Gat, J.R. and Gonfiantini, R., (Eds) (1981) Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. IAEA Technical Report Series #210, Vienna, 337p.

IAEA (1983): Guidebook on Nuclear Techniques in Hydrology, Techical report series No. 91, International Atomic Energy Agency, Vienna.

Water and anion transport conversion in highly heterogeneous, recultivated open mining fields with very different carbon levels and pH values: multitracer lysimeter studies

S. Knappe¹, R. Russow¹, H. Rupp¹, W. Richter² & R. Meißner¹

UFZ – Centre for Environmental Research Leipzig-Halle, Germany ¹Department of Soil Science and ²Department of Hydrogeology

The movement of water and the related transport of bromide and nitrate were studied in soil used for agriculture from an open mining field near Espenhain/Saxony by means of tracer techniques (D_2O , [¹⁵N]nitrate, Br tracer) in monolithic and reconstructed lysimeters. Despite the similarly high level of seepage, the breakthrough volumes were very different, namely 82 1 (L 12/1), 147 1 (L 12/3) and 30 1 (L124) for D_2O . After the experiments had continued for 36 months, the recovery standardised for 600 1 seepage of bromide and deuterium respectively were calculated to be 22% and 39% for L 12/1, 15% and 19% for L 12/3, and 4% and 46% for L 124. The differences in the seepage recovery of the reactive tracer [¹⁵N] nitrate were even greater for the three lysimeters, namely 3,7% (L 12/1), 0.7 % (L 12/3) and 1.5 % (L 124).

The findings regarding the transport of D_2O indicate that water transport in the soil monolith of L 12/1 is mainly determined by preferential flow, whereas in L 12/3 and L 124 conditions are largely shaped by piston flow and delays corresponding to the cascade model. Taking into account plant uptake, the sometimes much lower recovery of bromide compared to D_2O in lysimeter L 12/1 and especially in L 124 couid be attributed to reactions resulting from the strong acidic conditions (pH 1.5–2.0) in the soil water of these lysimeters, the extremely high sulphate levels (over 4%) and/or the reactive carbon from lignite residues. Under these conditions, the bromide appears to undergo temporary chemisorption and possibly even chemical conversion. The seepage recovery of [¹⁵N] nitrate in the open mining field soil is significantly lower than in natural soils. [¹⁵N] nitrate recovery in 600 1 seepage of 3.7% (L 12/1), 0.7% (L 12/3) and 1.5% (L 124) are probably caused by nitrate decomposition via denitrification under the partly extreme soil conditions.