PRECIPITATION OF CALCITE FROM SPRING WATER (CARINTHIA, AUSTRIA) AND THE EVOLUTION OF ¹³C/¹²C- AND ⁴⁴CA/⁴⁰CA-SIGNATURES Bettina WIEGAND¹, Martin DIETZEL², Albrecht LEIS³, Ralf BENISCHKE³ & Sebastian HÄNSEL ¹ Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA. e-mail: bwiegand@pangea.stanford.edu. ² <u>Institute of Applied Geosciences</u>, Graz University of Technology, Rechbauerstrasse 12, A-8010 Graz. ³ Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Graz, Elisabethstraße 16 / II, A-8010 Graz. Biologically induced and abiotic fractionation processes of stable calcium isotopes are subjects of numerous recent studies. Research in marine environments is focused on calcium isotope fractionation patterns in foraminifera and coral species. Complementary investigations show a systematic fractionation during abiotic precipitation of CaCO₃ from supersaturated solutions under controlled laboratory conditions (e.g. Gussone et al. 2003). However, little is known about calcium isotope fractionation in terrestrial environments and natural hydrological systems. A systematic study was undertaken along a stream in Carinthia (Austria), where calcite precipitation is induced by degassing of CO_2 from spring water. The temperature of the water increases at about 4°C along the flow path of 120 meters. Precipitation of calcite can be followed by a continuous decrease of dissolved HCO_3^- and Ca^{2+} along the stream ([HCO $_3^-$]:[Ca $^{2+}$] = 2:1). Evolution of $\delta^{13}C_{HCO3}$ values shows a systematic change towards "heavier" values from -13.3 to -11.5 $^{\circ}$ /_{oo} (PDB). $^{12}CO_2$ is liberated from the solution into the atmosphere somewhat faster than $^{13}CO_2$. A kinetic fractionation factor α = 0.990 is obtained. Accordingly, ^{13}C is enriched in the remaining dissolved HCO_3^- . ⁴⁴Ca values of dissolved Ca²⁺ and corresponding calcite precipitates along the stream were analyzed by thermal ionization mass spectrometry using a ⁴²Ca-⁴⁸Ca double spike to correct fractionation during the analytical procedure. ⁴⁴Ca/⁴⁰Ca ratios are normalized to seawater (⁴⁴Ca = 0). While rather heavy ⁴⁴Ca values close to seawater are observed for dissolved Ca²⁺, the precipitates show "light" calcium isotope compositions with a difference of up to -2.4 ‰ relative to the liquid phase. The differences among calcite along the profile are within a range of 1 ‰. ⁴⁴Ca_{calcite} values show a significant correlation with temperature (0.23 ‰ per 1 °C increase in temperature). These results indicate the potential use of calcium isotopes in future hydrological studies in carbonate systems. ## References N. GUSSONE et al. (2003) Geochim. Cosmochim. Acta 67: 1375-1382. 422 *Graz, Austria* 24. – 26. *September* 2004 *PANGEO Austria* 2004