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Abstract 

New data on the present structure and the Late Paleozoic to Recent geological evolution ofthe 
Eastem Alps are reviewed mainly in respect to the distribution of Alpidic, Cretaceous and 
Tertiary, metamorphic overprints and the corresponding structure. Following these data, the 
Alps as a whole, and the Eastem Alps in particular, are the result of two independent Alpidic 
collisional orogens: The Cretaceous orogeny formed the present Austroalpine units sensu lato 
(including from footwall to hangingwall the Austroalpine s. str. unit, the Meliata-Hallstatt 
units, and the Upper Juvavic units), the Eocene-Oligocene orogeny resulted from continent
continent collision and overriding of the stable European continental lithosphere by the 
Austroalpine continental microplate. Consequently, a fundamental difference in present-day 
structure of the Eastem and Centrai/W estem Alps resulted. Exhumation of metamorphic crust 
formed during Cretaceous and Tertiary orogenies resulted from several processes including 
subvertical extrusion due to lithospheric indentation, tectonic unroofing and erosional 
denudation. Original paleogeographic relationships were destroyed and veiled by late 
Cretaceous sinistral shear, and Oligocene-Miocene sinistral wrenching within Austroalpine 
units, and subsequent eastward lateral escape of units exposed within the centrat axis of the 
Alps along the Periadriatic fault system due to the indentation ofthe rigid Southalpine indenter. 

Introduction 

Facts and models on Alpine geology made rapid progress during the last decades, mainly due 
to detailed paleogeographical, structural, petrological and geochronological investigations. 
These, together with deep reflection seismic profiling allowed new insights into the present-day 
structure and triggered new models which fundamentally changed ideas on Alpine geology 
( e.g., NICOLAS ET AL., 1 990; PFIFFNER, 1 992; PFIFFNER et al. ,  1 997). 

This review intends to synthesize principal structural data of the Eastem Alps in respect 
to the distribution of Alpine metamorphism. The review also includes some redefinitions of 
paleogeographic and tectonic units exposed within the Eastem Alps that appear to be 
neccessary according to the present state of data. The time scale calibrations follow that of the 
Paleozoic and early Cenozoic by Gradstein and Ogg ( 1996) of the Mesozoic proposed by 
Gradstein et al. ( 1 994), and ofthe Paratethyan Oligocene-Neogene proposed by Rögl ( 1 996). 

Aspects of the tectonic evolution Eastem Alps were reviewed in JANOSCHECK and 
MATURA (1 980), OBERHAUSER (1 980, 1 995), TOLLMANN (1 977, 1 986, 1987), FRANK ( 1 987), 
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THÖNIANDJAGOliTZ (1993), FROITZHEIM et al. (1996), EBNER ( 1997) and FAUPL ( 1 997). The 
evolution ofthe pre-Alpine basement is reviewed in VONRAUMER and NEUBAUER ( 1 993). 

Teetonic units 

The Alps are divided in a geographical sense into the E-trending Eastern Alps and the arc of 
the Western Alps, divided by the meridional Rhine valley south of the Bodensee and its 
southward, meridional extension. Eastern and Western Alps display fundamentally different 
geological structure (see below), geological development and in part a distinct 
geomorphology. The most prominent mountain peaks are along the central axis in the Eastern 
and Swiss Central Alps, and more internally located in the Western Alps forming here an 
asymmetric topographic profile. East of the Tauern window area, the topography gradually 
changes from high eievatians into the Neogene Pannonian basin with its plains and a very low 
elevation above sea Ievel (Fig. 1 ) .  

The Alps as a whole include the following tectonic units from footwall to hangingwall, 
respectively from N to S, and NW to SE (e.g., DAL PIAZ, 1992; DEBELMAS, 1 997; TRÜMPY, 
1980, 1 997a, b; TOLLMANN, 1977; FRANK, 1 987; FAUPL, 1997) (Figs. 1 ,  2, 3): 
( 1)  The stable respectively south- and eastwards flexured European continental lithosphere 
which also carries the late Eocene to Neogene Molasse basin, the northern peripheral foreland 
basin; and the Swiss-French Jura, an externally located thin-skinned fold-and thrust belt (e.g. , 
TRÜMPY, 1980, 1997a, b); 
(2) the Dauphinois/Helvetic units, a thin-skinned fold and thrust belt, that nearly exclusively 
comprise Late Carboniferous to Eocene cover sequences detached from the European 
lithosphere and the Externat massifs which constitute pre-Alpine basement rocks and Helvetic, 
Late Carboniferous to Cretaceous cover sequences (DEBELMAS et al. ,  1 983); 
(3) the Valais units which represent the infilling of a mainly Cretaceous rift zone on attenuated 
continental to likely oceanic ernst (PFIFFNER, 1992); 
(4) the Brianeonnais units which represent a mieroeontinent rifted off from stable Europe 
during opening of the Valais trough; 
(5) the Piemontais units with oeeanie lithosphere in the Western Alps; the Glockner ophiolitic 
nappe exposed within the Tauern window and ist correlatives exposed in other windows along 
the centrat axis of the Eastern Alps, the Ybbssitz ophiolite (DECKER, 1 990; SCHNABEL, 1 992) 
and overlying flysch sequences as well as the Rhenodanubian flyseh zone with remnants of a 
trench filling alone without any substrate may represent part of this zone. The V alais, 
Brianeonnais and Piemontais units are eonventionally eombined to Penninie units also assigned 
as North, Middle and South Penninie units, respectively; 
(6) the Austroalpine s. str., a eontinental unit whieh includes remnants of a Triassie passive 

eontinental margin whieh originally faeed towards the Hallstatt-Meliata oeean ( e.g., LEIN, 
1987) and a Jurassie passive eontinental margin which faeed towards the Penninie (Piemontais) 
oceanie traet; 
(7) the Hallstatt-Meliata units with its remnants of the infilling of a small oeeanic trough and 

the adjaeent distal eontinental margins; 
(8) the Upper Juvavie unit that exelusively eomprises late Paleozoie to Mesozoic eover 
sequences of a passive eontinental margin; 
(9) and finally, the Southalpine unit juxtaposed along the Periadriatie Fault to the Austroalpine 
units s. str. . The Southalpine unit is another eontinental unit that is largely similar to the 
Austroalpine unit s. str. . The Southalpine unit is considered to represent the northern extension 
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ofthe stable Adriatic microplate which also includes the Po plain and the adjacent Adriatic Sea 
(e.g. ,  CHANNEL et al. ,  1 979). 

The Alps are sometimes divided into external, sedimentary, unmetamorphic units and 
internal units dominated by highly deformed metamorphic rocks. This division applies weil in 
Western Alps. There, the external zones include: ( 1 )  the Dauphinois-Helvetic zone comprising 
External basement massifs and their Late Carboniferous to Mesozoic cover, and Mesozoic
Cenozoic cover sequences separated into so-called Subalpine massifs. Both basement and 
cover massifs are clearly allochthonaus in the Swiss Western Alps; and, more internally 
located, (2) the Ultradauphinois-Ultrahelvetic zone. 

In the Eastern Alps, the external zones are small and include the Helvetic!Ultrahelvetic 
zones, the latter imbricated with the Rhenodanubian Flysch zone, a Penninie unit. From a 
structural point of view, the Northern Calcareous Alps also belang to unmtemorphic external 
zones. 

The Southalpine unit is considered as the southern external retro-arc orogenic wedge 
within the Alpine orogenic system (e.g., DOGLIONI and FLORES, 1 997; ScHMID et al. ,  1 996). 

Compared with previous interpretations, the Ybbssitz ophiolite and the subdivision of 
the previous Austroalpine units into three different tectonic units are introduced. In this paper, 
we Iimit the use of the Austroalpine unit (s. str.) to the pile of nappes of continental origin in 
the footwall of remnants of the Hallstatt-Meliata oceanic and transitional continental cover 
sequences (see below). Consequently, the overlying Upper Juvavic units derive from a separate 
continental unit and are excluded from the Austroalpine units s. str . .  For further details, see 
SCHWEIGL and NEUBAUER (1 997). 

In terms of metamorphism, these units display fundamental differences. The 
Austroalpine s .str. , Meliata-Hallstatt and Upper Juvavic units display Cretaceous-age 
metamorphism all over the Alps, the Penninie and Helvetic units Eocene to Oligocene regional 
metamorphism. The Southalpine units are unmetamorphic except narrow zones adjacent to the 
Periadriatic fault which display an anchi- to epizonal Cretaceous and Oligocene metamorphic 
overprint (LÄUFER et al. ,  1 997; RANTITSCH, 1 997). 

Europe-related, Helvetie and Penninie eontinental, units 

The Penninie continental units are exposed within the Tauern window within the so-called 
Venediger nappe and the overlying Riffi-Modereck nappe complex (e.g., KURZ et al. ,  1 998b, 
and references therein). The basement is composed of the Habach-Sterz Groups with Late 
Proterozoic to Early Paleozoic island arc successions, the Stubaeh Group, an Early Paleozoie 
back are ophiolite, and widespread Varisean granite suite, eolleetively known as Central 
Gneisses. The Central Gneisses are exposed within several struetural domes along the eentral 
struetral axis of the antiformal Tauern window. The eover sequenees inelude fossil-bearing 
Carboniferous sequenees exposed in the western Tauern window, minor Permian and Triassie 
sequences, and thiek Jurassie-Cretaeeous sequenees exposed within the Silbereek, Hochstegen 
and Kaserer Groups (e.g., LAMMERER, 1 986; Kurz et al. ,  1 998b). 

Penninie ophiolites 

In the Eastern Alps, the Gloekner ophiolite is eonsidered to represent the extension of the 
Penninie units of the Western Alps. Penninie oeeanie sequenees of the Eastem Alps are 
exposed within the Engadin, Tauem, and Reehnitz windows (e.g., HOCK and KOLLER, 1 989; 
KOLLER and HOCK, 1989). 
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Fig. 2. Three transects of the Alps: a - Transec I of the Western Alps (simplified after NICOLAS 
et al. , 1990 and ROURE et al. , 1990); b - transect across the eastern Central Alps (after 
SCHMID et al. , 1986); transects of Western and eastem Central Alps are based on deep 
seismic rejlection profiling; c - transect across the Eastem Alps (modified after LAMMERER 
and WEGER, 1998, and ROEDER, 1980, and extrapolating the structures of section b towards 
the east. 
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In the Engadin window, the ldalpe ophiolite is a well-preserved ophiolite with an only weak 
metamorphic overprint (e.g., KOLLER and HOCK, 1990). The Glockner nappe of the Tauern 
window represents a dismembered ophiolite and the sedimentary infilling, mainly 
calcmicaschists, laid down on top of it (HOCK and MILLER, 1 987). The Rechnitz window 
group exposes ophiolitic successions with serpentinites, prasinites, and carbonate schists within 
two nappes, an upper ophiolite nappe with serpentinites at the structural base, and a lower 
nappe which includes carbonate schists and carbonate olistostromes (Köszeg conglomerate) 
(KOLLER, 1985). 

Austroalpine unit s.str. 

The Austroalpine s. str. represents a continental, basement-cover, thick-skinned nappe pile 
which received its essential internal nappe structure during the Cretaceous orogenic events 
(e.g., RATSCHBACHER, 1986; DALLrvffiYER et al., 1998). They can be divided basically into the 
Central Eastem Alps with dominant basement sequences and Northern Calcareous Alps with 
predominant Permo-Cenozoic cover sequences (Fig. 4, 5). Although fierely discussed (CLAR, 
1973; FRANK, 1 987; TOLLMANN, 1 987), subdivision into Lower, Middle and Upper 
Austroalpine nappe complexes is easily applicable over large portions of the Austroalpine 
nappe pile which is bounde to the south by the SAM (southem Iimit of Alpine metamorphism; 
see below). The Lower Austroalpine nappe complex includes units exposed along the 
southwestem margin of Eastem Alps (e.g., Err-Bernina and Campo nappes), the lnnsbruck
Reckner and Radstadt nappes around the Tauern window, and the Kirchberg-Stuhleck and 
Wechsel nappes along the eastem margin of the Eastem Alps, all having an originally 
northwestem paleogeographic position. The broadly developed Middle Austroalpine nappe 
complex extends from westem to eastem margins ofthe Eastem Alps. The Upper Austroalpine 
nappe complex includes the Steinach nappe, the Grauwackenzone nappes and the overlying 
Tirolic and Bajuvaric nappes of the Northem Calcareous Alps, the Gurktal and Graz nappe 
complexes forming klippens, Grauwackenzone nappe complex and the overlying Northem 
Calcareous Alps along the northem leading edge of the Austroalpine nappe complex. These 
Upper Austroalpine units were derived from an originally southeastem paleogeographic 
position. The Middle Austroalpine units take, therefore, an intermediate paleogeographic 
position. The general nappe transport direction was towards WNW and N, respectively 
(RATSCHBACHER, 1986; KROHE, 1 986). 

The southem Iimit of Alpine (Cretaceous-age) metamorphism (SAM: term created by 
G. HOINKES) represents a c. east-trending system of polyphase faults which juxtaposes 
Austroalpine units with a strong, generally amphibolite and eclogite grade metamorphism to 
the north mostly againts very-low grade Austroalpine units in the south. The SAM consists, 
from west to east, of the Peio-, Passeier-Jaufen-, Defreggen-Antholz-Vals- (DAV), Isel-, 
Zwischenbergen-Wöllatratten-, Ragga-Teuchl-, Siflitz-, and Viktring fault zones. Western 
sectors of the SAM represent a zone of important, mostly Oligocene sinistral strike-slip 
displacement with an oblique-slip component. The eastern sectors ( east of the Isel fault) 
represents a zone of Late Cretaceous sinistral strike-slip shear with a subordinate normal 
component, too. No large-scale nappe structures within Austrolapine units exposed within the 
SAM and the Periadriatic fault are preserved except flower structures related to the 
Periadriatic fault. 

The composition and evolution of the Austroalpine basement units is not considered 
here in detail. However, it must be noted that each Alpine nappe comprises a basement that 
differs from under- and overlying basement units in composition, age and degree of pre-Alpine 
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tectonothennal events (NEUBAUER and FRISCH, 1993; NEUBAUER and SASS I, 1 993; 
SCHÖNLAUB and HEINISCH, 1 993). E.g. , the Upper Austroalpine units comprises continuous 
fossiliferous Ordovician to early Carboniferous sequences affected by a late Variscan and/or 
Cretaceous metamorphie overprint. In eontrast, the Middle Austroalpine units eomprise 
exclusively medium-grade metamorphie basement that only minor sueeessions represent 
cerrelatives of Ordovieian to Carboniferous sequenees. 

Cover sequenees deposited on the Austroalpine basement include a nearly eontinuous, 
confonnable Late Carboniferous to early Late Cretaeeous suceession of rift, carbonate 
platfonn and shelf margin and later pelagie fonnations. The prineipal rift phase occurred during 
the Permian and resulted in rapid teetonie subsidenee during the Triassie, where a passive 
eontinental margin was fonned opposing the Meliata-Hallstatt oeean towards the SE (e.g., 
LEIN, 1987; SCHWEIGL and NEUBAUER, 1997) (Fig. 4, 5). A seeond, Jurassie rift phase created 
the Piemontais oeeanic basin by rifting off the stable European continent, and another passive 
continental margin faeing towards NW. Resulting struetures along this passive margin are 
halfgrabens filled with esearpment breceias. Asymmetrie simple shear is supposed to lead to 
exhumation of subcontinental mantle lithosphere and the fonnation of the eontinental Margna, 
Hippold and the questionable Sesia extensional alloehthons (FROITZHEIM and MANATSCHAL, 
1996; HEIDORN, 1 998). 

Cl) ::I 

Tirolic nappe complex 

Gosau Group 

Lower Juvavic nappes 
e.g .. Hallein unit. Lnft.'r slices. 

Lammerumt 

0 0 0 0 0 0 0 0 0 0 o o o ooo o n o 0 0 0 0 0 0 0 Gns:tu Gmup 
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hialUs 

Upper Juvavic nappes 

hiarus 

Dachstein Fm. 
(Reitalm type)) 
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Fig. 4. Stratigraphie sections of units exposed within the Northern Calcareous Alps (from 
Schweigl and Neubauer, 1997). 
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a) 

b) 

LATE TRIASSIC: 

Lower Juvavic/Mcliata unit 
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contincnlal bascmcnl 

EARLY CRETACEOUS: 

Tiroli 

Lower Juvavic/ 
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-=-"'�=---Rossfeld basirt.. 

Fig. 5. Schematic (a) Late Triassie and (b) Lower Cretaceous paleogeography of Upper 
Juvavic, Meliata-Hallstatt and Ausfraalpine units sensu stricto (Tirolic/Bajuvaric units). 
(From Schweigl and Neubauer, 1997). 

Hallstatt-Meliata units 

The Hallstatt-Meliata units comprise distal continental margin deposits (Hallstatt facies) (LEIN, 
1987; MANDL and ONDREJICKOVA, 1991) and the recently detected oceanic sediments of 
Middle Triassie to Dogger age (KOZUR, 1991; MANDL and ÜNDREJICKOV A, 1991; KOZUR and 
MOSTLER, 1992). These include Middle and Late Triassie pelagic carbonates, Late Triassie 
radiolarites and Doggerian shales, volcanogenic greywackes and ashfall tuffs. Greywackes and 
tuffs indicate a volcanic source of subduction-related origin (NEUBAUER, unpubl. data). 

Furthermore, salt melanges (Permian and Scythian strata) are often connected with the 
structural sole of the Hallstatt-Meliata unit generally interpreted to represent the primary 
lowermost sequence of this unit (KozUR, 1991). lf this is true, some doubts are apparent 
because of strong structural destruction of this unit. Anyway, the salt melange is connected 
with serpentinites, melaphyres and a few gabbro bodies. The melaphyres have an alkaline 
basaltic affi.nity (KIRCHNER, 1980). Gabbro and melaphyres appear to record some doubtful 
Permian ages. These rocks are interpreted, therefore, to record incipient Permian rifting 
(KIRCHNER, 1980). 

Upper Juvavic unit 

Upper Juvavic units include a continuous Permian to Triassie section with some rare Jurassie 
sediments. The Upper Juvavic units form several large tectonic klippens on top of the 
Hallstatt-Meliata units within the eastern half ofthe Northern Calcareous Alps (Figs. 1, 4). The 
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sequences display remarkable differences to the Tirolic-Bajuvaric nappe complex, mainly 
including thick Late Triassie Norian reefs in the Upper Juvavic nappe in cantrast to the Norian 
lagoonal Hauptdolomit facies and presence of Rhaethian reefs in the Tirolic-Bajuvaric nappe 
(SCHWEIGL and NEUBAUER, 1997). The Jurassie sequence is incomplete and only record some 
thin Liassie Iimestones and Malmian reefal limestone in the northwesternmost exposures. 

a . . •. :: � ·•' :_ · . .. · . . . · .. . - . . 
Penninie Austro-Alpine 

domains 

Meliata/Hallstatt 'ocean' 
(part of Tethys ?) 

Sieggraben unit 

b 
Penninie 'ocean' 

c 
suggested Mesozoic suture 

Sieggraben unit 

towards stable Africa ....... - - -:.rillll· .,,-••.• 
South Alpine 
111111111111 
or Tiszia block 

Fig. 6. Teetonic evolution of units exposed in the eastern Central Alps (modified after 
Neubauer, 1994). 

1 6  



Southalpine unit 

The Southalpine unit includes a continental basement exposed along the Periadriatic fault, and 
a continuous Late Carboniferous to Oligocene sequence. Two main rift phases affected the 
Southalpine unit: NW -SE extension during Permian resulted in the formation of a swell and 
high topography which governed deposition from Permian to Cenozoic. Permian magmatic 
underplating by mantle melts in the Ivrea zone (e.g., VOSHAGE et al., 1 990) may have been 
associated with crustal extension. Progressive onlap ofthe Paleotethys (definition ofthe Tethys 
was by SUEss, 1 887) from the SE reached the Carnic Alps during the Late Carboniferous, 
South Tyrol during the Late Permian, and the Lombardian Alps during the Middle Triassic. A 
strong tectonic subsidence phase during Middle Triassie times in eastern to central sectors of 
the Southern Alps was associated with magmatism in the central Southern Alps. A second rift 
phase during the Late Triassie to Early Jurassie mainly affected western sectors and resulted in 
formation of pronounced troughs, thinning of the crust and exhumation and cooling of middle 
crustal levels (e.g., BERTOTTI et al., 1993). 

The deposition of the Late Cretaceous Lombardian flysch in the western Lombardian 
Alps with northern source heralds ongoing deformation which is not evidenced otherwise in 
Southern Alps. The structure of the Southern Alps is dominated by c. E-trending, top-S
directed thrusts which brought up basement rocks on top of cover (e.g., DOGLIONI and 
BossELINI, 1 987; CARMINATI et al., 1997). The earliest thrusts in the western Southern Alps 
were formed before intrusion of the Adamello (before ca. 42 Ma; BRACK, 1980). In eastern 
sectors, c. WNW-trending, SSW-directed structures were formed during the Paleogene, 
believed to represent a Dinaric trend (DoGLIONI and BoSELLINI, 1 987). These structures were 
overprinted by Oligocene to Recent structures which also involved the basement (CARMINATI 
et al. ,  1 997). 

Teetonic evolution 

In terms of metamorphism and associated deformation, the Alps are divided into three units: 
( 1 )  The Austroalpine units s.l., Meliata-Hallstatt units, and Upper Juvavic units which were 
overprinted by Cretaceous deformation, W- to NW -directed, ductile thrusting; (2) the Penninie 
continental and oceanic units, and the Dauphinois-Helvetic units wh!.ch were overprinted by 
Cenozoic metamorphism and associated N- to W-directed ductile deformation; and (3) 
Southalpine units which are largely unaffected by metamorphism except northernmost sectors 
adjacent to the Periadriatic fault and which were mainly deformed during Cenozoic, c. S
directed thrusting and shortening. 

A model ofthe Triassie to Cretaceous tectonic evolution ofunits exposed in the eastern 
Central Alps is shown in Fig. 6. Essential arguments for an independent Cretaceous orogeny 
within Austroalpine units are: the Cretaceous age ( c. 95-90 Ma: THöNI and MILLER, 1 997) of 
eclogite metamorphism with pressures of c. 1 8  kbar within Austroalpine basement units which 
argues for a subduction of continental crust; the Superposition of Austroalpine continental 
crust by oceanic units exposed in the Western Carpathians and their Late Jurassie blueschist
facies metamorphic overprint (e.g., KozUR, 1 992; DALLMEYER et al. ,  1996; FARYAD and 
HENJES-KUNST, 1 987); the sealing of early Late Cretaceous thrusts within Upper Austroalpine 
units in the Bastern Alps by Gosau (Late Cretaceous to Middle Eocene) basins which are 
associated with exhumation of deeply buried, continental metamorphic crust exposed in 
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present-day Middle Austroalpine units (NEUBAUER et al. ,  1 995; FROITZHEIM et al. ,  1 997). The 
internal ductile deformation of Austroalpine units stopped during the latest Cretaceous, and 
large portions were exhumed during the Paleogene to shallow crustal Ievels. Furthermore, the 
entire Austroalpine units were peneplained not later than the early Neogene, as it evidenced by 
the presence of large-scale peneplaine surfaces east of the Tauern window, some Oligocene 
and numerous Miocene sedimentary basins ande early Tertiary apatite fission tarck ages (Hejl, 
1 997) . The internal deformation, generally of transtensional and transpressional character, of 
these basins was always at shallow, brittle crustal Ievels. The preservation of these peneplaines 
(and Eocene sedimentary sequences in some plaees) over the entire eastem seetors of the 
Eastem Alps excludes large vertieal displacement in excess of c. 3 kilometres after the Eoeene. 
A model displaying the teetonie evolution of Penninie units is shown in Fig. 7. Penninie units 
were overridden by the combined Austroalpine units sensu lato not before Paleogene beeause 
of the presenee of Eocene pelagic Iimestones within Penninie sueeessions exposed within the 
Engadin window (for reference, see OBERHAUSER, 1 995), and the presenee of Eoeene 
blueschists within the ophiolitic Reekner nappe (Dingeldey et al. ,  1 997). Initial thrust were 
directed towards the NNE (Genser, 1992; Kurz et al. ,  1 998b) same as earlier NNE-directed 
subduetion-related and deeompressional fabrics within eclogites of the distal eontinental 
margin sequenees of the Tauern window (Kurz et al. ,  1 998a). Subsequent W-direeted duetile 
deformation within the Tauern window was related to exhumation of previously buried 
Penninie sequences during the Oligoeene and Neogene. Exhumation was due to indentation by 
the Southalpine indenter, teetonie unroofing along upper margins of Penninie sequences and 
eastwards eseape of a tectonic wedge (Ratsehbaeher et al. ,  1 99 1 ). The wedge is eonfined by 
sinstral wrench eorridors to the N, including the Oligoeene to Lower Mioeene Salzaeh-Enns
Mariazell-Puchberg fault : RATSCHBACHER et al. ,  1 99 1 ;  WANG and NEUBAUER, 1 998), the 
Miocene to Reeent Mur-Mürz fault and the dextral Periadriatic fault to the S (Fig. 8). The 
Periadriatie also has an important stage of baek-thrusting towards the S due to flake tectonies 
similar as found in the Western Alps (Fig. 2) . 

A .--- Tauern window ------� 

eastward migration 
surface uplift by upbending of unroofing 

A' 

c.c.c<•<•}l��= �� :�- : : �t1iif����J.2§�:::.;•1::-.il eastward ductile flow � 1 .. • of ductile middle crust 

100 km 

Fig. 8. Schematic evolution of escape Ieetonics and related phenomena (modified from 
Neubauer, submitted ). 
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