^{\mathrm{m}}\right)$. Couches à Neolobites Vibrayanus. Nautilus Munieri Choff., Acanthoceras naviculare, constaté dans un lit supérieur à Neolohites Vibrayanus. Pteroceraincerta, Gastropodes, Lamellibranches, Heterodiadema Ouremense, Hemiaster Lusitanicus, Cidaris Cenoma-

[^1]nensis, Archiacia Delgadoi, Diplopodia variolare, Pseudodiadema Guerangeri, etc.
D. $-\left(2^{\mathrm{m}}\right)$. Calcaire oolithique à Anorthopygus Michelini (c. c.), An. orbicularis (r.), Conodoxus Cairoli (r. r.), Gastropodes et Polypiers. Au sommet Puzosia planulata.
E. - (2m). Couche à Ostrea columba var. major. Calcaire marneux, rognoneux, avec nombreux moules de Gastropodes et de Lamellibranches, surtout des Huîtres de grande taille. Quelques exemplaires de Anorthopggus orbicularis.

A la base, Puzosia cf. planulata, et, dans toute l'épaisseur 1 mmo nites appartenant à un groupe nouveau ayant de l'analogie avec certains Mammites, mais s'en distinguant par le plan de la ligne suturale. Nous remarquerons surtout que la première selle est arrondie et non rectangulaire comme celle des Mammites, et qu'elle n'est pas divisée en deux, comme c'est le cas dans ce dernier groupe. En attendant que je les décrive, je les désignerai par la lettre A.
F. ($\left.4^{\mathrm{m}}\right)$. Calcaire analogue au précédent, mais ne coutenant presque pas de fossiles, sauf le groupe des Ammonites A., mieux représeuté que dans la couche précédente.
G. H. I. J. (14^{m}). Calcaire à tubulures provenant en majeure partie de polypiers styliformes (Rhabdophylia et Stylosmilia).

Groupe d'Ammonites A. Formes voisines des Ammonites conciliatus Stol., nodosoides et Footeanus Stol., Puzosia cf. Gaudama Forbes. Gastropodes, Lamellibranches.
K. L. (7m). Calcaire en plaquettes liées par une marne blanchâtre. La surface des plaquettes est souvent couverte de petites Turritelles et d'Astaites. Pseudotissotia, Puzosia cf. (;audamı, Sonneratia (?) cf. perampla, Ammonites cf. nodosoides, et grand développement du groupes d'Ammonites A., qui prend des formes complètement globulaires. Des échantillons plus rares se rapprochent d'Ammonites coronatus. Inoceramus labiatus.
M. (4m). Calcaire blanc, par places oolithique, Acteonella laevis et des Ptygmatis Olisiponensis y sont très abondants; sur d'autres points: Trochactacon gigunteum, Sphaerulites et Toucasia indéterminables.
N. ($\left.5^{\mathrm{m}}\right)$. Calcaire rose, très compact, paraissant avoir la même faune que le précédent.

0 . (2m:̈0). Calcaire rose en dalles minces, séparées par des feuillets presque uniquement composés de lamelles de mica blanc. A la partie supérieure, le calcaire empâte de nombreux grains de quartz.

La première question qui se pose est celle de la limite eutre le Cénomanien et le Turonien.

Les couches à Neolobites Vilbrayanus sont incontestablement cénomaniennes, et si on se laissait guider par les Gastropodes et les Lamellibranches, on rangerait aussi dans cet étage les couches à Anorthopygus et celles à Ostrea columba major.

Mais d'un autre côté, la faune des couches F à L a un faciès turonien trop accentué pour qu'on ne les range pas dans le Turonien, quoiqu'aucune forme ne puisse etre rapportée avec certitude à une espèce connue.

Or, l'apparition du groupe d'Ammonites A. dans les couches à ostrea colomba major, porte à ranger aussi cetle couche dans le Turonien.
La question est plus délicate pour les couches à Anorthopygus.
Remarquons en premier lieu que la succession des anorthopygus orbicularis et Michelini est contraire à ce qu'elle est en France, où la première de ces espèces est cénomanienne et la deuxième turonienne. Ici les deux formes se trouvent dans la couche à anorthopygus, mais Anorthopygus orbicularis est le seul qui passe aux couches à Ostrea columba major.
M. de Loriol a émis l'hypothèse que ces deux formes nə sont que des variétés d'une même espèce, et mes observations postérieures à la publication de son mémoire confirment pleinement cette hypothèse. 0 n se souvient que la différence principale consiste en ce que Anorthopygus Michelini est conique, tandis que Anorthopygus orbicularis est déprimé. Or, en Portugal, la forme est conique dans les calcaires et elle se déprime à mesure que la quantité d'argile augmente.

Dans ce pays, les oursins sont du reste un mauvais argument pour la différenciation entre le Cénomanien et le Turonien. Bon nombre d'entre eux passent du Bellasien moyen (Cénomanien inférieur ou moyen) aux couches à Neolobites Vibrayanus et au Turonien. Ils paraissent moins dépendre du niveau que de la proportion d'argile, et telle espèce qui dans une région se rencontre exclusivement dans les couches à Neolobites Vibrayanus, passe au Turonien dans les contrées où celui-ci est marno-calcaire.
Je ferai remarquer que tous mes oursins ont été déterminés par M. de Loriol, mais les indications de Rotomagin et Carentonin figurant à son mémoire, sont en grande partie éronées, parce qu'à cette époque je ne connaissais que le Crétacique des environs de Lisbonne et que j'ignorais le parallélisme du Turonien.
nensis, archiacia Delgadoi, Diplopodia variolare, Pseudodiadema Guerangeri, etc.
D. $-\left(2^{\mathrm{m}}\right)$. Calcaire oolithique à Anorthopygus Michelini (c. c.), An. orbicularis (г.), Conodoxus Cairoli (r. г.), Gastropodes et Polypiers. Au sommet Puzosia planulata.
E. - (2m). Couche à Ostrea columba var. major. Calcaire marneux, rognoneux, avec nombreux moules de Gastropodes et de Lamellibranches, surtout des Huitres de grande taille. Quelques exemplaires de Anorthopggus orbicularis.

A la base, Puzosia cf. planulata, et, dans toute l'épaisseur 1 mmo nites appartenant à un groupe nouveau ayant de l'analogie avec certains Mammites, mais s'en distinguant par le plan de la ligne suturale. Nous remarquerons surtout que la premiere selle est arrondie et non rectangulaire comme celle des Mammites, et qu'elle n'est pas divisée en deux, comme c'est le cas dans ce dernier groupe. En attendant que je les décrive, je les désignerai par la lettre A.
F. (4^{m}). Calcaire analogue au précédent, mais ne coutenant presque pas de fossiles, sauf le groupe des Ammonites A., mieux représenté que dans la couche précédente.
G. H. I. J. (14 m). Calcaire à tubulures provenant en majeure partie de polypiers styliformes (Rhabdophylia et Stylosmilia).

Groupe d'a mmonites A. Formes voisines des Ammonites conciliatus Stol., nodosoides et Footeanus Stol., Puzosia cf. Gaudama Forbes. Gastropodes, Lamellibranches.
K. L. $(7 \mathrm{~m})$. Calcaire en plaquettes liées par une marne blanchâtre. La surface des plaquettes est souvent couverte de petiles Turritelles et d’Astartes. Pseudotissotia, Puzosia cf. Gaudamı, Sonneratia (?) cf. perampla, Ammonites cf. nodosoides, et grand développement du groupes d'Ammonites A., qui prend des formes completement globulaires. Des échantillons plus rares se rapprochent d'ammonites coronatus. Inoceramus labiatus.
M. $\left(4^{\mathrm{m}}\right)$. Calcaire blanc, par places oolithique, Acteonella laevis et des P'tygmatis Olisiponensis y sont très abondants; sur d'autres points: Trochactaeon gigunteum, Sphaeruiites et Toucasia indéterminables.
N. (5m). Calcaire rose, très compact, paraissant avoir la même faune que le précédent.

0 . (2ه30). Calcaire rose en dalles minces, séparées par des feuillets presque uniquement composés de lamelles de mica blanc. A la partie supérieure, le calcaire empâte de nombreux grains de quartz.

La première question qui se pose est celle de la limite eutre le Cénomanien et le Turonien.

Les couches à Neolobites Vibrayanus sont incontestablement cénomaniennes, et si on se laissait guider par les Gastropodes et les Lamellibrauches, on rangerait aussi dans cet étage les couches à Anorthopygus et celles à Ostrea columba major.

Mais d'un autre côlé, la faune des couches F à L a un faciès turonien trop accentué pour qu'on ne les range pas dans le Turonien, quoiqu'aucune forme ne puisse ètre rapportée avec certitude à une espèce connue.

Or, l'apparition du groupe d'Ammonites A. dans les couches à Ostrea colomba major, porte à ranger aussi cette couche dans le Turonien.

La question est plus délicate pour les couches à anorthopyyus.
Remarquons en premier lieu que la succession des anorthopygus orbicularis et Michelini est contraire à ce qu'elle est en France, où la première de ces pspèces est cénomanienne et la deuxième turonienne. Ici les deux formes se trouvent dans la couche à Anorthopygus, mais Anorthopygus orbicularis est le seul qui passe aux couches à Ostrea columba major.
M. de Loriol a émis l'hypothèse que ces deux formes ne sont que des variétés d'une même espèce, et mes observations postérieures à la publication de son mémoire confirment pleinement cette hypothèse. On se souvient que la différence principale consiste en ce que Anorthopygus Michelini est conique, tandis que Anorthopygus orbicularis est déprimé. Or, en Portugal, la forme est conique dans les calcaires et elle se déprime à mesure que la quantité d'argile augmente.

Dans ce pays, les oursins sont du reste un mauvais argument pour la différenciation entre le Cénomanien et le Turonien. Bon nombre d'entre eux passent du Bellasien moyen (Cénomanien inférieur ou moyen) aux couches à Neolobites Vibrayanus et au Turonien. Ils paraissent moins dépendre du niveau que de la proportion d'argile, et telle espèce qui dans une région se rencontre exclusivement dans les couches à Neolobites vibrayanus, passe au Turonien dans les contrées où celui-ci est marno-calcaire.
Je ferai remarquer que tous mes oursins ont été déterminés par M. de Loriol, mais les indications de Rotomagin et Carentonin figurant à son mémoire, sont en grande partie éronées, parce qu'à cette époque je ne connaissais que le Crélacique des environs de Lisbonne et que j'ignorais le parallélisme du Turonien.

	EMBOUCHURE DU MONDEGO	EST ET SUD-OUEST DE LEIRIA	ALCANTARA (LISBONNE)
	0. Calcaires micacés avec grains de quartz.	22. Marne à Sphaerulates Peroni et Toucasia Favrei. 21. Marne i Tylostomes et Pleuromya A. 20. Sables quarlzeux.	16. Marne à Tylostomes, Pleuromya A.elautres fossiles nombreux.
	M.-N. Calcaire oolithique rose au sommel, blane à la base Acteon. lævis el gigantea, rares Sauvagesia et Toucasia.	19. Calc. ad Acteonella levis et gigantea, ou marnes-calcaires avec les mèmes Actconella et nombreux Biradiolites.	14-15. Marnes calcaires à Sanvagesia Sharpei, Sphaer. lusitanicus, Biradiolites Arnaudi. Au Monl-Serves: Acteon.gigantea.
	K .-L, Pseudotissotia, Formes globuleuses du groupe de Ammonites A, Puzosia cf. jlabiatus. F.-I.-J. Groupe de Ammonites A, Puzosia cf. Gaudama.	16-18. Calcaire à Sauvagesia Sharpei, Sphærulites, Caprinula et Ostrea Juannw.	13. Calcaire cristallin à Sauvagesia Sharpei el Ostrea Joannae. A Runa Biradiolites Arnaudi. 12. Sauvagesia Sharpei, Caprinula, Panopra substriata.
	E. Couches à Ostrea columba major. Groupe de Ammonites A (rares), Panopæa substriata. Puzosia cf. planulata.	15. Couches à Ostrea columba major, Panopæa substriata. Absence d'Ammoniles.	11. Panopæa substriata, Ostrea columba media.
	D. Calcaire oolithique à Anorthopygus, Polypiers, Nérinées, Puzosia cf. planulata.	14. Calc. oolithique à Anorlhopygus, Polypiers, Nérinées, Panopaa substriata.	10. Pan॰pra substriata. 9. Ostrya columba major; Polypiers A la base Anorthopygus? el Goniopygus Menardi.
	C. Neolobites Vibrayanus, A cant. naviculare, Pterocera incerla, Heterodiadema Ouremense.	13. Neolob. Vibrayanus, Acanth. afi. Mantelli,Pterocera incerta, Geterodiadema Ouremense, Alveolina cretacea.	7-8. Neolob Vibrayanus, Acanth. pentagonum, Pteroc. incerta. Heterodiadema Ouremense, alveolina cretacea.
	B. Parlic supérieure du Premier niveau a Pterocera incerta. A. Graviers à cailloux subarrondis el lentilles à végétaux.	2-12. Premier niveau à Plerocera incerta, bien développe. Ostrea africana. 1. Graviers à cail!oux sub arrondis et blocs de grandes dimensions.	Bellasien complet.

Revenons à la place que doit occuper le niveau à anorthopygus. Je viens de faire voir que les deux espèces d'Anorthopygus ne peuvent pas être pris en considération.

On pourrait invoquer la présence d'un autre oursin, Conodoxus Cairoli Colt. pour les ranger dans le Cénomanien, étage dans lequel il se trouve en France. On n'en connalt qu'un seul exemplaire du Portugal.

Par contre, Goniopyyus Menardi ne se montre en Portugal qu’à partir de ce niveau et est fréquent dans le Turonien, mais en France il commence dans le Cénomanien.
Un fragment de Neolobites pourrait porter à le rattacher au Cénomanien, mais il paraft différer de Neolobites Vibrayanus.

Panopæa substriata et Puzosia cf. planuluta rattachent ce niveau à celui de Ostrea columba major, mais tous ces arguments sont insuffisants pour trancher la question, ou plutôt ils nous montrent que la limite est absolument artificielle.

Le tableau ci-joint montre le parallélisme entre les trois contrées, il me reste pourtant quelques explications à donner au sujet de la contrée de Lisbonne.
Les couches à Neolobites Vibrayanus y sont bien identiques à celles des régions plus septentriocales, et les couches 9,10 et 11, à Panopæa substriata et 0strea columba major semblent bien représenter l'ensemble des couches à Anorthopygus et à Ostrea columba major, à moins que la première de ces deux zones ne doive être recherchée dans le litinférieur à 9 , qui contient Goniopygus Menardi et un exemplaire douteux d'Anorthopygus, en compagnie de Heterodiadema Ouremense, espèce typique des couches à Neolohites Vibrayanus!
Il reste donc un doute sur la représentation du niveau à Anorthopygus dans les environs de Lisbonne, de même que sur la réunion de ce niveau au Turonien, mais quelle que soit la piace qu'on lui assigne, il est indubitable qu'en Portugal la totalité des couches à Sauvagesia Sharpei est parallèle aux couches à Ammonites turoniennes.
C'est donc à tort que celte espèce a été considérée comme caractéristique du Cénomanien.

> LILLE. - IMP. LE BIGOT FRÈRES.

[^0]: (1) Note sur le Crétacique des environs de Torres-Vedras, de Peniche et de Cercal. Communicaçoes, etc., 1891.
 (2) Voir le mémoire précité.

[^1]: (1) M. de Saponta. Nouvelles contributions à la fore fossile du Portugal. avec une Notice stratigraphique sur les gisements de végélaux fossiles dans le Mésozoïque du Portugal, par P. Choffat. Lisbonne, 1894.

