Austroalpine Liassic Ammonites from Vorarlberg (Austria, Northern Calcareous Alps)

by

Christian MEISTER*) & J. Georg FRIEBE**)

MEISTER, C. & FRIEBE, J.G., 2003. Austroalpine Liassic Ammonites from Vorarlberg (Austria, Northern Calcareous Alps). — Beitr. Paläont., 28:9–99, Wien.

Contents

Abstract	9
Zusammenfassung	9
1. Introduction	9
2. Regional setting	10
3. Systematic Paleontology	
Phylloceratoidea ZITTEL, 1884	
Lytoceratoidea NEUMAYR, 1875	
Psiloceratoidea Hyatt, 1867	
Eoderoceratoidea Spath, 1929	
Hildoceratoidea HYATT, 1867	50
4. Biostratigraphical framework	54
4.1. Sinemurian	
4.2. Pliensbachian	
5. Conclusion	
6. Acknowledgements	
7. References	
Plates	66

Abstract

The historical collection of the Sinemurian – Pliensbachian ammonites from the Vorarlberger Naturschau (Dornbirn) are herein described, illustrated and placed into their biostratigraphical framework. Additionally some new investigations in Lorüns Quarry and in Steinernes Meer support this study.

Zusammenfassung

Die Ammoniten des Sinemurium und Pliensbachium der Nördlichen Kalkalpen aus der historische Sammlung der Vorarlberger Naturschau (Dornbirn) werden beschrieben, abgebildet und biostratigraphisch verortet. Neuaufsammlungen im Steinbruch Lorüns sowie im Steinernen Meer (Lechquellengebiet) ergänzen die Studie.

1. Introduction

were found in the scree.

This study is based mainly on the (historical) collections of the Vorarlberger Naturschau (Dornbirn, Austria). Most of the specimens were collected by the founder of the museum, Siegfried FUSSENEGGER, and determined in the late 20-ies to early 30-ies by Walter BIESE in Berlin (FRIEBE, 1999). BIESE visited Vorarlberg several times for field work. The preserved correspondance between him and FUSSENEGGER indicates that a manuscript containing both a description of the fossils and a documentation of the outcrops was nearly finished, when BIESE left Germany and emmigrated to Chile in 1934. Thus this paper was never published. FUSSENEGGER, however relying on BIESE to write the documentation - recorded only the name of the location and an approximate lithostratigraphic position. Additional material originates from the former collection of the Vorarlberger Landesmuseum in Bregenz (FRIEBE, 2000) and from private donations by Joe VINCENZ and Antonio WEHINGER. Obviously most of these specimens

Thus no reliable documentation of the exact locations is available. Field studies in the Lorüns quarry and in the Lechquellen area (Steinernes Meer) helped to establish a rough correlation between some of the fossils in the collection and the stratigraphic column. Moreover the comparison with well horizonted material of several recent studies in the Austrian Upper Austroalpine units (BLAU & MEISTER,1991; MEISTER & BÖHM, 1993; MEISTER et al., 1994; BÖHM et al., 1995; DOMMERGUES et al, 1995) allow to precise the biostratigraphical position and to revise the taxonomy of the Vorarlberg ammonites.

 ^{*&#}x27; Dr. Christian MEISTER, Muséum d'Histoire Naturelle de Genève, Département de Géologie et Paléontologie, 1
 R^{te} de Malagnou, cp 6434, CH-1211 Genève 6, e-mail: christian.meister@mhn.ville-ge.ch

Dr. J. Georg FRIEBE, Vorarlberger Naturschau, Marktstrasse 33, A-6850 Dornbirn, e-mail: Georg.Friebe@dornbirn.at

2. Regional Setting

In the Northern Calcareous Alps of Vorarlberg two main nappes can be distinguished (figs. 1, 2). A more or less complete stratigraphic succession from the Late Permian / Early Triassic to the Cretaceous is preserved in the (upper) Lechtal nappe, which covers the Rhätikon, the Lechquellen and the Arlberg area. Gypsum beds whichin the Raibl Formation acted as a detatchment horizon for the (lower) Allgäu nappe, which thus contains only Upper Triassic to Cretaceous sediments. In Vorarlberg the latter can be found in the eastern Grosswalsertal and the Hochtannberg area (OBERHAUSER, 1998). These two nappes roughly correspond to a liassic facies diffentiation. Red nodular limestones of the Adnet Formation are characteristic for the Lechtal nappe, whereas the Allgäu nappe containes predominantly well bedded marl-limestone alternations of the Allgäu Formation (fig 3).

Lechtal Nappe – Lorüns

Lorüns Quarry (figs. 4-8)

A complete profile from the Upper Triassic (Rhaetian) to the Upper Cretaceous (Cenomanian / Turonian) of the Lechtal Nappe is exposed in the Lorüns Quarry (cf. BERTLE et al., 1979; FURRER in OBERHAUSER, 1986). The successsion starts with alternating limestones and marls, including coral carpets and *Megalodon* beds, of the Ramoz Member (Kössen Formation) and the informal Zirmenkopf limestone (partly corresponding to the "Oberrhätkalk" in earlier publications; FURRER, 1993). The succeeding alternation of shales, marls and marly limestones represents the (informal) Schattwald beds. It is dated as early Hettangian.

Limestone sedimentation started again with the (informal) Lorüns oolite, a massive to poorly bedded oncoid / ooid packstone to grainstone (Text-Fig. 3). The original micritic matrix is commonly recristallised. Euhedral dolomite rhomboeders are concentrated along stylolithic seams. Macrofossils are scarce. The term "oolite" is misleading. Ooids dominate only in the uppermost part of the unit. They are commonly outranged by onkoids. In former studies this unit was regarded as a special development of the "R(h)ätoliaskalk" (e.g. HELMCKE, 1974; DOERT & HELMCKE, 1976; UCHDORF, 1984: "Oolith", "Onkoid-Mikrit" with Involutina liassica JONES). A badly preseved ammonite points to Early Hettangian (FURRER, 1993). However, holoturian sclerites indicate a still Triassic age (BAUER, 1997). Geocemical data confirm the liassic interpretation of the ammonite (McRoBerts et al., 1997).

The Lorüns oolite is succeeded by thickly bedded, micritic limestone of various colours. Pressure solution is common. In spite of the simmilar microfacies it differs from

Figure 1: Geological overview of Vorarlberg.

typical Adnet Limestone by the absence of a pronounced nodular fabric and a less red or even (greenish) grey colour. Its base shows some influence of the preceeding unit (crinoid microonkoid packstone; intermittent facies between microfacies [= MF] 24: microonkoid packstone and MF 16: crinoidal packstone / wackestone [after Вöнм. 1992]). The main part of the unit is dominated by MF 5b: spiculitic microbioclastic wackestone. Additionally spots of MF 9: spiculitic stromatactis wackestonne and layers enriched in crinoid debris (comparable to MF 10: ostracod foraminifera brachiopod packstone or MF 25a: cronoidal packstone) occure. At the top MF 6: nodular microbioclastic Wackestone becomes more common. The upper boundary is difficult to define. The onset of a intensive red colour and a pronounced nodular fabric would be a good criterium for field mapping. However, FURRER (1993) defined the boundary at the top of the last layer enriched in crinoid debris. The grey, slightly nodular beds above this layer are allready regarded as part of the Adnet Limestone.

In previous studies this unit was treated very controversely. It is not shown in the lithostratigraphic columns by FURRER (in BERTLE et al., 1979; and Fig. A25 in OBERHAUSER, 1986). However, in the text he mentioned "Kalke, die mit lokal angereicherten Crinoidenresten Anklänge an die Hierlatzkalk-Fazies zeigen" (=limestone, locally enriched in criMEISTER, C. & FRIEBE, J.G., Austroalpine Liassic Ammonites ...

Figure 2: The two main nappes of the studied area in the Northern Calcareous Alps of Vorarlberg.

noid debris, with some similarities to Hierlatz Kalk facies), which have a transitional position between the Lorüns oolite beneath and the Adnet Kalk above. Later he denominated this unit as Hierlatz Kalk and defined the top of the last crinoidal bed as its upper boundary (FURRER 1993). According to BÖHM (1992), however, the Hierlatz Kalk is represented exclusively by sparitic microfacies without larger amounts of micritic matrix. He introduced the term Hierlatzbasiskalk for massive to thickly bedded, brownish grey micrite with sponge spicula and brachiopods (MF 9: spicula stromatactis wackestone), but without significant crinoid debris beneath Hierlatz kalk s. str. (BÖHM, 1992: 63). This name was applied by LANTSCHNER (1994) for wacke- to packstones with crinoid ossicles and sponge spicula as major constituents beneath the Adnet Kalk in the Arlberg region (Vorarlberg/Tyrol). In some former

Chern C		@ 04 Sp	stracods 🕀 Coral xonge spicules & Prints	 Stromatolite Pebbles Dessication craks 		
題	Mart	Belemnites	Se Se	a Urchin 💿 Brachiop traminifera 🗇 Biya/yia	oods V Cracks O Oolds	
井井	Limestone	Ammoniues			Nodular structu	ne
	「日本	1000 H	a) v	Zirmenkopf Limestone	RHETIAN	Trias
	1110 000		Sv.	Schattwalder Schists	2	-
		B B B B B B B B B B B B B B B B B B B	00			
	E.		OV O	Lorüns Oolite	HETTANGIAN	
			V 0 0 m			
	田田	0.000	3 3000	runer Ennestone	?	RA
			133	Adnet Limestone	SINEMURIAN	
10 m				Old Allgau Schists	?	SIC
		000-			PLIENSBACHIAN	
		00000000000000000000000000000000000000	- @		- TOARCIAN-	
	-	0000	1	"Condensed Series"	KIMMERIDGIAN	-

Figure 3. Stratigraphic setting of the study area.

studies that unit was regarded as part of the R(h)ätoliaskalk" and/ or the "Unterlias-Rotkalk" (e.g., HELMCKE, 1974; UCHDORF 1984: "Algen-Stromatolithe", Abb. 68). In this paper the lower part of the limestone described above is (informally) called Hierlatz Bsiskalk. In accordance with Fur-RER (1993) its upper boundary is defined with the uppermost layer with significant amounts if crinoid ossicles. The overlying beds until the onset of red colour are informally regarded as transitional facies between Hierlatz Basiskalk and Adnet Kalk s.str (fig. 3) They correspond approximately to the "Bunte Lias-Cephalopodenkalke" and "Grauer Liasbasiskalk" of TOLLMANN (1976).

Figure 4: Geographical map showing the locations of the outcrops in Brand and Lorüns area.

The overlying 6 to 10 meter thick Adnet Kalk (Sinemurian; FURRER,1993) is characterised by an intensiv red colour and a pronounced nodular fabric. MF 6: nodular microbioclastic wackestone dominates. The irregular bedding planes are covered by red marl (enhanced by pressure solution). Localy wackestone is intercalated by small channels with crinoid ossicles. Crinoid debris may also be concentrated as solution residual. Due to pressure solution abundant ammonite steinkerns are only badly preserved.

The nodular limestone is succeeded by thinnly bedded, red to grey limestone of the Allgäu Formation. It is characterized by the common occurance of silex nodules, calciturbidites and bioturbated layers ("Fleckenmergel"). Ammonites often show strong flattening. This 20 to 30 meter thick unit was informally called Bunte Allgäu-Schichten by FURRER (1993). It corresponds to the Altere Allgäu-Schichten of JACOBSHAGEN (1965).

The upper boundary of the Allgäu Formation is a condensed section. Its lower part contains abundand ammonites and nautilids covered by stromatolitic crust and encrusting foraminifera of the Toarcian. Iron and manganese give them a dark red, green, or black colour. The top of the condensed section is a hardground with corroded Kimmeridgian ammonites. Cretaceous shales ("Kreideschiefer Serie") form the top of the exposed stratigraphic column. They are dated as upper Aptian to lower Turonian (FURRER in BERTLE et al., 1979).

Lechtal Nappe – Lechquellen area (fig. 2)

Steinernes Meer (figs. 9, 10; see p.16)

A similar succession is exposed in the Lechquellen area at the eastern end of Steinernes Meer. The profile starts with greyish, greenish to pinkish limestones denominated herein as "transitional facies" between Hierlatz Basiskalk and Adnet Limestone s.str. ("Bunter Liaskalk" of previous workers). It is characterised by spiculitc wackestones with echinodermal debris, foraminifera and ostracodes. Pressure solution resulted in flaser bedding and microstylolites, but not in a nodular fabric. However, based on the microfacies FURRER (1993) allready included similar sediments of the Lorüns quarry into his Adnet Formation. As in Lorüns this unit is succeeded by rather thinly bedded, red nodular limestone (Adnet Formation s.str.). The typical microfacies is a bioclastic wackestone with spicula, foraminifera, ostracods and echinodermal debris (BAUER, 1997).

Weg zum Gehrengrat (see p.16)

Steinernes Meer and Spullersee (see below) are separated by a mountain crest called Gehrengrat. According to the collection lables some ammonites from the Adnet Formation have been found along the path leading to this crest

Figure 5: Lithological profile in Lorüns 1 and ammonite ranges.

Figure 6: Lithological profile in Lorüns 2 and ammonite ranges.

* *

F

0

TTP

€ 0

ய

uninut o

~~

₫Ъ

×

×

×

×

50 cm

F

Phylloceras sp.

Fuciniceras gr. isseli-brevispiratum F. (Matteiceras) geometricum Partschiceras gr. striatocostatum

Amaltheus stokesi

Phylloceras gr. frondosum-hebertinum

Juraphyllites libertus

J. (Harpophylloceras) eximius

110

109

108

107

F

100

Lytoceras ovimontanum

Lytoceras sp.

Amaltheus margaritatus juv.

Harpoceratinae

Figure 7: Lithological profile in Lorüns 3 and ammonite ranges.

1 m

Figure 8: Views of Lorüns quarry. Left - Sinemurian (mainly Obtusum Zone), right - Upper Sinemurian to Pliensbachian.

("Weg zum Gehrengrat"). East of the crest - in the Spullersee area - the path crosses nearly exclusively Cretaceous marls. Thus this location can be regarded as identical to Steinernes Meer.

Coroniceras sp. 210-11 (11), 210-11 (12) Agassiceras ? sp. 210-11 (13) Remark: Lower Sinemurian

Formaletsch (fig. 9)

All specimens originate from red nodular limestone of the Adnet Formation, which can be found east, north and west of Formaletsch, a small peak between Formarinsee and Steinernes Meer. The stratigraphic position thus corresponds in part to Steinernes Meer.

Coroniceras sp. P13402 Asteroceras sp. P7242 Echioceras gr. quenstedti (SCHAFHĂUTL) P7245 Remark: Lower to Upper Sinemurian.

Formarinsee (fig. 9)

Eingemauerte or Rothorn – probably not Seeköpfe: no further information available, Arietitidae *Coroniceras* sp. 210-12 (5, 11, 12) *Uptonia jamesoni* (SOWERBY) E *Tropidoceras* sp. E *Partschiceras* gr. *striatocostatum* (MENEGHINI) E *Juraphyllites libertus* (GEMMELLARO) E *Lytoceras* gr. *fimbriatum* (SOWERBY) É *Remark*: Sinemurian to Lower Carixian (Jamesoni - ? Ibex Zones).

Rote Wand - Rothorn - Eingemauerte (fig. 9)

North of the Formarinsee several mountains owe their names to the red liassic limestone. The most striking morphological feature is the nearly vertical cliff of the Rote Wand. There the Adnet Formation forms a small band in the upper part of the cliff. It might be possible to find ammonites in the scree, but this area was not sampled by FUSSENEGGER.

Accessable outcrops both of Adnet and Allgäu Formation, respectively, can be found southwest of the Rote Wand in the flanks of the Rothorn. Serveral specimens in the FUSSENEGGER collection were found there (another Rothorn is located east of Rote Wand). Both formations also crop out in an area marked in old maps as Eingemauerte. Lables and determination lists by BIESE give this location as "Eingemauerte südlich Rothorn". Specimens from the collection VINCENZ originate from the vast scree cones north and northeast of the Rothorn and belong to Adnet Formation and Allgäu Formation.

Rothorn (fig. 9)

Arietites sp.

Asteroceras gr. retusum (REYNES) sensu SACCHI-VIALLI & CANTALUPPI P1583 Asteroceras aff. acceleratum HYATT 210-4(7) Metophioceras sp. 210-11(2) Eparietites glaber GUERIN-FRANIATTE E20 Eparietites fowleri (BUCKMAN) 210-4 Eparietites sp. P13400 Schlotheimiidae P7233 Echioceras gr. quenstedti (SCHAFHÄUTL) P1582, P7237 Paltechioceras gr. rothpletzi (Böse) P2452 Epideroceras gr. lorioli (Hug) P1793 Epideroceras sp. P1591, P1627 Eoderoceratidae Uptonia sp. P7150 Uptonia jamesoni (Sowerby) Metaderoceras gemmellaroi (LEVI) P7149 Phylloceras gr. frondosum - hebertinum (REYNES) Partschiceras gr. striatocostatum (MENEGHINI) P13368 Juraphyllites nardii (MENEGHINI) Juraphyllites sp. P7232 Lytoceras aff. fimbriatoides GEMMELLARO Lytoceras gr. fimbriatum (SOWERBY) P13370 Lytoceras sp. P13369, P7148 Lytoceratidae

Remark: The age corresponds to an interval situated between the Lower Sinemurian until the Mid-Carixian (Ibex Zone).

Eingemauerte (fig. 9)

Arietitidae

Arietites sp. E Asteroceras gr. saltriensis (PARONA) P7225 Eparietites aff. denotatus (SIMPSON) juv. P003, 210-9 Angulaticeras sp. 210-6(1), 210-4(14) Gleviceras aff. boucaultianum (DUMORTIER) sensu PIA 210-4(17)Epideroceras sp. P7755, E Echioceras gr. quenstedti (SCHAFHÄUTL) 210-11 Paltechioceras sp. E Eoderoceratidae Platypleuroceras brevispina (SOWERBY) P7131 *Platypleuroceras rotundum* (QUENSTEDT) Uptonia jamesoni (Sowerby) P13355, P13361, P7134, E Tropidoceras gr. masseanum (d'ORBIGNY) 210-8 Tropidoceras sp. P7127, P7139 Acanthopleuroceras sp. P7130 Metaderoceras gemmellaroi (LEVI) 210-3 Metaderoceras sp. L. (Liparoceras) aff. striatum (REINECKE) sensu SCHRÖDER P7123 Liparoceras sp. P7122 Fuciniceras sp. P7128 *Phylloceras* gr. *frondosum - hebertinum* (REYNES) Phylloceras sp. 210-9b Calliphylloceras bicicolae (MENEGHINI) E

Partschiceras gr. striatocostatum (MENEGHINI) P13356, P13363, P13364, P13365 Partschiceras sp. P13352 Juraphyllites nardii (MENEGHINI) P7125 Juraphyllites libertus (GEMMELLARO) P7124, P7126 Juraphyllites aff. limatus (ROSENBERG) 210-9a J. (Harpophylloceras) eximius (HAUER) P13351, P13357 Juraphyllites sp. P7138, P7121 Tragophylloceras undulatum (SMITH) Lytoceras gr. fimbriatum (SOWERBY) E Lytoceras sp. P13360, P13349, P13358, P13359 Remark: It corresponds to a period between the Upper Sinemurian (Obtusum Zone) until the Lower Domerian (Margaritatus Zone).

Klesenza – Rothorn (fig. 9)

One specimen - probably originating from the Allgäu Formation was found east of Rote Wand in the Klesenza - Rothorn (II) area

Epideroceras sp. P1788 Remark: Upper Sinemurian.

Spullersee - Goppelspitze (fig. 9)

Liassic sediments (red nodular limestone and "Fleckenbergel") can be found east of the Spullersee at the Goppelspitze, as well as on the southwestern shore near the dam. "Fleckenmergel" of the Allgäu Formation can also be found north of the lake. FUSSENEGGER sampled in this area and all these ammonites have been determined by Walter

Figure 9: Geographical map showing the locations of the outcrops in Dalaas and Zug area.

Figure 10: Lithological profile in Steineres Meer and ammonite ranges.

BIESE. The specimens from the collection of Joe VINCENZ have been found in the same area.

Goppelspitze (fig. 9)

Microderoceras aff. gigas (QUENSTEDT) P1554 Arnioceras rejectum Fucini P1564 Arnioceras sp. P1769 Paltechioceras gr. tardecrescens (HAUER) P13392 Paltechioceras charpentieri (SCHAFHÄUTL) P2311-3 Epideroceras gr. lorioli (Hug) P2311-2 Platypleuroceras gr. brevispina (Sowerby) P1547 Uptonia jamesoni (Sowerby) P7797, P7201 Tropidoceras sp. P7203 Metaderoceras sp. P7052 Aegoceras sp. P7217 Fuciniceras gr. isseli (FUCINI) brevispiratum (FUCINI) P7046, P7693. 211-3 Fuciniceras gr. cornacaldense (TAUSCH) P8659, P7048 Fuciniceras sp. P7205, P7045, P7044, P7700, P13232, P13235 Phylloceras gr. frondosum - hebertinum (REYNES) P1527, P13390, P13391, P11141 Calliphylloceras bicicolae (MENEGHINI) P1552, P13394, P7211, P7212 Zetoceras sp. P7213 Partschiceras gr. striatocostatum (MENEGHINI) P13233, P13230, P13229, P7675, P2311-1 Partschiceras sp. P1565, P8658, P13386 Juraphyllites gr. diopsis (GEMMELLARO) P2662 Juraphyllites sp. P7208, P13395, P13396 Tragophylloceras ibex (QUENSTEDT) P7050 Lytoceras sp. P7214 *Remark*: The age of the fauna corresponds to a period including the Upper Sinemurian to Lower Domerian (Subnodosus Subzone).

Spullersee (fig. 9; see p. 16)

Epideroceras sp. Platypleuroceras amplinatrix (QUENSTEDT) P1561 Uptonia sp. Tropidoceras aff. stahli (OPPEL) P2675 Tropidoceras sp. Aegoceras maculatum (YOUNG & BIRD) 211-2, 211-2 Fuciniceras gr. celebratum (FUCINI) 211-2, 211-10 Lytoceras sp. P376 Remark: This fauna indicates an age between (?) Upper

Sinemurian until Domerian (Stokesi Subzone).

Dalaaser Schütz (fig. 9; see p. 16)

"Fleckenmergel" of the Allgäu Formation forms a small cliff at Dalaaser Schütz between Gehrengrat and Spullersee. The only visible fossils in the scree were two irregular echnoids in marly limestone. Ammonites were discovered during size reduction of this block.

Amaltheus margaritatus de MONTFORT P8667 Pleuroceras gr. solare (PHILLIPS) P8666 Juraphylites sp. Phylloceras sp. Lytoceras sp. Remark: Domerian age (Gibbosus to Apyrenum Subzones).

Lechtal Nappe – Rätikon (fig. 2)

Sarotlatal - Alpe Sarotla – Sarotlahütte (Text-Fig. 4)

The Sarotlatal is narrow and steep valley in the Rätikon northeast of Brand which cuts a large, notheast-southwest striking synclinal stucture. Thus Liassic sediments can be found both near the entrance of the valley and in the mountainous area farther up. FUSSENEGGER predominantly sampled the southeastern flank of the synclinal. There he distinguished two main localities: Alpe Sarotla or Unter Sarotlaalpe denominates outcrops at the northeastern valley flank, where both red cephalopod limestone of the Adnet Formation and "Fleckenmergel" occur. Sarottlahütte or Obere Sarotlaalpe includes outcrops of "Fleckenmergel" west of Sarotlahütte. In the exhibition these outcrops were also called Wildberg. Both locations are marked in the geological map of the Rätikon (HEISSEL at al. 1965).

Alpe Sarotla / Untere Sarotlaalpe (fig. 4)

(Adneter Kalk and Fleckenmergel) Echioceras gr. quenstedti (SCHAFHÄUTL) P7175 Aegoceras maculatum (YOUNG & BIRD) P13772 Calliphylloceras bicicolae (MENEGHINI) P13421, P13423 Partschiceras retroplicatum (ROSENBERG) sensu BETTONI P.7281 Juraphyllites sp. P7717 Tragophylloceras undulatum (SMITH) P7722 Lytoceras sp. P13419 Remark: Upper Sinemurian (Raricostatum Zone) to Upper Carixian (Maculatum Subzone).

Sarotlahütte / Obere Sarotlaalpe / Wildberg (fig. 4)

(Fleckenmergel)

No specimens of FUSSENEGGER's collection from this locality were included in the study. However, Joe VINCENZ found several well preserved ammonites in that area in the scree north of Sarotlahörner.

Asteroceras aff. suevicum (QUENSTEDT) P2770 Asteroceras sp. P2767 Paltechioceras favrei (HUG) P1613, P2347

Warth area.

Gleviceras gr. subguibalianum (PIA) P1607 Phylloceras gr. frondosum - hebertinum (REYNES) P2747 Lytoceras sp. P2778 Remark: Upper Sinemurian (Obtusum to Raricostatum Zones).

Additional material:

Epophioceras gr. landrioti (d'ORBIGNY) 393

Uptonia jamesoni (Sowerby) E

Prodactylioceras sp.

Phylloceras gr. frondosum - hebertinum (REYNES)

Juraphyllites sp.

Lytocerataceae

Remark: Lower Sinemurian to Upper Carixian (Davoei Zone).

Sonnenlagant (fig. 4; see p. 16)

Only a small outcrop of "Fleckenmergel" is exposed northwest of Obere Sonnenlagant-Alpe. In the geological map of the Rätikon it is marked as a fossil location (HEISSEL et al., 1965). The path to Mottakopf crosses this outcrop.

Partschiceras aff. retrofalcatum (STUR in GEYER) P1495 Remark: Sinemurian - Pliensbachian

Oberzalim (fig. 4; see p. 16)

Joe VINCENZ gave the location of several, in part strongly silizified fossils of the Allgäu Formation (see also FURRER, 1993) as "Oberzalim" The area between Oberzalimalpe and Oberzalimkopf represents Hauptdolomit and Kössen Formation (HEISSEL et al., 1965). Small occurances of "Fleckenmergel" are restricted to the area northeast of Panüeler Kopf, larger occurances of "Fleckenmergel" and Radiolarite can be found around Wildberg. Scree from both localities reaches the Oberzalimhütte approximately 1000 meters below the two peaks.

Paltechioceras charpentieri (SCHAFHÄUTL) P.1497 Remark: Upper Sinemurian (Macdonnelli Subzone).

Allgäu nappe (fig. 2; see p. 16)

Whereas red nodular limestone of the Adnet Formation is a common feature in the Lechtal nappe, in the Allgäu nappe it occurs mainly in one location on the path from Kalbelesee to Körbersee. There the overall successon is very similar to Lorüns, but strongly reduced in thickness. Light grey oolite (Lorüns Oolith) is overlain by greyish wackestone locally enriched in crinoid debris (Hierlatz Basiskalk) and greyish to greenish wackestone of the "transitional facies" Red nodular limestone forms the top of the succession (Adnet Formation). Ammonites are not yet known from this locality. Most other outcrops of liassic sediments are restricted to the Allgäu Formation. They were described in detail by JACOBSHAGEN (1965).

Schröcken - Auenfeld - Auenfelder Alpe (fig. 11)

"Lias-Fleckenmergel" of the Allgäu Formation is the main lithological unit in the source area of the Bregenzerache between Schröcken and Auenfelder Alpe. According to the collection numbers, FUSSENEGGER distinguished two different locations, but confused them when he presented the fossils in his museum. No determination list of BIESE is preserved.

Galaticeras gr. harpoceroides (GEMMELLARO) P13263 Eoderoceras gr. armatum (SOWERBY) FS40 Echioceras gr. quenstedti (SCHAFHÄUTL) P13261, P7103, P7091 Paltechioceras charpentieri (SCHAFHÄUTL) P7075, P7082 Paltechioceras gr. tardecrescens (HAUER) P7080 Leptechioceras sp. P7095 Gleviceras gr. subguibalianum (PIA) SA25, FS60 Epideroceras gr. lorioli (Hug) P7098 Platypleuroceras gr. brevispina (SOWERBY) P13260 Platypleuroceras rotundum (QUENSTEDT) 211-7(4) Platypleuroceras sp. Uptonia jamesoni (SOWERBY) P13268, P7093, P7109 Uptonia bronni (ROEMER) P6708 Tropidoceras gr. masseanum (d'ORBIGNY) SA50 Tropidoceras rotundum (FUTTERER) P7083 Tropidoceras sp. P7105 Tropidoceras erythraeum (GEMMELLARO) P7084, P7076 Metaderoceras gemmellaroi forme kondai (GECZY) P7107 Aegoceras maculatum (YOUNG & BIRD) P13270, P7088 Prodactylioceras gr. davoei (Sowerby) 211-7 Amaltheus stokesi (Sowerby) P6707 Arieticeras gr. algovianum (OPPEL) juv. P13275, P13280 Arieticeras sp. P13279, P13285, P7090, P13283, P7102, P13282, P13284 Phylloceras gr. frondosum - hebertinum (REYNES) P13259, P13242, P13249, P13257, P13252, P13258, P13243, P13244 Partschiceras gr. striatocostatum (MENEGHINI) P6713, P13255, P13254, P13251 Partschiceras retroplicatum (ROSENBERG) sensu BETTONI P13250, P7078 Zetoceras sp. P13245 Juraphyllites aff. limatus (ROSENBERG) P13273 J. (Harpophylloceras) eximius (HAUER) P13276 Juraphyllites sp. P13274 Lytoceras sp. P13265 Lytoceras aff. fimbriatoides GEMMELLARO P7089 Derolytoceras tortum (QUENSTEDT) P7077 Remark: The fauna indicates an age between the Upper Sinemurian (Raricostatum Subzone) to Mid-Domerian (Gibbosus Subzone).

Biberacher Hütte (fig. 11; see p. 16)

The immediate surroundings of Biberacher Hütte are characterised by "Fleckenmergel", whereas a relatively large outcrop of Adnet Formation can be found a little to the northeast. BIESE stated in his determination lists that the fossils originate from "cephalopod limestone", but gave no further information about the exact location. Other specimens in the collection clearly represent the Allgäu Formation.

Oxynoticeras aff. soemanni (DUMORTIER) P7165 Arieticeras aff. algovianum (OPPEL) P17107, P17108 Arieticeras gr. algovianum (OPPEL) juv. 210-12(1) Remark: Upper Sinemurian (Oxynotum Zone) to Mid-Domerian (Gibbosus Subzone).

Giglturm (fig. 11)

Both Adnet and Allgäu Formations make up the summit of Giglturm. There is no information on the exact location available.

Ectocentrites sp. Remark: Probably Sinemurian.

Diverse or unknown localities:

Asteroceras aff. margarita (PARONA) Eparietites aff. denotatus (SIMPSON) juv. P003 Paltechioceras favrei (HUG) P2347 (Braz: alluvial debris) Tropidoceras rotundum (FUTTERER) 210-10 Acanthopleuroceras maugenesti (d'ORBIGNY) P2435 Zetoceras zetes (d'ORBIGNY) 210-11 (Weg zum Gehrengrat or Rothorn) Derolytoceras tortum (QUENSTEDT) P247

3. Systematic Paleontology

Some of the taxa described herein have already been analyzed in our previous work. Consequently detailed descriptions and discussions will not be repeated in the present study. Only some remarks will be added and we refer to MEISTER (1986, 1989), DOMMERGUES & MEISTER (1987 a/b, 1989 a/b, 1990a), MEISTER & LOUP (1989), DOMMERGUES et al. (1990, 1994, 1995, 1997) BLAU & MEISTER (1991), MEISTER & BÖHM (1993), ALKAYA & MEISTER (1995) and GECZY & MEISTER (1998). By contrast original taxa will be more acutely discussed.

Remark: We follow the taxonomical hierarchy proposed by DOMMERGUES (2002).

Class: Cephalopoda Cuvier, 1798

Subclass: Ammonoidea ZITTEL, 1884 Order: Phylloceratida ARKELL, 1950 Superfamily: Phylloceratoidea ZITTEL, 1884 Family: Phylloceratidae ZITTEL, 1884 Subfamily: Phylloceratinae ZITTEL, 1884

Genus: *Phylloceras* SUESS, 1865 Type species: *Ammonites heterophyllus* SOWERBY, 1820.

Phylloceras cylindricum (Sowerby, 1833) pl. 1, fig. 4

1833 Ammonites cylindricum Sowerby, 1812-46, p. 333, fig. 62. 1901 Phylloceras cylindricum (Sowerby). — FUCINI, Pl. 2, Fig. 6-8.

- 1901 Phylloceras cylindricum var. bielzii HERB. FUCINI, 1901-05, Pl. 3, Fig. 1-4.
- 1994 *Phylloceras cylindricum* (Sowerby). Dommergues, Ferretti & Meister, Pl. 1, Fig. 1-2.
- 1995 *Phylloceras cylindricum* (Sowerby). Dommergues, Meister & Böhm, Pl. 1, Fig. 3.
- 1996 Geyeroceras cylindricum bielzii (HERBICH). POPA & PATRULIUS, Pl. 17, Fig. 1.
- 1996 *Geyeroceras cylindricum* (Sowerby). Рора & Patrulius, Pl. 17, Figs. 3, 4.
- ? 1996 Geyeroceras cylindricum compressum (Fucini). Рора & Patrulius, Pl. 16, Fig. 7.
- 1999 Geyeroceras cylindricum (Sowerby). RAKUS, P. 347, text-fig. 7.
- 1999 *Geyeroceras cylindricum* (Sowerby). Вöнм et al., Pl. 25, Fig. 6.
- 2000 Geyeroceras cylindricum (Sowerby). Kment, Pl. 2, Fig. 1.

Several samples of *Phylloceras*, associated with *Arnioceras*, are characterized by parallel sides and a quite narrow, rounded but less convex ventral area. They were collected in Steinernes Meer. Well known in the Mediterranean Province, *P. cylindricum* (SOWERBY) has already been described from the Austrian Upper Austroalpine by GEYER (1886), HAUER (1854a) and recently by DOMMER-GUES et al. (1995) and BLAU (1998).

Age and distribution: According to RAKUS & LOBITZER (1993: 923) the species occurs from early Hettangian up to Upper Sinemurian. The species seems to be more frequent around the late Hettangian (early Sinemurian) and quite well represented until the Raricostatum Zone. It is known from the Tethyan Realm.

Phylloceras gr. frondosum-hebertinum (REYNES, 1868) pl. 1, figs. 1–3

- 1868 Ammonites Hebertinus REYNES, Pl. 2, Fig. 3.
- 1868 Ammonites frondosus REYNES, Pl. 5, Fig. 1.
- 1884 Phylloceras Meneghinii GEMMELLARO, Pl. 2, Fig. 13-17.
- 1989 *Phylloceras frondosum* (REYNES). MEISTER, Pl. 2, Fig. 2, non Fig. 1; with synonymy.
- 1989 *Phylloceras hebertinum* (REYNES). MEISTER, Pl. 2, Fig. 5, 7; with synonymy.
- 1993 *Phylloceras* gr. *frondosum* (Reynes). Meister & Böнм, Pl. 2, Fig. 1, 2.
- 1996 *Phylloceras* gr. *hebertinum* (Reynes)-*frondosum* (Reynes). — Dommergues, Ferretti & Meister, Pl.1, Fig. 4.
- 1995 *Phylloceras frondosum* (REYNES). ALKAYA & MEISTER, Pl. 1, Fig. 1, 2.
- 1995 *Phylloceras hebertinum* (REYNES). ALKAYA & MEISTER, Pl. 1, Fig. 6.
- 1996 *Phylloceras frondosum* (Reynes). Popa & Patrulius, Pl. 3, Fig. 2.
- 1996 Phylloceras hebertinum (Reynes)-frondosum (Reynes). Geczy & Meister, Pl. 1, Fig. 1-4.

Beiträge zur Paläontologie, 28, Wien, 2003

1, 2. 2000 Phylloceras frondosum (Reynes). — Joly, Pl. 4, Fig. 10.

2000 Phylioceras hebertinum (REYNES). — Joly, Pl. 4, Fig. 11.

Many specimens of *Phylloceras* from Vorarlberg well correspond to the *Phylloceras frondosum-hebertinum* (REYNES) group which is herein understood as widely variable mainly in regard of the whorl section. With their quite compressed form most of the Austrian specimens are closer to the *Phylloceras frondosum* (REYNES) morphological pole. Only few specimens show a more globular whorl section close to the *P. hebertinum* (REYNES) pole.

Age and distribution: In Lorüns, they are associated with a characteristic fauna of the Lower Domerian (Isseli-Brevispiratum Horizon). Present in the Western Tethys, *Phylloceras hebertinum* (REYNES)-*frondosum* (REYNES) is also recorded from the southern part of the Euroboreal Realm (e.g. Causses). The total range is not known with precision but it includes the Upper Sinemurian until the Lower Toarcian.

Remark: Not well preserved specimens from bed 100a of Lorüns and from bed 10 of Dalaaser Schütz are here attribute to *Phylloceras* sp.

Genus: *Calliphylloceras* SPATH, 1927 Type species: *Phylloceras disputabile* ZITTEL, 1869.

Calliphylloceras bicicolae (MENEGHINI, 1874) pl. 1, figs. 5–7

1874 Phylloceras Bicicolae MENEGHINI, p. 106.

- 1989 *Calliphylloceras bicicolae* (MENEGHINI). MEISTER, Pl. 2, Fig. 3, 4 with synonymy.
- 1993 *Calliphylloceras bicicolae* (Мемеднімі). Меізтек & Вонм, Pl. 1, Fig. 2, 5.
- 1995 Calliphylloceras bicicolae (Meneghini). Alkaya & Meister, Pl. 2, Fig. 3-5.
- 1996 Calliphylloceras bicicolae (Meneghini). Popa & Patrulius, Pl. 10, Fig. 4.
- 1997. Calliphylloceras bicicolae (Meneghini). Dommergues, Meister & Schirolli, Pl. 1, Fig. 1.
- 1998 Calliphylloceras bicicolae (Meneghini). Geczy & Meister, Pl. 1, Fig. 10.
- 2000 Calliphylloceras bicicolae (Meneghini). Joly, Pl. 14, Fig. 1-5.

Well distributed in the Vorarlberg area, typical constricted Phylloceratidae attributed to *Calliphylloceras bicicolae* (MENEGHINI) have been recorded from the outcrops of Formarinsee where this taxon is only associated with *Phylloceras* and Juraphyllitidae. They are also known from Spullersee and Lorüns without further information available. In Lorüns this species occurs together with *O. gr. oxynotum* (QUENSTEDT) indicating the Oxynotum Zone. Age and distribution: The whole interval of existence of

C. bicicolae (MENEGHINI) could correspond to a period of uncertainty from the (? already Lower) Upper Sinemurian up to the Upper Domerian perhaps still comprising the Lower Toarcian.

This species is well known in the Tethyan Realm with the exception of the extreme part of the western Tethys (High Atlas) and can be observed in the southern part of the Euroboreal Realm (Causses).

Genus Calaiceras Kovács, 1939 Type species: Phylloceras calais MENEGHINI, 1874.

Calaiceras calais MENEGHINI, 1874 pl. 1, fig. 10

1867-1881 A. (Phylloceras) calais MENEGHINI, Pl. 3, Fig. 1, 2.

- 1971 Calaiceras calais (MENEGHINI). FANTINI SESTINI, Pl. 31, Fig. 1.
- 1987 Calaiceras calais (MENEGHINI). BRAGA & RIVAS, Pl. 2, Fig. 1.
- 1993 Р. (Calaiceras calais) (Менедніні). Меізтег & Вонм, Pl. 1, Fig. 1.
- 1998 Calaiceras calais (MENEGHINI). GECZY & MEISTER, Pl. 1. Fig. 6, 8.
- ? 2001 Calaiceras calais (MENEGHINI). VENTURI & FERRI, P. 66.

Two constricted phragmocones with a diameter of 80 mm and 30 mm of diameter, respectively, are recorded from Lorüns. They are characterized by a thick quadrate whorl section, parallel flanks and a not well expressed umbilicus edge. On this basis, they are attributed without doubt to the Calaiceras calais (MENEGHINI) group. Hantkeniceras hantkeni (SCHLOENBACH) differs only by the presence/ absence of constriction (GECZY & MEISTER, 1998).

Age and distribution: C. calais (MENEGHINI) is present in the Western Tethys (excepted High Atlas) and far East (Pontides and Tibet). Its range is comprised between Upper Sinemurian (Raricostatum Zone) and Toarcian (lower part ?).

Genus: Zetoceras Kovacs, 1939 Type species: Ammonites zetes d'ORBIGNY, 1850.

Zetoceras zetes (d'ORBIGNY, 1850) pl. 2, figs. 1, 3, 5

- 1845-1849 Ammonites heterophyllus amalthei QUENSTEDT, Pl. 6. Fig. 1.
- 1850 Ammonites zetes d'ORBIGNY, P. 247.
- " 1908 Phylloceras pseudo-zetes Fucini, P. 12.
- 1977 Zetoceras zetes (d'Orbigny). Wiedenmayer, Pl. 5, Fig.

" 1977 Zetoceras pseudozetes (Fucini). — Wiedenmayer, Pl. 5, Fig. 9 - 10: with synonymy. 1993 Phylloceras (Zetoceras) gr. zetes (d'Orbigny). — MEISTER

& Вöнм, Pl. 1, Fig. 3, 4.

- 1994 Zetoceras zetes (d'Orbigny). Dommergues, Ferretti & MEISTER, Pl. 1, Fig. 3.
- 1998 Zetoceras zetes (d'ORBIGNY). GECZY & MEISTER, Pl. 2, Fig. 2, 3; Pl. 3, Fig. 1, 4.
- 2000 Zetoceras zetes (d'ORBIGNY). JOLY, Pl. 10, Fig. 6; Pl. 12, Fig. 1, 2.

We group here some Zetoceras characterized by a quite elliptic whorl section with flat flanks and a narrow umbilicus. Zetoceras zetes (d'ORBIGNY) is well distributed in the Rotkalk facies of the Upper Austroalpine.

One specimen from Lorüns shows a wider umbilicus but it remains compressed and probably belongs to the variability of the group.

Age and distribution: Known from the Lower Sinemurian Z. zetes (d'ORBIGNY) is still present in the Upper Pliensbachian or perhaps still in the Lower Toarcian. Its geographical repartition is wide: Tethys (excepted High Atlas) and in some regions of the Euroboreal Realm (England, Germany).

Zetoceras zetes var. oenotrium (FUCINI, 1901) pl. 2, fig. 2

- 1901 Phylloceras oenotrium FUCINI, Pl. 5, Fig. 8, 9; Pl. 6, Fig. 1.
- 1977 Zetoceras oenotrium (FUCINI). WIEDENMAYER, Pl. 6, Fig. 1 with synonymy.
- 1982 Phylloceras (Zetoceras) oenotrium (FUCINI). ALKAYA, Pl. 2, Fig. 4-6.
- 1991 Phylloceras (Zetoceras) oenotrium (FUCINI). COPE, Pl. 1, Fig. 10, 11.
- 1993 P. (Zetoceras) zetes var. oenotrium (FUCINI). MEISTER & Вöнм, Pl. 2, Fig. 3.

The Zetoceras collected in Lorüns is characterized by an elliptical, compressed whorl section. This feature easily distinguishes Z. zetes var. oenotrium (FUCINI) from the more common species of Zetoceras like Z. zetes (d'ORBIGNY), Z. lavizzarii (HAUER) or Z. bonarelli (BET-TONI) which present an ogival whorl section with flanks converging towards the venter, having their maximum width near the umbilicus.

Age and distribution: In the literature Z. zetes var. oenotrium (FUCINI) indicates a Sinemurian age. In the Upper Austroalpine they are known in Salzburg area (MEISTER & Вöнм, 1993); other Tethyan regions are Pontides, Southern Calcareous Alps and Apennines.

Genus: Partschiceras FUCINI, 1923 Type species: Ammonites Partschi STUR, 1851.

Partschiceras gr. striatocostatum (MENEGHINI, 1853) pl. 1, figs. 8, 13, 14; pl. 2, figs. 4, 7

1851 Ammonites Partschi STUR, P. 26 (nomen nudum).

- 1853 Ammonites striatocostatus MENEGHINI, P. 28.
- 1977 Partschiceras sturi (STUR). WIEDENMAYER, Pl. 2, Fig. 6, 7; Pl. 5, Fig. 1-4 with synonymy.
- 1977 Partschiceras striatocostatum (MENEGHINI). WIE-DENMAYER, Pl. 4, Fig. 5-8 with synonymy.
- 1993 *Partschiceras striatocostatum* (Меледнілі). Меізтек & Вонм, Pl. 2, Fig. 4 with synonymy.
- 1995 Partschiceras gr. striatocostatum (Меледнілі). Dommergues, Meister & Böhm, Pl. 1, Fig. 9, 12.
- 1995 Partschiceras striatocostatum (MENEGHINI). ALKAYA & MEISTER, Pl. 1, Fig. 4; Pl. 2, Fig. 1, 2.
- 1996 Partschiceras striatocostatum (Meneghini). Faraoni, Marini, Pallini & Venturi, Pl. 1, Fig. 8.
- 1998 Partschiceras striatocostatum (MENEGHINI). BLAU, Pl. 1, Fig. 8, 9, 14.
- 1998 Partschiceras striatocostatum (MENEGHINI). GECZY & MEISTER, Pl. 4, Fig. 3, 5, 6.
- 1999 Partschiceras striatocostatum (MENEGHINI). RAKUS, Pl. 1, Fig. 9, 10, 11.
- 2000 Partschiceras striatocostatum (MENEGHINI). JOLY, Pl. 4, Fig. 5.
- 2000 Partschiceras striatocostatum (Meneghini). Dommergues, Meister, Bonneau, Cadet & Fili P. 333, Fig. 4 (3).

Two samples are recorded from the Sinemurian beds of Lorüns and Spullersee and two others from bed 100a of Lorüns indicating a Domerian age. They present a quite coarse rectiradiate primary and secondary ribbing already well expressed in the inner whorls at about 30 mm of diameter. *P. striatocostatum* (MENEGHINI) can be easily distinguished from the very finely ribbed forms as *P. tenuistriatum* (MENEGHINI) or rursiradiate ones like *P. proclive* (ROSENBERG), *P. sturi* (STUR) and *P. anonymum* (HAAS). The two last taxa are often considered as synonyms of MENEGHINI's species.

Age and distribution: This species is known from the Sinemurian and Pliensbachian of the Tethyan Realm and the southern part of North-West Europe (e.g. Causses Basin).

Partschiceras aff. retrofalcatum (STUR in GEYER, 1886) pl. 1, fig. 12

- 1886 *Phylloceras* sp. indet (*Phyll. retrofalcatum* STUR m.s.). Geyer, Pl.1, Fig. 16.
- 1909 Phylloceras retrofalcatum STUR. ROSENBERG, P. 218.
- 1971 Partschiceras retrofalcatum (Stur in Geyer). Fantini Sestini, P. 393.
- 1998 Partschiceras retrofalcatum (STUR in GEYER). BLAU, Pl. 1, Fig. 3.

This not well preserved *Partschiceras* from Brand - Sonnenlagant is here put *in affinis* with *P. retrofalcatum* (STUR in GEYER) only because of a very fine and close ribbing which is rursiradiate on the outer part of the whorl.

Age and distribution: This rare species is recorded without

precision from the upper part of the Raricostatum (Upper Sinemurian) Zone or following BLAU (1998) from the Macdonnelli or Aplanatum Zones. It is known from Upper Austroalpine Unit and Apennines (Tethyan Realm).

Partschiceras retroplicatum (Rosenberg) sensu BETTONI, 1900 pl. 1, figs. 9, 11

- non 1893 Phylloceras retroplicatum GEYER, Pl. 6, Fig. 3-6.
- non 1898 Phylloceras retroplicatum ? Geyer. Fucini, Pl. 1, Fig. 1.
- 1900 Phylloceras retroplicatum GEYER. BETTONI, Pl. 3, Fig. 12-14.
- non 1934 *Phylloceras* cf. *retroplicatum* Geyer. Monestier, Pl. 6, Fig. 2.
- 1987 Partschiceras proclive (ROSENBERG). BRAGA & RIVAS, Pl. 2, Fig. 3, 6.

It is a not constricted Phylloceratidae with a quite complex suture line, smooth on the phragmocone and ornamented with quite coarse rursiradiate ribs on the body chamber which cross the venter making rursiradiate ventral chevrons.

Our two samples are very close to *P. retroplicatum* (GEYER) illustrated by BETTONI (1900, Pl. 3, Fig. 14). Another similar fauna has been described by BRAGA & RIVAS (1987) in the Subbeticas under the name *P. proclive* (ROSENBERG).

For us *P. retroplicatum* (GEYER) s.s. is a constricted Phylloceratidae (only juvenile stages) with a more simple suture line and with a habitus close to *Calliphylloceras* or *Phylloceras*.

P. proclive (ROSENBERG) which is based on Figure 5 of *P. retroplicatum* of GEYER, is the genotype of the genus *Procliviceras* FUCINI 1920 which according to WIEDENMAYER (1977) is closely related to the genus *Partschiceras*. If this is the case, we must keep in mind that *Partschiceras* was described only in 1923 by FUCINI, and consequently *Procliviceras* has the taxonomic priority.

Age and distribution: The age of the Vorarlberger specimens is not known, but the authors (BETTONI, 1900; BRAGA & RIVAS, 1987) indicates mostly the Pliensbachian and specially the Domerian period for this Tethyan species.

Family: Juraphyllitidae ARKELL, 1950

Genus: Juraphyllites Müller, 1939 Type species: Phylloceras diopsis Gemmellaro, 1884.

Juraphyllites nardii (MENEGHINI, 1853)

- 1853 Ammonites Nardii MENEGHINI, P. 27.
- 1866 Ammonites transylvanicus HAUER, P. 192.
- 1901 Rhacophyllites nardii (Meneghini). Fucini, Pl. 7, Fig. 1-7.
- 1901 Rhacophyllites nardii var. dorsocurvata Fucini, Pl. 8, Fig. 7.

- 1993 *Juraphyllites nardii* (Меледнілі). Меїзтек & Вонм, Pl. 2, Fig. 8, with synonymy.
- 1994 Juraphyllites (?) aff. nardii (Meneghini). Palfy, Smith & Tipper, Pl. 1, Fig. 6.
- 1995 *Juraphyllites nardii* (Meneghini). Dommergues, Meister & Böhm, Pl. 1, Fig. 6.
- 1998 Juraphyllites nardii (MENEGHINI). BLAU, Pl. 1, Fig. 7, 16.
- 2001 Juraphyllites nardii (MENEGHINI). VENTURI & FERRI, p. 70 et 74.

We group here some not well preserved *Juraphyllites* from Lorüns and Rothorn which are in the adult stage characterized by a ribbing covering the flanks from the umbilical edge until the ventral part.

Age and distribution: Known in the Upper Sinemurian, J. *nardii* (MENEGHINI) is distributed in Tethyan Realm and Pacific area.

Juraphyllites libertus (GEMMELLARO, 1884) pl. 2, fig. 6

1884 Phylloceras libertum GEMMELLARO, Pl. 2, Fig. 1 - 5.

- 1977 Juraphyllites libertus (GEMMELLARO). WIEDENMAYER, Pl. 1, Fig. 4; Pl. 3, Fig. 1, 2, 5.
- 1986 Juraphyllites libertus (GEMMELLARO). MEISTER, Pl. 2, Fig. 8.
- 1986 Juraphyllites libertus (GEMMELLARO). GAKOVIC, Pl. 2, Fig. 1.
- 1989 Juraphyllites libertus (GEMMELLARO). MEISTER, Pl. 2, Fig. 9.
- 1990 Juraphyllites gr. libertus (GEMMELLARO). DOMMERGUES & MEISTER, Fig. 3 (15).
- 1993 *Juraphyllites* gr. *libertus* (Gemmellaro). Meister & Во́нм, Pl. 3, Fig. 4.
- 1995 Juraphyllites libertus (Gemmellaro). Dommergues, Meister & Böhm, Pl. 1, Fig. 5.
- 1995 Juraphyllites gr. libertus (GEMMELLARO). ALKAYA & MEISTER, Pl. 3, Fig. 1, 5, 7.
- 1996 *Juraphyllites libertus* (Gemmellaro). Faraoni, Marini, Pallini & Venturi, Pl. 1, Fig. 7.
- 1998 Juraphyllites libertus (Gemmellaro). Blau, Pl. 1, Fig. 4, 11, 18.
- 1998 Juraphyllites libertus (GEMMELLARO). GECZY & MEISTER, Pl. 4, Fig. 3, 5, 6.

One *Juraphyllites* from Eingemauerte is characterized by numerous constrictions with prorsiradiate ribs only visible on the upper part of the flanks, crossing the venter and making quite fine chevrons. It belongs to the well known species *J. libertus* (GEMMELLARO).

Another fragmentary specimen is recorded from the bed 107 of Loruns.

Age and distribution: This species has a long range from the Lower Carixian until the Lower Toarcian and its distribution is wide: Tethyan Realm until Caucasus and southern part of the Euroboreal Realm.

Juraphyllites gr. diopsis (GEMMELLARO, 1884) pl. 3, fig. 1

- 1884 Phylloceras diopsis Gemmellaro, Pl. 2, Fig. 6 -8; Pl. 6, Fig. 1, 2.
- 1977 Juraphyllites diopsis (Gemmellaro). Wiedenmayer, Pl. 8, Fig. 4-7 with synonymy.
- non 1987 *Juraphyllites* cf *diopsis* (Gemmellaro). Hillebrandt, Pl. 1, Fig. 9
- 1991 *Juraphyllites* gr. *diopsis* (Gemmellaro). Blau & Meister, Pl. 2, Fig. 10.
- 1991 *Juraphyllites diopsis* (Gemmellaro). Соре, Pl. 2, Fig. 2, 3, 10, 11.
- 1993 *Juraphyllites* gr. *diopsis* (Gemmellaro). Meister & Во́нм, Pl. 2, Fig. 10.
- 1996 *Juraphyllites diopsis* (Gemmellaro). Faraoni, Marini, Pallini & Venturi, Pl. 1, Fig. 2.
- 1995 Juraphyllites diopsis (Gemmellaro). Alkaya & Meister, Pl. 3, Fig. 3, 9.
- 2000 Juraphyllites aff. diopsis (Gemmellaro). Dommergues, Meister, Bonneau, Cadet & Fili, P. 333, Fig. 4 (7).

The *Juraphyllites* collected at Spullersee-Goppelspitze doesn't show any constrictions. The phragmocone is smooth and the body chamber is characterized by sharp concave ribs, restricted to the outer two thirds of the whorl sides which are less prominent and more densely spaced at the beginning of the body chamber than near the aperture. The ribs cross the venter quite strongly projected. The lack of constrictions is the main difference with *J. libertus* (GEMMELLARO).

Age and distribution: The total range of this species is not well known; *J. diopsis* (GEMMELLARO) appears in the Raricostatum Zone (ALKAYA & MEISTER, 1995) and is still present in the Lower Carixian. It is known in the Tethyan Realm.

Juraphyllites aff. limatus (ROSENBERG, 1909) pl. 3, figs. 2, 3

- 1909 Rhacophyllites limatus Rosenberg, Pl. 2, Fig. 10ab, 11.
- 1913 *Rhacophyllites limatus* ROSENBERG var. *asiatica* PIA, PI. 13, Fig. 2.
- 1942 Rhacophyllites limatus ROSENBERG. KOVÁCS, Pl. 2, Fig. 11; Pl. 5, Fig. 6.
- 1977 Juraphyllites limatus limatus ROSENBERG. WIEDENMAYER, Pl. 3, Fig. 4; Pl. 8, Fig. 8, 12; with synonymy.
- 1998 Juraphyllites gr. limatus ROSENBERG. GECZY & MEISTER, Pl. 17, Fig. 1, 3 with synonymy.

We group here a set of *Juraphyllites* which are clearly different from all the other representatives of this species discussed here. They bear no constrictions and are thoroughly smooth [21/210-9] or with very evanescent ribs

on the body chamber like the specimen from Auenfeld (Pl. 3, Fig. 2).

Age and distribution: This Tethyan species is recorded from the Alps (Southern Calcareous Alps, Upper Austroalpine Units) and Pontides. Its age is not well known, probably Lower Carixian to Middle Domerian.

Juraphyllites aff. quadrii var. planulata (FUCINI, 1901) pl. 3, figs. 4, 6-8

- 1901 *Rhacophyllites quadrii* MENEGHINI var. *planulata* FUCINI, Pl. 11, Fig. 7, 8.
- ? 1942 Rhacophyllites quadrii Менедніні var. planulata Fucini.
 Kovacs, Pl. 2, Fig. 10.
- ? 1977 Juraphyllites quadrii planulatus (FUCINI). WIEDENMAY-ER, Pl. 8, Fig. 13, 14.
- ? 1986 Juraphyllites libertus (GEMMELLARO). GAKOVIC, Pl. 2, Fig. 1.

Although our specimens from Lorüns are similar to *J. libertus* (GEMMELLARO) in regard of their high number of constrictions and the style of the ribbing (e.g. FUCINI, 1896, Pl. 1, Fig. 22 and 1899, Pl. 20, Fig.1), these ammonites are all adults not exceeding 40 mm of diameter. Moreover their constrictions are more sigmoid and irregularly spaced. Could they be microconchs of *J. libertus* (GEMMELLARO)? Without stratigraphical support we prefer at the moment to keep them within *Juraphyllites* aff. *quadrii* var. *planulata* (FUCINI). *J. bucovinicus* UHLIG (1900, Pl. 1, Fig. 2) has a similar ribbing but with more spaced constrictions and differs mainly by the raising of an outlining keel on the ventral part near the aperture.

Age and distribution: According to WIEDENMAYER (1977) the range of this Tethyan species is from the Sinemurian to Carixian

Juraphyllites sp.

Some very bad preserved platicone ammonites from Rothorn and Dalaaser Schütz are attributed with doubt to the genus *Juraphyllites*. Especially the forms originating from Dalaaser Schütz (which are associated with *Phylloceras* sp.) are deformed by the Alpine tectonics and in part dissolved.

Subgenus: *Harpophylloceras* SPATH, 1927 Type species: *Ammonites eximius* HAUER, 1854.

J. (Harpophylloceras) eximius (HAUER, 1854) pl. 3, fig. 5

- 1854 Ammonites eximius HAUER, Pl. 2, Fig. 1-4.
- 1977 *Harpophylloceras eximius* (Hauer). Wiedenmayer, Pl. 9, Fig. 6-13 with synonymy.
- 1989 J. (Harpophylloceras) eximius (HAUER). MEISTER, Pl. 3, Fig. 1-3.

- 1995 J. (Harpophylloceras) eximius (Hauer). Dommergues, Meister & Böhm, Pl. 1, Fig. 10.
- 1996 Harpophylloceras eximius (Hauer). El Hariri, Dommergues, Meister, Souhel & Chafiki, Pl. 67, Fig. 3, 4.
- 1998 J. (Harpophylloceras) eximius (HAUER). GECZY & MEISTER, Pl. 4, Fig. 4, 7.

2000 Harpophylloceras eximius (HAUER). — JOLY, Pl. 1, Fig. 1.

2001 Harpophylloceras eximius (HAUER). — VENTURI & FERRI, P. 72.

A platicone involute ammonite with a fine, close, ventrolateral ribbing and a keel, whose suture line shows relatively spatulate endings, well corresponds to *Juraphyllites* (*Harpophylloceras*) eximius (HAUER).

Age and distribution: Recorded from the Tethyan and southern Euroboreal Realms, the age of this species corresponds to a not well defined interval from the Middle (? or already Lower) Carixian to Lower Toarcian.

Genus Tragophylloceras HYATT, 1900 Type species: Ammonites heterophyllus numismalis QUENSTEDT, 1845.

Tragophylloceras ibex (QUENSTEDT, 1843) pl. 3, fig. 11

- 1843 Ammonites ibex QUENSTEDT, P. 179.
- 1845 Ammonites ibex QUENSTEDT. QUENSTEDT, Pl. 6, Fig. 6.
- 1893 *Phylloceras ibex* (QUENSTEDT). FUTTERER, Pl. 8; Fig. 9, 10.
- 1936 *Phylloceras ibex* (QUENSTEDT). De BRUN & BROUSSE, Pl. 4, Fig. 7.
- 1961 *Tragophylloceras ibex* (Quenstedt). Dean, Donovan & Howarth, Pl. 69, Fig. 4.
- 1964 *Tragophylloceras ibex* (QUENSTEDT). HOWARTH & DONO-VAN, Pl. 49, Fig. 2, 3 with synonymy.
- 1966 Tragophylloceras ibex (QUENSTEDT). KOLLAROVA-ANDRU-SOVA, Pl. 2, Fig. 1, 2.
- 1968 Tragophylloceras ibex (QUENSTEDT). JORDAN, Pl. 5; Fig. 5, 6.
- 1969 Tragophylloceras ibex (Quenstedt). Calvez, Lefavrais-Raymond & Lhegu, Pl. 2, Fig. 7.
- 1976 Tragophylloceras ibex (QUENSTEDT). SCHLEGELMILCH. Pl. 2, Fig. 5.
- 1977 Tragophylloceras ibex (QUENSTEDT). SCHLATTER, Pl. 3. Fig. 3.
- 1978 Tragophylloceras ibex (QUENSTEDT). DOMMERGUES & MOUTERDE, Pl. 3, Fig. 22.
- 1979 *Tragophylloceras ibex* (QUENSTEDT). DOMMERGUES, Pl. 6, Fig. 1.
- 1980 Tragophylloceras ibex (QUENSTEDT). SCHLATTER, Pl. l. Fig. 3.
- 1982 *Tragophylloceras ibex* (QUENSTEDT). HOFFMANN, Pl. ⁴. Fig. 1, 2, (?) 3, 4; Pl. 3, Fig. 9, 10.
- 1986 Tragophylloceras ibex (QUENSTEDT). MEISTER, Pl. ¹. Fig. 6.

- 1991 *Tragophylloceras ibex* (QUENSTEDT). SCHLATTER, Pl. 1; Fig. 4.
- 1994 Tragophylloceras ibex (QUENSTEDT). in FISCHER, Pl. 23; Fig. 10.
- 1997 *Tragophylloceras ibex* (Quenstedt). Dommergues, Meister & Mouterde, Pl. 7, Fig. 3.
- 2000 Tragophylloceras ibex (QUENSTEDT). JOLY, Pl. 1, Fig. 10-12.

A highly distinctive *Tragophylloceras* of the Middle Carixian (Valdani Subzone) characterized by a very original ornamentation made of thick, prorsiradiate, ventral pointing chevrons which are not connected with the lateral ribbing.

Age and distribution: The distribution of this species is restricted to the Euroboreal Realm and it indicates the Ibex Zone of the Middle Carixian.

Tragophylloceras undulatum (SMITH, 1817)

1817 Ammonites undulatum SMITH, P. 114.

- 1930 Tragophylloceras undulatum (Sмітн). Cox, Pl. 12, Fig. 5.
- 1964 *Tragophylloceras undulatum* (Sмітн). Howarth & Do-NOVAN, Pl. 48, Fig. 6-9; Pl. 49, Fig. 1 with synonymy.
- 1976 *Tragophylloceras undulatum* (SMITH). SCHLEGELMILCH, Pl. 2, Fig. 4.
- 1980 *Tragophylloceras undulatum* (SMITH). SCHLATTER, Pl. 1, Fig. 2.
- 1982 Tragophylloceras undulatum (SMITH). HOFFMANN, Pl. 1, Fig. 6; Pl. 3, Fig. 1-8, Text-fig. 19a.
- 1984 Tragophylloceras undulatum (SMITH). WEITSCHAFT & HOFFMANN, Pl. 1, Fig. 5.
- 1986 Tragophylloceras undulatum (SMITH). MEISTER, Pl. 2, Fig. 2-4.
- 1991 Tragophylloceras undulatum (SMITH). SCHLATTER, Pl. 1, Fig. 3.
- 2000 Tragophylloceras undulatum (SMITH). Joly, Pl. 3, Fig. 2-4.

For the first time *T. undulatum* (SMITH) is recorded from Tethyan regions. Although not well preserved these Austrian *Tragophylloceras* can nevertheless be put near the similar French specimens from the Causses Basin (MEISTER, 1982, 1986), especially the specimen illustrated Fig. 4 Pl. 2 (ibidem, 1986) which is characterized by a prorsiradiate sigmoid, well expressed ribbing, more vigorous near the outer part and, like in *Juraphyllites*, making ventral chevrons.

Age and distribution: Distributed in the Euroboreal Realm, this species is now also known from Upper Austroalpine units (Tethyan Realm). It range corresponds to the upper Jamesoni Zone up to the Ibex Zone (Lower to Middle Carixian) (see MEISTER, 1993).

Order: Psiloceratida Housa, 1965

Superfamily: Lytoceratoidea NEUMAYR, 1875 Family: Pleuroacanthitidae HYATT, 1900 (= Analytoceratidae, SPATH, 1927) Subfamily: Ectocentritinae SPATH, 1926

Genus: *Ectocentrites* CANAVARI, 1888 Type species: *Ammonites petersi* HAUER, 1856.

Ectocentrites sp. pl. 3, fig. 12

A fragment of a Lytoceratoidea characterized by subquadrate whorl section with subparallel flank, a receding umbilical edge and a broad and flattened rounded ventral part which seems to be smooth (preservation !) is attributed to the genus *Ectocentrites*. With fine, quite irregular, prorsiradiate ribs which are more or less sinuous and more vigorous on the ventro-lateral part, the style of the ribbing is similar to other representatives of this genus [e.g. *E. altiformis* (BONARELLI)].

For an exhaustive discussion on the taxonomy, biostratigraphy and paleogeography of this genus, we refer to MEISTER et al. (2000).

Family: Lytoceratidae NEUMAYR, 1875

Genus: *Lytoceras* SUESS, 1865 Type species: *Ammonites fimbriatus* SOWERBY, 1817.

Lytoceras gr. fuggeri GEYER, 1893 pl. 3, fig. 9

1893 Lytoceras fuggeri GEYER, Pl. 8, Fig. 7-9.

- 1909 Lytoceras fuggeri GEYER. ROSENBERG, Pl. 11, Fig. 23.
- 1909 Lytoceras fuggeri GEYER var. biangulata ROSENBERG, Pl. 11, Fig. 24.
- 1994 Lytoceras gr. fuggeri Geyer. Dommergues, Ferretti & Meister, Pl. 1, Fig. 13-16.
- 1997 Lytoceras aff. fuggeri Geyer. Dommergues, Meister & Schirolli, Pl. 1, Fig. 3.
- 1998 Lytoceras cf. fuggeri Geyer. Lachkar, Dommergues, Meister, Neige, Izart & Lang, Fig. 5 (5-6).

1998 Lytoceras fuggeri GEYER. — BLAU, Pl. 2, Fig. 1-2.

This *Lytoceras* has a slightly compressed whorl section. The ribbing and the constrictions are prorsiradiate on the first third of the flank, afterwards becoming all rursiradiate. The constrictions draw concave sulci on the venter. A crenulation depending most probably of the preservation is visible.

L. czjzeki (HAUER) is a very close species and there are very little differences, perhaps only due to the preservation of the specimen. Indeed the major distinguishable feature between both is the development of the rib-crenulation associated with a compressed subrectangular whorl section in HAUER's species. In GEYER's species, the whorl

section is subquadrate. Other differences are the smooth inner whorls in *L. fuggeri* GEYER and the strong crenulate-fimbriate ones in *L. czjzeki* (HAUER). With our material it is impossible to decide whether these two forms belong to one single species.

Age and distribution: *L. fuggeri* GEYER is present in the Upper Sinemurian, mainly in the Raricostatum Zone. It is recorded from the Upper Austroalpine units, the Southern Calcareous Alps and the High Atlas.

Lytoceras aff. fimbriatoides GEMMELLARO, 1884

1884 Lytoceras fimbriatoides GEMMELLARO, Pl. 3, Fig. 20-23.

- ? 1909 Lytoceras sp. nov. aff. fimbriatoides Gemmellaro. Rosenberg, Pl. 11, Fig. 13.
- ? 1913 Lytoceras sp. nov. aff. fimbriatoides Gemmellaro. Нала, Pl. 2, Fig. 1, 2.
- 1942 Lytoceras fimbriatoides Gemmellaro. Kovacs, Pl. 2, Fig. 19.
- 1975 *Lytoceras fimbriatoides* Gemmellaro. Ferretti, Pl. 24, Fig. 1, 2.
- 1994 *Lytoceras* aff. *fimbriatoides* Gemmellaro. Dommergues, Ferretti & Meister, Pl. 2, Fig. 1-4.
- 2000 Lytoceras fimbriatoides Gemmellaro. Dommergues, Meister, Bonneau, Cadet & Fili P. 336, Fig. 5 (1).

A particularly finely ribbed *Lytoceras* from the Rothorn is very close to the specimen from Albania illustrated by DOM-MERGUES et al. (2000, Pl. 2, Fig. 1) with a quite fast growth of the whorl-height (H) and a fine and weakly sinuous ribbing. The ribs are slightly rursiradiate on the umbilical wall, then a little prorsiradiate on the lower flank, becoming rursiradiate again from the middle of the flank to the outer part. Some ribs can appear near the mid-side and some ribs are clearly fimbriate alternated with less or not crenulated ones. Another fragmentary specimen from Auenfeld is also placed near *L. fimbriatoides* GEMMELLARO.

Age and distribution: Known in the Upper Sinemurian and in the Lower Carixian, this species is only recorded from the Tethyan Realm.

Lytoceras gr. fimbriatum (Sowerby, 1817)

- 1817 Ammonites fimbriatus Sowerby, Pl. 164.
- 1986 *Lytoceras fimbriatum* (SOWERBY). MEISTER, Pl. 1, Fig. 1, 2 with synonymy.
- 1987 Lytoceras fimbriatum (Sowerby). Braga, Jimenez & Rivas, Pl. 1, Fig. 1, 2.
- 1990 Lytoceras gr. fimbriatum (Sowerby). Dommergues & Meister, Fig. 5 (22).
- 1991 Lytoceras fimbriatum (Sowerby). Schlatter, Pl. 1, Fig. 6, 7.
- 1993 *Lytoceras* gr. *fimbriatum* (Sowerby). Меізтек & Вöнм, Pl. 4, Fig. 1, 2.
- 1994 Lytoceras fimbriatum (Sowerby). in: FISCHER, Pl. 25, Fig. 1-4.

- 1995 Lytoceras aff. gr. fimbriatum (SOWERBY). ALKAYA & MEISTER, Pl. 4, Fig. 1, 5.
- 1996 Lytoceras fimbriatum (Sowerby). EL HARIRI, DOM-MERGUES, MEISTER, SOUHEL & CHAFIKI, Pl. 67, Fig. 11, 12.
- 1997 Lytoceras fimbriatum (SOWERBY). CASSEL, Pl. 16, Fig. 5.
- 1998 Lytoceras cf. fimbriatum (SOWERBY). GECZY, Pl. 1, Fig. 5.
- 1998 Lytoceras gr. fimbriatum (SOWERBY). GECZY & MEISTER, Pl. 5, Fig. 2; Pl. 4, Fig 10.

Two body chambers of *Lytoceras* from Auenfeld and Rothorn are linked up to *L. fimbriatum* (SOWERBY) because of their simple annular, more or less fimbriate ribbing and their subcircular whorl section.

Age and distribution: This quite ubiquitous species is well represented in the Euroboreal Realm, at the northern margin of the Tethys and even in Asia (Tibet and Indonesia). Its range is comprised between the Lower Carixian to the Lower Toarcian.

Lytoceras ovimontanum GEYER, 1893 pl. 3, fig. 14; pl. 4, fig. 1

- 1893 Lytoceras ovimontanum Geyer Pl. 8, Fig. 1.
- 1977 Kallilytoceras ovimontanum GEYER. WIEDENMAYER, Pl. 10, Fig. 12; with synonymy.
- 1996 Lytoceras ovimontanum Geyer. El Hariri, Dommergues, Meister, Souhel & Chafiki, Pl. 67, Fig. 15.
- 1998 Lytoceras ovimontanum Geyer. Geczy & Meister, Pl. 5, Fig. 1, 6, 7.

This *Lytoceras* is characterized by a polyfurcate ribbing appearing on the high flanks near the ventral area, and by a suboval whorl section. These features bring it close to *L. ovimontanum* GEYER, a well known ammonite of the Lower Domerian. Two specimens are characterized by a fine and close ribbing. Another one bears more spaced and stronger ribs on the body chamber evoking the habitus of *L.* gr. *baconicum* VADASZ (in BLAU & MEISTER, 1991, Pl. 4, Fig. 1).

Age and distribution: *L. ovimontanum* GEYER is know in the western Tethys from the Lower Domerian to the Upper Domerian.

Lytoceras **sp.** pl. 3, fig. 13

We group here several not well preserved specimens of *Lytoceras* of different age. A fragment, *ex situ*, of an ammonite with a rounded whorl section belongs to *Lytoceras*, but it is too poorly preserved to be specifically determined. Its age is probably Sinemurian (related to the facies). Another *Lytoceras* sp. has been collected *ex situ* at Dalaaser Schütz in association with Amaltheidae (Domerian age). Two other specimens from the Lower Domerian were found in bed 109 and 110 in Lorüns.

Genus: Derolytoceras Rosenberg, 1909 Type species: Ammonites lineatus tortus QUENSTEDT, 1885.

Derolytoceras tortum (QUENSTEDT, 1885) pl. 4, figs. 2, 5

- * 1885 Ammonites lineatus tortus QUENSTEDT, Pl. 39, Fig. 12, 13.
- 1989 Derolytoceras tortum (QUENSTEDT). MEISTER, Pl. 1, Fig. 4, 5.
- 1990 Derolytoceras tortum (Quenstedt). Dommergues, Meister & Mettraux, Pl. 6, Fig. 8, 9 with synonymy.
- 1990 Derolytoceras tortum (QUENSTEDT). DOMMERGUES & MEISTER, Fig. 3 (13, 14); Fig. 5 (23).
- 1993 *Derolytoceras tortum* (QUENSTEDT). MEISTER & Böнм, Pl. 3, Fig. 1.
- 1997 Derolytoceras aff. tortum (QUENSTEDT). CORNA, DOM-MERGUES, MEISTER & PAGE, Pl. 1, Fig. 1.

Lytoceratidae bearing constrictions and characterized by an annular strong ribbing mainly developed at the end of the body chamber by the adults are attributed to this species. The taxon is often regarded as the microconch of *Lytoceras fimbriatum* (SOWERBY) (see MEISTER, 1986).

Age and distribution: This species is recorded from the Tethyan and Euroboreal Realms. Its range is not well known, probably Carixian and Domerian.

Superfamily: Psiloceratoidea HYATT, 1867 Subfamily: Discamphiceratinae GUEX & RAKUS, 1991

Genus: Galaticeras Spath, 1938

Type species: Amphiceras harpoceroides GEMMELLARO, 1884.

Galaticeras gr. harpoceroides (GEMMELLARO, 1884) pl. 3, fig. 10

- 1884 Amphiceras harpoceroides GEMMELLARO, Pl. 1, Fig. 8-12; Pl. 4, Fig. 4.
- 1909 Amphiceras harpoceroides GEMMELLARO. ROSENBERG, Pl. 14, Fig. 13.
- ? 1977 Galaticeras harpoceroides (GEMMELLARO). WIEDEN-MAYER, Pl. 15, Fig. 1, 2, 9.
- 1987 Galaticeras harpoceroides (Gemmellaro). Cecca, Dom-Mergues, Mouterde & Pallini, Pl. 2, Fig. 2.
- 1996 Galaticeras harpoceroide (Gemmellaro). Faraoni, Marini, Pallini & Venturi, Pl. 1, Fig. 1.
- ' 1996 Galaticeras sp. Faraoni, Marini, Pallini & Venturi, Pl. 4. Fig. 6.

This *Galaticeras* is characterized by a quite narrow umbilicus (O/D = 28%) and a fine, close sigmoid ribbing well expressed on the lower 3/5 of the flank and crossing the venter. In comparison *G. flexistriatum* (GEMMELLARO)

shows a coarser ribbing in the inner whorls; *G. rosenbergi* (FUCINI) presents clearly broader whorls with finer ribs and *G. propinquum* (GEMMELLARO) is a more involute species.

Age and distribution: In the Tethyan areas, *Galaticeras* is predominantly abundant during the Lower and Middle Carixian.

Family: Schlotheimiidae Spath, 1923

Genus: Angulaticeras QUENSTEDT, 1883 Type species: Ammonites lacunatus BUCKMAN, 1844.

Angulaticeras sp. pl. 4, figs 3, 4

Previously discussed in DOMMERGUES et al. (1995, P. 172) but herein necessarely repeated: We use the genus *Angulaticeras* for quite more involute and more recent forms, in another word for more "derived" morphologies. Such forms like "*Schlotheimia*" marmorea (OPPEL) mark the transition between true *Schlotheimia* and true *Angulaticeras*. According to some authors it is already an *Angulaticeras* (e.g. BLOSS, 1988) whereas it is still a *Schlotheimia* for others (e.g. DOMMERGUES et al. 1995; CORNA et al., 1997a).

We group here two not well preserved specimens which vary in rib density: fine and densely ribbed to more spaced and coarse. They show the characteristic features of *Angulaticeras* with a narrow, smooh groove and a involute conch with high whorls.

Age: The genus is known from the Lower to Upper Sinemurian.

Family: Arietitidae HYATT, 1875 Subfamily: Arietitinae HYATT, 1875

Genus: Coroniceras HYATT, 1867 Type species: Ammonites kridion ZIETEN,1830 (ICZN opinion 324).

Remark: The genus is taken sensu DONOVAN et al. (1981) and CORNA & DOMMERGUES (1995).

Subgenus: Arietites Sowerby, 1816 Type species: Ammonites bucklandi Sowerby, 1816.

C. (Arietites) (?) sp.

A very poorly preserved large and evolute Arietitidae (more than 30 cm of diameter) from Lorüns is characterized by a very coarse, quite spaced ribbing and by a tricarenate ventral part with a rectangular to subquadrate whorl-section. It is here with doubt attributed to the genus *Arietites*.

Age: It belongs most probably to Bucklandi Zone.

Coroniceras (Arietites) aff. bisulcatus (BRUGUIERE) sensu VIALLI, 1959 pl. 4, figs 8, 9; pl. 5, fig. 1

? 1898 Arietites bisulcatus (BRUGUIERE). — PARONA, Pl. 12, Fig. 1.

1959 Coroniceras bisulcatum (BRUGUIERE). — VIALLI, Pl. 15, Fig. 7.

1961 *Coroniceras bisulcatum* (Bruguiere). — Sacchi Vialli & Cantaluppi, Pl. 2, Fig. 2.

These evolute, slightly deformed ammonites show a subquadrate whorl-section. The ribbing seems to be tight subradiate to slightly prorsiradiate; ribs bear a ventro-lateral tubercle which is more or less visible on the different specimens. On the tricarenate venter the ribs become finer and evanescent, and are projected forward and interrupted along the lateral keel. The prominent keel and the sulci occupy a large part of the venter which is quite flat.

The largest specimen from Steineres Meeres with more than 25 cm of diameter still bears ventro-lateral tubercles. Its broard tricarenate morphology occupies a large part of the venter comparable to the illustrations of GUERIN-FRA-NIATTE (1966, Pl. 6) and CORNA (1985, Pl. 5, Figs 3, 4). All these forms probably belong to the genus Coroniceras. This fauna is very close to the Tethyan species previously described by PARONA (1898) VIALLI (1959), SACCHI VI-ALLI & CANTALUPPI (1961). Coroniceras bisulcatus (BRU-GUIERE) sensu VIALLI shows little differences like more arched lateral ribs. Some affinities with Coroniceras lyra HYATT sensu POPA & PATRULIUS (1996, pl. 15, fig. 9) and Coroniceras (Primarietites) reynesi (SPATH) sensu VIALLI (1959, pl. 16, fig. 3) are obvious but the tricarenate part is narrower for the first one and the ribs broader spaced for the last one.

Age and distribution: The range of the genus indicates a period comprising the Rotiforme and Bucklandi Subzones as well as the base of Semicostatum Zone. Until now, this taxon is known only from the Alps (Tethyan part).

Remark: Another specimen (Pl. 4, fig. 6) is characterized by an open umbilicus, a coarse, spaced, rursiradiate ribbing which is strongly bent forward and interrupted before it reaches the keel, and a suquadrate whorl section (E/H =0.9). The ventral area is slightly fastigate with a small and quite fine keel bordered by a massive smooth band. This specimen is attributed to *Coroniceras* sp.

Genus *Metophioceras* SPATH, 1924 Type species: *Ammonites conybeari* SOWERBY, 1816.

Metophioceras sp. pl. 4, fig. 10

An evolute ammonite from Steineres Meer with a diameter of 10 cm is attributed to *Metophioceras* because of its tricarenate venter with very large sulci (the three keels have the same height), a medium ribdensity, regular ribs slightly arched and rursiradiate, and a subelliptical whorl section with a flat outer part (E/H = 0.90 to 0.85); no tubercles are visible.

Metophioceras conybeari (SOWERBY) and specially the specimen illustrated by HAUER (1856, pl. 2, fig. 1, 2) shows a very close habitus mainly in the whorl section and in the rib density. Another specimen from Lorüns collected below the red nodular limestones is similar to the previous one, but has a more subquadrate whorl section.

The age is Lower Sinemurian (Conybeari to ? Rotiforme Zones).

Subfamily Agassiceratinae SPATH, 1924

Genus *Euagassiceras* Hyatt, 1875 Type species: *Ammonites sauzeanus* d'Orbigny, 1844.

> Euagassiceras sp. pl. 4, fig. 7

A fragment of a quite evolute ammonite is characterized by spaced radiate lateral ribs bearing a little ventro-lateral tubercle. The whorl-section is rectangular with a slightly fastigate venter. The keel disapears and is replaced by evanescent chevrons. These characters well correspond to the *Euagassiceras* diagnosis.

Age: The genus ranges from the Semicostatum Zone up to the (?) Turneri Zone (Lower Sinemurian).

Genus: Arnioceras HYATT, 1867 Type species: Arnioceras cuneiforme HYATT, 1867.

Arnioceras gr. paucicostum FUCINI sensu FERRETTI, 1975 pl. 5, fig. 4

non 1901-05 Arnioceras ceratitoides var. paucicosta Fucini, Pl. 18, Fig. 9, 10, 12-14.

- 1975 Arnioceras ceratoides paucicosta Fucini. Ferretti, Pl. 22, Fig. 1-3.
- 1993 Arnioceras gr. mendax var. rariplicatum Fucini. Meister & Вöнм, Pl. 4, Fig. 4.
- 1994 Arnioceras gr. paucicosta sensu Ferretti non Fucini. Dommergues, Ferretti & Meister Pl. 2, Fig. 9-12.
- ? 1994 Arnioceras gr. ceratitoides (QUENSTEDT). RAKUS, Pl. 5, Fig. 1.

The major part of the *Arnioceras* from Steineres Meer are forms with coarse to very coarse, spaced ribs. They are grouped within *A*. gr. *paucicostum* FUCINI sensu FER-RETTI even although the bad preservation does not allow to observe the lenght of the smooth stage in the inner whorl which normally can reach 1,5 cm of diameter. Few specimens are more closely and finely ribbed; but as alread! underlined (DOMMERGUES et al., 1994) we suppose a broard variability in rib density and in thickness of the whorl sec tion for this species. One specimen, not well preserved, from the boundary between the grey limestones and the red nodular limestones in Lorüns, is put in affinis into this group by reason of a coarse spaced ribbing.

Age and distribution: In Vorarlberg, A. gr. paucicostum FUCINI sensu FERRETTI indicates the lower or middle part of the Semicostatum Zone. This species can perhaps extend into the Lower part of the Upper Sinemurian. It is known from Adnet area and from Apennines.

Arnioceras rejectum FUCINI, 1902 pl. 5, fig. 2

- 1902 Arnioceras rejectum FUCINI, Pl. 17, Fig. 14; Pl. 19, Fig, 1-6.
- 1993 Arnioceras gr. ceratitoides (QUENSTEDT). MEISTER & Вонм, Pl. 4, Fig.3, 5, 6, 10.
- 1994 Arnioceras rejectum FUCINI. DOMMERGUES, FERRETTI & MEISTER Pl. 2, Fig. 13-17.
- 1995 Arnioceras rejectum FUCINI. DOMMERGUES, MEISTER & Вонм, Pl. 4, Fig. 2-4; Pl. 3, Fig. 12, 14-16.
- 1998 Arnioceras cf. rejectum FUCINI. LACHKAR, DOMMERGUES, MEISTER, NEIGE, IZART & LANG, Pl. 4, Fig. 2-4; Pl. 3, Fig. 12, 14-16.

The significance of this species was already discussed by DOMMERGUES et al. (1994, 1995). To summarize, A. rejectum FUCINI is charaterized by a quite short smooth stage, not exceeding 1 cm of diameter with a medium ribdensity. Our conception of the species is wide and includes the major part of the Arnioceras illustrated by FUCINI (1901-05) from the Mte di Cetona. A. rejectum FUCINI represents a medium morphology. Nevertheless we keep in mind that the systematic of the genus is not well known and needs a major revision supported by acute biostratigraphy.

Age and distribution: This species is also known from from the High Atlas and from the Adnet area and Apennines where it is associated with Asteroceras (Obtusum Zone). hs total range is not yet known.

Subfamily: Asteroceratinae SPATH, 1946

Genus: Asteroceras HYATT, 1867 Type species: Ammonites stellaris Sowerby, 1815.

Asteroceras gr. saltriensis (PARONA, 1896) pl. 6, fig. 1; pl. 7, figs. 1, 3; pl. 8, fig. 1

- 1890 Aristiles saltriensis PARONA, Pl. 8, Fig. 2, 3.
- 19813 Asteroceras saltriense (PARONA). FUCINI, Pl. 33, Fig.
- 1961 Antoroceras sp. gr. stellare (Sowerby). SACCHI-VIALLI & CANTALLEPPI. Pl. 3, Fig. 6 (only).
- 1 1991 Asteroreras saltriense ? (PARONA). PALFY, Pl. 10, (1994 Automorras obtaisant (Sowerby). - RARUS, Pl. 5, Fig. 3.

Figure 12: Asteroceras gr. saltriensis (PARONA) whorl sections.

- ? 1994 Asteroceras cf. saltriense ? (PARONA). - PALFY & SMITH, Pl. 1, Fig. 1.
- 1995 Asteroceras aff. saltriensis (PARONA). - DOMMERGU-ES, MEISTER & BÖHM, Pl. 5, Fig. 11.
- 1997 Asteroceras cf. saltriensis (PARONA). — JOHAN-NSON, SMITH & GORDEY, Pl. 1, Fig. 5.

This Asteroceras is characterized by the disappearance of the sulci, sometimes already in the inner whorls, which are replaced by two

slopes on both sides of the keel (fig. 12). The ribbing is well expressed even on the ventral-lateral part; the ribs are subradiate to slightly prorsiradiate, stronger and thick on the lateral part and slightly arched forward near the slopes. The whorl section is rather compressed for an Asteroceras. In the adult stage, the keel becomes blunt and tends to disapear. Consequently the venter is more fastigate. Similar specimens have been described from Adnet (DOMMERGUES et al., 1995, Pl. 5, fig. 11). A. gr. retusum (REYNES) sensu SACCHI-VIALLI & CANTALUPPI (1961), also from Adnet, is clearly different with a subrectangular whorl-section characterized by a large nearly tricarinate ventral area with broad sulci, and a prominent narrow keel. A suevicum (QUENSTEDT) is also a close form, but the ribs are straighter and finer, and less projected forward near the ventro-lateral part.

With 170 mm of diameter the largest specimen is recorded from Eingemauerte (P7225). Another large specimen was found in Lorüns (fig. 13).

Figure 13: Large Asteroceras gr. saltriensis (PARONA) from Lorüns quarry.

Age and distribution: This species is related with the Stellare Subzone and it occurs in the Tethyan Realm and perhaps in the Pacific province.

Asteroceras aff. suevicum (QUENSTEDT, 1884)

- 1882-85 Ammonites obtusus suevicus QUENSTEDT, Pl. 20, Fig. 1.
- 1966 Asteroceras suevicum (Quenstedt). Guerin-Franiatte, Pl. 163-166.
- 1976 Asteroceras (Asteroceras) suevicum (QUENSTEDT). SCHLE-GELMILCH, Pl. 18, Fig. 5.
- 1985 Asteroceras cf. suevicum (QUENSTEDT). BRAGA, MARTIN-ALGARRA & RIVAS, Pl. 1, Fig. 5.
- 1997 Asteroceras aff. suevicum (QUENSTEDT). CORNA, DOM-MERGUES, MEISTER & PAGE, Pl. 10, Fig. 1.
- 1998 Asteroceras cf. suevicum (QUENSTEDT). BLAU, Pl. 2, Fig. 13-16; Pl. 14, fig. 6.

The specimen (P2770) from the Fleckenmergel of Sarotlahütte is slightly deformed. It differs from the Lorüns specimen only by a straight rigid and quite spaced ribbing not bent forward on the venter. This feature is well expressed in *A. suevicum* (QUENSTEDT), a species very close to *A. saltriense* (PARONA). Nevertheless, our specimen is only put in affinis with QUENSTEDT's species mainly due to a more feable expression of the ventral sulci in comparison with the holotype illustred by GUERIN-FRANIATTE (1966, Pl. 163).

Age and distribution: *A. suevicum* (QUENSTEDT) characterizes the Stellare Subzone and is recorded from both the Euroboreal realm and the Tethyan realm. Not true *A. suevicum* (QUENSTEDT) are known from Pacific area.

Asteroceras gr. retusum (Reynes) sensu Sacchi-Vialli & Cantaluppi, 1961 pl. 5, fig. 3

- ? 1927 Asteroceras retusum (REYNES). SCHRÖDER, Pl. 10, Fig. 5.
- 1961 Asteroceras retusum (Reynes). Sacchi-Vialli & Canta-Luppi, Pl. 4, Figs. 1-4.
- ? 1961 Asteroceras confusum Spath. Sacchi-Vialli & Cantaluppi, Pl. 4, Fig. 5.
- 1993 *Asteroceras* aff. *confusum* Spath. Meister & Böhm, Pl. 4, Figs. 7, 9, 11.
- 1995 Asteroceras gr. retusum (Reynes) sensu Sacchi-Vialli & Cantaluppi. — Dommergues, Meister & Böhm, Pl. 4, Figs. 6-10; Pl. 5, Figs. 1-10.

The Asteroceras from Rothorn (P 1583) is characterized by a quite broard nearly tricarinate ventral area with a prominent siphonal keel and wide sulci. The ribbing is well expressed until the ventro-lateral part and prorsiradiate. Such forms have already been descibed from the Upper Austroalpine Units (Adnet area and ? Bavaria) and named A. gr. retusum (REYNES) sensu SACCHI-VIALLI & CANTALUPPI (see Pl. 5, Fig. 1 and 4 in DOMMERGUES et al., 1995).

Age and distribution: This taxon is again correlated with the Stellare Subzone and its occurance is restricted to the Alps (nothern margin of the Tethys).

> Asteroceras aff. acceleratum Hyatt, 1889 pl. 7, fig. 2

- 1889 Asteroceras acceleratum Hyatt, Pl. 9, Fig. 4; Pl. 10, Fig. 3.
- 1966 Asteroceras acceleratum Hyatt. GUERIN-FRANIATTE, Pl. 167 (LT); Pl. 168.
- 1976 Asteroceras (Asteroceras) acceleratum Hyatt. Schle-GELMILCH, Pl. 18, Fig. 4.
- 1997 Asteroceras acceleratum Hyatt. CASSEL, Pl. 13, Fig. 5.

We compare a quite involute *Asteroceras* from Rothorn with *A. acceleratum* HYATT because:

a) its umbilicus becomes quite rapidly narrower during the ontogeny, but the whorl section remains quite massive (fig. 14).

b) the ventral part is characterized by very broard sulci and by a thick median keel.

c) the ribs are thick and more or less spaced; in the inner whorl they are well expressed on the ventral part, but in the outer ones they become blunt on this part.

d) GUERIN-FRANIATTE (1966) counted about 16 ribs per half whorl (D = 106 mm). Our specimen shows the same number at a diameter of 125 mm.

In A. evolutum GUERIN-FRANIATTE, only the median keel is pronounced. No sulci or flat bands are visible. A. margarita PARONA is more compressed with a closer and finer ribbing. A. gr. retusum (REYNES) sensu SACCHI-VIALLI & CANTALUPPI always remains more evolute.

Age and distribution: This species characterizes the Stellare Subzone and is well known in the Euroboreal realm; for the first time it is recorded from a Tethyan area.

Figure 14: *Asteroceras* aff. *acceleratum* HyATT whorl section.

Asteroceras aff. margarita (PARONA, 1896) pl. 5, fig. 5

1896 Arietites margarita PARONA, Pl. 5, Fig. 8.

- 1903 Asteroceras margarita (PARONA). FUCINI, Pl. 32. Fig. 4, 5.
- ? 1927 Asteroceras margarita (PARONA). SCHRÖDER, Pl. 10. Fig. 4.
- 1936 Asteroceras cf. margarita (PARONA). TERMIER, Pl. 23. Fig. 4.
- 1966 Asteroceras margarita (PARONA). GUERIN-FRANIATTE, Pl. 159 (HT); Pl. 160; Pl. 161, Fig. 1, 2.

- 1966 Asteroceras aff. margarita (PARONA). GUERIN-FRANI-ATTE, Pl. 162.
- 1984 Asteroceras margarita (PARONA). MAUBEUGE, P. 22, Fig. 11.
- 1986 Asteroceras cf. margarita (PARONA). MOUTERDE, CORNA, OLIVIER & MOURIER, Pl. 1, Fig. 2; Pl. 2, Fig. 5 (aff.).
- ? 1991 Asteroceras aff. margarita (PARONA). PALFY, Pl. 10, Fig. 5.
- 1994 Asteroceras aff. margarita sensu Fucini non Parona. Dommergues, Ferretti & Meister, Pl. 2, Fig. 19.
- ? 1997 Asteroceras aff. margarita (PARONA). PALFY & SMITH, Pl. 1, Fig. 4.
- 1998 Asteroceras aff. margarita (PARONA). ELMI et al., P. 191, Fig. 22.

A specimen with a compressed whorl section (fig. 15), a quite close and fine ribbing and a broad tricarenate outer part is put in affinity with *A. margarita* (PARONA). The type mainly differs by a closer ribbing and (?) perhaps a more involute coiling. Our specimen also shows some similarities with the Algerian fauna (ELMI et al., 1998, p. 191, fig. 22).

Age and distribution: Most probably, A. aff. margarita (PARONA) belongs to the Stellare Subzone too; this species is recorded from the North-West European, Mediterranean and Pacific areas.

Figure 15: Asteroceras aff. margarita (PARONA) whorl section.

Genus: *Epophioceras* SPATH, 1924 Type species: *Ammonites landrioti* d'ORBIGNY, 1850.

Epophioceras gr. landrioti (d'ORBIGNY, 1850) pl. 9, fig. 4

1850 Ammonites Landrioti d'ORBIGNY, P. 213.

- 1879 Ammonites Landrioti d'Orbigny. Reynes, Pl. 29, Fig. 1-5.
- 1907 Ammonites Landrioti d'Orbigny. THEVENIN, Pl. 7, Fig. 4-5.
- 21902 Vermiceras landrioti (d'Orbigny). Fucini, Pl. 7, Fig. 1-2.
- 1955 Epophioceras landrioti (d'Orbigny). DONOVAN, P. 30.
- 1966 Epophioceras landrioti (d'ORBIGNY). GUERIN-FRANIATTE, P 329. Pl. 217, 218.
- 1976 Epophioceras landrioti (d'ORBIGNY). SCHLEGELMILCH, Pl. 20, Fig. 2.
- 1985 Epophioceras landrioti (d'Orbigny). Braga, Martin-Algarra & Rivas, Pl. 1, Fig. 1.

1998 Epophioceras landrioti (d'ORBIGNY). — BLAU, Pl. 2, Fig. 12.

A very serpenticone ammonite from Sarotlatal is attributed to the genus *Epophioceras*. The ribs are coarse, spaced, subradiate to subprorsiradiate and become smooth near the ventral part. The whorl section is subquadrate, a little more high than thick with convex flanks. The venter, with a blunt keel, seems to be less convex than the type in GUERIN- FRANIATTE (1966, pl. 217), but is similar to the specimen illustrated by SchlegelMilch (1976 pl. 20, fig. 2).

E. deciduum (HYATT) is characterized by very spaced coarse ribbing and a rounded ventral part. The generic attribution of HYATT's species to either *Epophioceras* or *Echioceras* sensu GETTY (1973) is still in discussion.

E. longicella (d'ORBIGNY), a widespread species too, shows a more clearly prorsiradiate ribbing and seems to be more compressed.

Age and distribution: This species indicates the Stellare Subzone. It is known from other part of the Upper Austroalpine unit (Bayerische Alpen and Adnet) and has a quite ubiquitous distribution in the western Tethys and in the Euroboreal realm.

Genus: *Eparietites* SPATH, 1924 Type species: *Arietites tenellus* SIMPSON in BUCKMAN, 1912.

Three morphologies of *Eparietites* are represented in our collection: one with a quite coarse ribbing put in affinity with *E. denotatus* (SIMPSON), a second one characterized by a quite finer, short ornamented stage regrouped here in the *E. glaber* GUERIN-FRANIATTE group, and a third one which shows an intermediate habitus is herein attributed to *E. fowleri* (BUCKMAN).

Eparietites fowleri (BUCKMAN, 1844) pl. 9, fig. 1

1844 Ammonites fowleri BUCKMAN, Pl. 12, Fig. 7.

- ? 1874 Ammonites fowleri Buckman. Buckman, Pl. 45, Fig. 17, 18.
- 1966 Eparietites fowleri (BUCKMAN). GUERIN-FRANIATTE, Pl. 197, Fig. 1 (HT), 2.
- 1993 Eparietites fowleri (Buckman). Dommergues, Pl. 3, Fig. 5.
- 1997 Eparietites fowleri (BUCKMAN). CORNA, DOMMERGUES, MEISTER & MOUTERDE, Pl. 4, Fig. 1.

We include within *E. fowleri* (BUCKMAN) two compressed *Eparietites* with a well developed, straight, quite fine and close ribbing which seems to persist at least to a diameter of 58 mm. Our samples well correspond to the holotype illustrated by GUERIN-FRANIATTE (1966). *E. denotatus* (SIMPSON) and *E. impedens* (YOUNG & BIRD) are refered to the coarse and more spaced ribbed morphologies.

Age and distribution: This species indicate the Denotatus Subzone (Fowleri Horizon) and was until now known from the Euroboreal realm only.

Eparietites aff. *denotatus* (SIMPSON, 1855) juv. pl. 6, figs. 2, 4

1855 Ammonites denotatus SIMPSON, P. 76.

1876 Arietites impedens YOUNG & BIRD. - TATE & BLAKE, Pl.

6, Fig. 7.

- 1912 Eparietites denotatus (SIMPSON). BUCKMAN, Pl. 67AB.
- ? non 1923 Arietites denotatus SIMPSON. SIEMIRADZKI, Pl. 7, Fig. 11.
- 1961 *Eparietites denotatus* (SIMPSON). DEAN, DONOVAN & HOWARTH, Pl. 66, Fig. 4.
- 1966 *Eparietites denotatus* (Simpson). Guerin-Franiatte, Pl. 194; 195, Fig. 1, 2; Pl. 196.
- non 1987 *Eparietites denotatus* (SIMPSON). QUINZIO SINN, Pl. 4, Fig. 2.

DOMMERGUES (1993) described a wide variability within the *E. fowleri* (BUCKMAN) group, including a pole with a long stage of coarse ribs [*E. denotatus* (SIMPSON) and *E. impedens* (YOUG & BIRD)] and a pole with a little shortened, finely and densely ribbed stage [*E. fowleri* (BUCKMAN) s.s.]. If we follow this conception our specimen can also be integrated into *E. fowleri* (BUCKMAN) *sensu* DOMMER-GUES (1993). Without stratigraphical support, we prefer to keep this specimen with a coarse and quite spaced ribbing separate and to put it *in affinis*.

Age and distribution: *E. denotatus* (SIMPSON) characerizes the Denotatus Subzone (Denotatus Horizon); classicaly known in the Euroboreal realm, this species is recorded for the first time from the northern margin of the Tethys.

Eparietites glaber GUERIN-FRANIATTE, 1966 pl. 6, fig. 3; pl. 9, fig. 3

1966 Eparietites glaber GUERIN-FRANIATTE, Pl. 198, Fig. 1, 2.

- 1990 *Eparietites* aff. *glaber* Guerin-Franiatte. Dommergues, Meister & Mettraux, Pl. 198, Fig. 1, 2.
- 1993 *Eparietites glaber* GUERIN-FRANIATTE. DOMMERGUES, Pl. 3, Fig. 2, 3.
- 1995 *Eparietites glaber* Guerin-Franiatte. Dommergues, Meister & Böhm, Pl. 7, Fig. 1.
- 1998 *Eparietites glaber* GUERIN-FRANIATTE. BLAU, Pl. 2, Fig. 9-11.

The large, quite compressed specimen from Lorüns (bed 7 bottom) shows a particulary coarse ribbing in the inner whorls and conversely a strong smoothing of the ornamentation on the outer whorl. The ventral area is subfastigate. The keel is thick and prominent, lined by two quite flat bands. This specimen is very close to the recently described Eparietites glaber GUERIN-FRANIATTE from Adnet which differs nevertheless by its finer ribbing on the inner whorls. The juvenile ornamentation and the size of our specimen show an intermediate morphology between E. collenoti (d'ORBIGNY) and true E. glaber GUERIN-FRANIATTE. Indeed the ornamentation disappears near 4 - 7 cm of diameter. In comparison to E. aff. glaber GUERIN-FRANIATTE from the Median Prealps the smooth stage appears later. Some other small specimens from Lorüns show a more classic habitus of the ornamentation with a finer and closer ribbing and an earlier smoothing

of the ornamentation.

Age and distribution: This species indicates the upper part of the Denotatus Subzone (Glaber Horizon). Its distribution is restricted to the borders of the Paris Basin and to the Alps (Euroboreal and Tethyan realms).

Family: Oxynoticeratidae HYATT, 1875

Genus: Oxynoticeras HYATT, 1875 Type species: Ammonites oxynotus QUENSTEDT, 1845.

Oxynoticeras gr. oxynotum (QUENSTEDT, 1845) pl. 9, figs. 5, 7

- 1845 Ammonites oxynotus QUENSTEDT, Pl. 5, Fig. 11.
- 1856 Ammonites oxynotus QUENSTEDT. HAUER, Pl. 13, Fig. 4-10.
- 1882/85 Ammonites oxynotus QUENSTEDT. QUENSTEDT, Pl. 22, Fig. 28-36, 43, 44.
- 1956 Oxynoticeras oxynotum (QUENSTEDT). Söll, Pl. 17, Fig. 1-10; Pl. 18, Fig. 1.
- 1961 Oxynoticeras oxynotum (QUENSTEDT). DEAN, DONOVAN & HOWARTH, Pl. 66, Fig. 5; Pl. 67, Fig. 3.
- 1977 Oxynoticeras oxynotum (QUENSTEDT). URLICHS, Pl. 4, Fig. 3.
- 1984 Oxynoticeras oxynotum (QUENSTEDT). CORNA, Pl. 11, Fig. 5.
- 1985 Oxynoticeras oxynotum (QUENSTEDT). COMAS RENGIFO, Pl. 2, Fig. 6 with synonymy.
- 1987 Oxynoticeras oxynotum (QUENSTEDT). DOMMERGUES & MEISTER, Pl. 1, Fig. 1-6, 8.
- 1993 Oxynoticeras oxynotum (QUENSTEDT). DOMMERGUES, Pl. 4, Fig. 5.
- 1995 Oxynoticeras oxynotum (Quenstedt). Dommergues. Meister & Böhm, Pl. 9, Fig. 2.

All specimens from Vorarlberg have been collected in the Lorüns quarry. In comparison to the recently described sample from Adnet (DOMMERGUES et al. 1995, Pl. 9, Fig. 2) they show a finer ribbing.

A larger Oxynoticeras, with a diameter of 120 mm, is characterized by a fine ribbing, well expressed near the umbilicus and on the outer part where the ribs are bent forward. The umbilicus is narrow, but less than by O. aff. soemanni (DUMORTIER), a smooth species which is also descibed in this paper.

The second specimen (D = 60mm), is a finely ribbed form with perhaps a little broader whorl section than the holotype (DEAN et al., 1961, pl. 66, fig. 5).

Age and distribution: Index species of the Oxynotum Subzone. This taxon is widely spread in the Euroboreal realm and in the northern margin of the Tethys (Upper Austroalpine units).

Oxynoticeras aff. soemanni (Dumortier, 1867) pl. 9, fig. 2

- 1867 Ammonites soemanni DUMORTIER, Pl. 40, Figs. 2-4; Pl. 43, Figs. 1, 2.
- 1879 Oxynoticeras soemanni (DUMORTIER). REYNES, Pl. 45, Figs. 44-46.
- 1901 Oxynoticeras soemanni (DUMORTIER). FUCINI, Pl. 1, Fig. 1.
- 1914 Oxynoticeras soemanni (Dumortier). PIA, Pl. 6, Fig. 25; Pl. 10, Fig. 4.
- ? non 1991 Oxynoticeras soemanni (Dumortier). Соре, Pl. 4, Fig. 4.
- 1995 Oxynoticeras aff. soemanni (Dumortier). Dommergues, Meister & Böhm, Pl. 7, Figs. 3, 4.

The fragmentary suture line indicates without doubt the genus *Oxynoticeras*. This very oxycone and smooth form has already been recorded in the Upper Austroalpine from the Rotkalk of Adnet area (PIA, 1914; DOMMERGUES et al., 1995). On the contrary, our specimen is derived from the more detritic facies of the Fleckenmergel.

Other smooth forms like *O. inornatum* (PIA) or *O. simpsoni* (SIMPSON) show a broader umbilicus than DUMORTIER'S species. *O. soemanni* (DUMORTIER) displays a habitus between these forms and the true *Radstockiceras* which presents a much narrower umbilicus, very compressed sides and a more complex suture line.

Age and distribution: The total range of this species is not well known. It seems to correspond to an interval from the ? upper part of the Oxynotum Zone up to the middle part of the Raricostatum Zone. The species is recorded from the Tethys (mainly from the northern margin) and from France in the Euroboreal realm.

Genus: Gleviceras BUCKMAN, 1918 Type species: Gleviceras glevense BUCKMAN, 1918.

Gleviceras doris (REYNES) sensu PIA, 1914 pl. 9, fig. 6

- non 1879 Ammonites doris REYNES, Pl. 41, Fig. 13-15.
- 1914 Oxynoticeras doris (Reynes). Ріа, РІ. 1, Fig. 1; РІ. 6, Fig. 1: pl. 8, Fig. 1.
- 1987 *Gleviceras* aff. *doris* (Reynes). Cecca, Dommergues, Mouterde & Pallini, Pl. 2, Fig. 1.
- 1995 Gleviceras doris (Reynes) sensu PIA. Dommergues, MHISTER & BÖHM, Pl. 9, Fig. 1.

The broard specimen from Lorüns is characterized by a quite strong and coarse ribbing associated with a thick whorl section, by a very rough umbilical edge and a large and flat umbilical wall. The ventral area is slightly fastigate (Text-Fig. 16). From the Adnet area we recently described a similar form (DOMMERGUES et al., 1995, Pl. 9, Fig. 1). G genoughi (SOWERBY) sensu HAUER, also known from Adnet (ibidem, Pl. 9, Fig. 3), is a smoother and more compressed species. On the contrary, G. doris (REYNES) shows a more rounded venter and more parallel flanks.

Figure 16: *Gleviceras doris* (REY-NES) sensu PIA whorl section.

Age and distribution: The range of *G. doris* (REYNES) sensu PIA corresponds to a part of the Raricostatum Zone and its distribution is restricted to the Mediterranean Tethys.

Remark: Several oxycone ornamented ammonites, not well

preserved, have been collected in Lorüns bed 53 (146). Because of their quite opened umbilicus and relatively rounded venter they are refered to *Gleviceras* with some affinities with the *G. doris* (REYNES) group, mainly due to the quite coarse ribbing [*Gleviceras* aff. *doris* (REYNES) *sensu* PIA].

Gleviceras gr. *subguibalianum* (PIA, 1914) pl. 10, figs. 1, 2, 4

- 1881 Amaltheus guibalianus d'Orbigny. WRIGHT, Pl. 45, Fig. 1, 2, 6, 7 (only).
- 1899 Oxynoticeras cf. victoris DUMORTIER. HUG, Pl. 8, Fig.
 2.
- 1914 Oxynoticeras subguibalianum PIA, Pl. 5, Fig. 5; Pl. 6, Fig. 6.
- 1958 Oxynoticeras (Gleviceras) subguibalianum PIA. DONO-VAN, Pl. 1.
- 1985 Gleviceras subguibalianum (PIA). PRINZ, Pl. 4, Fig. 6.
- 1987 Gleviceras aff. subguibalianum (PIA). DOMMERGUES & MEISTER, Pl. 1, Fig. 9, 12, 13.
- 1989 *Gleviceras* aff. *subguibalianum* (PIA). DOMMERGUES & MEISTER, Pl. 1, Fig. 1.
- 1990 *Gleviceras subguibalianum* (PIA). Dommergues, Meister & Mettraux, Pl. 4, Fig. 1.
- 1991 Gleviceras subguibalianum (PIA). SCHLATTER, Pl. 8, Fig. 6, 5; Pl. 9, Fig. 1.
- non 1991 *Gleviceras* aff. *subguibalianum* (PIA). SCHLATTER, Pl. 9, Fig. 3.
- ? 1991 Gleviceras cf. subguibalianum (PIA). PALFY, Pl. 13, Fig. 2, 3.
- 1991 Gleviceras subguibalianum (PIA). DOMMERGUES & MEISTER, Pl. 1, Fig. 8.
- 1993 Gleviceras subguibalianum (PIA). Dommergues, Pl. 4, Fig. 7.
- 1997 Gleviceras subguibalianum (PIA). CASSEL, Pl. 9, Fig. 1.

Some specimens from the Fleckenmergel facies belong to a quite compressed *Gleviceras* with slightly flexuous and close ribbing. Considering these characters, they are regrouped into *G. subguibalianum* (PIA), a well known species from the western Alps (Subbriançonnais Alpine unit). *G. rigidum* (PIA), a very close species, is more involute and more compressed with more (?) rigid ribs. However, due to the different size of the types of *G. subguibalianum*

caultianum (DUMORTIER) sensu PIA whorl section.

D = 45 mm

Figure 18: Gleviceras aff. boucaultianum (DUMORTIER) sensu PIA suture line.

(PIA) and G. rigidum (PIA) the comparisons at different ontogenetic stages does not allow a rigorous determination and it cannot be exluded to consider both species as synonymes. G. guibalianum (d'ORBIGNY) shows a blunt umbilical edge and the umbilical wall is rounded and short; moreover the primary ribs are more spaced and the flanks remain more convex.

Age and distribution: *G. subguibalianum* occurs in the major part of the Raricostatum Zone and is widely distributed (Pacific area, Tethys and European archipelago).

Gleviceras aff. boucaultianum (DUMORTIER) sensu PIA, 1914 pl. 10, figs. 3, 5

1914 Oxynoticeras boucaultianum DUMORTIER. — PIA, Pl. 2, Fig. 1; Pl. 6, Fig. 2; Pl. 8, Fig. 4 pars, non c; Pl. 9, Fig. 7.

Our specimens are very compressed (fig. 17) and quite smooth ammonites (partly due to bad preservation). A ventro-lateral ribbing is hardly visible on only one small ammonite. In comparison with the illustrations of PIA (1914) the suture line confirms the systematic position of that fauna in *Gleviceras* (fig. 18). *G. lotharinghium* (REYNES) or *G. boucaultianum* (DUMORTIER) sensu PIA are quite smooth taxa to which our samples may correspond. However, in REYNES's species the whorls remain clearly broader than in our material. Other compressed taxa like *G. rigidum* (PIA) or *G. victoris* (DUMORTIER) exhibit a well expressed ornamentation.

Our specimens also differ from the other species described here especially in the suture line which seems to be less complex in *Gleviceras boucaultianum* (DUMORTIER) sensu PTA (1914, Pl. 8, Fig. 4).

Age and distribution: The range of G. aff. *boucaultianum* (DUMORTIER) sensu PIA is not known with precision but corresponds to the Upper Sinemurian (Raricostatum Zone). It is only known from Upper Austroalpine units.

Family: Echioceratidae BUCKMAN, 1913

Genus Echioceras BAYLE, 1878

Type species: Ammonites raricostatum ZIETEN, 1831.

Echioceras gr. *quenstedti* (SCHAFHÄUTL, 1847) pl. 10, figs. 6-8; pl. 11, figs. 1, 2

- 1847 Ammonites quenstedti Schafhäutl, Pl. 8, Fig. 1; Pl. 15, Fig. 9.
- 1851 Ammonites quenstedti Schafhäutl, Pl. 17, Fig. 24 (only).
- 1867 Ammonites raricostatus Zieten. Dumortier, Pl. 25, Fig. 4, 5.
- 1914 Echioceras rhodanicum Вискман, Р. 96с.
- 1914 Echioceras quenstedti (Schafhäutl). Buckman, P. 96c.
- 1973 Echioceras quenstedti (SCHAFHÄUTL). GETTY, Pl. 2, Fig. 7.
- 1987 *Echioceras* gr. *quenstedti* (Schafhäutl). Dommergues & Meister, Pl. 2, Fig. 7, 9-11.
- 1989 *Echioceras* gr. *quenstedti* (Schafhäutl). Dommergues & Meister, Pl. 1, Fig. 4-17.
- 1990 *Echioceras* cf. *quenstedti* (Schafhäutl). Dommergues, Meister & Mettraux, Pl. 4, Fig. 6.
- 1991 *Echioceras* cf. *quenstedti* (Schafhäutl). Dommergues & Meister, P. 308.
- 1998 Echioceras quenstedti (Schafhäutl). Blau, Pl. 4, Fig. 1, 2.
- ? 2000 Paltechioceras raricostatum quenstedti (Schafhäutl). Schlögl, Aubrecht & Tomasovych, P. 48, Fig. 3.

These specimens of *Echioceras* develop a subcircular whorl section, a slightly depressed venter with a feable keel and no sulci. The ribs are quite spaced and sharp, hardly more sharper on the ventro-lateral part. Whereas the ribbing can be very fine and close on the inner whorls (see DOMMERGUES & MEISTER, 1989, Pl. 1, Fig. 4 à 17). the rib density rapidly decreases during ontogeny. *E. rhodanicum* BUCKMAN, a contemporeanous species is more densely ribbed.

Age and distribution: This species characterizes the Q^{uen} stedti Horizon of the Raricostatum Zone (BLAU & MEISTER. 2000) and is mainly known from the Alps (Subbriançon nais and Upper Austroalpine).

Genus Paltechioceras BUCKMAN, 1924 Type species: Paltechioceras elicitum BUCKMAN, 1924

Paltechioceras charpentieri (SCHAFHÄUTL, 1847) pl. 11, figs. 4, 6

- 1847 Ammonites Charpentieri Schafhäutl, P. 810.
- 1851 Ammonites Charpentieri Schafhäutl, Pl. 16, Fig. 22 (only).
- 1973 *Leptechioceras charpentieri* (SCHAFHÄUTL). GETTY, Pl. 2, Fig. 6.
- 1987 Paltechioceras charpentieri (SCHAFHÄUTL). SCHLAT-TER, Fig. 1a.
- 1998 Leptechioceras charpentieri (SCHAFHÄUTL). BLAU, Pl. 6, Fig. 2.
- 1998 Leptechioceras cf. charpentieri (SCHAFHÄUTL). BLAU, Pl. 6, Fig. 1, 4.

An Echioceratidae from Oberzalim is characterized by an intermediate adult morphology between the genera *Leptechioceras* and *Paltechioceras*. The ventral bands near the keel are broad and more or less flat. The ventral area is more deflated than in *Leptechioceras meigeni* (HuG) and less rounded than in *Paltechioceras favrei* (HuG). The ribbing is clearly prorsiradiate and quite spaced. All these features well correspond to *P. charpentieri* (SCHAFHÄUTL) (see SCHLATTER 1987).

Age and distribution: In Vorarlberg, this species was for the first time found in the Rotkalk facies. It was also recorded in situ from the Lienz Dolomites where it occurs in association with the first *L. meigeni* (HuG) (BLAU, 1998). The species characterizes the Charpentieri Horizon (Macdonnelli Subzone) (BLAU & MEISTER, 2000). It is mainly known from the Alps (Subriançonnais and Upper Austroalpine units).

Paltechioceras favrei (HuG, 1899) pl. 11, figs. 3, 7, 8

1899 Arieticeras favrei Hug, Pl. 12, Fig. 5, 6.

- 1958 Paltechioceras favrei (Hug). DONOVAN, Pl. 2, Fig. 7.
- 1967 Echioceras favrei (Hug). MOUTERDE & ROSSET, P. 134, Fig. 2.
- 1967 Echioceras cf. favrei (Hug). MOUTERDE & ROSSET, P. 134, Fig. 3.
- 1974 Echioceras favrei (Hug). SUAREZ VEGA, Pl. 4A, Fig. 3.

' 1983 Paltechioceras favrei (Hug). – BLAU, Pl. 4, Fig. 1-3.

- non 1987 Paltechioceras boehmi var. favrei (Hug). Dommer-Gles & Meister, Pl. 4, Fig. 3 (= L. meigeni (Hug) in Dom-Mergues. Meister & Mettraux, P. 319.
- 1991 Paltechioceras favrei (Hug). SCHLATTER, Pl. 7, Fig. 35.
 1983 P. I. S.
- 1983 Paltechioceras favrei (HuG). BLAU, Pl. 5, Fig. 1-7, 9-11.
- 2002 Paltechioceras cf. favrei (Hug). HILLEBRANDT, Pl. 11, Fig. 6-8.

In the literature, *P. favrei* (Hug) is often put into the synonymy with *P. boehmi* (Hug). However, the morphology of *P. favrei* (HuG) already shows some affinities with the genus *Leptechioceras*. The difference to the underlying *P. boehmi* (HuG) is essentially based on the development of a compressed whorl section - mainly in the ventral part - in the adult stage. On the other hand the rib density decreases. Some adult specimens sometimes show a smoothing of the body chamber. Supported by stratigraphy (BLAU, 1998), these differences are sufficient to consider *P. favrei* (HuG) as an independent species.

Age and distribution: In Lienz Dolomites, *P. favrei* (HuG) is present in higher beds than *P. boehmi* (HuG). The species characterizes the Favrei Horizon (Raricostatum Subzone) (BLAU & MEISTER, 2000). It has been recorded in the Alps (Subriançonnais and Upper Austroalpine units), Europe and America (e.g. HILLEBRANDT, 2002).

Paltechioceras gr. rothpletzi (Böse, 1894) pl. 11, fig. 12

- 1894 Arietites rothpletzi Böse, Pl. 56, Fig. 5, 6.
- 1902 Vermiceras rothpletzi Böse. Fucini, Pl. 12, Fig. 12.
- ? 1923 Vermiceras rothpletzi Böse. SIEMIRADZKI, Pl. 7, Fig. 6.
- non ? 1956 Vermiceras aff. rothpletzi (Böse). Erben, Pl. 36, Fig. 8, 9.
- ? 1965 Paltechioceras rothpletzi (Böse). Bremer, Pl. 13, Fig. 4.
- ? 1965 Vermiceras rothpletzi (BÖSE). ANDRUSOV, Pl. 49, Fig. 3.
- 1981 Paltechioceras rothpletzi (Böse). Sмith, Pl. 5, Fig. 5, 6; Pl. 6, Fig. 1.
- 1985 Paltechioceras cf. rothpletzi (BÖSE). PRINZ, Pl. 4, Fig. 3.
- ? 1987 Paltechioceras (?) aff. rothpletzi (Böse). Сесса, Dom-Mergues, Mouterde & Pallini, Pl. 1, Fig. 5, 6.
- 1991 Paltechioceras cf. rothpletzi (BÖSE). PALFY, Pl. 13, Fig. 5.
- 1994 Paltechioceras aff. rothpletzi (Böse). Dommergues, Ferretti & Meister, Pl. 3, Fig. 12-16.

The specimen from Rothorn (P 2452) is very evolute and very densely ribbed, mainly in the inner whorls. The ribs are prorsiradiate, sometimes slightly undulated and very rarely irregular as in *P. oosteri* (DUMORTIER). This form belongs to the densely and prorsiradiate ribbed *Paltechioceras* which include a variety of species.

P. rothpletzi (BösE) shows almost the same arrangement of the ribbing but with higher ribdensity throughout the complete ontogeny similar to *P. liciense* BLAU, a very close species.

P. oosteri (DUMORTIER) shows coarser ribs with more irregularity in the ornament. *P. hierlatzicum* (HAUER) develops this strange ribbing too, and in the very inner whorls the ribs are more spaced.

P. bavaricum (BÖSE) seems to be more involute with an a little more spaced ribbing throughout the complete ontogeny. In *P. meisteri* BLAU the ribbing remains more spaced too, but it is still more rigid and prorsiradiate.

The P. aff. rothpletzi (BÖSE) recently described from the

Central Apennine show a more close ribbing habitus close to *P. liciense* (BLAU 1998).

Age and distribution: These densely ribbed *Paltechioceras*, *P. rothpletzi* (BösE) and adjoining species are well represented in the Tethyan realm and in the Pacific area. The species characterizes the Rothpletzi Horizon (upper Raricostatum Subzone) (BLAU & MEISTER, 2000).

Paltechioceras gr. tardecrescens (HAUER, 1856) pl. 11, figs 10, 11

- * 1856 Ammonites tardecrescens HAUER, P. 20; Pl. 3, Figs. 10-12.
- 1879 Ammonites tardecrescens HAUER. REYNES, Pl. 13, Fig 8-10.
- 1973 Paltechioceras tardecrescens (HAUER). GETTY, Pl. 4, Fig. 2a, b.
- 1981 Paltechioceras tardecrescens (HAUER). SMITH, Pl. 6, Figs. 2, 3.
- ? 1981 Paltechioceras tardecrescens (HAUER). SMITH, Pl. 6, Fig. 4.
- 1985 Paltechioceras (paltechioceras) cf. tardecrescens (HAUER). — Сомаs Rengifo, Pl. 2, Fig. 3.
- 1989 Paltechioceras tardecrescens (HAUER). DOMMERGUES & MEISTER, Pl. 4, Figs. 1, 3.
- 1990 Paltechioceras gr. tardecrescens (HAUER) insigne (TRUE-MAN & WILLIAMS). — DOMMERGUES & MEISTER, Pl. 1, Figs. 8-10; Pl. 2, Figs. 1, 4.
- 1991 Paltechioceras tardecrescens (HAUER). SCHLATTER, Pl. 6, Figs. 1-3.
- 1992 Paltechioceras tardecrescens (HAUER). -- DOMMERGUES & MEISTER, Pl. 1, Figs. 27-29.
- 1992 Paltechioceras tardecrescens (HAUER). DOMMERGUES & MEISTER, P. 223, Figs. 5.1-4.
- 1993 Paltechioceras tardecrescens (HAUER). DOMMERGUES, Pl. 8, Fig. 5.
- 1993 Paltechioceras tardecrescens forme nobile TRUEMAN & WIL-LIAMS. — DOMMERGUES, Pl. 8, Fig. 56.
- 1994 Paltechioceras tardecrescens (HAUER). RAKUS, Pl. 5, Fig.
 4. 1998 Paltechioceras tardecrescens (HAUER). BLAU,
 Pl. 10, Figs. 1-6, 9; Pl.14, Fig. 4.
- non 2000 Paltechioceras sp. ? tardecrescens (HAUER) SCHLÖGL, Aubrecht & Tomasovych, Pl. 1, Fig. 2.
- 2000 Paltechioceras tardecrescens (HAUER). BLAU, MEISTER, EBEL & SCHLATTER, P. 273, Figs. 11.1, 2, 3, 5.
- 2002 Paltechioceras cf. tardecrescens (HAUER). HILLEBRANDT, Pl. 11, Fig. 23; Pl. 12, Figs. 1-10.

The specimen from Goppelspitze (P. 13392) is a true *Paltechioceras* with well expressed sulci and a dense ribbing on the inner whorls which is a little more, but regularly spaced on the intermediate and adult stages. In spite of the deformation, on our specimen the ribs seem to be radiate to slightly prorsiradiate. It belongs to the late evolute *Paltechioceras* with a quite compressed tricarinate whorl section. In *P. insigne* TRUEMAN & WILLIAMS the ribs appear more arched (a little concave) on the flanks.

A large crushed specimen from Schröcken (P 7080) is very close to the illustration of SCHLATTER (1991, Pl. 6, Fig. 3) and of DOMMERGUES & MEISTER (1990, Pl. 2, Fig. 1). Age and distribution: The species indicates everywhere the Aplanatum Subzone and the top of the Sinemurian. It is quite ubiquitous.

Genus Leptechioceras BUCKMAN, 1923 Type species: Ammonites macdonnelli PORTLOCK, 1843.

Leptechioceras gr. meigeni (Hug, 1899) pl. 11, figs. 5, 9

- 1867 Ammonites Nodotianus d'Orbigny. Dumortier, Pl. 24, Fig. 3-4.
- 1899 Arietites meigeni Hug, Pl. 11, Fig. 2, 3.
- 1914 Echioceras meigeni (Hug). Вискман, Р. 96с.
- 1914 Echioceras hugi BUCKMAN, P. 96c.
- 1925 Leptechioceras hugi (Buckman). Trueman & Williams, P. 730.
- 1931 Arietites (Echioceras) nodotianus meigeni Hug. ANDRUSOV, Pl. 8, Fig.5.
- 1958 Paltechioceras cf. favrei DONOVAN, Pl. 2, Fig. 7.
- 1958 Leptechioceras meigeni (Hug). DONOVAN, Pl. 2, Fig. 1, 4.
- 1967 Echioceras cf. meigeni Hug. MOUTERDE & ROSSET, Pl. 1, Fig. 5.
- 1973 Leptechioceras meigeni (Hug). GETTY, P. 12.
- 1980/81 Leptechioceras cf. hugi (Вискман). Fauré, Pl. 1, Fig. 1.
- aff. 1987 Leptechioceras meigeni (Hug). SCHLATTER, Pl. 1, Fig. 4
- 1987 Leptechioceras meigeni (Hug). DOMMERGUES & MEISTER. Pl. 4, Fig. 6-9; Pl. 5, Fig. 7.
- 1989 Leptechioceras meigeni (Hug). DOMMERGUES & MEISTER, Pl. 3, Fig. 3, 4.
- 1990 Leptechioceras meigeni (Hug). Dommergues & Meister. PL. 1, Fig. 4-6.
- 1991 Leptechioceras meigeni (Hug). Schlatter, Pl. 4, Fig. 12; Pl. 5, Fig. 1.
- 1991 Leptechioceras cf. meigeni (Hug). Schlatter, Pl. 5. Fig. 2.
- ? 1991 Leptechioceras aff. meigeni (Hug). SCHLATTER, Pl. 5. Fig. 3.
- 1993 Leptechioceras (Leptechioceras) meigeni (HuG). Don-Mergues, Pl. 9, Fig. 1-2.
- 1993 Leptechioceras gr. meigeni (Hug). Meister & Böнм. Pl. 4, Fig. 13.
- 1997 Leptechioceras (Leptechioceras) meigeni (Hug). CORNA. DOMMERGUES, MEISTER & MOUTERDE, Pl. 5, Fig. 11.
- 1998 Leptechioceras meigeni (Hug). BLAU, Pl. 6, Fig. 3, 5-15: Pl. 7, Fig. 1-11; Pl. 8, Fig. 1-8.
- 2000 Leptechioceras meigeni (Hug). BLAU, MEISTER. EBEL S SCHLATTER, P. 264, Fig. 5-2; P. 265, Fig. 6-2,4.

Our Echioceratidae possesses an ogival and keeled. contraction of the contraction of the

pressed whorl section without sulci. These features are characteristic of the genus *Leptechioceras*. The ribs are rectiradiate to prorsiradiate and quite spaced. Well marked in the middle and lower flanks, they become evanescent on the ventrolateral part.

L. subplicatum (TRUEMAN & WILLIAM) shows a still broader whorl section, which is more rounded near the venter. Moreover, the keel is bordered with two flat bands. L. subplicatum (TRUEMAN & WILLIAM) seems to be a little more evolute than L. meigeni (HUG). L. planum (TRUEMAN & WILLIAM), a very evolute ammonite, shows - mainly on the inner whorls - a transitional morphology between Paltechioceras and Leptechioceras. Like L. subplicatum (TRUEMAN & WILLIAM) its ventro-lateral part is not compressed.

Age and distribution: This species characterizes the Macdonnelli Subzone (Meigeni Horizon). It is known only from the Euroboreal realm and the nothern margin of the Tethys (Upper Austroalpine unit).

Superfamily: Eoderoceratoidea Spath, 1929 Family: Eoderoceratidae Spath, 1929

Genus: *Eoderoceras* SPATH, 1925 Type species: *Deroceras bispinigerum* BUCKMAN, 1918.

> Eoderoceras gr. armatum (Sowerby, 1815) pl. 12, fig. 4

- 1815 Ammonites armatus SOWERBY, P. 215, Pl. 95.
- 1855 Ammonites miles. SIMPSON, P. 65.
- 1842-51 Ammonites armatus SOWERBY. d'ORBIGNY, P. 270, Pl. 78.
- [?] pars 1858 Ammonites armatus SOWERBY. CHAPUIS, Pl. 4, Fig. 4c (non a, b)
- 1882-85 Ammonites armatus Sowerby. QUENSTEDT, Pl. 23, Fig. 16-18.
- 1869 Ammonites armatus Sowerby. DUMORTIER, P. 59, Pl. 8, Fig. 1-2.
- 1878-86 Aegoceras armatum (Sowerby). WRIGHT, Pl. 28, Fig. 1-5.
 - 1878-86 Aegoceras armatum (Sowerby). WRIGHT, Pl. 29, Fig. 6.
- 1879 Ammonites armatus Sowerby. Reynes, Pl. 45, Fig. 43, Pl. 50, Fig. 9,13.
- Pars 1899 Aegoceras armatum (Sowerby). Hug, P. 25, Pl. 7. Fig. 4.
- 1909 Deroceras armatum (SowerBy). Rosenberg, P. 264,
 Pl. 4 (13), Fig. 6.
 1911 Dom
- 1911 Deroceras miles (SIMPSON). BUCKMAN, Pl. 44, Fig. 1-2
 (Holotype).
 1920 Data
- 1920 Deroceras aff. armato (Sowerby). KRUMBECK, P.
 196, Pl. 17, Fig. 16.
 1925 Deroceras.
- 1925 Deroceras obestum nov. sp. Spath, P. 139, 170, Fig. 2h.
 1926 Deroceras eusculptum nov. sp. Lang & Spath, P. 175, Pl. 10, Fig. 3.

- 1927 Deroceras armatum (SOWERBY). SCHRÖDER, P. 213, Pl. 12, Fig. 1
- 1950 *Eoderoceras postarmatum*. HOFFMANN, P. 92, Pl. A, Fig. 4 (with synonymy).
- 1958 Eoderoceras armatum (Sowerby). DONOVAN, P. 32, Pl. 3, Fig. 4-5.
- 1963 Eoderoceras armatum (Sowerby). MAUBEUGE, P. 16, Pl. 4, Fig. 1.
- ? 1963 Eoderoceras armatum (Sowerby). MAUBEUGE, P. 16, Pl. 2, Fig. 1.
- 1963 *Eoderoceras miles* (Simpson). Маивеиде, Р. 17, Pl. 1, Fig. 1, Pl. 4, Fig. 3.
- 1963 Eoderoceras cf. miles (SIMPSON) var. postarmatum HOFF-MANN. — MAUBEUGE, P. 19, Pl. 1, Fig. 3, Pl. 3, Fig. 2.
- 1965 Eoderoceras aff. miles (SIMPSON). ZEISS, Pl. 2, Fig. 4.
- ? 1977 Eoderoceras cf. armatum (Sowerby). WIEDENMAYER, P. 57, Pl. 12, Fig. 14.
- 1984 Eoderoceras cf. miles (SIMPSON) var. postarmatum HOFF-MANN. — MAUBEUGE, P. 45, Fig. 30.
- 1991 *Eoderoceras miles* (SIMPSON). SCHLATTER, P. 60, Pl. 13, Fig. 1-3, 5.
- 1991 Eoderoceras cf. miles (SIMPSON). SCHLATTER, P. 61, Pl. 13, Fig. 4.
- 1991 Eoderoceras postarmatum HOFFMANN. SCHLATTER, P. 61, Pl. 13, Fig. 6.
- 1993 Eoderoceras armatum (SOWERBY). DOMMERGUES, P. 145, Pl. 10, fig. 16.
- 1998 Eoderoceras armatum (SOWERBY). BLAU, Pl. 11, Fig. 4.
- 2000 Eoderoceras armatum (Sowerby). BLAU, MEISTER, EBEL & Schlatter, P. 263, Fig 4-1 to 5; P. 264, Fig. 5-1,3,5; P. 265, Fig. 6-1.

Our specimen is very close to *E. armatum* (SOWERBY) as described by SCHRÖDER (1927, pl. 12, fig. 1). It is characterized by serpenticone, rather smooth inner whorls [*Tubellites* stage sensu DOMMERGUES, 1993)] until 1 cm of diameter, followed by an ornamented stage with coarse simple ribs ending in latero-ventral spines, and a secondary lateral ribbing which tends to cover all. The slightly arched venter bears a fine, regular, close ribbing. On the intermediate and outer whorls the primary ribs become evanescent.

A small corroded Eoderoceratidae (D = 20mm) from Lorüns is here considered as the inner whorls of *Eode*roceras (*Eoderoceras* sp. juv.).

This quite long ranging and rather rare genus is not very easy to identify at species level, which is especially true for *E. armatum* (SOWERBY) and *E. miles* (SIMPSON).

Because of the loss of the type of *E. armatum* (SOWERBY) and the poor figure of SOWERBY, *E. miles* (SIMPSON), a later described species, is more commonly used in literature, specially in NW Germany.

According to HOFFMANN (1950) E. armatum (SOWERBY) differs from E. miles (SIMPSON) in being higher, more densely ribbed and having a longer smooth stage. E. armatum (SOWERBY) is situated below the Raricostatoides

Zone whereas *E. miles* (SIMPSON) is recorded from the Middle and Upper Raricostatum Zone. For us, these two species are very close and moreover their variability is not well known. The differences, if there are differences at all, probably record merely the intraspecific variability.

Moreover the ontogeny of *E. armatum* (SOWERBY) is well discussed in a recent paper by BLAU et al. (2000) and we follow herein their taxonomic position: *E. armatum* (SOWERBY), *E. miles* (SIMPSON) and *E. postarmatum* HOFFMANN are conspecific.

Age and distribution: *E. armatum* (SOWERBY) including *E. miles* (SIMPSON) (see BLAU et al., 2000) has a long range from the Densinodulum Zone until the Aplanatum Subzone. This species is mainly known from the Euroboreal realm and partly from the northern margin of the Tethys (Upper Austroalpine units).

Genus *Microderoceras* Hyatt, 1871 Type species: *Ammonites birchi* Sowerby, 1820.

Microderoceras aff. gigas (QUENSTEDT, 1883) pl. 13, fig. 1

1882/85 Ammonites birchii gigas QUENSTEDT, Pl. 18, Fig. 13.

- 1928 Microderoceras gigas (Quenstedt). Buckman, Pl. 762.
- 1993 *Microderoceras* aff. *gigas* (Quenstedt). Meister & Вонм, Pl. 3, Fig. 3.
- 1995 *Microderoceras* aff. *gigas* (Quenstedt). Dommergues, Meister & Böhm, Pl. 8, Fig. 2.

The specimen from Spullersee (P. 1554) well corresponds to the fauna from Adnet (MEISTER & BÖHM, 1993; DOM-MERGUES et al., 1995). It is a large, very evolute ammonite (D = 150 mm) characterized by a homogeneous, regular, and persistent ornamentation with widely spaced, coarse, bituberculated ribs. No lateral secondary ribbing can be observed.

Age and distribution: In the Jura Mountains this species is associated with *Asteroceras* (CORNA, 1985) and in Salzburg with *Gleviceras*. At the present time the total range includes the Obtusum Zone up to the lower (?) part of the Raricostatum Zone. This rare species is recorded from the Euroboreal realm and from the northern margin of the Tethys (Upper Austroalpine units).

A juvenile specimen from Lorüns, illustrated herein (Pl. 12, Fig. 2), is attributed to *Microderoceras* sp.

Paramicroderoceras cf. hungaricum (GECZY, 1976) pl. 12, fig. 7

1976 Hyperderoceras hungaricum GECZY, Pl. 10, Fig. 1-3.
? non 1982 Hyperderoceras hungaricum GECZY. — VENTURI, P. 46, Fig. 47.

This bituberculate Eoderoceratidae is attributed to *Para*microderoceras hungaricum GECZY with which it shares - on the intermediate and outer whorls an elliptic whorl section and a special segmentary ornament. The latter is a broad segmentary-like ornamentation with very narrow inter-segments, like incisions. In GECZY's species the outer row of tubercles is not conspicuous anywhere; moreover the ventral ribbing is more evanescent. On the contrary, the inner whorls of our specimen are bituberculate like in *P. birchoides* (ROSENBERG); during the ontogeny the inner tubercles get already obliterated in the intermediate whorls whereas the outer ones are sporadically spiny and remain until the adult stage where they become coarser. The main lateral ribs are straight and blunt, sometimes splitting into 2 or 3 fine ribs.

Age and distribution: This species seems to characterize the base of the Pliensbachian (Jamesoni Zone). It is recorded from the Upper Austroalpine only.

Genus *Promicroceras* Spath, 1925 Type species: *Ammonites planicosta* Sowerby, 1814.

Promicroceras perplanicosta (SPATH, 1925) pl. 12, fig. 5

- 1879 Ammonites planicosta Sowerby. Reynes, Pl. 34, Fig. 27-29.
- 1881 Aegoceras planicosta (Sowerby). WRIGHT, Pl. 24, Fig. 3 (HT).
- 1925 Xipheroceras perplanicosta SPATH, P. 269.
- 1926 Promicroceras perplanicosta (Spath). Spath, Pl. 9, Fig. 2 (HT).
- 1963 Promicroceras perplanicosta (SPATH). BLAISON, Pl. 1, Fig. 3.
- 1969 Promicroceras perplanicostum (SPATH). REYMENT, P. 211, Fig. 8.
- 1984 Promicroceras perplanicosta (Spath). Guerin Franiatte & Hoffmann, Pl. 1, Fig. 15-16.
- 1994 Promicroceras perplanicosta (SPATH). Соре, Pl. 2. Fig. 3.

Following GUERIN FRANIATTE & HOFFMANN (1984, p. 51) we distinguish *P. planicosta* (SOWERBY) from coarser ribbed forms with a more quadrate and thick whorl section and a quite flat ventral part bearing blunt chevrons-like ribs (see the type in SPATH, 1926, pl. 9, fig. 9), which belong to *P. perplanicosta* (SPATH). Our samples well correspond to the SPATH's species.

Age and distribution: Until now only known from the Euroboreal realm, this species is here for the first time recorded from the Upper Austroalpine (Tethyan Realm). Its range seems to extend from the Turneri Zone to the Obtusum Zone.

Family Epideroceratidae Dommergues & Meister, 1999

Genus Epideroceras Spath, 1923 Types species: Ammonites roberti Hauer, 1854.

Epideroceras gr. *lorioli* (HuG, 1899) pl. 12, figs. 1, 3, 6

- 1899 Aegoceras lorioli Hug, Pl. 8, Fig. 1; Pl. 9, Fig. 3.
- 1958 Epideroceras hugi DONOVAN, Pl. 4, Fig. 1.
- 1958 Epideroceras grande DONOVAN, Pl. 3, Fig. 1.
- 1983 Epideroceras lorioli (HUG). BLAU, Pl. 6, Fig. 1, 2.
- 1983 Epideroceras cf. hugi DONOVAN. BLAU, Pl. 6, Fig. 3.
- 1983 Epideroceras lorioli (HUG). BLAU, Pl. 6, Fig. 1, 2.
- 1987a *Epideroceras* gr. *lorioli* (Hug). Dommergues & Meister, Pl. 5, Fig. 9 with synonymy.
- 1989 Epideroceras (Epideroceras) lorioli (Hug). Dommergues & Geczy, Pl. 2, Fig. 1-4.
- 1989 *Epideroceras lorioli* (Hug). DOMMERGUES & MEISTER, Pl. 4, Fig. 2, 4; Pl. 5, Fig. 1, 2; Pl. 6, Fig. 3.
- 1989 *Epideroceras lorioli* forme *hugi* DONOVAN. DOMMERGUES & MEISTER, Pl. 6, Fig. 1.
- 1990 *Epideroceras lorioli* (Hug). Dommergues, Meister & Mettraux, Pl. 5, Fig. 2.
- 1990 *Epideroceras* aff. *lorioli* (Hug). Dommergues & Meister, Pl. 2, Fig. 2, 6, 7.
- 1991 *Epideroceras* gr. *lorioli* (Hug). Dommergues & Meister, Pl. 3, Fig. 1.
- 1991 Epideroceras lorioli (Hug). Schlatter, Pl. 14, Fig. 4, 5.
- 1993 *Epideroceras* gr. *lorioli* (Hug). Meister & Böhm, Pl. 5, Fig. 1.
- 1993 Epideroceras (Epideroceras) lorioli (Hug). Dommergues, Pl. 10, Fig. 17.
- 1995 Epideroceras gr. lorioli (Hug). Alkaya & Meister, Pl. 5, Fig. 16.
- 1996 Epideroceras sp. aff. E. lorioli (Hug). Popa & Patrulius, Pl. 19, Fig. 4.
- 1997 Epideroceras Iorioli (Hug). Corna, Dommergues, Meister & Page, Pl. 10, Fig. 2; Pl. 11, Fig. 5.
- 1997 Epideroceras (Epideroceras) lorioli (Hug). Corna, Dom-Mergues, Meister & Mouterde, Pl. 5, Fig. 1.
- 1998 Epideroceras lorioli (Hug). BLAU, Pl. 11, Fig. 5-11; Pl.
 12. Fig. 1-13; Pl. 14, Fig. 1.

The Austrian specimens are quite evolute, with broad inner whorls. They bear coarse, subradiate, tuberculated ribs. The inner tubercle line disappears very early near 2 cm in diameter whereas

the outer one remains until a diameter of 7-8 cm. Secondary ribbing on the ventral part is well developed in the juvenile stage but disappears quite rapidly in the middle; it is still visible at a diameter of x cm. This morphology is close to the specimen illustrated by HuG (1899, Pl. 9,

Figure 19 Epideroceras gr. iortoli (H) (a) whorl section. Fig. 3). At this stage the whorl section becomes more oval, high and compressed, the venter smooth (Text-Fig. 19). These Epideroceras are grouped into *E. lorioli* (HuG). In our opinion *Epideroceras* gr. *lorioli* (HuG) shows a high variability of the whorl-section and the umbilicus which ranges from the very evolute *E. frischmanni* (QUENSTEDT) with a quite subquadrate whorl section to the involute *E. steinmanni* (HuG) with a quite compressed whorl section. We group all intermediate morphologies within *E.* gr. *lorioli* (HuG).

One *Epideroceras* from Rothorn (P.1793) well fits the more evolute *E. lorioli* referred to as *E.* gr. *lorioli* form *hugi* DONOVAN and illustrated by DOMMERGUES & MEISTER (1989). Its intermediate whorl still bears a slight ventrolateral tubercle and the whorl-section is subtrapezoidal with a quite weakly rounded venter. The outer whorl, on the other hand, is suboval with a high rounded ventral part and without tubercles.

Age and distribution: The range of this species corresponds to the middle part of the Raricostatum Subzone to Aplanatum Subzone; it is mainly known from the Alps and the adjacents northern areas (mainly SW Germany and France).

Family Dubariceratidae DOMMERGUES & MEISTER, 1999

Genus Metaderoceras SPATH, 1925 (syn.

Farinaccites Faraoni, Marini, Pallini & Venturi, 1996)

Type species: Ammonites muticus d'Orbigny, 1844.

Metaderoceras gemmellaroi (LEVI, 1896) pl. 13, figs. 3, 4

- *1896 Aegoceras gemmellaroi Levi, Pl. 8, Fig. 3, 6.
- 1921 Deroceras evolutum FUCINI, Pl. 1, Fig. 14.
- 1983 *Metaderoceras gemmellaroi* (LEVI). RIVAS, Pl. 2, Fig. 4-10 with synonymy.
- 1983 Metaderoceras evolutum (FUCINI). RIVAS, Pl. 1, Fig. 1-8 with synonymy.
- 1991 Metaderoceras gemmellaroi (LEVI). FERRETTI, Pl. 3, Fig. 2, 3; Pl. 4, Fig. 1.
- 1993 *Metaderoceras* gr. *gemmellaroi* (Levi). Meister & Böнм, Pl. 7, Fig. 1 with synonymy.
- 1994 *Metaderoceras gemmellaroi* (Levi). Faraoni, Marini & Pallini, Pl. 2, Fig. 6.
- 1996 Metaderoceras gemmellaroi (Levi). El Hariri, Dommergues, Meister, Souhel & Chafiki, Pl. 69, Fig. 4, 5.
- ? 1996 Metaderoceras evolutum (Levi). Smith & Tipper, Pl. 18, Fig. 1; Pl. 16, Fig. 3-5, 7.
- 1996 *Metaderoceras gemmellaroi* (Levi). Faraoni, Marini, Pallini & Venturi, Pl. 8, Fig. 10.
- 2000 Metaderoceras gemmellaroi (Levi). Dommergues, Meister, Bonneau, Cadet & Fili, P. 351, Fig. 10-1,2.
- 2001 Metaderoceras gemmellaroi (Levi). Venturi & Ferri, P. 121; P. 128.

Two fragments of *Metaderoceras* are grouped here within the species *M. gemmellaroi* (LEVI) due to a well developed ventro-lateral row of acute spines, a development of secondary fine ribs which more or less deface the primary ribbing, an almost smooth ventral part, and a medium spaced ribbing compared to the very coarsely ribbed *M. venarense* (OPPEL) group. *M. gemmellaroi* forma *kondai* (GECZY) shows a closer, fine, and more sinuous ribbing. Age and distribution: This species indicates the Middle Carixian (Ibex Zone). It may be the equivalent of the Venarense Horizon of the Euroboreal Realm (MEISTER, 1995). Its distribution covers the Tethyan Realm and partly the Pacific area.

Metaderoceras gemmellaroi forma kondai (GECZY, 1976) pl. 13, fig. 2

1972 Uptonia sp. GECZY, Pl. 5, Fig. 1, pl. 6, fig. 1.

- 1976 Uptonia kondai GECZY, Pl. 13, Fig. 4-6, Pl. 14, Fig. 1.
- ? 1996 Farinaccites kondai (Geczy). FARAONI, MARINI, PAL-LINI & VENTURI, Pl. 6, Fig. 8.

This *Metaderoceras* is characterized by the regularity of the ribbing in spacing and size. The ribs are quite fine and close during the ontogeny with a more flexuous drawing than *M. gemmellaroi* (LEVI) s.s. Although the conception of the LEVI's species is wide, the subspecies differs by a fine, regular and closer ribbing on the inner and median whorls and especially by the ribs crossing the venter. Moreover the ventro-lateral spine is quite fine even on the inner whorls.

The ribs cross the slightly convex venter making a relief like in *M. venarense* (OPPEL) in MEISTER (1986, Pl. 11, Fig. 2).

In the Bakony, this subspecies is associated with *M. gemmellaroi* (LEVI) s.s. and may represent mere intraspecific variability.

M. evolutum (FUCINI) is a coarser ribbed form which most probably represents the coarse pole of the species *M. gemmellaroi* (LEVI).

Like *Metaderoceras* sp. 3 and sp. 4 described from Ibericas by COLERA et al. (1978) *M. meneghini* (FUCINI) is also a close species (e.g. FAUGERES, 1978, Pl. 42, fig. 6). The regularity of the ornamentation reminds of *M. apertum* EL HARIRI, DOMMERGUES, MEISTER, SOUHEL & CHAFIKI from the High Atlas, but its ribbing is finer and closer spaced, and the umbilicus is more open.

The genus *Dubariceras* which is derived from *Metaderoceras* shows very close, fine, more acute ribs which remain more or less flexuous throughout the ontogeny. The ventral part is smooth, but the lateral ribs touch the lateral part of the venter.

Age and distribution: This species ranges from the Jamesoni Zone (Apennines) to the Ibex Zone (Bakony). Its distribution is restricted to the Tethyan Realm.

Subfamily: Reynesocoeloceratinae Dommergues, 1986

Genus: *Prodactylioceras* SPATH, 1923 Type species: *Ammonites Davoei* SOWERBY, 1822.

Prodactylioceras gr. davoei (Sowerby, 1822) pl. 13, fig. 5

- *1822 Ammonites Davoei Sowerby, P. 71, Pl. 350.
- 1986 Prodactylioceras davoei (SOWERBY). MEISTER, Pl. 18, Fig. 8; Pl. 19, Figs. 3, 7 with synonymy.
- 1986 Prodactylioceras davoei enode (QUENSTEDT). MEISTER, Pl. 19, Fig. 4 with synonymy.
- 1986 Prodactylioceras davoei nodosissimus (QUENSTEDT). — MEISTER, Pl. 19, Fig. 1; Pl. 23, Fig. 5 with synonymy.
- 1986 *Prodactylioceras davoei* (Sowerby). Büchner, Hoffmann & Jordan, Pl. 4, Fig. 1.
- 1991 Prodactylioceras davoei (Sowerby). Schlatter, Pl. 21, Fig. 1, 2.
- 1991 *Prodactylioceras davoei enode* (QUENSTEDT). SCHLAT-TER, Pl. 21, Fig. 3.
- 1991 Prodactylioceras davoei nodosissimus (QUENSTEDT). SCHLATTER, Pl. 21, Fig. 4.
- 1993 *Prodactylioceras* gr. *davoei* (Sowerby). Meister & Böнм, Pl. 7, Figs. 8, 10 with synonymy.
- 1994 Prodactylioceras davoei (Sowerby). in: FISCHER, Pl. 24, Fig. 3.
- 1994 Prodactylioceras davoei (Sowerby). Rakus, Pl. 6, Fig. 4.
- 1997 *Prodactylioceras davoei* (Sowerby). Dommergues, Meister & Mouterde, Pl. 7, Fig. 17.
- 1997 Prodactylioceras davoei (Sowerby). CASSEL, Pl. 11, Fig. 1.
- 1998 Prodactylioceras davoei (SOWERBY). RULLEAU, Pl. 27, Fig. 2, 4; Pl. 28, Fig. 1.
- 1998 Prodactylioceras davoei var. enode (QUENSTEDT). RUL-LEAU, Pl. 27, Fig. 3.
- 1998 Prodactylioceras davoei var. nodosissimus (QUENSTEDT). — RULLEAU, Pl. 27, Fig. 5.
- 2000 Prodactylioceras davoei (Sowerby). Schlögl, Aubrecht & Tomasovych, Pl. 1, Fig. 6.

A fragment of a constricted body chamber of *Prodactylioceras* is characterized by irregularly spaced, prorsiradiate ribs, which are slightly curved near the outer part and sometimes ornamented with a weak tubercle. They cross the venter. All these features coincide with the classical descriptions of *Prodactylioceras davoei* (SOWERBY) (e.g. DOMMERGUES 1980, 1987; MEISTER, 1986).

Age and repartition: Known from the Euroboreal Realm and some parts of the northern margin of the Tethys, this species characterizes the Davoei Zone (Capricornus to Figulinum Subzones).

Family: Polymorphitidae HAUG, 1887

Genus: *Platypleuroceras* HYATT, 1867 Type species: *Ammonites brevispina* SOWERBY, 1827.

Platypleuroceras gr. brevispina (SOWERBY, 1827) pl. 14, figs. 1-3

- 1827. Ammonites brevispina Sowerby, Pl. 556, Fig. 1.
- 1845 Ammonites lataecosta Sowerby, QUENSTEDT, Pl. 4, Fig. 15 a-c, non d.
- non 1856 Ammonites brevispina Sowerby. HAUER, Pl. 17, Fig. 4-10.
- ? 1856 Ammonites lataecosta Sowerby. QUENSTEDT, Pl. 14, Fig. 14.
- 1882 Aegoceras brevispina (Sowerby). WRIGHT, Pl. 32, Fig. 2, 3, non 4; pl.50, fig. 13 ?, 14 ?
- 1885 Ammonites brevispina (SOWERBY). QUENSTEDT, Pl. 33, Fig. 6, ? 10.
- non 1899. Aegoceras (Platypleuroceras) aff. brevispina (Sow-ERBY). — Söhle, Pl. 11, Fig. 3.
- 1925 Platypleuroceras brevispina (Sowerby). Tutcher & Trueman, P. 649, Fig. 16b.
- 1938 Platypleuroceras brevispina (Sowerby). Roman, Pl. 69, Fig. 7.
- 1961. Platypleuroceras brevispina (SOWERBY). DEAN, DONO-VAN & HOWARTH, Pl. 69, Fig. 1 a, b.
- 1970 Platypleuroceras brevispina (SOWERBY). JAHNEL, Pl. 2, Fig. 9.
- 1977 *Platypleuroceras brevispina* (SOWERBY). SCHLATTER, Pl. 2, Fig. 2.
- 1976 Platypleuroceras brevispina (Sowerby). Schlegelmilch, Pl. 29, Fig. 3, 4.
- 1980 Platypleuroceras brevispina (SOWERBY). SCHLATTER, Pl. 7, Fig. 8; Pl. 8, Fig. 1 with synonymy.
- 1982 Platypleuroceras brevispina (SOWERBY). HOFFMANN, Pl. 21, Fig. 1, 2.
- 1985 Platypleuroceras brevispina (Sowerby). Сомаs Rengifo, Pl. 4, Fig. 5.
- 1986 Platypleuroceras brevispina (Sowerby). Büchner, Hoff-Mann & Jordan, Pl. 1, Fig. 1.
- 1986 Platypleuroceras aff. brevispina (SOWERBY). MEISTER, Pl. 3, Fig. 2.
- 1987 Platypleuroceras gr. brevispina (Sowerby). Dommergues, Pl. 8, Fig. 1-7.
- 1987 Platypleuroceras cf. brevispina (SOWERBY). DOMMER-GUES, Pl. 7, Fig. 12-15.
- 1989 Platypleuroceras gr. brevispina (Sowerby). brevispinoides Tutcher & Trueman. – Meister & Loup, Pl. 4, Fig. 1, 3, 4; Pl. 5, Fig. 2, 3; Pl. 6, Fig. 1.
- 1997 Platypleuroceras gr. brevispina (SOWERBY). CASSEL, Pl. 17, Fig. 1.

We group into *P. gr. brevispina* (SOWERBY) three evolute and bituberculate ammonites (P.1547 Goppelspitze; P.13260 Auenfeld; P.7131 Eingemauerte) characterized by simple, strong, regularly spaced, subradiate to prorsiradiate ribs which cross the venter but are very evanescent on this part.

The ventral part is rounded. *P. brevispina* (SOWERBY) and *P. oblongum* (QUENSTEDT) are two very close species; only the ratio of the whorl-section (E/H) is different with E/H = 73-74% for the first species with a rounded habitus and E/H = 63-64% for the second with a subrectangular habitus, respectively. Having a ratio exceeding 70%, the Austrian specimen are closer to SOWERBY's species. Moreover, the row of umbilical tubercles persists in the adult stage as in *P. brevispina* (SOWERBY), whereas in *P. oblongum* (QUENSTEDT) it already disappears on the middle whorls.

Age and distribution: This species is well known from the Euroboreal Realm and sporadically from the northern margin of the Tethys (Upper Austroalpine units, Pontides). It characterizes the Brevispina Horizon (Brevispina Subzone, Jamesoni Zone, Lower Carixian).

Platypleuroceras brevispinoides TUTCHER & TRUEMAN, 1925

pl. 14, fig. 6

- 1925 Platypleuroceras brevispinoides TUTCHER & TRUEMAN, Pl. 40, Fig. 2.
- 1976 Platypleuroceras brevispinoides Tutcher & Trueman. Schlegelmilch, Pl. 29, Fig. 6.
- 1980 Platypleuroceras brevispinoides Tutcher & Trueman. Schlatter, Pl. 9, Fig. 4.
- 1982 Platypleuroceras cf. brevispinoides Tutcher & Trueman. — Hoffmann, Pl. 22, Fig. 2.
- 1986 Platypleuroceras brevispinoides Tutcher & Trueman. Meister, Pl. 3, Fig. 3, 4.
- 1991 Platypleuroceras aff. gr. brevispina (Sowerby) brevispinoides Tutcher & Trueman. Meister, Pl. 1, Fig. 8.
- 1991 Platypleuroceras aff. gr. brevispina (Sowerby) brevispinoides Tutcher & Trueman. – Dommergues & Meister, Pl. 3, Fig. 3.

This evolute, bituberculated ammonite (P.2335) is characterized by spaced strong ribs and a massive suboval whorl section. The inner row of tubercles is weakly developed on the body chamber, but the outer ones remain well expressed. This corresponds well to the diagnosis of *P. brevispinoides* TUTCHER & TRUEMAN. *P. brevispina* (SOWERBY), a very closely related species, shows a narrower whorl section and finer, closer spaced ribs. *P. rotundum* (QUENSTEDT) is characterized by a more rounded whorl section with a well expressed bituberculation and a smoother ventral part.

Age and distribution: Until now, TUTCHER & TRUEMAN'S species was restricted to the Euroboreal Realm. It characterizes the Brevispina Subzone (Jamesoni Zone, Lower Carixian).

Platypleuroceras rotundum (QUENSTEDT, 1845) pl. 13, figs. 6, 7

1845 Ammonites natrix rotundus QUENSTEDT, Pl. 4, Fig. 17.

- 1856 Ammonites natrix rotundus QUENSTEDT. QUENSTEDT, Pl. 14, Fig. 11.
- 1885 Ammonites natrix rotundus QUENSTEDT. QUENSTEDT, Pl. 33, Fig. 3, 11, 16, 18.
- ? 1976 Acanthopleuroceras natrix (ZIETEN). SCHLEGELMILCH, Pl. 29, Fig. 7.
- non 1976 Platypleuroceras rotundum (QUENSTEDT). GECZY, Pl. 14, Fig. 2, 3, ? 4.
- 1977 *Crucilobiceras rotundum* (QUENSTEDT). SCHLATTER, Pl. 2, Fig. 4.
- non 1978 *Platypleuroceras* cf. *rotundum* (Quenstedt). Dubar & Mouterde, Pl. 2, Fig. 5.
- 1979 *Platypleuroceras rotundum* (QUENSTEDT). DOMMERGUES, Pl. 4, Fig. 6.
- 1980 Platypleuroceras rotundum (QUENSTEDT). SCHLATTER, Pl. 9, Fig. 2.
- 1980 Platypleuroceras cf. rotundum (QUENSTEDT). SCHLAT-TER, Pl. 9, Fig. 3.
- 1982 Platypleuroceras rotundum (QUENSTEDT). SCHLATTER, Pl. 23, Fig. 1, 2.
- 1982 Platypleuroceras rotundum (Quenstedt). Вкада, Сомая Rengifo, Goy & Rivas, Pl. 1, Fig. 4.
- 1984 Platypleuroceras rotundum (QUENSTEDT). CUBAYNES, BOUTET, DELFAUD & FAURE, Pl. 1, Fig. 8-10.
- 1985 *Platypleuroceras rotundum* (Quenstedt). Сомаs Rengifo, Pl. 4, Fig. 6, 8.
- 1986 Platypleuroceras rotundum (QUENSTEDT). MEISTER, Pl. 3, Fig. 6.
- ? 1987 *Platypleuroceras* (microconque) sp. 3 Dommergues, Pl. 6, Fig. 23, 24.
- 1995 *Platypleuroceras* cf. *rotundum* (QUENSTEDT). ALKAYA & MEISTER, Pl. 7, Fig. 12.
- 1997 *Platypleuroceras rotundum* (QUENSTEDT). DOMMERGUES & MEISTER & MOUTERDE, Pl. 6, Fig. 4.

Our specimen is a very evolute, bituberculate *Platypleuroceras* (211-7) with a rounded subquadrate whorl section (E/H = ~80%), thick evanescent ribs and two rows of sharp tubercles (see discussion in MEISTER, 1986, p. 33).

Age and distribution: Like *P. brevispina* (SOWERBY), *P. rotundum* (QUENSTEDT) is well known in the Euroboreal Realm and sporadically in the northern margin of the Tethys (Upper Austroalpine units, Pontides). It characterizes the Brevispina Subzone (Jamesoni Zone, Lower Carixian).

Platypleuroceras amplinatrix (QUENSTEDT, 1885) pl. 14, fig. 5

- 1885 Ammonites amplinatrix QUENSTEDT, Pl. 32, Fig. 7.
- 1979 "Platypleuroceras" amplinatrix (QUENSTEDT). DOMMER-GUES, Pl. 4, Fig. 2.
- 1980 *Platypleuroceras* aff. *amplinatrix* (Quenstedt). Schlatter, Pl. 14, Fig. 2.
- 1985 Platypleuroceras amplinatrix (Quenstedt). Сомая Rengifo, Pl. 4, Fig. 9.

This form represents an intermediate morphology between the genera *Platypleuroceras* (evolute conch and broad whorl section) and *Uptonia* (platycone conch with compressed whorl section). The morphological differences between *P. amplinatrix* (QUENSTEDT) and *P. tenuilobus* (FUTTERER) are little. Indeed QUENSTEDT's species has a habitus closer to *Platypleuroceras* (e.g. COMAS RENGIFO, 1985, pl. 4, fig. 9) than *P. tenuilobatus* (FUTTERER) (e.g. MEISTER, 1986, pl. 5, fig. 1) which already show an *Uptonia* morphology. Being a little more involute than the typical *Platypleuroceras*, our specimen is characterized by a suboval, rather compressed whorl section. The ribs are rigid moderately spaced, rursiradiate. No tubercles are visible, only a slight ventro-lateral reinforcement. The rounded venter bears blunt chevrons.

Age and distribution: For the first time this Euroboreal species is recorded from the Upper Austroalpine unit (northern margin of the Tethys). Both *P. amplinatrix* (QUENSTEDT) and *P. tenuilobus* (FUTTERER) are known from Causses, Ibericas, Burgundy, SW Germany and Alps in the uppermost part of the Brevispina Subzone (Jamesoni Zone).

Genus: Uptonia BUCKMAN, 1887 Type species: Ammonites Jamesoni Sowerby, 1827.

Uptonia jamesoni (SOWERBY, 1827) pl. 14, fig. 7; pl. 15, figs. 1, 6

- 1827 Ammonites Jamesoni Sowerby, Pl. 555, Fig. 1.
- ? 1927 Uptonia Jamesoni (Sowerby). Brun & Brousse, Pl. 2, Fig. 5.
- 1973 *Uptonia jamesoni* (SOWERBY). DONOVAN & FORSEY, Pl. 4, Fig. 3.
- non 1976 Uptonia angusta (QUENSTEDT) nov. subsp. GECZY, Pl. 13, Fig. 2.
- 1976 Uptonia jamesoni (Sowerby). Schlegelmilch, Pl. 28, Fig. 11.
- 1976 Uptonia angusta (QUENSTEDT). SCHLEGELMILCH, Pl. 28, Fig. 12.
- 1977 Uptonia "jamesoni" (Sowerby). Schlatter, Pl. 3, Fig. 1.
- ? 1978 Uptonia angusta (QUENSTEDT). DUBAR & MOUTERDE, Pl. 2, Fig. 8.
- ? 1980 Uptonia jamesoni (Sowerby). WIEDENMAYER, Pl. 2, Fig. 2, 3.
- 1980 Uptonia jamesoni (SOWERBY). SCHLATTER, Pl. 12, Fig. 1.
- 1980 Uptonia lata (QUENSTEDT). SCHLATTER, Pl. 11, Fig. 4, 6; Pl. 12, Fig. 2-4; Pl. 13, Fig. 1.
- ? 1981 Uptonia cf. U. jamesoni (Sowerby). ІмLАУ, Pl. 9, Fig. 17.
- 1986 *Uptonia jamesoni* (Sowerby). Büchner, Hoffmann & Jordan, Pl. 2, Fig. 3.
- 1986 *Uptonia jamesoni* (SOWERBY). MEISTER, Pl. 6, Fig. 1, 5; Pl. 4, Fig. 8.
- 1987 Uptonia lata (QUENSTEDT). DOMMERGUES, Pl. 10, Fig. 1-5.
- 1991 Uptonia gr. jamesoni (Sowerby). Dommergues & Meister, Pl. 5, Fig. 1; pl. 3, Fig. 7.
- 1991 Uptonia lata (QUENSTEDT). SCHLATTER, Pl. 17, Fig. 1, 2.
- 1993 *Uptonia* gr. *jamesoni* (Sowerby). Meister & Böhm, Pl. 6, Fig. 1; Pl. 5, Fig. 4, 5.
- 1995 *Uptonia lata* (QUENSTEDT). ALKAYA & MEISTER, Pl. 9, Fig. 1.
- ? 1996 Uptonia jamesoni (Sowerby). Popa & Patrulius, Pl. 1, Fig. 2.
- ? 1996 Uptonia aff. jamesoni (SOWERBY). POPA & PATRULIUS, Pl. 1, Fig. 5.
- 1997 Uptonia jamesoni (SOWERBY). CASSEL, Pl. 12, Fig. 2.
- 1998 Uptonia jamesoni (Sowerby). Geczy, Pl. 27, Fig. 1, 2, 3.
- 1997 *Uptonia jamesoni* (Sowerby). Dommergues, Meister & Mouterde, Pl. 6, Fig. 1.
- 1998 *Uptonia jamesoni* (SOWERBY). RULLEAU, Pl. 24, Fig. 1, 2 (cf.).

The specimens from Vorarlberg (P.13268 Auenfeld, P.7797 Goppelspitze, P.13355 Eingemauerte) are platycone evolute with a suboval to subelliptic whorl section and fine prorsiradiate ribs, which are more spaced on the outer whorls and cross the venter making broad ventral chevrons. An external row of fine tubercles is well expressed on the inner whorls and may persist more or less long depending on the specimen. These features are characteristic of *U. jamesoni* (SOWERBY) according to the opinion of MEISTER (1986, p. 38). This particularly means that we include *U. lata* (QUENSTEDT) in SOWERBY's species.

Age and distribution: The distribution of *U. jamesoni* (SOWERBY) includes the Euroboreal Realm and the northern margin of the Tethys (e.g. Southern Calcareous Alps, Upper Austroalpine units). This species characterizes the Jamesoni Subzone (Upper part of the Lower Carixian).

Uptonia bronni (**R**оеме**в**, 1836) pl. 14, fig. 4

- 1836 Ammonites Bronnii ROEMER, Pl. 12, Fig. 8.
- 1984 Uptonia gr. bronni (ROEMER). CUBAYNES, BOUTET, DEL-FAUD & FAURE, Pl. 2, Fig. 5, 6, 8, 9.
- 1984 Polymorphites (Uptonia) bronni (ROEMER). WEITSCHAFT & HOFFMANN, Pl. 2, Fig. 5.
- 1986 Uptonia (? Uptonia) bronni (ROEMER). BÜCHNER, HOFF-MANN & JORDAN, Pl. 2, Fig. 2.
- 1986 *Polymorphites bronni* (ROEMER). MEISTER, Pl. 4, Fig. 1, 5, 6 with synonymy.
- 1987 Polymorphites gr. bronni (ROEMER). DOMMERGUES, Pl. 10, Fig. 6, 7.
- 1990 Uptonia bronni (ROEMER). DOMMERGUES & MEISTER, P. 369, Fig. 5 (3).
- 1991 Polymorphites bronni (ROEMER). SCHLATTER, Pl. 15, Fig. 3.
- 1993 *Uptonia bronni* (ROEMER). MEISTER & BÖHM, Pl. 6, Fig. 2.
- 1997 Uptonia bronni (ROEMER). DOMMERGUES, MEISTER &

MOUTERDE, Pl. 6, Fig. 7, 8.

2000 Uptonia aff. bronni (Roemer). — Dommergues, Meister, Bonneau, Cadet & Fili, P. 347, Fig. 9 (4).

This small platycone evolute species (P.6708, Schröcken) not exceeding 3 to 4 cm in diameter is characterized by an outer row of tubercles with a high position on the lateroventral border, by the typical ribbing of the Uptonia group (see above) and by a ventral keel which bridges the chevrons. This species is interpreted as the microconch of *U. jamesoni* (SOWERBY) (see MEISTER, 1986, p. 126 and DOMMERGUES, 1987).

Age and distribution: This species is recorded from the Euroboreal Realm and some parts of the northern margin of the Tethys (Upper Austroalpine units). Its presence is also mentioned from the Ionian zone (Albania). It characterizes the Jamesoni Subzone (Upper part of the Lower Carixian)

Family: Acanthopleuroceratidae ARKELL, 1950

Genus: *Tropidoceras* HYATT, 1867 Type species: *Ammonites Masseanum* d'Orbigny, 1844.

The *Tropidoceras* described here originate exclusively from the Fleckenmergel facies. Two groups can be distinguished. The first comprises evolute forms with a coarse ribbing, whereas the second group presents fine ornaments with a more platicone shell and compressed whorls.

Tropidoceras gr. masseanum (d'ORBIGNY, 1844) pl. 15, figs. 2, 4

1844 Ammonites Masseanum d'Orbigny, Pl. 58, Fig. 1-3.

- 1961 *Tropidoceras masseanum* (d'Orbigny). Dean, Donovan & Howarth, Pl. 69, Fig. 2.
- 1980 Tropidoceras masseanum masseanum (d'ORBIGNY). SCHLATTER, Pl. 19, Fig. 3 with synonymy.
- 1986 Tropidoceras masseanum masseanum (d'ORBIGNY). MEISTER, Pl. 6, Fig. 8; pl. 7, Fig. 2, 3.
- 1990 *Tropidoceras* gr. *masseanum* (d'Orbigny). Dommergues & Meister, P. 639, Fig. 1, 2.
- 1991 *Tropidoceras masseanum* (d'Orbigny) *rotundum* (Futterer). — Dommergues & Meister, Pl. 6, Fig. 1, 2.
- non ? 1991 *Tropidoceras* cf. *masseanum* (d'Orbigny). Соре, Pl. 4, Fig. 1, 3.
- 1994 Tropidoceras masseanum (d'ORBIGNY). in: FISCHER, Pl. 22, Fig. 13.
- ? 1996 Tropidoceras masseanum (d'Orbigny). Popa & Patrulius, Pl. 1, Fig. 5; Pl. 2, Fig. 1.
- 1997 Tropidoceras masseanum (d'Orbigny). Cassel, Pl. 15, Fig. 3.
- 1997 *Tropidoceras* cf. *masseanum* (d'Orbigny). Corna, Dom-Mergues, Meister & Page, Pl. 12, Fig. 5.
- 1997 *Tropidoceras masseanum* (d'Orbigny). Dommergues, Meister & Mouterde, Pl. 6, Fig. 12.

? 2001 Tropidoceras gr. masseanum (d'Orbigny). — VENTURI & FERRI, P. 140.

The Austrian specimens are *ex situ* and quite distorted. They are characterized by a quite platicone evolute conch in the adult stage, which is still more evolute in the inner whorls. The primary ribs are well expressed on the inner whorls where they are quite spaced and rigid. On the outer whorls, on the contrary, the ornament consists of finer and closer ribs, which are sometimes slightly sinuous, and of a secondary ribbing with fine and close prorsiradiate ribs developed on the latero-ventral part. The ventral area is narrow and the keel high and sharp.

We attribute the Austrian forms to *T*. gr. masseanum (d'ORBIGNY) rather than to *T*. mediterraneum (GEMMEL-LARO) mainly because of the sharp coarse ribbing on the inner whorls (see by comparison GEMMELLARO, 1884, pl. 5, fig. 1 and BRAGA & RIVAS, 1985, pl. 3, fig. 7). In spite of the Alpine deformation the ribs show a rigid plotting. Moreover, at comparable size *T*. mediterraneum (GEMMELLARO) is more involute. As for the rib density our specimens in the adult stage present an intermediate density between *T*. mediterraneum (GEMMELLARO) and *T*. masseanum (d'ORBIGNY).

Age and distribution: *T. masseanum* (d'ORBIGNY) is recorded with certainty in the Euroboreal realm and in some part of the northern margin of the Tethys (Upper Austroalpine). It characterizes the Masseanum Subzone (base of Ibex Zone, Middle Carixian).

Tropidoceras rotundum (FUTTERER, 1893) pl. 15, figs. 5, 7, 8

- 1893 Cycloceras masseanum var. rotunda FUTTERER, Pl. 12, Fig. 3, 4.
- 1980 Tropidoceras masseanum rotunda (FUTTERER). SCHLAT-TER, Pl. 19, Fig. 4; Pl. 20, fig. 1, 2.
- 1986 Tropidoceras masseanum rotunda (FUTTERER). MEISTER, Pl. 6, Fig. 6; Pl. 7, Fig. 1.
- 1991 Tropidoceras masseanum rotundum (FUTTERER). DOMMERGUES & MEISTER, Pl. 3, Fig. 4-6; Pl. 4, Fig. 4; Pl. 5, Fig. 2; non Pl. 6, Fig. 1, 2 [T. masseanum (d'ORBIGNY) s.s.].
- 1995 *Tropidoceras rotundum* (FUTTERER). ALKAYA & MEISTER, Pl. 12, Fig. 1.
- 1996 *Tropidoceras masseanum rotunda* (FUTTERER). SMITH & TIPPER, Pl. 10, Fig. 1, 2.

The specimens from Eingemauerte and Auenfeld are evolute *Tropidoceras* with strong, rigid, subradiate, spaced ribs, hardly and abruptly arched toward the aperture on the ventro-lateral area. On the inner whorls the ribbing is already spaced and coarse. Depending mostly on preservation the swellings, sometimes almost tubercles (Pl.15, Figs. 5, 8), are irregularly expressed on our specimens. Even in the inner whorls the ventral part is acute.

Similar specimens have been described from the Subbri-

ançonnais Alpine Unit (DOMMERGUES & MEISTER, 1991). "T." carinatum (QUENSTEDT) is a more evolute form with a better expressed bituberculation and a rather squared whorl section. Another close species is T. stahli (OPPEL) which develops tighter ribs and shows a more opened umbilicus; the ventral part remains less sharp.

Age and distribution: The taxon is known from the southern part of the Euroboreal realm (Causses to SW Germany and Alps until Pontides). Everywhere it indicates the Masseanum Subzone (Lower part of Ibex Zone).

Tropidoceras aff. stahli (OPPEL, 1856) pl. 16, fig. 1

- 1853 Ammonites radians numismalis OPPEL, Pl. 3, Fig. 2.
- 1856 Ammonites Stahli OPPEL, P. 288.
- non 1884 Harpoceras Stahli OPPEL. HAUG, Pl. 13, Fig. 1.
- 1885 Ammonites Masseanus (d'Orbigny). Quenstedt, Pl. 36, Fig. 12.
- 1899 Cycloceras Stahli (Oppel). Fucini, Pl. 22, Fig. 2.
- ? 1927 Acanthopleuroceras Stahli (OPPEL). SCHROEDER, Pl. 13, Fig. 8.
- non 1928 Tropidoceras aff. stahli (OPPEL). SPATH, Pl. 17, Fig. 1.
- 1976 Acanthopleuroceras stahli (OPPEL). GECZY, Pl. 18, Fig. ? 4, 5, 6.
- 1977 *Tropidoceras stahli* (Oppel). Wiedenmayer, Pl. 14, Fig. 3-11.
- 1979 *Tropidoceras* gr. *stahli* (Oppel). Dommergues, Pl. 4, Fig. 3-4.
- 1980 *Tropidoceras stahli* (OPPEL). SCHLATTER, Pl. 20, Fig. 3; Pl. 21, Fig. 1.
- 1986 Tropidoceras aff. stahli (OPPEL). MEISTER, P. 46, Fig. 43.
- ? 1987 Tropidoceras cf. stahli (OPPEL). -- HILLEBRANDT, Pl. 3, Fig. 1-3.
- 1992 Tropidoceras stahli (OPPEL). SCHLEGELMILCH, Pl. 55, Fig. 4 (HT).
- ? 2001 Tropidoceras stahli (Oppel). Venturi & Ferri, P. 141.

Our specimen is a very evolute *Tropidoceras* with subradiate, strong and sharp, tight, regularly spaced ribs, hardly arched toward the aperture at the ventro-lateral edge. It is a phragmocone of about 90 mm in diameter at the beginning of the body chamber. The tuberculation is quite evanescent. The ventral part with a rather blunt keel corresponds well to Fig. 13f of WIEDENMAYER (1977).

Age and distribution: This species is recorded with certainty in the Euroboreal realm, in some part of the northern margin of the Tethys (e.g. Upper Austroalpine) and doubtfully in other areas. It belongs to the Masseanum Subzone (base of Ibex Zone, Middle Carixian).

Tropidoceras erythraeum (GEMMELLARO, 1884) pl. 16, figs. 2, 3

1884 Harpoceras erythraeum GEMMELLARO, Pl. 5, Fig. 10-16.

- 1896 *Tropidoceras erythraeum* (Gemmellaro). Fucini, Pl. 2, Fig. 22ab.
- 1896 Tropidoceras erythraeum (GEMMELLARO). LEVI, Pl. 8, Fig. 10.
- non ? 1956 *Tropidoceras* aff. *erythraeum* (Gemmellaro). Spath, Pl. 9, Fig. 7.
- 1965 *Tropidoceras erythraeum* (Gemmellaro). Bremer, P. 187, Abb. 2с.
- ? 1980 Tropidoceras cf. erythraeum (Gemmellaro). Schlatтек, P. 150, Fig. c, d.
- 1985 Tropidoceras erythraeum (Gemmellaro). Braga & Rivas, Pl. 1, Fig. 1, 2.
- non ? 1988 *Tropidoceras* aff. *erythraeum* (GEMMELLARO). SMITH et al., Pl. 1, Fig. 9.
- 1995 *Tropidoceras* cf. *erythraeum* (Gemmellaro). Alkaya & Meister, Pl. 10, Fig. 5, 6; Pl. 11, Fig. 2, 5.
- 1996 *Tropidoceras erythraeum* (Gemmellaro). Faraoni, Marini, Pallini & Venturi, Pl. 7, Fig. 7.
- non ? 1996 *Tropidoceras* cf. *erythraeum* (Gemmellaro). Smith & Tipper, Pl. 10, Fig. 4, 7.

These medium sized *Tropidoceras* from Auenfeld (less than 80 mm in diameter), are characterized by the development of a quite irregular and evanescent ornamentation mainly on the body chamber. The very inner whorls are smooth, followed by a stage with quite coarse and rather strong, slightly sigmoid, irregularly spaced ribs fading near the venter. They vanish on the body chamber or sometimes already at the beginning of the last whorl; afterwards the ribbing is barely visible.

Age and distribution: *T. erythraeum* (GEMMELLARO) is a Tethyan species also recorded from its northern margin (Pontides, Austroalpine units). It indicates most probably the Masseanum Subzone (Ibex Zone, Middle Carixian).

Tropidoceras sp. pl. 15, fig 3

Slightly sigmoid rursiradiate sharp ribs, weak sulci, no distinguishable umbilical edge characterize this evolute *Tropidoceras*.

Tropidoceras (Catriceras) catriense VENTURI shows a similar ventral area with perhaps more abruptly arched ribs at the ventro-lateral part and a more evolute (?) coiling. *T. stahli* (OPPEL) seems to develop a light flattening near the keel (see Fig. 13d in WIEDENMAYER, 1977) too, but the sketch of the ribbing is different with tight ribs.

Age: It belongs probably to the Masseanum Subzone.

Genus: Acanthopleuroceras HYATT, 1900 Type species: Ammonites valdani d'ORBIGNY, 1844.

Acanthopleuroceras maugenesti (d'ORBIGNY, 1844) pl. 16, fig. 5

- 1845 Ammonites Maugenestii d'Orbigny. QUENSTEDT, Pl. 5, Fig. 1.
- 1853 Ammonites Maugenesti d'ORBIGNY. OPPEL, Pl. 2, Fig. 3.
- 1856 Ammonites Maugenesti d'Orbigny. HAUER, Pl. 16, Fig. 7-9.
- 1856 Ammonites Maugenestii d'Orbigny. QUENSTEDT, Pl. 16, Fig. 5, non Fig. 6.
- 1882 Aegoceras Maugenesti (d'Orbigny). Wright, Pl. 37, Fig. 1, 2.
- 1885 Ammonites Maugenestii d'ORBIGNY. QUENSTEDT, Pl. 35, Fig. 8-13; Pl. 36, non Fig. 1, 2.
- ? 1927 Acanthopleuroceras Maugenesti (d'Orbigny). Schröder, Pl. 13(7), Fig. 5.
- 1976 Acanthopleuroceras maugenesti (d'ORBIGNY). SCHLEGEL-MILCH, Pl. 30, Fig. 3.
- 1978 Acanthopleuroceras maugenesti (d'ORBIGNY). DOMMER-GUES & MOUTERDE, Pl. 1, Fig. 23, 24; Pl. 2, Fig. 1-5.
- 1980 Acanthopleuroceras maugenesti (d'Orbigny). Schlatter, Pl. 16, Fig. 1-4.
- 1981 Acanthopleuroceras maugenesti (d'Orbigny). Dommer-GUES & MOUTERDE, Pl. 1, Fig. 11-13.
- 1984 Acanthopleuroceras maugenesti (d'Orbigny). Weitschaft & Hoffmann, Pl. 1, 3.
- 1986 Acanthopleuroceras maugenesti (d'Orbigny). Büchner, Hoffmann & Jordan, Pl. 3, Fig. 6.
- 1986 Acanthopleuroceras maugenesti (d'Orbigny). MEISTER, Pl. 9, Fig. 5-7.
- 1991 Acanthopleuroceras maugenesti (d'ORBIGNY). SCHLAT-TER, Pl. 17, Fig. 7, 8; Pl. 18, fig. 1.
- ? 1994 Acanthopleuroceras maugenesti (d'ORBIGNY). RAKUS, Pl. 6, Fig. 3.
- 1994 Acanthopleuroceras maugenesti (d'ORBIGNY). in: FISCHER, Pl. 23, Fig. 1, 2.

Being a typical Acanthopleuroceratidae from the Fleckenmergel, our specimen is characterized by an evolute conch, by a subrectangular whorl section and by spaced, rigid, subradiate and quite thick ribs bearing a ventrolateral, broad and blunt tubercle. The ventral area is very slightly fastigate and presents a feeble and blunt keel which disappears more or less completely in the adult stage. This specimen without doubt belongs to *A. maugenesti* (d'ORBIGNY).

Age and distribution: The species indicates the middle part of the Valdani Subzone and is well known in the European Euroboreal realm and also in the Upper Austroalpine area which seems to be its more southern position (DOMMERGUES & MEISTER, 1991).

Family: Liparoceratidae HYATT, 1867 emend. Subfamily: Liparoceratinae HYATT, 1867

Genus: *Liparoceras* HYATT, 1867 Type species: *Liparoceras bronni* SPATH, 1938 (ICZN opinion 308).

Liparoceras (Liparoceras) aff. striatum (REINECKE) sensu Schröder, 1927 pl. 16, fig. 6

- 1927 Liparoceras striatum (REINECKE). SCHRÖDER, Pl. 13, Fig. 1.
- 1986 *Liparoceras striatum* (REINECKE) sensu Schröder. Meis-Ter, Pl. 13, Fig. 1.

Two involute specimens are herein grouped into *Lipa*roceras s.s.: one recovered from Lorüns and the second from Eingemauerte (P.7123). They are characterized by spaced, coarse, blunt, subradiate to prorsiradiate lateral ribs bearing umbilico-lateral and ventro-lateral rows of strong tubercles. On the venter the ribs are closer, finer and more numerous (about two for each outer tubercle). The shape of the whorl section is not visible. *L. striatum* (REINECKE) sensu SCHRÖDER shows the same habitus with an identical lateral position of the two rows of tubercles, the same irregularity in the ribbing and a similar thickness and space of the ventral ribs. *L. pseudostriatum* TRUEMAN is also a close species, but the ornamentation is finer. *L. bronni* SPATH is characterized by a very broad whorl section.

Age and distribution: This taxon is recorded from the Upper Austroalpine and the Causses Basin. It total range is not well known; at present it corresponds to the Middle part of the Ibex Zone.

Subgenus: *Becheiceras* TRUEMAN, 1918 Type species: *Ammonites bechei* Sowerby, 1821 (see DONOVAN & FORSEY, 1973, P. 13).

Liparoceras (Becheiceras) bechei (SOWERBY, 1821) pl. 16, fig. 4

- *1821 Ammonites bechei Sowerby, Pl. 280.
- 1986 *Liparoceras (Becheiceras) bechei* (SOWERBY). MEISTER, Pl. 13, Fig. 4 with synonymy.
- 1991 Becheiceras gr. bechei (SOWERBY). BLAU & MEISTER, Pl. 4, Fig. 5.
- 1991 Liparoceras (Becheiceras) bechei (SOWERBY). SCHLAT-TER, Pl. 18, Fig. 9.
- ? 1994 Liparoceras (Becheiceras) bechei (Sowerby). Faraoni Marini & Pallini, Pl. 2, Fig. 1.
- 1995 Becheiceras bechei (Sowerby). Alkaya & Meister, Pl. 14, Fig. 1, 2.
- 1996 Liparoceras (Becheiceras) bechei (Sowerby). Smith & Tipper, Pl. 19, Fig. 2; Pl. 20, Fig. 1.
- 1998 Liparoceras (Becheiceras) bechei (SOWERBY). RULLEAU, Pl. 25, Fig. 1-3.
- 2001 Becheiceras bechei (Sowerby). Venturi & Ferri, P. 142.

A small globular specimen (D = 35 mm) from Lorüns is characterized by smooth inner whorls. The only visible ornamentation is restricted to the venter. It is constituted by fine, quite close, simple, radiate, ribs. The tuberculation is not visible because of the preservation. The partially perceptible suture line is typical of Liparoceratidae. This kind of morphology belongs without doubt to the *L*. (*B*.) *bechei* (SOWERBY) group. The ornamentation of *L*. (*B*.) *gallicum* (SPATH) is at the same diameter already well developed.

Age and distribution: This ubiquitous species ranges from the Middle Carixian (Ibex Zone) until the Middle Domerian (Gibbosus Subzone).

Genus: Aegoceras WAAGEN, 1869 Type species: Ammonites capricornus Schlotheim, 1820.

Aegoceras maculatum (Young & Bird, 1822) pl. 16, figs. 7, 8

- *1822 Ammonites maculatus YOUNG & BIRD, Pl. 14, Fig. 12.
- 1938 Androgynoceras maculatum (YOUNG & BIRD). SPATH, Pl.
 9, Figs. 2, 3; Pl. 13, Figs. 2, 8; Pl. 14, Fig. 3; Pl. 16, Figs.
 11, 12; Pl. 17, Figs. 2, 3; Pl. 19, Figs. 1, 2, 13; Pl. 20, Figs.
 3, 6, non 5; Pl. 26, Fig. 5 with synonymy.
- 1938 Androgynoceras hybrida (d'Orbigny). Spath, Pl. 26, Fig. 2.
- 1961 Androgynoceras maculatum (Young & Bird). Dean, Do-Novan & Howarth, Pl. 70, Figs. 4.
- 1979 Aegoceras maculatum (Young & Bird). Dommergues, Pl. 7, Figs. 1, 2.
- 1985 Aegoceras maculatum (Young & Bird). Phelps, Pl. 1, Fig. 2; Pl. 2, Fig. 8.
- 1986 Androgynoceras maculatum (Young & Bird). Büchner, Hoffmann & Jordan, Pl. 4, Figs. 4.
- 1986 A. (Aegoceras) maculatum (YOUNG & BIRD). MEISTER, Pl. 15, Figs. 4, 5 with synonymy.
- 1990 Aegoceras maculatum (Young & Bird). Dommergues & Meister, P. 639, Figs. 5, 6.
- 1991 Aegoceras maculatum (Young & Bird). Schlatter, Pl. 19, Figs. 9, 10.

Three crushed evolute ammonites are characterized by coarse ribs chevron-like crossing the venter. They belong to the "capricorn" Liparoceratidae and specially to *Aegoceras maculatum* (YOUNG & BIRD). For discussions and comparisons we refer to DOMMERGUES (1979, 1987), PHELPS (1985) and MEISTER (1986).

Age and repartition: The biostratigraphic position of this Euroboreal species is well known. It corresponds to the Maculatum Horizon of the Maculatum Subzone (Davoei Zone, Upper Carixian).

Subfamily: Amaltheinae HYATT, 1867

Genus: Amaltheus de MONTFORT, 1808 Type species: Amaltheus margaritatus de MONTFORT, 1808. The Fleckenmergel from Dalaaser Schütz provided some Amaltheinae (*Amaltheus* and *Pleuroceras*).

Amaltheus stokesi (Sowerby, 1818) pl. 16, figs. 9, 14; pl. 17, fig. 1

- *1808 Amaltheus stokesi Sowerby, Pl. 190.
- 1958 Amaltheus stokesi (SOWERBY). HOWARTH, Pl. 1, Fig. 5, 7, 12-14; Pl. 2, Fig. 1, 3, 10; Text-Fig. 4, 5 with synonymy.
- 1974 Amaltheus stokesi (Sowerby). Elmi, Atrops & Mangold, Pl. 1, Fig. 2, 3.
- 1986 Amaltheus stokesi (SOWERBY). MEISTER, Pl. 19, Fig. 2; Pl. 20, Fig. 1, 8 with synonymy.
- 1988 Amaltheus stokesi (Sowerby). MEISTER, Pl. 1, Fig. 1.
- 1990 Amaltheus stokesi (Sowerby). Dommergues & Meister, P. 639, Fig. 5 (12-14); P. 637, Fig. 637 (5-6).
- 1990 Amaltheus stokesi (Sowerby). Dommergues, Meister & Mettraux, Pl. 6, Fig. 3 (gr.),4-6.
- 1991 Amaltheus stokesi (Sowerby). BLAU & MEISTER, Pl. 5, Fig. 9.
- 1991 Amaltheus stokesi (Sowerby). Schlatter, Pl. 21, Fig. 5-7.
- 1991 Amaltheus gr. stokesi (Sowerby). Dommergues & Meister, Pl. 4, Fig. 2, 3.
- 1992 Amaltheus (Amaltheus) stokesi (Sowerby). in: Wester-Mann, Pl. 17, Fig. 1, 3, 6.
- 1992 Amaltheus stokesi (SOWERBY). in: WESTERMANN, Pl. 3, Fig. 11; Pl. 5, Fig. 9; Pl. 6, Fig. 4 (cf.).
- 1993 Amaltheus (Amaltheus) stokesi (Sowerby). JAKSCH, Pl. 1, Fig. 7.
- ? 1994 Amaltheus stokesi (SOWERBY). JACOBS & PÁLFY, Pl. 1, Fig. 8, 9.
- 1994 Amaltheus cf. stokesi (Sowerby). Pálfy & Hart, Pl. 1, Fig. 12.
- 1995 Amaltheus stokesi (Sowerby). Dommergues, Meister & Вонм, Pl. 10, Fig. 1.
- 1996 Amaltheus stokesi (Sowerby). Popa & Patrulius, Pl. 2, Fig. 3-5.
- 1996 Amaltheus stokesi (SOWERBY). SMITH & TIPPER, Pl. 19, Fig. 1; Pl. 20, Fig. 3.
- 1997 Amaltheus stokesi (Sowerby). CASSEL, Pl. 13, Fig. 2.
- 1997 Amaltheus stokesi (Sowerby). Johannson, Smith & Gordey, Pl. 2, Fig. 12, 13.
- 1997 Amaltheus stokesi (Sowerby). Dommergues, Meister & Mouterde, Pl. 7, Fig. 14, 15.
- 1998 Amaltheus stokesi (SOWERBY). RULLEAU, Pl. 28, Fig. 8; Pl. 29, Fig. 1.
- 1998 Amaltheus stokesi (Sowerby). Geczy & Meister, Pl. 6, Fig. 10.

Some typical *Amaltheus* collected in bed 104a of Lorüns are characterized by ribs still connected with the chevrons of the cordate keel. For more details on *A. stokesi* (Sow-ERBY) see MEISTER (1986, 1989). A larger specimen from the same quarry, but ex situ, with a diameter of 118 mm can be referred to this species too. Other specimens from Schröcken (P. 6707/307-16) shows the same habitus. Age and repartition: A. stokesi (SOWERBY), a quite ubiquitous species, characterizes the Lower Domerian (Stokesi Subzone) and is recorded from the Boreal, Euroboreal, Tethyan and Pacific realms and specially from quite unusual areas (e.g. Siberia, Japan,...).

Amaltheus margaritatus de MONTFORT, 1808

- *1808 Amaltheus margaritatus de MONTFORT, P. 91, Fig. 90.
- 1958 Amaltheus margaritatus de MONTFORT. HOWARTH, Pl. 3, Figs. 4-6; Text-Figs. 8, 9; with synonymy.
- 1986 Amaltheus margaritatus de MONTFORT. MEISTER, Pl. 20, Fig. 9; Pl. 22, Fig. 1; Pl. 23, Fig. 6; with synonymy.
- 1988 Amaltheus margaritatus de MONTFORT. MEISTER, Pl. 1, Figs. 2-4; Pl. 2, Figs. 1-3. 5; Pl.3, Figs. 3-5, 10; Pl. 4, Figs. 1, 3, 4.
- 1991 Amaltheus margaritatus de MONTFORT. BLAU & MEISTER, Pl. 5, Fig. 10.
- 1997 Amaltheus margaritatus de Montfort. Dommergues, Meister & Mouterde, Pl. 8, Fig. 14.
- 1998 Amaltheus margaritatus de MONTFORT. RULLEAU, Pl. 29, Fig. 2-5.

Our specimen is a typical adult of *A. margaritatus* de MONTFORT (D = ~ 130 mm) with a tendency of the ornamentation to disappear on the body chamber. It is very close to the illustration of MEISTER (1986, Pl. 22, Fig. 1), which is a large specimen too.

Another specimen of A. margaritatus de MONTFORT was found in bed 110 of Lorüns.

Age and repartition: This species has a wide geographical distribution quite similar to the one of *A. stokesi* (Sow-ERBY) (e.g. Siberia, Iran...). It ranges from the Subnodosus Subzone until the lower part of the Aperynum Subzone (Domerian).

Genus: *Pleuroceras* Hyart, 1867

Type species: Ammonites spinatus BRUGUIERE, 1789.

Pleuroceras gr. *solare* (PHILLIPS, 1829) pl. 16, figs 10, 11

- 1829 Ammonites solaris Phillips, Pl. 4, Fig. 29.
- 1958 *Pleuroceras solare* (PHILLIPS). HOWARTH, Pl. 4, Figs. 1-7 with synonymy.
- 1960 Pleuroceras solare (PHILLIPS). JORDAN, Pl. 4, Figs. 6-7.
- 1961 *Pleuroceras solare* (Phillips). TINTANT, GAUTHIER & LAC-ROIX, Pl. 1, Fig. 5.
- 1969 Pleuroceras solare (PHILLIPS). POPA, Pl. 1, Figs. 1-4.
- 1976 Pleuroceras solare (Phillips). Schlegelmilch, Pl. 36, Figs. 2.
- 1980 Pleuroceras solare (Phillips). Wiedenmayer, Pl. 3, Figs. 8-13.
- 1980 *Pleuroceras solare* (PHILLIPS) var. *trapezoidiforme* (MAUBEU-GE). — WIEDENMAYER, Pl. 3, Figs. 22, 23.

- 1980 Pleuroceras solare (Phillips) var. leve (Maubeuge). Wie-Denmayer, Pl. 3, Figs. 14-19.
- 1982 Pleuroceras solare (Phillips). Braga, Comas Rengifo, Goy & Rivas, Pl. 3, Fig. 8.
- 1983 Pleuroceras solare (PHILLIPS). BRAGA, Pl. 15, Figs. 14-16.
- 1985 Pleuroceras solare (PHILLIPS). MANTEA, Pl. 6, Figs. 3-5.
- 1984 *Pleuroceras solare* (Phillips). Cubaynes, Boutet, Delfaud & Faure, Pl. 3, Fig. 20.
- 1985 Pleuroceras solare (Phillips). Comas Rengifo, Pl. 10, Figs. 5-9; Pl. 11, Fig. 4.
- 1986 *Pleuroceras solare* (PHILLIPS). MEISTER, Pl. 6, Figs. 6, 7, 9-11; Pl. 7, Figs. 1-3.
- 1988 *Pleuroceras solare* (Phillips). Braga, Comas Rengifo, Goy & Rivas, Pl. 1, Fig. 1-13.
- 1991 *Pleuroceras* aff. *solare* (Phillips). Blau & Meister, Pl. 5, Figs. 6-8.
- 1991 Pleuroceras gr. solare (PHILLIPS). DOMMERGUES & MEISTER, Pl. 4, Fig. 5; Pl. 5, Fig. 3-5.
- 1993 *Pleuroceras solare* (Phillips). Elmi & Rulleau, Pl. 1, Fig. 1-2.
- 1996 Pleuroceras solare (Phillips). Popa & Patrulius, Pl. 3, Fig. 4-10, 14.
- 1997 Pleuroceras solare (PHILLIPS). CASSEL, Pl. 16, Fig. 2.
- 1998 Pleuroceras cf. solare (PHILLIPS). ELMI et al., P. 169, Fig. f.
- 1998 Pleuroceras solare (PHILLIPS). RULLEAU, Pl. 29, Fig. 6.

With a quite open umbilicus, fine but sharp, relatively closed and regular ribs, a weakly cordate and acute keel and a subrectangular whorl section, our two little Amaltheidae from Dalaaser Schütz can be brought near *P. solare* (PHILLIPS).

Age and repartition: Well distributed in the Euroboreal realm, this taxon occurs in the Mediterranean Tethys too. Its indicates the Apyrenum Subzone (Upper Domerian).

Superfamily: Hildoceratoidea HYATT, 1867

Family: Hildoceratidae HYATT, 1867

Subfamily: Harpoceratinae NEUMAYR, 1875

Genus: Fuciniceras HAAS, 1913

Types species: *Hildoceras lavinianum* MENEGHINI in FUCINI, 1900.

Remark: The use of the genera *Fuciniceras* and *Protogrammoceras* corresponds to the opinion of DOMMERGUES et al. (in press).

Fuciniceras gr. *isseli* (FUCINI, **1900**) – *brevispiratum* (FUCINI, **1900**) pl. 17, figs. 2–7

- 1900 Grammoceras isseli FUCINI, Pl. 9, Fig. 6-8.
- 1900 Hildoceras Lavinianum var. brevispirata FUCINI, Pl. 8, Fig. 6.
- 1983 Fuciniceras isseli (FUCINI). BRAGA, Pl. 2, Fig. 10; Pl.

3, Fig. 1-5.

- 1983 Fuciniceras brevispiratum (FUCINI). BRAGA, Pl. 2, Figs. 4-9.
- 1983 Protogrammoceras isseli (FUCINI). DOMMERGUES, FER-RETTI, GECZY & MOUTERDE, Pl. 4, Fig. 1-12.
- 1991 Protogrammoceras gr. isseli (FUCINI). BLAU & MEISTER, Pl. 5, Fig. 15-22.
- 1993 *Protogrammoceras* gr. *isseli* (Fucini). Меіster & Вöнм, Pl. 8, Fig. 11-14.
- 1995 *Protogrammoceras* gr. *isseli* (Fucini). Dommergues, Meister & Böhm, Pl. 9, Fig. 6.
- 1998 "Fuciniceras" gr. isseli (FUCINI) brevispiratum (FUCINI).
 GECZY & MEISTER, Pl. 9, Fig. 4, 6-10; Pl. 10, Fig. 1-9;
 Pl. 11, Fig. 1-3.
- ? non 2000 Protogrammoceras gr. *isseli* (Fucini). Schlögl, Aubrecht & Томазоvусн, Pl. 1, Fig. 11.
- 2001 Fuciniceras isseli (Fucini). Venturi & Ferri, P. 179, Fig. H.

In bed 100a from Lorüns quarry several Harpoceratinae have been collected. The major part of these forms are characterized by a quite narrow ventral area and slightly sigmoïd ribs weakly orientated towards the aperture on the ventro-lateral part. They present an intermediate morphology between the typical *Fuciniceras* habitus with a tricarinate venter and angustirursiradiate ribs and the typical *Protogrammoceras* habitus with falciform ribs and a pinched ventral area.

Some specimens from Lorüns still shows slightly angustirursiradiate ribs with an already bit more pinched venter mainly on the inner and intermediate whorls. All these observations force to group all specimens into *Fuciniceras* gr. *isseli* (FUCINI) - *brevispiratum* (FUCINI) where *F. isseli* (FUCINI) represents the finely ornamented pole and *F. brevispiratum* (FUCINI) the coarse one. Although in bed 100a of Lorüns both morphologies are present finely ornamented specimens clearly dominate. On the contrary, in bed 100b the specimens exhibit a coarser ornamentation being closer related to the pole represented by *F. brevispiratum* (FUCINI).

Some other specimens recorded from the Fleckenmergel are crushed and consequently the rib sketch is obviously modified.

Age and repartition: *F.* gr. *isseli* (FUCINI) - *brevispiratum* (FUCINI) is well known in the Mediterranean Tethys and indicates the Lower Domerian (Stokesi Subzone).

Fuciniceras gr. *celebratum* (FUCINI, **1900**) pl. 17, figs. 8, 13, 14

- 1900 Grammoceras celebratum FUCINI, Pl. 10, Fig. 1, 2.
- 1900 Grammoceras celebratum var. italica FUCINI, Pl. 10, Fig. 3.
- 1983 Protogrammoceras celebratum (FUCINI). BRAGA, Pl. 4, Fig. 2-6.
- 1989 P. (Protogrammoceras) celebratum (FUCINI). MEISTER, Pl. 3, Fig. 14, 15; Pl. 4, Fig. 1 with synonymy.

- 1991 Fuciniceras celebratum (FUCINI). FERRETTI, Pl. 11, Fig. 4-6.
- 1991 Protogrammoceras aff. gr. celebratum (FUCINI). BLAU & MEISTER, Pl. 5, Fig. 24-25.
- 1996 Protogrammoceras celebratum (Fucini). El Hariri, Dom-Mergues, Meister, Souhel & Chafiki, Pl. 71, Fig. 4, 5.
- 1997 *Protogrammoceras celebratum* (Fucini). Dommergues, Meister & Mouterde, Pl. 8, Fig. 3.
- 1997 Protogrammoceras celebratum (FUCINI). DOMMERGUES, MEISTER & SCHIROLLI, Pl. 2, Fig. 16, 21.
- 1998 Protogrammoceras gr. celebratum (FUCINI). GECZY & MEISTER, Pl. 12, Fig. 7-9; Pl. 13, Figs. 1-3, 5.
- 1998 Protogrammoceras aff. celebratum (FUCINI). RULLEAU, Pl. 27, Fig. 6.
- ? non 2000 Protogrammoceras gr. *celebratum* (Fucini). Schlögl, Aubrecht & Tomasovych, Pl. 1, Fig. 9.
- 2001 Protogrammoceras celebratum (FUCINI). VENTURI & FER-RI, P. 178, Fig. e, g, h, l-n.

Some Harpoceratinae with falciform ribs and a high, pinched, ventral area bearing an acute keel are attributed to the typical *F. celebratum* (FUCINI). The lack of flattening on both sides of the keel distinguishes FUCINI's species from the older *F. marianii* (FUCINI).

The specimens are a little more coarsely ribbed. F. celebratum (FUCINI) differs from F. gr. isseli (FUCINI)

brevispiratum (FUCINI) in having more falciform ribs with a strong projection forwards at the ventrolateral part throughout the ontogeny.

Age and repartition: Known from the Mediterranean Tethys and adjacent areas, *F. celebratum* (FUCINI) characterizes the upper part of the Stokesi Subzone.

Subgenus *Matteiceras* WIEDENMAYER, 1980 Type species: *Ammonites nitescens* Young & Bird, 1913.

F. (Matteiceras) geometricum (PHILLIPS, 1829) pl. 16, fig. 12

- 1829 Ammonites geometricus Phillips, Pl. 14, Fig. 9
- 1934 *Harpoceras falciplicatum* (FUCINI). MONESTIER, Pl. 1, Fig. 3, 13, 32, 33, 36, 37; non Pl. 10, Fig. 40, 41.
- 1962 Arieticeras geometricum (PHILLIPS). HOWARTH, Pl. 18, Fig. 2.
- 1975 Protogrammoceras monestieri FISCHER, Pl. 1, Fig. 13-17; App. 10, 14, Fig. 4-7; App. 15, Fig. 5.
- 1980 *P. monestieri* FISCHER. DOMMERGUES & MOUTERDE, P. 301, Pl. 3, Fig. 4-6; Pl. 4, Fig. 1-4; ? Pl. 2, Fig. 9-14.
- 1985 P. (Matteiceras) monestieri (FISCHER). DOMMERGUES, MEISTER & FAURÉ, Pl. II, Fig. 1; Pl. III, Fig. 3; Pl. IV, Fig. 3-4
- 1986 P. (Matteiceras) monestieri (FISCHER). MEISTER, Pl. 21, Fig. 3, 4, 8, 9.
- 1989 P. (Matteiceras) monestieri (FISCHER). MEISTER, P. 38 with synonymy.

- 1990 P. (Matteiceras) monestieri (FISCHER). DOMMERGUES & MEISTER, Fig. 5 (20).
- 1991 Protogrammoceras (Matteiceras) gr. monestieri (FISCHER). — BLAU & MEISTER, Pl. 6, Fig. 3, 4.
- 1992 P. (M.) geometricum (PHILLIPS). HOWARTH, Pl. 3, fig. 5; Pl. 4, Fig. 1-3.
- 1993 *P. (M.) monestieri* (Fischer). Меізтег & Вöhm, Pl. 9, Fig. 1
- 1998 P. (Matteiceras) monestieri (FISCHER). GECZY & MEISTER, Pl. 6, Fig. 13, 14.

Associated with *Fuciniceras* gr. *isseli* (FUCINI) - *brevispiratum* (FUCINI) in bed 100a at Lorüns some Harpoceratinae with a quite spaced, coarse, sigmoid and rursiradiate ornament were found. They are attributed to the subgenus *F*. (*Matteiceras*). The ribs are quite evanescent on the lower part of the flanks and become broad and acute on the upper part near the venter. They thus correspond to *F*. (*M.*) *geometricum* (PHILLIPS). This species is well known from the Euroboreal realm where it has been described in detail (MEISTER, 1986; DOMMERGUES et al., 1985; DOMMERGUES & MEISTER, 1989).

Age and repartition: *F.* (*M.*) geometricum (PHILLIPS) indicates the lower part of the Stokesi Subzone in the Euroboreal realm where it characterizes the Geometricum Horizon. This species is a good element of correlation between the Euroboreal and Tethyan realms, mainly the Austroalpine Units in Austria and Hungary. However, in Hungary we have demonstrated a slight shifting for the correlation with the Lavinianum, Isseli and Marianii Horizons of the Tethys area and the Geometricum horizon of the Euroboreal realm (GECZY & MEISTER, 1998). Indeed at the base of the Isseli Horizon occur *F.* (*M.*) geometricum (PHILLIPS) and *F.* (*Matteiceras*) nitescens (YOUNG & BIRD) in the upper part of this unit. Consequently correlation horizons by horizons are not exactly coinciding (see DOM-MERGUES et al., 1997).

F. (*Matteiceras*) *nitescens* (Young & Bird, 1828) pl. 16, fig. 13

- 1828 Ammonites nitescens Young & BIRD, P. 257.
- 1984 Arieticeras nitescens (Young & Bird). Maubeuge, P. 84, Fig. 56; P. 86, Fig. 57.
- 1985 Protogrammoceras nitescens (Young & Bird). Сомая Rengifo, Pl. 14, Fig. 5-6 with synonymy.
- 1986 *P.* (*Matteiceras*) *nitescens* (Young & Bird). MEISTER, Pl. 3, Fig. 10, 12.
- 1990 *P.* (*Matteiceras*) *nitescens* (Young & Bird). Dommergues & Meister, Fig. 3 (11, 12); Fig. 5 (21).
- 1992 *P.* (*M.*) *nitescens* (Young & Bird). Howarth, Pl. 3, Fig. 5; Pl. 4, Fig. 1-3.
- 1997 Protogrammoceras (Matteiceras) nitescens (Young & Bird). — Dommergues, Meister & Mouterde, Pl. 8, Fig. 5.
- 1998 P. (Matteiceras) nitescens (Young & Bird). Geczy & Meister, Pl. 7, Fig. 2.

Figure 20: Biostratigraphical framework of the Sinemurian with the ammonite ranges.

? non 2000 Protogrammoceras gr. nitescens (Young & Bird). — Schlögl, Aubrecht & Tomasovych, Pl. 1, Fig. 10.

We regroup here F. (*Matteiceras*) which develop a very coarse and spaced ribbing. It is in fact the exacerbation of the ornament of F. (*M.*) geometricum (PHILLIPS). Our specimen was collected ex situ in Lorüns quarry.

Age and repartition: In the Euroboreal realm, F. (M.) nitescens (Young & Bird) corresponds to the Nitescens Horizon (Stokesi Subzone). Its presence in the Upper Austroalpine Units allows a good correlation with the Marianii Horizon from the Tethys in spite of a slight shifting (GECZY & MEISTER, 1998).

Fuciniceras gr. cornacaldense (Таизсн, 1890) pl. 17, fig. 12

- 1890 Harpoceras cornacaldense TAUSCH, Pl. 1, fig. 1.
- 1895 Harpoceras ? cornacaldense Tausch var. Bicicolae Bona-Relli, P. 339.
- 1983 Fuciniceras cornacaldense (TAUSCH). BRAGA, Pl. 3, Fig. 6-8; Pl. 4, fig. 1, with synonymy.

PLIENSBACHIAN					alliphylloceras bicicolae alaicerae calais	etoceras zetes	artschiceras gr. striatocostatum	artschiceras retroplicatum sensu BETTONI uraphyllites gr. diopsis uraphylites aff. quadrii var. planulata urabhylites ithertus	uraphyllites aff. limatus uraphyllites aff. limatus	rtragtophylioceras) eximus ragophylioceras ubdulatum ragophylioceras ibex alatteeras harpoceroides	ytoceras aff. fimbriatoides	ytoceras gr. rimoriatum ytoceras gr. villae	vioceras ovimontanum	erory uccertas tortum ctocentrites sp.	aramicroderoceras ct. hungaricum etaderoceras aft. kondai etaderoceras gemmellaroi	latypleuroceras gr. brevispina latypleuroceras brevispinoides latypleuroceras cotundum latypleuroceras amplinatrix ptomia breomi	ropidoceras sp. ropidoceras gr. masseaunum ropidoceras eff. stahil ropidoceras erythraeum ropidoceras rotundum canthopleuroceras maugenesti	paroceras (Bechelceras) bechel iparoceras (Liparoceras) aff. striatum sensu Schröder egoceras maculatum rodacytiloceras gr. davoel maltheus stokesi maltheus margariatus leuroceras gr. solare	uc Inteeras gr. issell - brevisptratum (Matteiceras) geometricum ucinteeras nitescens ucinteeras gr. contavatum ucinteeras gr. contavatude rieticeras gr. atgovianum
	Jamesoni Ibex Davoei Margaritatus Spinatum 2c	Taylori Brevispina/ Jama. Mas Vaidani Luridum Macu Capit- Figuihum Slokesi Subno- Gibbosus Apyrenum Haws S.	HAWSKERENSE ELABORATUM / LOTTI SOLARE TRANSIENS SALEBROSUM RUTHENENSE ALGOVIANUM BERTRANDI KURRIANUS UGDULENAI MACRUM RAGAZZONI FONTANEILLESI DOSCENSE DEPRESUM CELEBRATUM CELEBRATUM CELEBRATUM CELEBRATUM CELEBRATUM CELEBRATUM CCELEBRATUM CCELEBRATUM CCELEBRATUM CCELEBRATUM CACCIDENTALE FIGULINUM CACCIDENTALE FIGULINUM CARSCENS / GEOMETRICUM CARSCENS / SAMONTANENSIS CAPRICORNUS LATAECOSTA LATAECOSTA LATAECOSTA LATAECOSTA LATAECOSTA LURIDUM CRASSUM ROTUNDUM ALISIENSE CENTAURUS VENARENSE ACTAEON VALDANI MAUGENESTI ARIETIFORME MASSEANUM PETTOS JAMESONI SL. TENUILOBUS / SUBMUTICUM BREVISPINA / BREVISPINOIDES POLYMORALMATUM					د : : : : : : : : : : : : : : : : : : :											

Figure 21: Biostratigraphical framework of the Pliensbachian with the ammonite ranges.

- 1991 Fuciniceras gr. cornacaldense (TAUSCH). BLAU & MEIS-TER, Pl. 6, Fig. 12-17.
- 1996 Fuciniceras cornacaldense (Tausch). El Hariri, Dom-Mergues, Meister, Souhel & Chafiki, Pl. 71, Fig. 8-14.
- 1998 Fuciniceras cornacaldense (TAUSCH). GECZY & MEISTER, Pl. 13, Fig. 6 (aff.), 10, 11.

The specimen from Goppelspitze (P.8659), although slightly crushed, is a typical Fuciniceras with angulirursiradiate ribs abruptly interrupted near the venter, and a tabular tricarinate venter. Our specimen bears quite coarse ribs on the phragmocone which become finer, closer and sometimes fasciculate on the body chamber. This species has been recently discussed by GECZY & MEISTER (1998).

Age and repartition: F. cornacaldense (TAUSCH) character-

izes the Cornacaldense horizon of the Subonodosus Subzone (Lower Domerian) in the Tethyan regions. It can be correlated with the Boscense Horizon of the Euroboreal realm (DOMMERGUES et al. 1997).

Subfamily: Arieticeratinae Howarth, 1955

Genus: Arieticeras SEGUENZA, 1885 Type species: Ammonites algovianus OPPEL, 1862.

Arieticeras gr. algovianum (OPPEL, 1862) pl. 17, figs. 9, 10, 11, 15

1862 Ammonites Algovianum OPPEL, P. 137. 1862 Ammonites retrosicosta OPPEL, P. 139.

- 1984 Arieticeras ruthenense (REYNES). ANTONIADIS, Pl. 1, Fig. 4.
- 1988 Arieticeras cf. algovianum (OPPEL). SMITH, TIPPER, TAY-LOR & GUEX, Pl. 4, Fig. 10, 11.
- 1989 Arieticeras algovianum forme algovianum (OPPEL). MEISTER, Pl. 7, Fig. 12 with synonymy.
- 1989 Arieticeras algovianum forme retrosicosta (OPPEL). MEISTER, Pl. 7, Fig. 10.
- 1989 Arieticeras algovianum forme almoetianum FUCINI. MEISTER, Pl. 7, Fig. 11.
- 1991 Arieticeras gr. algovianum (Oppel). Blau & Meister, Pl. 6, Fig. 23; Pl. 7, Fig. 1-18.
- 1991 *Arieticeras almoetianum* FUCINI morphotypo A, B FERRETTI, Pl. 12, Fig. 3 (?), 4; Pl. 13, Fig. 1, 2.
- 1991 Arieticeras gr. algovianum (Oppel), Blau & Meister, Pl. 6, Fig. 23; Pl. 7, Fig. 1-18.
- ? 1992 Arieticeras aff. algovianum (OPPEL). SMITH & TIPPER, Pl. 14, Fig. 1-7.
- 1993 Arieticeras gr. algovianum (OPPEL). MEISTER & Böнм, Pl. 9, Fig. 5, 7-10.
- 1993 Arieticeras ex. gr. algovianum (OPPEL). JAKSCH, Pl. 2, Fig. 1.
- 1995 Arieticeras gr. algovianum (Oppel). Dommergues, Meisтек & Böhm, Pl. 10, Fig. 2, 3, 5-7.
- ? 1996 Arieticeras aff. algovianum (OPPEL). SMITH & TIPPER, Pl. 20, Fig. 11, 12.
- 1997 Arieticeras algovianum (OPPEL). CASSEL, Pl. 15, Fig. 4.
- 1997 Arieticeras gt. algovianum (Oppel). Dommergues, Meister & Schirolli, Pl. 2, Fig. 6, 8, 9, 14.
- 1998 Arieticeras gr. algovianum (OPPEL). GECZY & MEISTER, Pl. 14, Figs. 4-11; Pl. 15, Figs. 1-3, 6.
- 2001 Arieticeras algovianum (OPPEL). VENTURI & FERRI, P. 172, Fig. f.

The species sensu MEISTER (1989) includes several morphologies like *A. algovianum* form *retrosicosta* (OPPEL), *A. algovianum* form *almoetianum* (FUCINI) and *A. algovianum* (OPPEL) s.s. The specimens from Vorarlberg show more rigid ribs than *A. algovianum* (OPPEL) s.s. They thus seem to be closer to *A. algovianum* form *almoetianum* (FUCINI) (*ibidem* 1929-30, Pl. 8, Fig. 2, 3; MEISTER 1989, Pl. 7, Fig. 11). The specimens always remain more compressed than *A. gr. bertrandi* (KILIAN) and belong without doubt to OPPEL's species.

Age and repartition: A. algovianum (OPPEL) s.l. characterizes the Middle Domerian (Gibbosus Subzone) and has a wide geographical distribution (southern part of the Euroboreal Realm [France, Germany, Spain], the Tethyan realm and the northern Pacific domain).

4. Biostatigraphical framework

Remark: This study is based mainly on material from the collections of the Vorarlberger Naturschau, the natural

Remark: For the use of the terms "horizon" or "level", we refer to MEISTER et al. (1994, p. 141) and BLAU & MEISTER (2000, p. 3).

4.1. Sinemurian (fig. 20)

Lower Sinemurian

Lytoceratoidea).

Besides some long range taxa, this period is represented by Arietitidae [*Metophioceras* sp., *Coroniceras* sp., *C.* (*Arietites*) aff. *bisulcatus* sensu VIALLI, *C.* (*Arietites*) (?) sp., *Euagassiceras* sp., and *Arnioceras* gr. *paucicostatum* sensu FERRETTI]. The precision remains at zone level.

The genus *Metophioceras* characterizes the base-middle part of the Bucklandi Zone and the *C*. (*Arietites*) aff. *bisulcatus* sensu VIALLI, *C*. (*Arietites*) (?) sp. most probably its upper part.

The group *Euagassiceras* sp. and *Arnioceras* gr. *paucicos-tatum* sensu FERRETTI point to the Semiscostatum Zone.

Following GUERIN FRANIATTE & MÜLLER (1984), the range of *Promicroceras perplanicosta* crosses the boundary Lower/Upper Sinemurian.

The ranges of *Arnioceras* gr. *paucicostatum* sensu FER-RETTI and *Arnioceras rejectum* are not well known and may correspond to this period or still to the Upper Sinemurian (Obtusum zone).

Upper Sinemurian

This period is better represented by ammonites than the previous one.

In the Obtusum Zone, characteristic ammonites from the base (Obtusum Subzone) seem to be missing. On the contrary the Stellare Subzone is well represented by a set of *Asteroceras* [*A.* aff. *acceleratum*, *A.* gr. *retusum* sensu SACCHI-VIALLI, *A.* gr. *suevicum*, *A.* aff. *margarita*, *A.* gr. *saltriensis* and probably *Epophioceras* gr. *landrioti* (see DOMMERGUES et al., 1994].

The Denotatus Subzone can be precisely recorded at Horizon level (standard Horizon in BLAU & MEISTER, 2000). The Fowleri Horizon, the Denotatus Horizon and the Glaber Horizon are each represented by their index species.

The Oxynotum Zone is proven only by one O. oxynotum associated with Calliphylloceras bicicolae.

The Raricostatum Zone is mostly represented by long range taxa like *Gleviceras* gr. *subguibalianum*, *G*. aff. *boucaultianum* sensu Pia, *G. doris* sensu PIA and *Oxyno*- ticeras aff. soemanni. Some Eoderoceras gr. armatum and Epideroceras gr. lorioli characterize its upper part. A set of Echioceratidae is correlated to the standard Horizons of the Raricostatum Subzone: Echioceras gr. quenstedti (Quenstedti Horizon), Paltechioceras favrei (Favrei Horizon), P gr. rothpletzi (Rothpletzi Horizon), P. charpentieri (Charpentieri Horizon). The Macdonnelli Subzone is characterized by Leptechioceras meigeni and the Aplanatum Subzone by Paltechioceras gr. tardecrescens.

The fauna of this unit is associated with some Phylloceratoidea and Lytoceratoidea.

4.2. Pliensbachian (fig. 21)

Carixian substage

Only poorly defined Eoderoceratidae, like *Paramicrode*roceras cf. hungaricum, seem to occur at the lower part of the Jamesoni Zone, and they do not surely prove the presence of the Taylori Subzone. From the Polymorphus/ Brevispina Subzone, on the other hand, a very significant succession can be put in evidence with the classic association of *Platypleuroceras* gr. brevispina, *P. brevispinoides*, *P. rotundum* characteristic of the **Brevispina Horizon** and with *P. amplinatrix* (**Tenuilobus Horizon**). The Jamesoni Subzone is only represented by *Uptonia jamesoni* and *U.* bronni (**Jamesoni and Pettos Horizons**). The genus *Tropidoceras* may occur in this zone.

The first subzone of the Ibex Zone (Masseanum Subzone) is well characterized by three species: *Tropidoceras masseanum*, *T*. aff. *stahli* and *T*. *erythraeum* (Masseanum Horizon). *Tropidoceras rotundum* appears in this horizon and persists into the following subzone (Valdani Subzone). This unit is characterized by the presence of *Acanthopleuroceras maugenesti* (Maugenesti Horizon), *Tragophylloceras undulatum* and *L*. (*Liparoceras*) aff. *striatum* sensu SCHRÖDER. No characteristic ammonites are recorded from the Luridum Subzone. Notice the presence of *T. ibex*, index species of the zone.

Based on the faunal association given by GECZY (1976), *Metaderoceras* aff. *kondai* seems to belong to the Ibex Zone rather than the Jamesoni Zone.

In the Davoei Zone, the Maculatum Subzone is only proved by the index species: *Aegoceras maculatum* (**Maculatum Horizon**). The first *Prodactylioceras davoei* occur near the top of the Capricornus Subzone but they mainly characterize the Figulinum Subzone. L. (*Becheiceras*) *bechei*, a long range species, starts to be common from this last subzone onward.

Domerian Substage

All three subzone of the Margaritatus Zone are represented in our material. The Stokesi Subzone is well characterized (mainly in Lorüns) by the index species: Amaltheus stokesi, by F. (Matteiceras) monestieri and Fuciniceras isseli-brevispiratum (Monestieri Horizon), by F. (Matteiceras) nitescens (Nitescens Horizon) and Fuciniceras celebratum (Celebratum Horizon). The Subnodosus Subzone is only known by Fuciniceras cornacaldense and finally the Gibbosus Subzone is represented by Arieticeras algovianum (Algovianum Horizon).

Amaltheus margaritatus which appears in this zone persists into the following Spinatum Zone. A characteristic taxon is the genus *Pleuroceras* which is represented in Vorarlberg by *P*. gr. *solare* (**Solare Horizon**).

5. Conclusion

The examination of the Liassic ammonite collection from the Vorarlberg Naturschau completed with field investigations implies:

• Almost all the zones of the Sinemurian and Pliensbachian can be characterized by ammonites. At this scale, no major faunal gap in the fossil record can be observed.

• Although the Northern Calcareous Alps of Vorarlberg (Upper Austroalpine Unit) are a part of the northern margin of the Tethys, the faunas show paleogeographical affinities to both the Tethyan and Euroboreal realms, respectively. This underlines the key position of the Upper Austroalpine Unit for biostratigraphical correlation between these two realms.

• The relationships between ammonite associations, facies (Fleckenmergel – Rotkalk) and paleogeographical faunal affinities have in part been checked. Most of the Euroboreal faunas are recorded from the Fleckenmergel versus Tethyan faunas from the Rotkalk. But several exceptions occur for the Sinemurian-Pliensbachian period, mainly during the Raricostatum and Margaritatus Zones.

6. Acknowledgements

Christian MEISTER thanks very much the Fonds National Suisse de la Recherche Scientifique for its support (No 20-052234.97). Special thanks to the HOLCIM (Vorarlberg) GmbH (formerly Vorarlberg Cement Lorüns AG) for the possibility to visit their quarry. The donation of his fossil collection to the Vorarlberger Naturschau by Joe VINCENZ (Ludesch) is greatfully acknowledged. Additional specimens were donated by Antonio WEHINGER (Feldkrich). Mag. Alexander BAUER (Sistrans) and Heinrich SCHWENDINGER (Dornbirn) assisted during field work in the Lechquellen area.

7. References

ALKAYA, F., 1982. Kuzey Anadolu Alt Jura (Lyias) Phylloceratidlerinintaksonomik revizyonu (I. bölüm). - Bull. Geol. Soc. Turkey, 25:31-40, Ankara.

- ALKAYA, F. & MEISTER, C., 1995. Liassic Ammonites from the central and eastern Pontides (Ankara and Kelkit areas, Turkey). — Revue de Paléobiologie, 14/1: 125–193, Genève.
- ANDRUSOV, D., 1931. Étude géologique de la Zone des Clippes Internes des Carpathes occidentales. — Rozpravy Ustredniho ústavu geologického Ceskoslovenské Republiky, 6:1–167, Prag.
- ANDRUSOV, D., 1965. Geologie der tschechoslowakischen Karpaten, II. – Akademie-Verlag, Berlin.
- ANTONIADIS, P.A., 1984. Ein Beitrag zur Biostratigraphie des Lias im Nördlichen Oberostalpin (zwischen Tiroler Ache und Weisser Traun). — Doc. naturae, 20: 1–21, München.
- ARKELL, W.J., KUMMEL, B. & WRIGHT, C.W., 1957. Mesozoic Ammonoidea. — in: MOORE, R.C. (ed.). Treatise on Invertebrate Paleontology, (L) Mollusca 4:80–490, Geol. Soc. Am. & Kansas Press, Lawrence.
- BAUER, A., 1997. Die fazielle Entwicklung im Jura der Klostertaler Alpen zwischen Formarin und Spullersee, Vorarlberg. – Unveröff. Diplomarbeit, Univ. Innsbruck.
- BAYLE, E., 1878. Fossiles principaux des terrains. Carte géol. France, Explic. Paris 4, Atlas, Teil 1.
- BERTLE, H., FURRER, H. & LOACKER, H. 1979. Geologie des Walgaues und des Montafons mit Berücksichtigung der Hydrogeologie (Exkursion G am 20. April 1979).
 Jahresber. Mitt Oberrhein. Geol. Ver., NF., 61: 71–85, Stuttgart.
- BETTONI, A., 1900. Fossili Domeriani della Provincia di Brescia. — Mém. Soc. Suis. Paléont., 28:1–88, Bâle.
- BLAISON, J., 1963. Présence de Lotharingien marneux au pont de Beaume-les-Dames. — Ann. sci. Univ. Besançon, 2^{ème} série, géol, **17**:169–176, Besançon.
- BLAU, J., 1983. Stratigraphische Untersuchungen im Lias der westlichen Lienzer Dolomiten (Osttirol/Österreich) unter besonderer Berücksichtigung von zwei neugefundenen Ammonitenfaunen. — Dipl. Thesis, 135 p., Giessen.
- BLAU, J., 1998. Monographie der Ammoniten des Obersinemuriums (Lotharingium, Lias) der Lienzer Dolomiten (Österreich): Biostratigraphie, Systematik und Paläobiogeographie. Revue de Paléobiologie, 17/1: 177–285, Genève.
- BLAU, J. & MEISTER, C., 1991. Liassic (Pliensbachian) Ammonites from the Upper Austroalpine (Lienz Dolomites, East Tyrol, Austria). — Jahrb. Geol. B.-A., 134/2:171–204, Wien.
- BLAU, J. & MEISTER, C., 2000. Upper Sinemurian ammonite successions based on 41 faunal horizons: an attempt at worldwide correlation. — GeoResearch Forum, 6: 3–12, Zürich.
- BLAU, J. & MEISTER, C., EBEL, R. & SCHLATTER, R., 2000. Upper Sinemurian and Lower Pliensbachian am-

monite faunas from Herford-Diebrock area (NW Germany). – Paläontologische Zeitschrift, **74**/3: 259–280, Stuttgart.

- BLOOS, G., 1988. Ammonites marmoreus OPPEL (Schlotheimiidae) im unteren Lias (angulata-Zone, depressa-Subzone) von Württemberg (Südwestdeutschland).
 Stuttgarter Beitr. Naturk., Serie B, 141:1–47, Stuttgart.
- Вонм, F., 1992. Mikrofazies und Ablagerungsmilieu des Lias und Dogger der Nordöstlichen Kalkalpen. — Erlanger geol. Abh., **121**:57–217, Erlangen.
- BÖHM, F., DOMMERGUES, J.-L. & MEISTER, C., 1995. Breccias of the Adnet Formation: indicators of a Mid-Liassic tectonic event in the Northern Calcareous Alps (Salzburg/Austria). Geol Rundsch, 84:272–286, Wien.
- BONARELLI, G., 1895. Fossili Domeriani della Brianza. — Real. Ist. Lombard. Sci. Lett. Rendic. Ser. 2, 28: 326–347.
- BONARELLI, G., 1899. Le ammoniti del «Rosse Amonitico». — Bull. soc. Malacol., **20**:198–219, Pisa.
- Böse, E., 1894. Uber liassiche und mitteljurassiche Fleckenmergel in den bayerischen Alpen. – Z. dt. geol. Ges., 46:703–768, Stuttgart.
- BRAGA, J.C., 1983. Ammonites del Domerense de la Zona Subbetica (Cordilleras Beticas, sur de Espana). — Tesis Doctoral, 410 p., Granada.
- BRAGA, J.C., COMAS RENGIFO, M.J., GOY, A. & RIVAS, P., 1982. Comparacione faunisticas y correlaciones en el Pliensbachiense de la Zona Subbética y Cordillera Ibérica. — Bol. R. Soc. Espanola Hist. Nat. (Geol.), 80:221–244, Madrid.
- BRAGA, J.C., COMAS RENGIFO, M.J., GOY, A. & RIVAS, P., 1988. Changes in *Pleuroceras solare* (Phill.) in its southward migration. — In: WIEDMANN, J. & KULL-MANN, J. (Eds.). Cephalopods – Present and Past., 365–376, Stuttgart.
- BRAGA, J.C., JIMENEZ, A.P. & RIVAS, P., 1987. Lytoceratidae (Ammonoidea) del Lias Medio de la Zona Subbética. — Bol. R. Soc. Espanola Hist. Nat. (Geol.), 82: 5–23, Madrid.
- BRAGA, J.C., MARTIN-ALGARA, A. & RIVAS, P., 1985. Ammonites du Lias inférieur (Sinémurien Lotharingien) de Sierra Harana (Cordillères bétiques, Espagne).
 in: «1^{er} Coll. du Centre International d'Etude du Lias, Cahier Inst. Cath., 14:85–100, Lyon.
- BRAGA, J.C. & RIVAS, P., 1985. The mediterranean Tropidoceras (Ammonitina) in the Betic Cordilleras. — Eclogae geol. Helv., 78/3:567–605, Bâle.
- BRAGA, J.C. & RIVAS, P., 1987. Phylloceratidae del Lias Medio de la Zona Subbética. — Bol. R. Soc. Espanola Hist. Nat. (Geol.), 82:65–86, Madrid.
- BREMER, H., 1965. Zur Ammonitenfauna und Stratigraphie des unteren Lias (Sinemurium bis Carixium) in der Umgebung von Ankara (Türkei). — N. Jahrb. Geol. Paläont., Abh., 122/2:127–221, Stuttgart.

- BRUN, P. de & BROUSSE, M., 1936. Le Lias de Valz près Alès (Gard). — Travaux du Laboratoire de Géologie de la Faculté des Sciences de Lyon, Fasc. 32, Mémoire 27. (Ed.) Laboratoire de Géologie de l'Université de Lyon. 32/27, 62 p., Lyon.
- BÜCHNER, M., HOFFMANN, K. & JORDAN, R., 1986. Die Tongruben der Ziegeleien im Unter-Pliensbachium (Lias gamma) der weiteren Umgebung von Bielefeld, ihre Geologie und Betriebsgeschichte: Ein Beitrag für künftige Rohstoff-Erschliessungen. – Veröff. Naturkunde-Mus., 1:1–57, Bielefeld.
- BUCKMAN, S.S., 1909-1930. Yorkshire Type Ammonites:
 Vol. 1 7 (for the dates of delevery see DEAN et al., 1961). Weldon & Wesley, 709 pl., London.
- CANAVARI, M., 1888. Contribuzione alla fauna de Lias inferiore di Spezia. — Mem.-Regio. Com. Geol. Italia, 3:57–227, Firenze.
- CASSEL Y, J., 1997. Evolution géodynamique de la marge Cévenole entre Saint-Ambroix et Anduze (Gard Septentrional) de l'Hettangien au Bajocien inférieur.
 Docum. Lab. Géol., 144, 312 p., Lyon.
- CHAPUIS, F., 1858. Nouvelles recherches sur les fossiles des terrains secondaires de la province de Luxembourg.
 Mém. Acad. Roy. Belge, 33.
- CECCA, F., DOMMERGUES J.-L., MOUTERDE R. & PALLINI G., 1987. Ammonites méditerranéennes du Lotharingien de Gorgo à Cerbara (Monte Nerone, Apennin des Marches, Italie). — in: «Deuxième Colloque du Centre International d'étude du Lias». — Cah. Inst. cath. Sciences, 1:67–82, Lyon.
- COLERA, I., RIVAS, P., SEQUEIROS, L. & VALENZUELA, R., 1978. Algunos Metaderoceras (Ammonitina) del Lias inferior del Almonacid de la Cuba (Provincia de Zaragoza, Cordillera Iberica). — Estudios geologicos, 34:309–317, Madrid.
- Comas Rengifo, M.J., 1985. El Pliensbachiense de la Cordiliera Ibérica. — Tesis Doctoral, 591 p., Madrid.
- COPE, J.C.W., 1991. Ammonite faunas of the ammonitico rossoof the Pontide Mountains, northern Anatolia.— Geologica Romana 27:303–325, Roma.
- COPE, J.C.W., 1994. Preservation, sexual dimorphism and mode of life of some Sinemurian ammonites. — Palaeopelagos Spec. Publ. (Proc. 3rd Pergola Int. Symp.) 1:57–66, Roma.
- CORNA, M., 1985. Le Lias du Jura méridional, paléontologie biostratigraphique du Sinémurien, approche paléoécologique. — Thèse Univ. (inédit), 246 p., Lyon.
- CORNA, M. & DOMMERGUES, J.L., 1995. Les Ammonites du Sinémurien de Mandelot (Côte-d'or, France). Approches biostratigraphique, morphologique et ontogénétique. – Geobios, 28/1:17–47, Villeurbanne.
- CORNA, M., DOMMERGUES, J.-L., MEISTER, C. & PAGE, K., 1997. Les faunes d'ammonites du Jurassique inférieur (Hettangien, Sinémurien et Pliensbachien) au nord du massif des Ecrins (Oisans, Alpes occidentales françai-

ses). — Revue Paléobiol., 16/2:321–409, Genève.

- CORNA, M., DOMMERGUES, J.-L., MEISTER, C. & MOUTERDE
 R., 1997. Sinémurien. in: »Biostratigraphie du Jurassique ouest-européen et méditerranéen: zonations parallèles et distribution des invertébrés et microfossiles». Groupe français du Jurassique, Cariou et Hantzergue (coord.). Bull. Centre Rech. Elf Explor. Prod., Mém., 17/9-14:106–113, Pau.
- Cox, L.R., 1930. On the British fossils named by William Smith. Ann. Mag. Nat. Hist. 10/6:287–303, London.
- CUBAYNES, R., BOUTET, C., DELFAUD, J. & FAURE, P., 1984. La mégaséquence d'ouverture du Lias quercynois (bordure sud-ouest du Massif Central français).
 — Soc. Nat. Elf-Aquitaine, 8/2:334–370, Pau.
- CUVIER, G., 1798. Tableau élémentaire de l'histoire naturelle des animaux. Paris.
- DEAN, W.T., DONOVAN, D.T. & HOWARTH, M. K., 1961. The liassic ammonites zones and subzones of the North-West European Province. — Bull. British Museum (Nat. Hist.) Geol., 4/10:437–505, London.
- DOERT, U. & HELMCKE, D., 1976. Geologie des Flexen-Passes (Voralberg/Österreich). — Geologica et Palaeontologica, **10**:181–200, Marburg a/Lahn.
- DOMMERGUES, J.-L., 1979. Le Carixien bourguignon, biostratigraphie, paléogéographie, approches paléontologique et sédimentologique. — Thèse doctorat 3^{ème} Cycle, 195 p., Dijon.
- DOMMERGUES, J.-L., 1986. Les Dactylioceratidae du Carixien et du Domérien basal, un groupe monophylétique. Les Reynesocoeloceratinae nov. subfam. — Bull. Scient. Bourgogne, **39**:1–26, Dijon.
- DOMMERGUES, J.-L., 1987. L'évolution des Ammonitina au Lias moyen (Carixien, Domérien basal) en Europe occidentale. — Doc. Lab. Géol., **98**:298 p., Lyon.
- DOMMERGUES, J.-L., 1993. Les ammonites du Sinémurien supérieur de Bourgogne (France): Biostratigraphie et remarques paléontologiques. — Revue de Paléobiologie **12/1**:67–171, Genève.
- DOMMERGUES, J.-L., 2002. Les premiers Lytoceratoidea du Nord-Ouest de l'Europe (Ammonoidea, Sinémurien inférieur, France). Exemple de convergence évolutive vers les morphologies "capricornes" — Revue de Paléobiologie **21**/1:257–277, Genève.
- DOMMERGUES, J.-L., FERRETTI, A, GECZY, B. & MOUTERDE,
 R., 1983. Eléments de corrélation entre faunes d'ammonites mésogéennes (Hongrie, Italie) et subboréales (France, Portugal) au Carixien et au Domérien inférieur. Geobios, 16/4:471–499, Villeurbanne.
- DOMMERGUES, J.-L., FERRETTI, A. & MEISTER, C., 1994.
 Les faunes d'ammonites du Sinémurien de l'Apennin Central (Marches et Toscane, Italie). — Boll. Soc.
 Paleont. Italiana, 33/1:13–42, Modena.
- DOMMERGUES, J.-L. & GECZY, B., 1989. Les faunes d'ammonites du Carixien basal de Villany (Hongrie); un témoin paléobiogéographique des peuplements de

la Marge méridionale du continent Euro-Asiatique. - Rev. Paléobio., **8**:21-37, Genève.

- DOMMERGUES, J.-L. & MEISTER, C., 1986. Une nouvelle espèce de *Fuciniceras* du Domérien des Causses: *Fuciniceras fontaneillesi* nov. sp. — Geobios, **19/5**: 653–660, Villeurbanne.
- DOMMERGUES, J.-L. & MEISTER, C., 1987a. Succession des faunes d'ammonites au Langenegggrat (Préalpes médianes, région de Thoune, Suisse): une série de référence dans le Sinémurien supérieur. — Geobios, 20:313–335, Villeurbanne.
- DOMMERGUES, J.-L. & MEISTER, C., 1987b. La biostratigraphie des ammonites du Carixien (Jurassique inférieur) d'Europe occidentale: un test de la méthode des associations unitaires. — Eclogae geol. Helv., 80/3: 919–938, Bâle.
- DOMMERGUES, J.-L. & MEISTER, C., 1989a. Succession des faunes d'ammonites du Sinémurien supérieur dans le Chablais méridional et les Klippes de Savoie (Préalpes médianes, Haute-Savoie France). — Geobios, 4: 455–483, Villeurbanne.
- DOMMERGUES, J.-L. & MEISTER, C., 1989b. Trajectoires ontogénétiques et hétérochronies complexes chez des ammonites (Harpoceratinae) du Jurassique inférieur (Domérien). — Geobios, Mém. spécial, 12:157–166, Villeurbanne.
- DOMMERGUES, J.-L. & MEISTER, C., 1990a. De la Grosse Pierre des Encombres aux Klippes de Suisse centrale: un test d'homogénéite des paléoenvironnements subbriançonnais et des contraintes paléobiogéographiques alpines par les ammonites du Lias moyen (Jurassique inférieur). — Bull. Soc. géol. France, **8/4**:635–646, Paris.
- DOMMERGUES, J.-L. & MEISTER, C., 1990b. Les faunes d'ammonites liasiques de l'Austroalpin moyen dans les Alpes Rhétiques italiennes (Region de Livigno); Biostratigraphie et implications paleogeographiques. — Rev. Paléobio., 9/2:291–307, Genève.
- DOMMERGUES, J.-L. & MEISTER, C., 1991. Area of mixed marine faunas between two major paleogeographical realms, exemplified by the Early Jurassic (Late Sinemurian and Pliensbachian) ammonites in the Alps. — Palaeogeo. Palaeoclim. Palaeoecol., 86:265–282, Amsterdam.
- DOMMERGUES, J.-L. & MEISTER, C., 1991. Succession des faunes d'ammonites du Sinémurien et du Pliensbachien dans le Chablais septentrional (Préalpes médianes, Suisse et France). — Boll. Soc. Paleont. Italiana, **30**/3: 303–324, Modena.
- DOMMERGUES, J.-L. & MEISTER, C., 1992. Late Sinemurian and Early Carixian ammonites in Europe with cladistic analysis of sutural characters. — N. Jahrb. Geol. Pal., **185/2**:211–237, Stuttgart.
- DOMMERGUES J.-L. & MEISTER, C., 1999. Cladistic formalisation of relationships within a superfamily of Lower Jurassic Ammonitina: Eoderocerataceae. – Revue

Paléobiol., 18/1:273-286, Genève.

- Dommergues, J.-L., Meister, C. & Вöнм, F., 1995. New data on Austroalpine Liassic ammonites from Adnet and adjacent areas (Oberösterreich, Northern Calcareous Alps). Jahrb. Geol. B.-A., **138/2**:161–205, Wien.
- DOMMERGUES, J.-L., MEISTER, C., BONNEAU, M., CADET, J.-P. & FILI, I., 2000. Les ammonites du Sinémurien supérieur et du Carixien inférieur à moyen du gisement de Lefterochori (Albanie méridionale). — Geobios, 33/3:329–358, Villeurbanne.
- DOMMERGUES, J.-L., MEISTER, C. & FAURE, P., 1985. Trois espèces nouvelles d'Harpoceratinae du Carixien supérieur et du Domérien basal du nord-ouest de L'Europe. — in: «1^{er} Coll. Centre Int. Etude du Lias 1984». — Cahiers Inst. Cath., 153-173, Lyon.
- DOMMERGUES, J.-L., MEISTER, C. & METTRAUX, M., 1990.
 Succession des faunes d'ammonites du Sinémurien et du Pliensbachien dans les Préalpes médianes de Suisse romande (Vaud et Fribourg): implications biochronologiques et paléobiogéographiques. — Geobios, 23/3: 307–341, Villeurbanne.
- DOMMERGUES, J.-L., MEISTER, C. & MOUTERDE, R., 1997.
 Pliensbachien. in: «Biostratigraphie du Jurassique ouest-européen et méditerranéen: zonations parallèles et distribution des invertébrés et microfossiles».
 Groupe français du Jurassique, Cariou et Hantzergue (coord.). Bull. Centre Rech. Elf Explor. Prod., Mém., 17/15-23:114–119, Pau.
- DOMMERGUES, J.-L., MEISTER, C. & MOUTERDE, R.: Fuciniceras paradoxus nov. sp. (Harpoceratinae, Ammonitina) du Domérien portugais. Réflexion sur le sens taxonomique d'un assemblage paradoxal de caractères. — Geobios, Villeurbanne (in press).
- DOMMERGUES, J.-L., MEISTER, C. & SCHIROLLI, P., 1997. Les successions des ammonites du Sinémurien supérieur au Toarcien basal dans les Préalpes de Brescia (Italie).
 Mem. Sci. Geol., 49:1–26, Padova.
- DOMMERGUES, J.-L. & MOUTERDE, R., 1978. Les faunes d'ammonites du Carixien inférieur et moyen du gisement des Cottard (Cher). — Geobios, **11**:345–365, Villeurbanne.
- DOMMERGUES, J.-L. & MOUTERDE, R., 1980. Modalités d'installation et d'évolution des Harpocératinés (Ammonitina) au Domérien inférieur dans le Sud-Ouest de l'Europe (France, Portugal). — Geobios, 13/3:289–325, Villeurbanne.
- DOMMERGUES, J.-L. & MOUTERDE R., 1981. Les Acanthopleuroceratinés portugais et leurs relations avec les formes subboréales. — Cienc. Terra, **6**:77–100, Lisboa.
- DOMMERGUES, J.-L., PAGE, K. & MEISTER. C., 1994: A detailed correlation of Upper Sinemurian (Lower Jurassic) ammonite biohorizons between Burgundy (France) and Britain. Newsl. on Stratigraphy, **30**: 61–73, Berlin-Stuttgart.

- DONOVAN, D.T., CALLOMON, J.H. & HOWARTH, M.K., 1981.
 Classification of the Jurassic Ammonitina. in: HOUSE M.R. & SENIOR J.R. (Eds): The Ammonoidea.
 Systematic Association Special Volume n° 18, Academic Press: 101–155, London.
- DONOVAN, D.T., FORSEY, G.F., 1973. Systematics of Lower Liassic Ammonitina. — Paleont. Contr. Univ. Kansas, **64**:1–18, Kansas City.
- DUBAR, G. & MOUTERDE, R., 1978. Les formations à Ammonites du Lias moyen dans le Haut Atlas de Midelt et du Tadla. — Notes et mémoires du Service géologique, 274:1–112, Rabat.
- DUMORTIER, E., 1869-1874: Etudes paléontologiques sur les dépôt jurassiques du bassin du Rhône, 3^{ème} et 4^{ème} parties, Lias moyen et supérieur. — Savy:299 p., Paris.
- EL HARIRI, K., DOMMERGUES J.-L., MEISTER, C., SOUHEL, A. & CHAFIKI, D., 1996. Les ammonites du Lias inférieur et moyen du Haut-Atlas de Béni-Méllal. Taxinomie et biostratigraphie à haute résolution. — Geobios, **29**/5: 537–576, Villeurbanne.
- ELMI, S., ATROPS F. & MANGOLD, C., 1974. Les zones d'ammonites du Domérien - Callovien de l'Algérie occidentale. 1^{ère} partie: Domérien - Toarcien. — Doc. Lab. Géol. Fac. Scienc., **61**:1–83, Lyon.
- ELMI, S., ALMERAS, Y., AMEUR, M., BASSOULLET, J.-P., BOUTAKIOUT, M., BENHAMOU, M., MAROK, A., MEKAHLI, L., MEKKAOUI, A. & MOUTERDE, R., 1998. Stratigraphic and palaeogeographic survey of the Lower and Middle Jurassic along a north-south transect in western Algeria. Mém. Mus. natn. Hist. nat. Peri-Tethys Memoir 4: epicratonic basins of Peri-Tethyan platforms, **179**: 145–211, Paris.
- ELMI, S. & RULLEAU, L., 1993. Le Jurassique du Beaujolais méridional, bordure orientale du Massif Central, France. — Geobios, Mém. spéc. 3^{ème} Symposium International: Céphalopodes actuels et fossiles. Symposium F. Roman, Lyon, 17-21 juillet 1990. (Ed.) Université Claude-Bernard Lyon, 15/3:139–155, Villeurbanne.
- ERBEN, H.K., 1956. El Jurassico inferior de Mexico y sus Ammonitas. — In «20^{ème} Congr. Geol. Int. Mexico», 1–393, Mexico.
- FANTINI SESTINI, N.: Il genere «Partschiceras» Fucini (Ammonoidea) nel Lias. — Riv. Ital. Paleont., 77/3: 377–408, Milano 1971.
- FARAONI, P., MARINI, A., PALLINI G. & VENTURI F., 1994. Nuove faune ad ammoniti delle zone ad E. mirabilis ed H. serpentinus nella Valle del F. Bosso (PS) e loro riflessi sulla biostratigrafia del limite Domeriano-Toarciano in Appennino. — Studi Geol. Cam., V spéc.:247–297.
- FARAONI P., MARINI A., PALLINI G. & VENTURI F., 1996. New Carixian ammonite assemblages of Central Apennines and their impact on Mediterranean Jurassic biostratigraphy. — Paleopelagos, 6:75–122, Roma.
- FAUGERES, J.-C., 1978. Les rides sud-rifaines. Evolution

sédimentaire et structurale d'un bassin atlantico-mésogéen de la marge africaine. — Thèse de doctorat d'Etat, Université de Bordeau: 480 p. (inédit), Bordeau.

- FAURE, P., 1980/81. Le Lias de la Nappe des Corbières Orientales (Pyrénées navarro-languedociennes) (feuilles de Capendu, Leucate, Narbonne et Tuchan).
 Bulletin du bureau de recherches géologiques et miniéres, 1/2:135-151, Paris.
- FERRETTI, A., 1975. Ricerche biostratigrafiche sul Sinemuriano Pliensbachiano nella gola del F. Bosso (Appennino marchigiano). – Riv. Ital. Paleont., 81/2:161–194, Milano.
- FERRETTI, A., 1991. Introduzione ad uno studio morfometrico degli Ammoniti pliensbachiani della catena del Catria (Appennino Marchigiano). — Riv. Ital. Paleont., 97:49–98, Milano.
- FERRETTI, A. & MEISTER, C., 1994. Composition des faunes d'ammonites dans les Apennins des Marches et comparaison avec les principales régions téthysiennes et subboréales. — In «3^{ème} Convegno int. Fossili, Evoluzione, Ambiente», Pergola 1989, Palaeopelagos, Mém. sp., 1:143–153, Roma.
- FISCHER, R., 1975. Die deutschen Mittellias-Falciferen (Ammonoidea, Protogrammoceras, Fuciniceras, Arieticeras). – Palaeontographica A, 151:47–101, Stuttgart.
- FISCHER, J.-C., 1994. Révision critique de la Paléontologie française d'Alcide d'Orbigny. — in: ENAY, R., FIS-CHER, J.C., GAUTHIER, H., MOUTERDE, R., THIERRY, J. & TINTANT, H. (Eds.): Vol. 1 Céphalopodes Jurassiques. — Masson & Muséum national d'Histoire naturelle (Ed.), 340 p., Paris.
- FRIEBE, J.G., 1999. Zur paläontologischen Erforschung Vorarlbergs: Die wissenschaftlichen (Auslands-) Kontakte Siegfried Fusseneggers zwischen 1924 und 1939. — in: LOBITZER, H. & GRECULA, P. (Hrsg.): Geologie ohne Grenzen. Festschrift 150 Jahre Geologische Bundesanstalt. — Abh. Geol. B.-A., 56/1: 159–164, Wien
- FRIEBE, J.G., 2000: Die erdwissenschaftlichen Sammlungen des Vorarlberger Landesmuseums in Bregenz.
 Jahrb. Vlbg. Landesmuseumsverein, Jg. 2000: 55–65, Bregenz.
- FUCINI, A., 1896. Fauna del Lias medio del Monte Calvi.Paleont. Ital., 2:203–250, 2 pl., Pisa.
- FUCINI, A., 1898. Di alcune nuove ammoniti dei Calcari Rossi inferiori. — Palaeontogr. Ital., 4:239–251, Pisa.
- FUCINI, A., 1899-1900: Ammoniti del Lias Medio dell'Ap-pennino Centrale existense nel museo di Pisa.
 Paleont. Ital., 5/6:145–185, Pisa.
- FUCINI, A., 1901-1905. Cefalopodi Liassici del Monte Cetona. Parte 1, Paleont. Ital., 7(1901):1–89; parte 3, ibid., 9(1903):125–185; parte 4, ibid., 10(1904): 275–298; parte 5, ibid., 11(1905):93–146; Pisa.

- FUCINI, A., 1908a. Synopsis delle Ammoniti del Medolo.Ann. Univ. Toscana, 28:1–107, Pisa.
- FUCINI, A., 1908b. Ammoniti medoliane dell'Appennine. — Atti Soc. Nat. Tosc. Mem., **24**:18 p., Pisa.
- FUCINI, A., 1920-1935. Fossili domeriani dei dintorni di Taormina. — Parte 1, Paleont. Ital., 26/1920 (1923): 75–116; parte 2, ibid., 27/1921 (1924):1–21; parte 3, ibid., 29-30/1923-1928 (1929):41–77: parte 4, ibid., 31/1929-1930 (1931):93–149; parte 5, ibid., 35/1934-1935 (1935):85–100, Pisa.
- FURRER, H., 1993. Stratigraphie und Fazies der Trias/ Jura-Granzschichten in den Oberostalpinen Decken Graubündens. – Diss. Unv. Zürich (1981), 111 S., Zürich.
- FUTTERER, K., 1893. Die Ammoniten des mittleren Lias von Östringen. – Mitt. Bad. Geol. Landesanst., 2: 277–343, Heidelberg.
- GAKOVIC, M. B., 1986. Stratigraphy of the liassic of the Zalomka and Gacko in Herzegovina as a base of biostratigraphic division of the Lower Jurassic in the Dinarides. — Geol. Glas. Pos. Izd., **21**:1–143, Sarajevo.
- GECZY, B., 1976. Les ammonites du Carixien de la montagne du Bakony. — Akadémiai Kiado, 220 p., Budapest.
- GECZY, B., 1998. Lower Pliensbachian ammonites of Villany (Hungary). — Hantkeniana, 2:5–47, Budapest.
- GECZY, B. & MEISTER, C., 1998. Les ammonites du Domérien de la montagne du Bakony (Hongrie). — Revue Paléobiol., **17/1**:69–161, Genève.
- GETTY, T.A., 1973. A revision of the generic classification of the family Echioceratidae (Cephalopoda, Ammonoidea) (Lower Jurassic). — The University of Kansas Paleontological Contributions, 63:1–32, Topeka.
- GEYER, G., 1886. Über die liasischen Cephalopoden des Hierlatz bei Hallstatt. — Abh. k. k. geol. R.-A., 12/4: 213–287, Wien.
- GEYER, G., 1893. Die mittel-liasische Cephalopoden-Fauna des Hinter-Schafberges in Oberösterreich. — Abh. k.
 k. geol. R.-A., 15:1–76, Wien.
- GEMMELLARO, G.G., 1884. Sui fossili degli strati a Terebratura aspasia della contrada Rocche Rosse presso Galati (provincia di Messina). — Giorn. Sc. Nat. Econ., 16:1–48, Palermo.
- GUÉRIN-FRANIATTE, S., 1966. Ammonites du Lias inférieur de France, Psilocerataceae: Arietitidae. – Edit. CNRS, 1-2:455 p., Paris.
- GUÉRIN-FRANIATTE, S. & HOFFMANN, K., 1984. Une remarquable faune d'ammonites du Lotharingien à Bad Schönborn (ancien Langenbrücken), Kraichgau, Allemagne Occidentale. Palaeontographica, (A), 185/1-3:39–84, Stuttgart.
- GUEX, J. & RAKUS, M., 1991. Les Discamphiceratinae (Psiloceratidae), une nouvelle sous-famille d'ammonites (Cephalopoda) du Jurassique inférieur. Bull. Lab. Géol. Univ. Lausanne, **311**:309–316, Lausanne.

- HAAS, O., 1913. Die Fauna des mittleren Lias von Ballino in Südtirol. — Beitr. Paläont. Geol. Österr.-Ungarn Orient, 26:1–161, Wien.
- HAUER, F., 1854a. Beiträge zur Kenntnis der Heterophyllen der österreichischen Alpen. — Sitzber. Akad. Wiss. Wien, math.-natw., Cl., **12**/**5**:861–910, Wien.
- HAUER, F., 1854b. Beiträge zur Kenntnis der Capricornier der östterreichischen Alpen. — Sitzber. Akad. Wiss.
 Wien, math.-natw. Cl., 13:94–121, Wien.
- HAUER, F., 1856. Über die Cephalopoden aus dem Lias der nord-östlichen Alpen. — Denkschr. k.k. Akad. Wiss.
 Wien, math.-natw. Cl., 1:1–86, Wien.
- HAUG, E., 1884. Note sur quelques espèces d'Ammonites nouvelles ou peu connues du Lias supérieur. — Bull.
 Soc. géol., 12:346–356, France.
- HAUG, E., 1885. Beiträge zur einer Monographie der Ammonitengattung Harpoceras. — N. Jahrb. Mineral. Geol. Paläont., 3:586–722, Stuttgart.
- HAUG, E., 1887. Über die "Polymorphidae", eine neue Ammonitenfamilie aus dem Lias. N. Jahrb. Mineral. Geol. Paläont., 1887/2:89–163, Stuttgart.
- HAUG, E., 1894. Les Ammonites du Permien et du Trias.Bull. Soc. Géol. 3(22):411, France.
- HELMCKE, D., 1974. Geologie der südlichen Klostertaler Alpen. (Voralberg/Österreich). — Geologica et Palaeontologica, 8:131–147, Marburg a/Lahn.
- HILLEBRANDT, von A., 1987. Liassic ammonite zones of South America and correlations with other provinces.
 Bioestr. Sistemas Reg. del Jurassico y Cretacico Am. Sur Contr., IGCP, 171:111–157, Mendoza.
- HILLEBRANDT, von A., 2002. Ammoniten aus dem oberen Sinemurium von Südamerika. — Rev. Paléobiol., 21/1, Genève.
- HOFFMANN, K., 1950. Die Grenze Unter-/Mittellias und die Zone des Eoderoceras miles (SIMPSON) in Nordwestdeutschland. — Geol. Jahrb., 64(1943-48):75–121, Hannover.
- HOFFMANN, K., 1982. Die Stratigraphie, Paläogeographie und Ammonitenführung des Unter-Pliensbachium (Carixium, Lias gamma) in Nordwest-Deutschland.
 — Geol. Jahrb., A, 55:3–439, Hannover.
- HowARTH, M.K., 1958. The ammonites of the Liassic family Amaltheidae in Britain. — Paleont. Soc. London, **111-112**:90 p., London
- HOWARTH, M.K., 1962. The Yorkshire type Ammonites and Nautiloids of Young and Bird, Phillips, and Martin Simpson. — Palaeontology, **5**/1:93–136,
- HOWARTH, M.K., 1992. The ammonite family Hildoceratidae in the Lower Jurassic of Britain. — Monogr. Paleont. Soc., part. 1, 145:106 p., London.
- HOWARTH, M.K. & DONOVAN, D.T., 1964. Ammonites of the Liassic family Juraphyllitidae in Britain. — Palaeontology, **7**(2):286–305, London.
- Hug, O., 1899. Beiträge zur Kenntnis der Lias- und Dogger Ammoniten aus der Zone der Friburger Alpen. II, die Unter- und Mittellias Ammoniten-Fauna von Blu-

menstein Allmend und Langeneckgrat am Stockhorn. — Abh. schweiz. paläont. Ges., **26**:1–39, Zürich.

- HYATT, A., 1867. The fossil Cephalopods of the Museum of comparative Zoology. — Bull. Mus. Comp. Zoology, Harvard Univ., 1/5:71–102, Cambridge.
- HYATT, A., 1871. On revision among the Ammonites. — Proc. Boston Soc. Nat. Hist., 14:22–43, Boston.
- HYATT, A., 1875. Remarks on two new genera of Ammonites: Agassiceras and Oxynoticeras. Boston Soc.
 Nat. Hist. Proc., 17(1874-1875):225-235, Boston.
- HYATT, A., 1889. Genesis of the Arietidae. Smiths. Contrib. Knowl., **673/26**:XI+238 p., Washington.
- HYATT, A., 1900. Cephalopoda. in: ZITTEL K.A. (red.). Text book of palaeontology. Eastman (Ed.): 502–592, Ort?.
- IMLAY, R.W., 1981. Early Jurassic ammonites from Alaska. — U. S. Geol. Surv. Prof. Pap., 1148:1–49, Washington.
- JACOBSHAGEN, V., 1965. Die Allgäu-Schichten (Jura-Fleckenmergel) zwischen Wettersteingebirge und Rhein.
 Jahrb. Geol. B.-A., 108:1–114, Wien.
- JAKOBS, G.K. & PALFY, J., 1994. Upper Triassic to Middle Jurassic biostratigraphic and facies studies in the Iskut Rivermap area, northwestern British Columbia. — C. Res. Geol. Surv., **1994-E**:17–28, Ottawa.
- JAKSCH, K., 1993. Über das Liasvorkommen von Schwendt am Nordostrand des Kaisergebirges (Tirol) mit besonderer Berücksichtigung seiner Ammonitenfauna.
 Jb. Geol. B.-A., 136:65–75, Wien.
- JAHNEL, C., 1970. Stratigraphie, Fazies und Fauna des Lias alpha, beta und gamma im Gebiet des Nördlinger Rieses. — Inaugural Dissertation L.-Max. Universität, 1-123 p. + xxxi Taf., München.
- JOHANNSON, G.G., SMITH, P.L. & GORDEY, S.P., 1997. Early Jurassic evolution of the northern Stikinian arc: Evidence from the Laberge Group, northwestern British Columbia. — Can. J. Earth Sci., 34/7:1030–1057, Ottawa.
- JOLY, B., 2000. Les Juraphyllitidae, Phylloceratidae, Neophylloceratidae (Phyllocerataceae, Phylloceratina, Ammonoidea) de France au Jurassique et au Crétacé.
 Geobios, Villeurbanne, Mém. sp., 23 et Mém. Soc. Géol. France, n.s., 174:202 p., Paris.
- JORDAN, R., 1960. Paläontologische und stratigraphische Untersuchungen im Lias delta (Domerium) Nordwestdeutschlands. — Thesis, 178 p., Tübingen.
- KMENT, K., 1966. Frühe liassische Ammoniten aus der Gegend um Hinterriss im Karwendelgebirge (Tirol) und dem Mangfallgebirge bei Rottach-Egern (Bayern). – Jb. Geol. B.-A., 142/2:7–77, Wien.
- KOLLÀROVÀ-ANDRUSOVOVÀ, V., 1966. Les Céphalopodes du Lias du Slovensky Kras (Karst Slovaque). — Nauka O Zemi., Sér. Géol, 3:7–77, Bratislava.
- KOVACS, L., 1942. Monographie der liassischen Ammoniten des nördlichen Bakony. — Geologica Hung., ser. paleont., 17:220 p., Budapest.

- KRUMBECK, L., 1920. Zur Kenntnis des Juras der Insel Rotti. — Jaarboek van het Mijnwezen in Nederlandsch Oost-Indië, Verhandelingen, 68:109–219, Stuttgart.
- LACHKAR, N., DOMMERGUES, J.-L., MEISTER, C., NEIGE, P., IZART, A & LANG J., 1998. Les ammonites du Sinémurien supérieur du Jebel-Bou-Hamid (Haut-Atlas Central, Rich, Maroc). Approches paléontologique et biostratigraphique. — Geobios, **31**/5:587–619, Villeurbanne.
- LANG, W.D. & SPATH, L.F., 1926. The Black Marl of Black Venn and Stonebarrow, in the Lias of the Dorset Coast.
 The Quarterly Journal of the Geological Society of London, 82:144–165, London.
- LANTSCHNER, M., 1994. Stratigraphie, Fazies und Paläogeographie des Jura westlich der Flexenpassstrasse im Grenzbereich Tirol/Voralberg. — Unveröff. Dipl.-Arb. Geol. Inst. Univ. Wien, 121 p., Wien.
- LE CALVEZ, Y., LEFAVRAIS, A. & LHEGU, J., 1969. Le Morvan et le détroit morvano-vosgien au Trias et au Lias. Bull. du B.R.G.M. (2^{ème} série), **1/3**:3–28, Paris.
- LEVI, G., 1896. Sui Fossili degli strati a Terebratula aspasia di M. Calvi presso Campiglia. — Boll. Soc. geol. Ital., 15:262–276, Roma.
- MANTEA, G., 1985. Geological studies in the upper basin of the Somesul Cald valley and the Valea Seaca valley region (Bihor-Vladeasa Mountains). — An. Inst. Geol. Geofiz., 66:27–84, Bucarest.
- MAUBEUGE, P.L., 1963. Études stratigraphiques et paléontologiques sur la "Marne sableuse de Hondelage" (Lias inférieur & moyen) dans la province de Luxembourg. Avec une étude des Eoderoceratidae Lotharingiens et de deux formes du Lias moyen. — Académie Royale de Belgique, classe des sciences, mémoirs, 34/2:5–25, Bruxelles.
- MAUBEUGE, P.L., 1984. Nouvelles études paléontologiques et biostratigraphiques sur les ammonites du Grand-Duché de Luxembourg, de la province de Luxembourg et de la région Lorraine attenante. — Travaux Scientifiques du Musee d'Histoire naturelle de Luxembourg, 2:1–115, Luxembourg.
- MCROBERTS, Ch., FURRER, H. & JONES, D.S., 1997.
 Palaeoenvironmental Interpretation of a Triassic
 Jurassic Boundary Section from Western Austria
 Based on Palaeoecological and Geochemical Data.
 Palaeogeography, Palaeoclimatology, Palaeoecology, 136:79–95, Amsterdam.
- MENEGHINI, J., 1853. Nuovi fossili toscani illustrati dal Prof. G. Meneghini. In appendice alle considerazioni sulla geologia statigrafica toscana dei Professori Cavaliere P. Savi e G. Meneghini. — Ann. Univ. Tosc., 3:55–75, Pisa.
- MENEGHINI, J., 1867-1881. Monographie des fossiles du calcaire rouge ammonitique (Lias supérieur) de Lombardie et de l'Appennin Central. — in: STOPPANI, Paleont. Lombarde, 4:112 p., Milano.
- MEISTER, C., 1982. Distribution stratigraphique des am-

monites carixiennes des Causses (France): remarques préliminaires. — Bull. Lab. Géol. Univ. Lausanne, **262** et Bull. Soc. Vaud. Sc. Nat., **361/76**:73–83, Lausanne.

- MEISTER, C., 1986. Les ammonites du Carixien des Causses -France. – Mém. Suiss. Paléont., 109:209 p., Bâle.
- MEISTER, C., 1988. Ontogenèse et évolution des Amaltheidae (Ammonoidea). — Eclogae geol. Helv., **81**/3: 763–841, Bâle.
- MEISTER, C., 1989. Les ammonites du Domérien des Causses (France). Analyses paléontologiques et stratigraphiques. — Cahiers Pal., 98 p., Paris (CNRS).
- MEISTER, C., 1991. Biostratigraphie des ammonites liassiques des Alpes de Glaris: comparaisons et corrélations avec la région du Ferdenrothorn (Valais). — Eclogae geol. Helv., **84**/1:223–243, Bâle.
- MEISTER, C., 1993. L'évolution parallèle des Juraphyllitidae euroboréaux et téthysiens au Pliensbachien: le rôle des contraintes internes et externes. — Lethaia, 26:123–132, Oslo.
- MEISTER, C., 1995. Essai de correlations au Lias moyen (Sinémurien supérieur et Carixien) entre les Pontides et les principales régions adjacentes de la Téthys occidentale et de l'Europe du nord-ouest. — Hantkeniana, 1:75–82, Budapest.
- MEISTER, C & F. Вöнм., 1993. Austroalpine Liassic ammonites from the Adnet formation (Northern Calcareous Alps). — Jb Geol. B. -A., **136**/1:163–211, Wien.
- MEISTER, C. & LOUP, B., 1989. Les gisements d'ammonites liasiques (Hettangien à Pliensbachien) du Ferdenrothorn (Valais, Suisse) analyses paléontologiques, biostratigraphiques et aspects lithostratigraphiques.
 Eclogae geol. Helv., 82/3:1003-1041, Bâle.
- MEISTER, C. & STAMPFLI, G., 2000. Les ammonites du Lias moyen (Pliensbachien) de la Néotéthys et de ses confins; compositions fauniques, affinités paléogéographiques et biodiversité. — Revue de Paléobiologie, 19/1:227–292, Genève?.
- MEISTER, C., VU KHUC, HUYEN, D. T. & DOYLE, P. 2000. Les ammonites et les bélemnites du Jurassique inférieur de Huu NIiên, Province de Quang Nam, Viêt Nam Central. — Geobios, 33/1:79–96, Villeurbanne.
- MEISTER, C., BLAU J. & BÖHM, F., 1994. Ammonite biostratigraphy of the Pliensbachian stage in the Upper Austroalpine Jurassic. — Eclogae Geol. Helv., 87/1: 139–155, Bâle.
- MEISTER, E., 1913. Über den Lias in Nordanatolien nebst Bemerkungen über das gleichzeitig vorkommende Rotliegende und die Gosaukreide. — N. Miner. Geol. Paläont., **35**:499–548, Stuttgart.
- MONESTIER, J., 1934. Ammonites du Domérien de la région du sud-est de l'Aveyron et de quelques régions de la Lozère à l'exclusion des Amalthéidés. — Mém. Soc. Géol. France, N.S., 23:1–102, Paris.
- MONTFORT, D. de, 1808. Conchyliologie systématique et classification méthodique des Coquilles. tome 1. 410

p., Paris.

- MOUTERDE, R., CORNA, M., OLIVIER, P. & MOURIER, T., 1986. Ammonites d'affinités mésogéennes dans le Lias inférieur des blocs prédorsaliens du Rif. PICG-UNESCO, no. 183. — Rev. Fac. Sci. Marrakech, sect. Sci. de la Terre Marrakech, n.s., 2:349–367, Marrakech.
- MOUTERDE, R. & ROSSET, J., 1967. La nappe supérieure des klippes de Savoie. Stratigraphie du Rhétien et du Lias. — Travaux du Laboratoire de Géologie de la Faculté des Sciences de l'Université Grenoble, 43: 129–137, Grenoble.
- OBERHAUSER, R., 1986. Exkursion A. Von Dornbirn durch Rheintal und Walgau ins Montafon (Quartär, Helvetikum, Nördliche und Südliche Flyschzone, Kalkalpen, Silvrettakristallin). — Österr. Geol. Ges., Wandertagung 1986, Exkursionführer:7–56, Wien.
- OBERHAUSER, R., 1998. Erläuterungen zur geologisch-tektonischen Übersichskarte von Vorarlberg 1:200000.
 Geol B.-A., 42 pp., Wien.
- OPPEL, A., 1853. Der mittlere Lias Schwabens nev bearbeitet. — Würtemb. naturw. Jb., **10**:1–92, **Ort**?.
- OPPEL, A., 1856-58. Die Juraformation Englands, Frankreichs und des südwestlichen Deutschlands. — Jahreshefte des Vereins für vaterländische Naturkunde Württembergs (Ebner und Seubert), 12-14:1–857, Stuttgart.
- OPPEL, A., 1856. Der mittlere Lias. (Liasien. Middle Lias.)
 Württemb. Naturw. Jahreshefte, 2. Serie, Heft 2: 234–419, Stuttgart.
- OPPEL, A., 1862. Über jurassiche Cephalopoden. Palaeont. Mitt. Mus. K. Bayer. Staates, 1:127–266, Stuttgart.
- Orbigny, (D') A., 1842-1851. Paléontologie française. Terrains jurassiques – I Cephalopodes. – Masson, 642 p., Paris.
- PALFY, J., 1991. Uppermost Hettangian to lowermost Pliensbachian (Lower Jurassic) biostratigraphy and ammonoid fauna of the Queen Charlotte Islands, British Columbia. — M. Sc. thesis, University of British Columbia, 243 p., Vancouver.
- PALFY, J. & HART C.J.R., 1994. Biostratigraphy of the Lower to Middle Jurassic Laberge Group Whitehorse Map Area (105D), Southern Yukon. — Yukon Expl. Geol., Serv. Div., Indian and Northern Aff., Part C: 73–86, Yukon.
- PALFY, J. & SCHMIDT, K.L., 1994. Biostratigraphic and facies studies of the Telkwa Formation (Lower Jurassic), Smithers map area, British Columbia.
 Curr. Res. Geol. Surv. Canada, 1994-E:29-38, Ottawa.
- PALFY, J., SMITH, P.L. & TIPPER, H.W., 1994. Sinemurian (Lower Jurassic) Ammonoid biostratigraphy of the Queen Charlotte Islands. — Geobios, 17:385–393, Villeurbanne.
- PARONA, C.F., 1896-1898. Contribuzione alla conoscen-

za della Ammoniti Liasiche di Lombardia I & II. — Mém. Soc. paléont. Suisse, **24**:1–19, Bâle.

- PHELPS, M.C., 1985. A refined ammonite biostratigraphy for the Middle and Upper Carixian (Ibex and Davoei Zones, Lower Jurassic) in North-West Eupope and stratigraphical details of the Carixian-Domerian boundary. — Geobios, 18/3:321–362, Villeurbanne.
- PHILLIPS J., 1829. Illustrations of the Geology of the Yorkshire coast; or, a description of the strata and organic remains of the Yorkshire coast. — XVI pl. + 192 p., York.
- PIA, J. 1913. Über eine mittleliasische Cephalopodenfauna aus dem nördostlichen Kleinasien. — Ann. k.k. Naturhist. Hofmus., 27:335–388, Wien.
- PIA, J., 1914. Untersuchungen über die Gattung Oxynoticeras und einige damit zusammenhängende allgemeine Fragen. — Abh. k. k. Geol. R.-A., 23/1: 1–179, Wien.
- POPA, E., 1969. A supra prezentei speciei Pleuroceras solare (Zona spinatum) in calcarele Domerianului autohton din muntii Persani (Carpatii orientali). — Dari Seama Inst. Geol. Geofiz., Bucuresti (Comitetul de Stat al Geologiei Institutul Geologic), 54/2:41-45, Bucarest.
- POPA, E. & PATRULIUS D., 1996. Lower Jurassic Ammonites in the Romanian Carpathians. — Mem. Inst. Geol. Rom., 36:53–63, Roma.
- PORTLOCK, J.E., 1843. Report on the geology of the country of Londonderry and of parts of Tyrone and Fermanagh. — Andrew Milliken, 784 pp., Dublin, London.
- PRINZ, G., 1904. Die Fauna der älteren Jurabildungen im nordöstlichen Bakony. — Mitt. Jahrb. ung. geol. Anst., 15:142 p., Budapest.
- PRINZ, P., 1985. Stratigraphie und Ammonitenfauna der Pucara-Gruppe (Obertrias-Unterjura) von Nord-Peru.
 — Palaeontographica, A, 188:153–197, Stuttgart.
- QUENSTEDT, F.A., 1843. Das Flözgebirge Würtembergs mit besonder Rücksicht auf den Jura. – Laupp, 1. Ausg., IV Taf. + 558 p., Tübingen.
- QUENSTEDT, F.A., 1845-1849. Petrefactenkunde Deutschlands. I Cephalopoden. — Schweitzerbart, 580 p., Tübingen.
- QUENSTEDT, F.A. 1856-1857. Der Jura. Laupp, VI Taf. + 842 p., Tübingen.
- QUENSTEDT, F.A., 1882-1885. Die Ammoniten des Schwäbischen Jura. I Der Schwarze Jura. — Schweitzerbart, 440 p., Tübingen.
- QUINZIO SINN, L.A., 1987. Stratigraphische Untersuchungen im Unterjura des Südteils der Provinz Antofagasta in Nord-Chile. — Berlin. Geowiss. Abh., A, 87:105 p., Berlin.
- RAKUS, M., 1994. Revision of ammonites from Marianka Shales (Little Carpathians). — Mineralia Slovaca, **26**: 118–125, Bratislava.
- RAKUS, M., 1999. Liassic ammonites from Hierlatz, Austria. Abh. Geol. B.-A., 56/2:343-377, Wien.

- RAKUS, M. & LOBITZER, H., 1993. Early Liassic Ammonites from the Steinplatte-Kammerköhralm Area (Northern Calcareous Alps/Salzburg). — Jahrb. Geol. B.-A., 136/4:919–932, Wien.
- REYMENT, R.A., 1969. A note on Promiceras. Geologiska Föreningens i Stockholm, Förhandlinger, **91**: 440–442, Stockholm.
- REYNES, P., 1868. Essai de géologie et de paléontologie aveyronnaises. — Baillière & fils, 110 p., Paris.
- REYNES, P., 1879. Monographie des Ammonites. Baillière & fils, 58 pl., Paris et Marseilles.
- RIVAS, P., 1983. El genero *Metaderoceras* (Eoderoceratacea, Ammonitina) en las Cordilleras Beticas. — Estud. geol., **39**:387–403, Madrid.
- ROEMER, F.A., 1835-1836. Die Versteinerungen des Norddeutschen Oolithen-Gebirges. — Hahn'sche Hofbuchhand. Verlag, 225 p., Hannover.
- Roman, F., 1938. Les Ammonites Jurassiques et Crétacées. Essai de genera. — Ed. Masson, 554 p., Paris.
- ROSENBERG, P., 1909. Die liasische Cephalopodenfauna der Kratzalpe im Hagengebirge. — Beitr. Paläont. Geol. Oesterr. Ungarns Orient, 22:193–345, Wien.
- RULLEAU, L., 1998. Géologie et paléontologie du Trias et du Lias inférieur et moyen de la région lyonnaise.
 Section géologie-paléontologie du C. E. des Ciments Lafarge France, Usine du Val d'Azergues, 12 p. + 29 pl., Lyon.
- SACCHI-VIALLI, G. & CANTALUPPI, G., 1961. Revisione della fauna di Saltrio. — Atti Ist. Geol. Univ. Pavia, 12:5–49, Pavia.
- SCHAFHÄUTL, K.E. v., 1847. Die Stellung der Bayerischen Voralpen im geologischen Systeme. — N. Jahrb. Mineral. Geognosie Geol. u. Petrefakten-Kunde, 1847: 803–812, Stuttgart.
- SCHAFHÄUTL, K.E. v., 1851. Geognostische Untersuchungen des südbayerischen Alpengebirges. — Lith. & Art. Anstalt, XXXIII Taf. + 206 p., München.
- SCHLATTER, R., 1977. The Biostratigraphy of the Lower Pliensbachian at the Type Locality (Pliensbach, Württemberg, SW-Germany). — Stuttgarter Beitr. Naturk., Ser. B, 27:29 p., Stuttgart.
- SCHLATTER, R., 1982. Zur Grenze Pliensbachian-Toarcian im Klettgau (Kanton Schauffhausen, Schweiz).
 Eclogae geol. Helv., 75/3:759–771, Basel.
- SCHLATTER, R., 1980. Biostratigraphie und Ammonitenfauna des Unter- Pliensbachium im Typusgebiet (Pliensbach, Holzmaden und Nürtingen; Württemberg, SW-Deutschland). — Stuttgarter Beitr. Naturk., Ser. B, 65:1–261, Stuttgart.
- SCHLATTER, R., 1987. Beiträge zu den Arietitinae (Ammonoidae) aus dem Lotharingian vom Langeneckgrat (Thuner Alpen, Préalpes médianes). — Eclogae geol. Helv., 80/3:1119–1127, Basel.
- SCHLATTER, R., 1991. Biostratigraphie und Ammonitenfauna des Ober-Lotharingium und Unter-Pliensbachium im Klettgau (Kanton Schaffhausen, Schweiz) und

angrenzender Gebiete. — Schweizerische Paläontologische Abhandlungen, **113**:1–133, Basel.

- SCHLEGELMILCH, R., 1976. Die Ammoniten des süddeutschen Lias. — Gustav Fischer Verlag, 212 p., Stuttgart.
- SCHLEGELMILCH, R., 1992. Die Ammoniten des süddeutschen Lias [2nd edition]. - Fischer, 241 pp., Stuttgart.
- SCHLOENBACH, U., 1867. M. v. Hantken's Sendung von Gault-, Neocom-, Jura- und Lias Ammoniten aus dem Bakony. – Verh. k.k. Geol. R.-A., 1/16:358–359, Wien.
- SCHLÖGL, J. AUBRECHT, R. & TOMASOVYCH, A., 2000. The first find of the Orava Unit in the Puchov section of the Pieniny Klippen Belt. — Mineralia Slovaca, 32: 45–54, Kozice.
- SCHLOTHEIM, E.F., 1820. Die Petrefactenkunde auf dem jetzigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier- und Pflanzenreichs der Vorwelt erläutert.
 Becker, LXII Taf. + 437 p., Gotha.
- SCHRÖDER, J., 1927. Die Ammoniten der jurassischen Fleckenmergel in den Bayrischen Alpen. – Palaeontographica, 68:111–232, Stuttgart.
- SIEMIRADZKI, J., 1923. Fauna utworów liasowych i jurajskich Tatr i Podhala. – Archiwum towarzystwa naukowego we Lwowie, **3**:1–52, Lwowie.
- SIMPSON, M., 1855. The fossils of the Yorkshire Lias; described from nature [1st edition]. — Whittaker, 149 pp., London, Whitby.
- SMITH, W., 1817. Stratigraphical system of the organized Fossils. London.
- SMITH, P.L., 1981. Biostratigraphy and ammonoid fauna of the Lower Jurassic (Sinemurian, Pliensbachian and lowest Toarcian) of eastern Oregon and western Nevada. — Unpublished Thesis McMaster University: xxiv pl. + 368 pp., Hamilton (Ontario).
- SMITH, P.L. & TIPPER, H.W., 1996. Pliensbachian (Lower Jurassic) Ammonites of the Queen Charlotte Islands.
 Bull. Amer. Paleont., 108:348, 122 p., British Columbia.
- SMITH, P. L., TIPPER, H. W., TAYLOR, D. G. & GUEX, J., 1988. An ammonite zonation for the Lower Jurassic of Canada and the United States: the Pliensbachian. — Can. J. Earth Sci., 25:1503–1523, Ottawa.
- Söhle, U., 1899. Das Ammergebirge. Geologisch aufgenommen und beschrieben. — Geognostische Jahreshefte, (1898)11:40–89, München.
- SOWERBY, J., 1812-1846. Mineral Conchology of Great Britain. — Meredith, 1-6 p., 648 pl., London.
- SPATH, L.F., 1925-1926. Notes on Yorkshire Ammonites. — Naturalist, 6:107–364, London.
- SPATH, L.F., 1938. The ammonites of the Liassic family Liparoceratidae. — Brit. Mus. Nat. Hist., 191 p., London.
- SPATH, L.F., 1956. The Liassic ammonite fauna of the Stowell Park Borehole. – Bull. Geol. Surv. G.B.,

11:140-164, London.

- STUR, D., 1851. Die Liassischen Kalksteingebilde von Hirtenberg und Enzesfeld. – Jahrb. k.k. Geol. R.-A., 2/3-5:19–27, Wien.
- SUAREZ VEGA, L. C., 1974. Estratigrafia del Jurásico en Asturias. — Cuadernos de Geología Ibérica, 3(1-2): 1–369, Madrid.
- TATE, R. & BLAKE, J.F., 1876. The Yorkshire Lias. - Voorst, viii pl. + 475 pp., London.
- TAUSCH, L., 1890. Zur Kenntnis der Fauna der «grauen Kalke» der Süd-Alpen. – Abh. k.k. Geol. R.-A., 15/2:42 p., Wien.
- TERMIER, H., 1936. Etudes géologiques sur le maroc central et le moyen-Atlas septentrional. — Notes Mém. Serv. Carte géol., 33:1–4, Maroc.
- THEVENIN, A., 1907. Types du Prodrome de paléontologie stratigraphique universelle de d'Orbigny (suite).
 Ann. Paléont., tome II:89–96, Paris.
- THOMSON, R.C. & SMITH, P.L., 1992. Pliensbachian (Lower Jurassic) biostratigraphy and ammonite fauna of the Spatsizi area, North-Central British Columbia.
 Geol. Surv., 437:87 p., Ottawa.
- TINTANT, H., GAUTHIER, J. & LACROIX, L., 1961. Les Amalthéidés de Côte d'Or et leur répartition stratigraphique.
 Bull. Sci. Bourgogne, 20:137–161, Dijon.
- TOLLMANN, A., 1976. Analyse des kalssischen Nordalpinen Mesozoikums. Stratigraphie, Fauna und Fazies der Nördlichen Kalkalpen. — Deuticke, 580 S., Wien.
- TRUEMAN, A.E., 1919. The evolution of the Liparoceratidae. — Quart. Jour. Geol. Soc., 74/4:247–298, London.
- TRUEMAN, A.E., 1918. The Lias of south Lincolnshire. — Geol. Mag. Lond., 5:103–111, Londres.
- TRUEMAN, A. E. & WILLIAMS, D., 1925. Studies in the Ammonites of the family Echioceratidae. Trans. Roy. Soc. Edin., 53/3:699–739, Edinbourgh.
- TUTCHER, J. W. & TRUEMAN A.E., 1925. The Liassic rocks of the Radstock district, Somerset. — Quart. Jour. geol. Soc., 81:595–666, London.
- UCHDORF, B., 1984. Das Rhät in den Vorarlberger Kalkalpen (Österreich) – Fazies und Paläogeographie. — Berliner Geowiss. Abh., (A), **56**:91 S., Berlin.
- UHLIG, V., 1900. Über eine unterliasische Fauna aus der Bukowina. — Abh. deutsch. naturwiss.-med. Ver. «Lotos», 2/1:6–31, Prag.
- VENTURI, F., 1982. Ammoniti Liassici dell'Appennino Centrale. – I. ed. Città di Castello, 166 p., Perugia.
- VENTURI, F. & FERRI, R., 2001. Ammoniti Liassici dell'Appennino Centrale. — III. ed. Città di Castello, 268 p., Perugia.
- VIALLI, V., 1959. Ammoniti Sinemuriane del Monte Albenza (Bergamo). — Mem. Soc. Ital. Sci. Nat. Mus. Civ. Storia nat., 12/3:141–188, Milano.
- WAAGEN, W., 1869. Die Formenreihe des Ammonites subradiatus. – Geogn.-Paläont. Beitr., 2/2:181–256,

München.

- WEITSCHAT, W. & HOFFMANN, K., 1984. Lias und Dogger.
 in: KLASSEN, H. (Ed.): Geologie des Osnabrücker Berglandes. — Naturwissenschaftliches Museum Osnabrück:335-385, Osnabrück.
- WESTERMANN, G.E.G., 1992. The Jurassic of the circum-Pacific. — Oakleigh, Cambridge University Press, 676 p., New York.
- WIEDENMAYER, F., 1977. Die Ammoniten des Besazio-Kalks (Pliensbachian, Südtessin). – Mém. Suis. Paléont., 98:1–131, Bâle.
- WIEDENMAYER, F., 1980. Die Ammoniten der mediterranen Provinz im Pliensbachian und unteren Toarcian aufgrund neuer Untersuchungen im Generoso-Becken (Lombardische Alpen). — Mém. Soc. Hélv. Sc. Nat., 93:197 p., Bâle.
- WRIGTH, T., 1879-1886. A monograph on the Lias ammonites of the British Islands. Palaeontogr. Soc., 2-5/7:49–480, London.
- YOUNG, G. M. & BIRD, J., 1822. A geological survey of the Yorkshire Coast: describing the strata and fossils occurring between the Humber and the Tees, from the German Ocean to the Plain of York. — 336 p.,

Clark, Whitby.

- YOUNG, G. M. & BIRD, J., 1828. A geological survey of the Yorkshire Coast: describing the strata and fossils occurring between the Humber and the Tees, from the German Ocean to the Plain of York., 2nd edition - 368 p., Whitby.
- ZEISS, A., 1965. Über die Ammoniten aus dem Sinémurien Südwest-Frankens. — Geologische Blätter für Nordost-Bayern und angrenzende Gebiete, 15/1: 22–50, Erlangen.

Geological maps

- AMPFERER, O., BENZINGER, Th. & REITHOFER, O., 1932. Geologische Karte der Lechtaler Alpen: Klostertaler Alpen, 1:25000. — Geol B.-A., Wien.
- HEISSEL, W., OBERHAUSER, R., REITHOFER, O. & SCHMIDEGG,O., 1965. Geologische Karte des Rätikon, 1:25000.Geol B.-A., Wien.
- OBERHAUSER, R., 1998. Geologisch-tektonische Übersichskarte von Vorarlberg, 1:200000. — Geol B.-A., Wien.

- Figs. 1–3: *Phylloceras* gr. *frondosum-hebertinum* (REYNES) 1: Lorüns Quarry, P171, 2: Spullersee Goppelspitze, P1527, 3: Auenfeld, P13259, Upper Sinemurian to Upper Pliensbachian
- Fig. 4: Phylloceras cylindricum (SOWERBY) Steinernes Meer, MHN, Lower Sinemurian
- Figs. 5-7: *Calliphylloceras bicicolae* (MENEGHINI) 5: Spullersee Goppelspitze, P1552, 6: Lorüns Quarry, P421, 7: Lorüns Quarry, niv. 7 (Upper Sinemurian, Oxynotum Zone), MHN, Upper Sinemurian to Upper Pliensbachian
- Figs. 8, 13, 14: *Partschiceras* gr. *striatocostatum* (MENEGHINI) 8: Goppelspitze, 13: Schröcken Auenfeld, P6713, 14: Rothorn, P13368, Upper Sinemurian to Upper Pliensbachian
- Figs. 9, 11: *Partschiceras retroplicatum* (ROSENBERG) sensu BETTONI 9, 11: Auenfeld, P7078, P13250, ? Pliensbachian
- Fig. 10: Calaiceras calais MENEGHINI Lorüns Quarry, P291, Upper Sinemurian to Upper Pliensbachian
- Fig. 12: Partschiceras aff. retrofalcatum (STUR in GEVER) Sonnenlagant, P1495, ? Uppermost Sinemurian

MEISTER, C. & FRIEBE, J.G., Austroalpine Liassic Ammonites ...

67

- Figs. 1, 3, 5: Zetoceras zetes (d'ORBIGNY) 1, 5: Lorüns Quarry, P215, P284, 3: Weg zum Gehrengrat or Rothorn, 210-11, Upper Sinemurian to Upper Pliensbachian
- Fig. 2: Zetoceras zetes var. oenotrium (FUCINI) Lorüns Quarry, MHN, Lower to Upper Sinemurian
- Figs. 4, 7: *Partschiceras* gr. *striatocostatum* (MENEGHINI) 4: Lorüns Quarry, niv. 100 (Lower Domerian, Stokesi Subzone), MHN, 7: Lorüns Quarry, P257, Upper Sinemurian to Upper Pliensbachian
- Fig. 6: Juraphyllites libertus (GEMMELLARO) Eingemauerte, P7124, Pliensbachian

- Fig. 1: Juraphyllites gr. diopsis (GEMMELLARO) Goppelspitze, P2662, Uppermost Sinemurian to Lowermost Pliensbachian
- Figs. 2, 3: *Juraphyllites* aff. *limatus* (ROSENBERG) 2: Auenfeld, P13273, 3: Eingemauerte, 210-9, Lower Pliensbachian (?) to Upper Pliensbachian
- Figs. 4, 6–8: *Juraphyllites* aff. *quadrii* var. *planulata* (FUCINI) Lorüns Quarry, P172, P261, P255 (2 ex.), ? Uppermost Sinemurian to Upper Pliensbachian
- Fig. 5: J. (Harpophylloceras) eximius (HAUER) Eingemauerte, P1335, Middle Pliensbachian to Upper Pliensbachian
- Fig. 9: Lytoceras gr. fuggeri GEYER Lorüns Quarry, P153, Upper Sinemurian
- Fig. 10: Galaticeras gr. harpoceroides (GEMMELLARO) Auenfeld, P13263, Upper Sinemurian to Lower Pliensbachian
- Fig. 11: *Tragophylloceras ibex* (QUENSTEDT) Goppelspitze, P7050, Middle Pliensbachian (Ibex Zone)
- Fig. 12: Ectocentrites sp. Giglturm, Hettangian to the lowermost Upper Pliensbachian
- Fig. 13: Lytoceras sp. Spullersee, P376, Sinemurian to Toacian
- Fig. 14: Lytoceras ovimontanum GEYER Lorüns Quarry, MHN, Upper Pliensbachian

- Fig. 1: Lytoceras ovimontanum GEYER Lorüns Quarry, niv. 109, MHN, Middle to Upper Domerian, Subnodosus to Apyrenum Subzones
- Figs. 2, 5: *Derolytoceras tortum* (QUENSTEDT) Auenfeld, P247, P7077, Upper Sinemurian (?) to Upper Pliensbachian
- Figs. 3, 4: Angulaticeras sp. Eingemauerte, 210-4, 210-6, Upper Sinemurian
- Fig. 6: Coroniceras sp. Weg zum Gehrengrat, 210-11, Lower Sinemurian
- Fig. 7: Euagassiceras ? sp. Steinernes Meer, MHN, Lower Sinemurian
- Figs. 8, 9: Coroniceras (Arietites) aff. bisulcatus (BRUGUIERE) sensu VIALLI 8: Weg zum Gehrengrat, 210-11, 9: Formarinsee, 210-12, Lower Sinemurian (Bucklandi Zone)
- Fig. 10: *Metophioceras* sp. Rothorn, 210-11, Lower Sinemurian (Conybeari Zone)

73

- Fig. 1: Coroniceras (Arietites) aff. bisulcatus (BRUGUIERE) sensu VIALLI Weg zum Gehrengrat, 210-11, Lower Sinemurian (Bucklandi Zone)
- Fig. 2: Arnioceras rejectum FUCINI Lorüns Quarry, P1564, Upper Sinemurian (Obtusum Zone)
- Fig. 3: Asteroceras gr. retusum (REYNES) sensu SACCHI-VIALLI & CANTALUPPI Rothorn, P1583, Upper Sinemurian (Obtusum Zone, Stellare Subzone)
- Fig. 4: Arnioceras gr. paucicostum FUCINI sensu FERRETTI Steinernes Meer, P13406, Lower Sinemurian
- Fig. 5: Asteroceras aff. margarita (PARONA) Unknown locality, P13411, Upper Sinemurian (Obtusum Zone, Stellare Subzone)

75

- Fig. 1: Asteroceras gr. saltriensis (PARONA) Eingemauerte, P7225, Upper Sinemurian (Obtusum Zone, Stellare Subzone)
- Figs. 2, 4: *Eparietites* aff. *denotatus* (SIMPSON) juv. 2: Unknown locality, P003, 4: Eingemauerte, 210-4, Upper Sinemurian (Obtusum Zone, Denotatus Subzone)
- Fig. 3: *Eparietites glaber* GUERIN-FRANIATTE Lorüns Quarry, niv. 7, MHN, Upper Sinemurian (Obtusum Zone, Denotatus Subzone)

MEISTER, C. & FRIEBE, J.G., Austroalpine Liassic Ammonites ...

77

Figs. 1, 3: Asteroceras gr. saltriensis (PARONA) — 1, 3: Lorüns Quarry, MHN, Upper Sinemurian (Obtusum Zone, Stellare Subzone)

Fig. 2: Asteroceras aff. acceleratum HyATT — Rothorn, 210/4, Upper Sinemurian (Obtusum Zone)

MEISTER, C. & FRIEBE, J.G., Austroalpine Liassic Ammonites ...

79

- Fig. 1: Asteroceras gr. saltriensis (PARONA) Lorüns Quarry, MHN, Upper Sinemurian (Obtusum Zone, Stellare Subzone)
- Fig. 2: *Eparietites glaber* GUERIN-FRANIATTE Lorüns Quarry, niv. 7a, MHN, Upper Sinemurian (Obtusum Zone, Denotatus Subzone)
81

- Fig. 1: *Eparietites fowleri* (BUCKMAN) Rothorn, 210-4, Upper Sinemurian (Obtusum Zone, Denotatus Subzone)
- Fig. 2: Oxynoticeras aff. soemanni (DUMORTIER) Biberacher Hütte, P7165, Upper Sinemurian (Raricostatum Zone)
- Fig. 3: *Eparietites glaber* GUERIN-FRANIATTE Rothorn, P410, Upper Sinemurian (Obtusum Zone, Denotatus Subzone)
- Fig. 4: *Epophioceras* gr. *landrioti* (d'ORBIGNY) Sarotlatal b. Brand, P393, Upper Sinemurian (Obtusum Zone, Stellare Subzone)
- Figs. 5, 7: Oxynoticeras gr. oxynotum (QUENSTEDT) 5: Lorüns Quarry, niv. 13, MHN, 7: Lorüns Quarry, P230, Upper Sinemurian (Oxynotum Zone, Oxynotum Subzone)
- Fig. 6: Gleviceras doris (REYNES) sensu PIA Lorüns Quarry, MHN, Upper Sinemurian (Raricostatum Zone)

83

- Figs. 1, 2, 4: *Gleviceras* gr. *subguibalianum* (PIA) 1, 2: Auenfeld, SA25, FS60, 4: Obere Sarotlaalpe, 210-4, Upper Sinemurian (Raricostatum Zone)
- Figs. 3, 5: *Gleviceras* aff. *boucaultianum* (DUMORTIER) sensu PIA Eingemauerte, 210-4 (2 ex.), Upper Sinemurian (Raricostatum Zone)
- Figs. 6–8: *Echioceras* gr. quenstedti (SCHAFHÄUTL) 6, 7: Lorüns Quarry, P281, P292, 8: Auenfeld, P13261, Upper Sinemurian (Raricostatum Zone, Raricostatum Subzone)

- Figs. 1, 2: *Echioceras* gr. quenstedti (SCHAFHÄUTL) 1: Lorüns Quarry, P1813, 2: Eingemauerte, 210-11, Upper Sinemurian (Raricostatum Zone, Raricostatum Subzone)
- Figs. 3, 7, 8: *Paltechioceras favrei* (Hug) 3: Obere Sarotlaalpe, P1613, 7, 8: Lorüns Quarry, P382, P2347, Upper Sinemurian (Raricostatum Zone, Raricostatum Subzone)
- Figs. 4, 6: *Paltechioceras charpentieri* (SCHAFHÄUTL) 4: Oberzalim, P1497, 6: Auenfeld, P7075, Upper Sinemurian (Raricostatum Zone, Macdonnelli Subzone)
- Figs. 5, 9: *Leptechioceras* gr. *meigeni* (Hug) 5, 9: Lorüns Quarry, LOx7/4, P229, Upper Sinemurian (Raricostatum Zone, Macdonnelli Subzone)
- Figs. 10, 11: *Paltechioceras* gr. *tardecrescens* (HAUER) 10: Schröcken, P7080, 11: Goppelspitze, P13392, Upper Sinemurian (Raricostatum Zone, Aplanatum Subzone)
- Fig. 12: *Paltechioceras* gr. *rothpletzi* (BösE) Rothorn, P2452, Upper Sinemurian (Raricostatum Zone, Raricostatum Subzone)

- Figs. 1, 3, 6: *Epideroceras* gr. *lorioli* (Hug) 1: Lorüns Quarry, P1793, 3: Goppelspitze, P2311, 6: Auenfeld, P7098, Upper Sinemurian (Raricostatum Zone)
- Fig. 2: Microderoceras sp. Lorüns Quarry, MHN, Upper Sinemurian
- Fig. 4: *Eoderoceras* gr. armatum (SowERBY) Auenfeld, FS40, Upper Sinemurian (Raricostatum Zone)
- Fig. 5: *Promicroceras perplanicosta* (SPATH) Lorüns Quarry, P190, Topmost Lower Sinemurian to lowermost Upper Sinemurian
- Fig. 7: *Paramicroderoceras* cf. *hungaricum* (GECZY) Lorüns Quarry, P2303, Lower Pliensbachian (Jamesoni Zone)

89

- Fig. 1: Microderoceras aff. gigas (QUENSTEDT) Goppelspitze, P1554, Upper Sinemurian
- Fig. 2: *Metaderoceras gemmellaroi* forma *kondai* (GECZY) Auenfelder Alpe, P7107, Lower Pliensbachian (Ibex Zone, Valdani Subzone)
- Figs. 3, 4: *Metaderoceras gemmellaroi* (LEVI) 3: Eingemauerte, 210-3, 4: Rothorn, P7149, Lower Pliensbachian (Ibex Zone, Valdani Subzone)
- Fig. 5: Prodactylioceras gr. davoei (SowERBY) Auenfeld, 211-7, Lower Pliensbachian (Davoei Zone)
- Figs. 6, 7: *Platypleuroceras rotundum* (QUENSTEDT) 6: Auenfelder Alpe, 211-7, 7: Eingemauerte, Lower Pliensbachian (Jamesoni Zone, Brevispina/Polymorphus Subzone)

91

- Figs. 1–3: *Platypleuroceras* gr. *brevispina* (SOWERBY) 1: Auenfeld, P13260, 2: Goppelspitze, P1547, 3: Eingemauerte, P7131, Lower Pliensbachian (Jamesoni Zone, Brevispina/Polymorphus Subzone)
- Fig. 4: Uptonia bronni (ROEMER) Schröcken, P6708, Lower Pliensbachian (Jamesoni Zone, Jamesoni Subzone)
- Fig. 5: *Platypleuroceras amplinatrix* (QUENSTEDT) Spullersee, P1561, Lower Pliensbachian (Jamesoni Zone, Brevispina/Polymorphus Subzone)
- Fig. 6: *Platypleuroceras brevispinoides* TUTCHER & TRUEMAN Lorüns Quarry, P2335, Lower Pliensbachian (Jamesoni Zone, Brevispina/Polymorphus Subzone)
- Fig. 7: Uptonia jamesoni (Sowerby) Goppelspitze, P7797, Lower Pliensbachian (Jamesoni Zone, Jamesoni Subzone)

- Figs. 1, 6: *Uptonia jamesoni* (SowerBy) 1: Eingemauerte, P13355, 6: Auenfeld, P13268, Lower Pliensbachian (Jamesoni Zone, Jamesoni Subzone)
- Figs. 2, 4: *Tropidoceras* gr. *masseanum* (d'ORBIGNY) 2, 4: Auenfeld, SA50 (2 ex.), Lower Pliensbachian (Ibex Zone, Masseanum Subzone)
- Fig. 3: Tropidoceras sp. Auenfeld, P7105, Lower Pliensbachian (Jamesoni to Ibex Zones)
- Figs. 5, 7, 8: *Tropidoceras rotundum* (FUTTERER) 5: Eingemauerte, P7127, 7: Auenfeld, P7083, 8: Unknown locality, 210-9, Lower Pliensbachian (Ibex Zone, Masseanum to Valdani Subzones)

95

- Fig. 1: *Tropidoceras* aff. stahli (OPPEL) Spullersee, P2675, Lower Pliensbachian (Ibex Zone, Masseanum Subzone)
- Figs. 2, 3: *Tropidoceras erythraeum* (GEMMELLARO) 2, 3: Auenfeld, P7084, P7076, Lower Pliensbachian (Ibex Zone, Masseanum Subzone)
- Fig. 4: Liparoceras (Becheiceras) bechei (Sowerby) Lorüns Quarry, P419, Pliensbachian
- Fig. 5: Acanthopleuroceras maugenesti (d'ORBIGNY) Unknown locality, P2435, Lower Pliensbachian (Ibex Zone, Valdani Subzone)
- Fig. 6: *Liparoceras* (*Liparoceras*) aff. *striatum* (REINECKE) sensu SCHRÖDER Eingemauerte, P7123, Lower Pliensbachian (Ibex Zone)
- Figs. 7, 8: Aegoceras maculatum (Young & BIRD) 7: Untere Sarotlaalpe, P13372, 8: Spullersee, 211-2, Lower Pliensbachian (Davoei Zone, Maculatum Subzone)
- Figs. 9, 14: Amaltheus stokesi (SowerBy) 9: Auenfeld, P6707, 14: Lorüns Quarry, niv. 100, MHN, Upper Pliensbachian (Margaritatus Zone, Stokesi Subzone)
- Figs. 10, 11: *Pleuroceras* gr. solare (PHILLIPS) 10, 11: Dalaaser Schütz, P8668, P8666, Upper Pliensbachian (Spinatum Zone, Apyrenum Subzone)
- Fig. 12: *F. (Matteiceras) geometricum (PHILLIPS)* Lorüns Quarry, niv. 100, MHN, Upper Pliensbachian (Margaritatus Zone, Stokesi Subzone)
- Fig. 13: F. (Matteiceras) nitescens (YOUNG & BIRD) Lorüns Quarry, P1747, Upper Pliensbachian (Margaritatus Zone, Stokesi Subzone)

97

- Fig. 1: Amaltheus stokesi (Sowerby) Lorüns Quarry, P2045, Upper Pliensbachian (Margaritatus Zone, Stokesi Subzone)
- Figs. 2–7: *Fuciniceras* gr. *isseli* (FUCINI) *brevispiratum* (FUCINI) 2, 3, 7: Lorüns Quarry, niv. 100, , MHN (2 ex.), P003, 4, 5: Lorüns Quarry, P150, P6731, 6: Goppelspitze, P7046, Upper Pliensbachian (Margaritatus Zone, Stokesi Subzone)
- Fig. 8, 13, 14: *Fuciniceras* gr. *celebratum* (FUCINI) 8, 13, 14: Spullersee, 211-10, 210-3 (2 ex.), Upper Pliensbachian (Margaritatus Zone, Stokesi Subzone)
- Fig. 9, 10, 11, 15: *Arieticeras* gr. *algovianum* (OPPEL) 9, 11: Auenfeld, P13280, P13275, 10, 15: Biberacher Hütte, 210-12, Upper Pliensbachian (Margaritatus Zone, Gibbosus Subzone)
- Fig. 12: *Fuciniceras* gr. *cornacaldense* (TAUSCH) Goppelspitze, P8659, Upper Pliensbachian (Margaritatus Zone, Subnodosus Subzone)

99

