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PHENOMENA AND PLAN OF DrscuS'SrnN. 

Eoidences of Movement.-All observers are aware that few rock masses 
are continuous for any considerable distance. It is seldom that more 
than a few yards of a rock exposure can be examined without revealing 
joints, fissures or slickensides. Still more frequently rock masses show 
slaty or schistose cleavage,* impressed upon them by dynamical causes. 
In a very great proportion of· such cases a little attention also discloses 

*Schist and the adjectives derived from it are used in literotture in somewhat variable sen•es. 
As I use it, schist denotes cleavable rocks which are allied to slates, but in which the ·Cleavage 
surfaces are not all sensibly parallel to one another as they are in true slate. By no means are 
schists all crystalline or metamorphic. 
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the fact that the partings are locally arranged on a definite system. In 
slaty cleavage the cleavage planes are substantially parallel and very 
close together; in flags of the slaty class the intervals between cleavage 
planes are greater; in schists the partings range through small angles, and 
in these last rocks there are frequently two sets of partings, each cleavage 
making a small angle with others of the same set, but a large angle with 
those of the other set. Where the rock is divided by cracks these are 
often parallel and spaced with a considerable approach to uniformity. 
Sometimes they occur at a fraction of an inch from one another, while in 
other instances they are rods apart. In still other cases there are two 
systems of such cracks crossing one another·at right angles, or at angles 
which approach to right angles. Not infrequently such a double system 
of fissures is accompanied by a second of like character, at right angles to 
it, dividing the rock into polyhedral fragri1ents of greater or less size. 

Slaty cleavage is at present regarded by most geologists as due to a 
pressure acting in a direction perpendicular to the planes of cleavage, 
and this opinion is supposed to be well supported by experiments. 
Indications are not wanting, however, that many observers are ill satisfied 
with this explanation. Less attention has been paid to jointing, conr,eru
ing which there is no consensus of opinion. By some it is considered as 
due to tensile stresses, while others insist on its intimate association with 
cleavage. Jointing is also often treated as distinct from faulting and as 
being unaccompanied by any relative movement of the joint walls. No 
systematic attempt appears to have been made to elucidate these various 
structures, which are generally recognized, however, as at least sharing a 
dynamic origin. Even the experiments on cleavage seem to me not to 
have been studied with as much care as they deserve. 

Scope of the Inquiry.-Orogeny can never be satisfactorily discussed 
until the dynamic significance of cleavages and cracks is clear. A neces
sary stp,p toward this end consists in the elucidation of those areas, great 
or small, throughout which the phenomena are uniform; for, however 
complex the conditions may be in any body of rock, they may be con
sidered as uniform over a sufficiently small fraction of the whole mass. 

Even this seemingly modest step cannot be completed in thfl present 
state of science. In the mechanics of artificial structures and machinery 
it is sufficient to discuss very small deformations, for such only are ad
missible. In geology this is wholly insufficient, the strains frequently 
being of enormous amount;• so great indeed that laboratory experiments 
hardly aid one to conceive that they are possible. Yet there is no doubt 
among geologists that pebbles, even of quartzite, in conglomerates are 
not ~nfrequently elongated by pressure to double their original length 
without rupture. Thus in geological mechanics it is absolutely essential 

IV-Hur.r .. G•or •. Soc. AM., Vor .. 4, 1892. 



16 G. F. BECKER-FINITE STRAIN IN" ROCKS. 

to consider finite strains as well as infinitesimal ones.* Now, to discuss 
such strains completely it would be needful to know the relation between 
finite strains and the forces which produce thert1. This relation is not 
yet known. 

One might infer that until it were ascertained discussion would be 
useless. I hope to show, however, that many relations of finite strain 
can be elucidated without the assumption of any law connecting stress 
and strain, and that these relations are of great assistance in the study 
of orogeny. 

The general principles governing finite distortion have, of course, been 
indicated by natural philosophers; but little attention has been given 
to their development, because the theory of finite strain is needless for 
computation of machinery, while this subject will not offer much purely 
mathematical interest until the stress-strain law isknown experimentally. 
In particular, but little attention has been paid (so far as I am aware) 
to the :planes of maximum strain, which turn out to be those in which 
geologists have a special interest.t 

In the following pages the attempt will be :ruade to develop all the 
manifestations of uniform or homogeneous finite strain in rock masses 
regarded as isotropic, exhibiting viscosity and capable of flow, which can 
be elucidated without asimming a law connecting stress and strain. For 
this purpose finite strain must first be discussed by itself; then it must 
be considered just how far the relations of stresses are capable of coor
dination with those of strain. The influence of viscosity and solid flow 
must next be shown. Readers willing to a~sume that these subjects 
have been logically treated will probably skip them and proceed to the 
geological applications which follow. Finally, the results will be com
pared with actually observed phenomena and with the experiments 
which several investigators have made on slaty structure. 

FINITE}. ROTATIONAL ST.RAIN. 

LIMITATIONS OF THE PROBLEM. 

The mechanical effects short of rupture which force can produce in 
any mass are translation, rotation, dilation and deformation. The effects 
of mere translation may be considered separately from the other effects of 
force, or, in other words, one may consider these other effects relatively 
to some chosen point of the body itself. 

*I have previously endeavored to show that some fissure systems fire satisfactorily explflined on 
the hypothesis of smflll strains: Bull. Geo!. Soc, Am., vol. 2, 1891, p, 49. 

tOn finite strain consult Thomson and 'l'itit, Nat, Phil., 1879, sec. 181; and Ibbetson, llfath. Theory 
of Elasticity, 1887, p. G9. I am much indebted to both authorities. 
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If any one point of a body is fixed in space, the mass can be brought 
from its original orientation into any other orientation by simple rotation 
about some one axis passing through the fixed point. This is a well 
known and very fundamental theorem, one of the many which bears 
Euler's name. 

In homogeneous strain each elementary cube of the mass is deformed 
in the same manner as any other; each straight line in the unstrained 
mass therefore remain~ a straight line after strain, being elongated or 
deflected to the same extent as any of the lines parallel to it, and all lines 
originally parallel remain parallel. Hence any sphere in the unstrained 
mass becomes an ellipsoid, and all such ellipsoids are similar. 

Irrotational strain is a term applied to a change in form and dimen
sions unaccompanied by any change in the direction of the axes of the 
strain ellipsoid. It is manifest that any dilation and any desired ratio 
between the axes of the strain ellipsoid can be produced without chang
ing the direction of these axes. 

Hence if the changes in a homogeneously strained elastic mass are 
regarded relatively to any one point of it, any change in the relations of 
its parts may be considered as compounded of a rotation about a single 
axis into the required orientation and an irrotational strain: 

There is no necessary connection between the axes of strain and the 
axis of rotation, and the latter will not in general coincide with any of 
the strain axes. The rotation in the general case is resoluble into three 
partial rotations about the three strain axes. 

For the purposes of this paper, it is both necessary and sufficient to 
examine the conditions affecting the mass in the principal sections of the 
strain ellipsoid. This is equivalent to selecting any one such section and 
considering the movements relatively to it. When such a selection is 
made, the rotations of the plane itself on axes drawn in it are eliminated, 
and only the rotation of the mass about a line perpendicular to the plane_ 
of reference retains its significance. 

The first subject of discussion therefore is an ideally elastic mass with 
one point fixed when subjected to any distortions, however great, which 
will produce rotation about not more than one axis of the strain ellipsoid. 

DISPJ,A CElff El'iTS. 

General Conditions.-Let the center of inertia of a mass remain at rest; 
let any other point or points of it be moved in planes parallel to the x y 
plane without limitation, provided only that the strain shall be homo
geneous, but let every plane originally parallel to that of x y remain 
parallel to it, so that deformation parallel to o z shall consist simply of 
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changes of length. Then, if x y are the original coordinates of any point 
and x y' it~ final coordinates these positions are connected by linear 
relations, 

or, 

x' = (1 + e) x + by; y' =ax+ (1 + f) y ,· z' = (1 + g) z; 

x- (l+f)x'-by' . _ (l·+e)y'-ax' . 
- (1 + e) (1 + .f)- ab' y - (1 + e) (1 + f) - ab' 

z' 
Z=--· 

l+g 

Here a, b, e, f, g are absolutely arbitrary and have the same value at 
all points of the mass.* They are 'the coordinates after strain of par
ticular points. Denoting x = 1, y = 1, z = 1, by (1, 1, 1), points originally 
at (1, 0, 0), (0, 1, 0), (0, O, 1), are transposed to (1 + e, a, 0), (b, 1 + f, 0), 
(0, o, 1 +g). 

When the strain is so small that the squares of the displacements are 
negligible, a, b, e, f, g are to be treated mathematically as infinitesimal; 
consequently any formula in terms of this notation can be converted 
into the forms appropriate to small strain simply by neglecting powers 
of a_, b, e, f, g, higher than the first. 

Strain Ellipse.-The sphere x2 + y2 + z2 = 1 is converted into an ellipsoid, 
which is found by substituting for x, y and z their values in terms of the 
accented variables. The section of this ellipsoid by the x y plane is an 
ellipse with semi-axes A and B. Its equation is-

{ (1 + f) 2 + a2
} X2 

- 2 { b (1 + f) + a(l + e)} x'y' + { (1 + c)2 + b2
} y' 2 

= { (1 + e) (1 ~ f) - ab}'. (1) 

When b (1 + f) +a (1 + e) is a positive quantity the major axis of this 
ellipse makes a positiye acute angle with ox. Well-known properties 
of the ellipse show that its area is the same as that of the circle-

-
x' 2 + y' 2 = (1 + e) (1 + J)- ab= AB, (2) 

and that the axes may be found from the equation-

(A+ B)' = { (1 + e) + (1+f)} 2 +(a+ b)2
• (3) 

*The letters e,f and g nre used in the same sense as in Thomson and Tait, Natural Philosophy, 
but I hnvo not found iL conv•nicnt to use a and bas they aro there employed. 
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The third axis of the ellipsoid is 0 = 1 + g. If'¥/ is the length of any 
one of the axes, A, B and 0 are the three roots of the cubic-

( '¥/ - A) ( '¥/ - B) ( '1) - 0) = 

{ '1) - (1 + g)} { '¥J 2
·- '¥/JI .(1 + e + 1 + f)2 +(a - b)2 + 

(1 + e)(l + j)- ab}= 0. (4) 

The volume assumed after distortion by the unit cube may be called 
hS, and-

h3 =AB 0= (1 + g) { (1 + e) (1 + j)- ab}. (5) 

Rotation.-The limitations of this discussion imply that the plane of 
A 0 can only revolve about 0, so that the position of this plane is de
termined when the position of A is known. The angle which A makes 
with o xis, say, v, and this angle can immediately be inferred from (1) 
by a well-known formula which gives-

b (1 + f) + a (1 + e) 
tan 2 v = - 2 a' - b' + (1 + f )•-( 1 + e / 

Since the plane B 0 is at right angles to that of A 0, its position follows. 
To find the position which the same material lines A and B occupied in 

. the unstrained mass, it is convenient to remember that they must have 
been at right angles to one another before strain as well as after it; for 
mere rotation changes no angles, a1id irrotational strain is by definition 
a deformation in which the eilipsoWal ax{)s maintain their direction. 
Hence, if 11. was the angle which the fiber A made with ox before distor
tion, its equation was y/x =tan 11., and by the displacement formulas-

y' n + (1 + f) tan 11. 
tan v - - -- • - x - (1 + e) + b tan fl. 

The angle which the other axis made before strain was /J. + 90°, so that 
tan (tJ. + 90°) = - cot 11., while after strain it becomes v + 90°. Hence-

0 a - (1 + j) cot fl. . 
tan (v + 90 ) = (l + e) _ b cot fl.= - cot v. 
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From these two equations Y can at once be eliminated, since tan Y cot v = 1. 
Writing out this equation and reducing, one finds-

b(l + e) + a(l +.f) 
tan 2 µ = - 2 b' - a•+ (1 + f)'-'- (l + e/· 

The equations for v and fL can be combin!='d. to simpler forms. It will 
be found on trial that the values already deduced lead to-

a+b a-b 
tan (v + fL) = (1 + e) _ (1 + j) j tan (v - fL) = (1 + e) + (1 + n• (6) 

The angle v - µ is the angle of rotation, so that the condition of no 
rotation is evidently a = b. When the strain is infinitesimal, a - b is 
infinitesimal, while 1 + e + 1 + .f approaches 2. Hence v - µ is zero 
for vanishing strain. If the common limiting value of v and fL is v0, tan 
(v + fL) =tan 2 v0 , or-

a + b 
tan 2 yo= (1 + e)- (1 + n· 

Of course this same value is obtained by letting a, b, e and f approach 
zero in the formulas for tnn 2 tL and tqn 2 Y. Thus Y - Y0 = Y

0 
- fL. It 

is evident that as rotation proceeds ne.w fibers of matter constantly suc
ceed one another .in the position of axis, the whole series of fibers in the 

unstrained. mass forming a wedge, v0 - fl· or v 
2 

fL. 

Lines of constant Direction.-Lines parallel to oz retain their direction 
relatively to the x y plane throughout strain. , If the mass were inflexible 
and subjected to rotation, only these lines would maintain their direc
tion; but when there is strain two other lines may retain their original 
_direction, the two coinciding in the limiting case which separates that 
of three such lines from that of one. 

If x is the angle which any line in the x y plane makes with o x before 
strain and A. the angle which it makes after strain, then-

.\ 
tan ;. = '!/_ = a - ( 1 + .f) tan x. 

· x , l + e + b tan x 

If A. = x this gives-

.f - e / a, ·(f- e) i 
tan x = 2.b · + '1 b + 2b , (7) 

which represents two real lines, unless the quantity under the radical 
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is negative. The two coincide when this quantity is zero, or when 
4 ab + (e - j)2 = 0. The value of tan 7. then reduces to -+- v -a I b, 
sho~ing that a and b must have opposite signs. This particular case 
occurs in the strain often known as shearing motion, as, .for example, 
when a rivet is shorn by tension of the plates which it connects. It will 
be discussed later. 

The condition of no rotation can be derived from tan x. The equation 
represents two lines, and if x1 and x2 are the two angles, tan x1 tan x2 = 
- a/ b. If there is no rotation, the axial lines are lines of unchanged 
direction and tan x1 tan x2 = -1, or a= b.* 

SIMPLE STRAINS. 

Pure Rotation.-If the mass undergoes rotation without strain, each of 
the axes is equal to unity, and h has the same value. Then by (3), e =f 
and a+ b = 0, and by (5), (1+e)2=1 - a2 

•. Hence tan (v - /J.) = 
--- v 

Va/ JI 1 - a2, or sin (v - /J.)-.,;-- a. This result can also be derived imme-
diately from the displacement formulas. 

Dilation.-When the only strain is dilation, A· B = C = h, whether or 
not the displacements cause rotation. Then by (3) e = f and a + b = 0. 
By (2) also (1 + e)2 + a2 = (1 +g)'. 'The rotation is then given by-

When there is no rotation, so that the displacements cause pure dilation, 
a·= b = 0 and e = f = g = h - 1. 

In dealing with dilations it is usually convenient to . consider h, the 
ratio of dilation, as greater than unity, excepting when its value is 
unknown. The volume of a compressed mass is then 1/h3

, which does 
not vanish unless the ratio of dilation is infinite. 

*The length of the lines of unchange<i length exhibits n somewhat remarkable relation. J,et k 
be the length of such a line. Then- · 

x'. y' -=·-=k, 
"' y 

and by the displacement forIJlulas-

11 _ k - (i + e) _ II 
;;, --b- - k-(l+f)

0 

This gives-
2k= 1+e+1 + f± y4ab + \e-f)2. 

If k1 and ko are the two values of k, then~ 

k1 k2 = (1 + f) \1 + e) - ab, 

which by (2) is the product of the semi-nxes or AB. Thus the· product of these lines remains In· 
variable, whether or not they coincide with the nxes. 
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In any case whatever one may express the axes A and C under the 
forms A = ha, C = h,13 where a and f3 may be perfectly independent. 
Then, since ABC= h3, B = h/af3. The values a, 1/a(3 and (3 are the values 
which A, B and C would have were there no dilation, and upon the 
properties of a and (3 depend those of pure deformation, accompanied by 
rotation. 

Shear.-A shear is the simplest possible deformation. It may be de
fined a1:1 an irrotational strain, unattended by dilation, in which one axis 
of the strain ellipsoid ~etains its original length. The unit sphere is thus 
converted into an ellipsoid, the axes of which are a, 1, 1/a; and a is called 
the ratio of shear. It is taken as greater than unity, excepting when it 
is dealt with as an unknown quantity. 

In dealing with shea~ it is convenient to employ the following ab
breviations : * 

2 8 =a - a-•; 2 a= a + a-•. 

These forms imply that a2 
- s2 =1. 

The displacement formulas for a shear, the contractile axis of which 
makes an angle .'). with ox are-

x = x (a - s cos 2 iJ.) - ys sin 2 {J.; y = y (a + s cos 2 19) - xs sin 2 1?; i = z. 

To verify this statement consider that a = b, so that there is no rotation ; 
g = 0 and (1 + e) (1 + f) -·ab = 1, so that there is no dilation; tan 
(v +fl.)= tan 2 v =tan 2 .'1-, showing that the axes of the strain ellipsoid 
make angles 1'1 and 1? + 90° with ox; finally b (1 + f) + a (1 + e) is nega
tive, so that the minor axis of the strain ellipsoid makes an acute positive 
angle with o x as required. 

When {} = 90° these equations reduce to-

x = xa ; y = y /a; z' = z, 

and when fJ. = 45°, a case of importance, 

x = xa -ys; y = ya - xs; z' = z. 

The quantity 2 s is called the amount of the shear. There are various 
aspects of this quantity. One way of looking at it is as the sum of two 
distortions. The elongation of the major axis is a - 1 and the contrac-

*Let a.- cot 'tD; then it .is easy to see that u - I/sin 2 'tD ands~ eot 2 'tD. Here, as will be shown 
later, 2 'tD is the acute angle between the circular sections of the strain ellipsoid. The convenience 
of s and 'u depends upon this fact, and the significance of the formulas is increased by bearing it 
in mind. The quantities sand u may be regarded a• hyperbolic •ine and hyperbolic cusine of an 
area ifl - ln a.; and· then 90° - 2 'tD is the corresponding transcendental 1tngle, This view of the 
functions. however. is not needful for the purposes of this discussion. 
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tion of the minor axis is 1 - 1 /a. The sum of the two is a - a-1 = 2 s. 
·while 2 s measures shear and is not unfitly called the amount of shear, 
s might equally well have bee·n regarded as the measure of sh.ear; indeed, 
this would have been more convenient, because it would have accorded 
with the received nomenclature of stresses. 

Many of the properties of shear can be inferred in the simplest manner 
from its definition. Since it involves ntlither change of volume nor of 
the area of the strain ellipse, it can consist only in re-arrangement of 
inatter, each fiber perpendicular to the plane of shear, retaining its 
original thickness, length and direction, though shifted to a new position. 
Since the major axis of the shear ellipse exceeds unity and the minor 
axis falls short of unity, there must be four intermediate radii of unit 
length, and the symmetry of the conditions shows that these four radii 
form two diameters. Thus there are two diameters which have the same 
length after strain as before strain. These diameters are the traces on the 
x y plane of planes passing through oz, and these planes undergo no dis
tortion through strain. In them the circular sections of the strain 
ellipsoid evidently lie. All planes parallel to these are also, by the 
properties of homogeneous strain, planes of no distortion. Any two · 
planes of no distortion must stand at the same perpendicular distance 
apart after strain as before, for were it otherwise the volume of the ellip
soid would be changed. 

Thus a shear can consist only in the sliding of planes of no distortion 
upon one another and in changes of the angles between the two systems 
of undisbrted planes. 

The behavior during the straining· process of the planes of no distor
tion is of great geological importance; but as this behavior depends to 
some extent upon rotation, it appears appropriate to defer its discussion 
until some of the simpler compound strains have been explained. 

CO.llPOUND STRAINS. 

How treated.-For the immediate purposes of this paper it is needful to 
examine compound strains of several varieties. It seems desirable also 
to examine the simpler combinations in somewhat more detail than is 
absolutely essential to the results which will be deduced from them in 
the subsequent sections in order to give assurance that the geological 
deductions are not vitiated by the omission of important properties of 
strain. It is to be hoped also that the treatment here submitted may 
facilitate the solution of geological problems not touched upon in the 
present investigation. 

Pure D~formation.-Any pure deforma'tion is resoluble into two shears 
at right angles to one another, one axis being common to the two. elc

V-Bu1.r .. Gi.:or .. Hoc. A111., Vor .. 4, 18H2. 
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mentary strains. This will be demonstrated by a proof that any relation 
whatever between the axes A, Band C of the ellipsoid whose volume 
is proportional to h3 can be brought about by two such shears. Let 
A= ha, B =hr, and let C = hf3, where A and B are entirely arbitrary. 
Then since ABC= ll = Bh2af3, it is evident that 1 / a,B = r, or B = h / a(3. 

Now, if a shear of ratio a is applied axially in the x y plane to the sphere, 
x• + y• + z'' = h', it will reduce this mass to the ellipsoid x2 /a•+ y•a• + 
z2 = h'. If a second shear of ratio (1 is applied axially in they z plane 
it will further reduce the second axis in the ratio f3 and elongate the 
third ax,is in the ·same ratio. Thus the two shears yield an ellipsoid 
x' /a• + y2a 2(12 + z' / /12 = h', and the axe~ of this ellipsoid are ha, h / a/3 and 
h/1, or A, B and C. 

A converse proposition is also important. Any number of shears 
applied axially to a sphere can only modify the relations of the axes to 
values A, B and C, the volume of the mas!'! remaining proportional to 
A BC= h3

• Hence any number of axial 8hears are reducible to two and 
not to three, as one might be inclined to surmise. This resolution may 
take place mathematically with any one of the axes as the conimon axis 
of the two shears. In most cases, however, considerations of symmetry 
point to one of the axes as that common to the two shears. 

A simple shear produces relative motion of particles or fibers only in 
its own plane. Its only effect on fibers in planes at right angles to its 
own is to elongate them' uniformly in one direction without any tendency 
to the causation of relative motion. Hence the effects of each shear must 
be considered in its own plane, and the relative motion produced by each 
of two shears in orthogonal planes is independent. 

FIGURJ.j 1.-Scission. 

~l 
- '1 

I 
I 

Shearing Motion or Sci.ssion.-A "shearing motion" is the rather ill-chosen 
designation of a strain nearly corresponding to that which occurs when 
a bar or plate is shorn by a pair of shears, or when a rivet yields perpen
dicularly to its axis, say, in a bursting boiler. The term is not happy, 
because it seems to indicate that there are shears not accompanied by 
motion. It is, of course, from this strain that the term shear was de-
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rived, but this has been transferred to the simpler deformation. The 
name scission would aptly indicate the "shearing-motion" strain, which 
consists in the relative movement of undistorted material planes, each 
sheet of infinitesimal thickness remaining in its own mathematical plane, 
as shown in figure 1. The motion can be well illustrated with a pack of 
cards. 

Scission or shearing motion is that case of strain already referred to in 
which there is a single line of unchanged direction in the x y plane, and 
it consists <'!of a simple shear compounded with a rotation of the axes of the 
strain ellipsoid. 

The most important case of scissio1i is that in which the direction of 
the planes of constant direction and no distortion coincide with one of 
the axes .. If this axis is ox the displacement formulas may be written 
simply-

x = x - 2 ys; y = y.* 

Here 2 s = a -a-1
, the amount of the shear involved. The rotation is 

given by-

tan (v - p.) = s; 

and since /an 2 "•=tan(" + 11.) = oo, the axes of the ellipse at the incep
tion of strain were at 45° to the fixed axes. The quantity 4 ab + ( e - j)2 

becomes zero by the simultaneous disappearance of its two terms. If ,9 

is the angle by which a line originally parallel to o y is deflected by the 
strain, 

tan .'J. = b = 2s , 

so that the amount of shear may be defined as "The relative motion per 
unit distance between planes of no distortion." t 

Two Shears in the same Plane.-The most frequent combination of two 
shears in the same plane is that in which the axes of one of these strains 
makes angles of 45° with those of the other. If tho contractile axis of 
one of the shears makes an angle of 45° with ox, displacing x to x and 
y to '!/, the ratio of shear being a, and if the contractile axis of the other 

*If the planes of constant direction and no distortion make an angle,</>, with ox, the displace
ments are given by-

x' ~x (L + ssin 2</>) -ys (1+cos2</>); y' ~y (1 -ssin2 </>) + xs (1- cos2<f>). 

The product, ab~ - s• sin2 2 </>,is an essentially negative qtrnntiLy. Hence the •igns of a and bare 
necessarily different. Compare the discussion of formula (7). 

t'l'homson and 'l'ait, Nat. Phil., sec. 175. 
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shear coincides with o y, displacing x' to x" and y' to y", the ratio being "u 

then the displacement formul~s *are-

X; = xaI =xal<T-y11.ls; Y''= i ="!!!-~. 
al al al 

This strain, although the resultant of two irrotational strains, is rota
tional, since a - b is not zero. · It is easy to see that this would probably 
be the case, for the first shear alters the direction of every line excepting 
those coinciding with its axes, and the direction of these is changed by 
the second shear. The rotation is given by-

tan (" - fl.) -:- ss1 / aau 

where 2 ""• = a1 + a1-
1 and 2 s1 ~ a1 - a1-•. • 

It is an important fact that when the shears are of infinitesimal amount 
this combination becomes irrotational. When a and a 1 differ infinitesi
mally from unity, s = e, s1 =e.,a=1, ,,.1 = 1 and tan(" - fl.)= ee1, an 
infinitesimal of the second order.t 

The two finite shears are equivalent to the rotation stated above and a 
simple shear of amount-

Plane iindilational Strain.-The most general strain treated in this paper 
may he considered as a perfectly general undilational strain in one plane, 
combined with a shear at right angles to this plane and a dilation. The 
more complex effects are confined to the principal plane in which rota
tion occurs, and it is therefore desirable to reduce the plane undilational 
strain to its simplest terms. 

One method of resolution consists in i;egarding the general strain as 
com pounded of el,ementary strains symmetrically oriented with reference 
to the fixed axes, namely, an axial shear; a shear at 45° to o :i;; and a 
seission, the unchanged direction of which coincides with one of the 
axes. 

It is somewhat easier to test the results of analysis in this case than to 

*When the first shear makes an angle <f with ox the formulas ttre-

x"=xa1 (u- s cos 2<f)-ya1s sin 2<f; y"- 'IL (u + s cos 2 <f)- ~s sin 2<f. 
a.1 a.1 

Here ab - s• sin• 2 <f, and is essentially posit.ive. 
tWhen the shears make an angle <f and the strain is infinitesimal, tnn (v - µ.) = ee1 sin 2 <f, which 

is also an infinitesimal of the second order, so that any two shcat·s, and therefore any number of 
shears of infinitesimal amount, combine to an irrotational strain. 
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analyze the general strain. To begin with, chailges of notation are con
venient. Tho expression-

- 2 a (1 + e) ± ti 1 + 4 a• (1 + e )2 

represents two values," one of which is minus the reciprocal of the other. 
Let the positive value be a}, so that the negative value is - a 2-

2
• Then, 

if 2 11
2 

= a2 + a,-1 and 2 s2 = a2 - a,-1
, it is easy to see that--:- . . 

- a (1 + e) = 112s,. 

Call th~ value of s2/a mirius a3• Then-

and if one denotes-

Thus far only changes of notation have been introduced. To find the 
value of b in terms of this notation and for this case, consider that the 
sole condition of plane undilational strain is the invariability of the area 
of the strain ellipse. This is expressed by-

( 1 + e) (1 + f) - ab = 1 or b = (l + _e) (~t + f) - 1 . 

Introducing the new notation into this expression-

To interpret these values, suppose the final position of x and y to be 
x"' and y'", so that-

x" = (1 + e) x +by= a3 { (x - 2 s1y) 112 - ys2 }; 

This evidently expresses a simple axial shear of ratio a3 combined with 
a compound strain. If x' and y" are the dii,iplacement values for this 
last-· 
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By substituting x' = x - 2 s1y and y' = y these become the equations of 
a simple shear at an angle of 4fi 0 to ox. Finally-

are the equations of a simple scission. 
Thus the most' general plane undilational strain is resoluble into an 

axial shear, a shear at 45° to ox, and a scission in the direction of one of 
the axes. 

When a= b this general strain reduces to a single shea~. If b /a = 
(1 + e) / (1 + j) = a; the strain reduces to two shears or, in other words, 
the scission vanishes. If a= 0 and (1 + e) / (1 + f) = a3

2 the strain is an 
axial shear combined with a scission.* 

*A second Resolution.-The above met.hod of resolution is the most convenient for computation, 
but it fails to disclose a relation of much geological significance. It is a fact that any plane nndila
tional strain is resoluble either into two shears at an angle .J or into a shear and a scission at an 
angle cf> 'rhe •iii:nificant difference betwee!l these two combinations is that the two shears cause a 
relatively small rotation which is an infinitesimal of the second order when the strain is infinitesi
mal, while the shear and scission produce a large rotation which is of the same order as the strain 
when this is infinitesimal. The criterion diftcriminating the two classes of strains is exceedingly 
simple. When a and b have the same sign the strain is im•ariably equiv.dent to two shears. When 
a and b have opposite signs the strain is invariably equivalent to a aliear and a scission. As in the 
case of the other resolution, it is easiest to discriminate changes of notat.ion from equations of 
condition synthetically. 

J,et a and b have the same sign. Then to show that the strain is compounded of two shears one 
may proceed as follows: Adopt the notation--.. 

.-,-b(l+f1+a(l+•l; sin 2 .J_-yba; as•-~. 
2 JI' ab • · s, a 

Each of these expressions is possible whenever a and b have the same signs, and then only. In 
addition; the condition of plane undilational strain is (1 + e) (1 + f) - ab= 1. Here, then, is a 
number of equations just sufficient to determine a, b, e andf. Remembering that 1 + e and 1 + f 
are necessarily positive, they give- · 

a,..,s• sin 2 .J; b= -aas2 sin 2.J; 1 + •=ata(o-2 - s0 cos 2.J); 1 + f = .-, + s, cos 2 .J. 
~ . ' ~ 

Is is easily seen that these values answer to an axial shear of ratio "•and a second shear of ratio "2 

at an angle ,J with ox. 
Let a and b have opposite signs. This is implied in. the expres•ion-

1 + y-ab 
,aa-(f+f) , 

and the condition of plane undilntional stmin is (1 + c, (l + f)- ab -1. Purely not:iUve arc the 
following: 

These four equations give-

a = s1 (l + cos 2 cf>J; b- -at3si(l ± cos2cf>); 1 + e""°" aa (I +;,sin 2cf>); 1 + f = l- s1sin 2 1>. 
43 a.3 

These values answer to an axial shear of ratio a.3 and n. scission of ratio a.1• The direction of the 
scission makes an angle cf> with ox if the given values of a and bare satisfied by choosing the upper 

· sign in these expressions. In the opposite case the direction of the scission m"kes an angle cf> 
with oy. 
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The foregoing synthesis shows how a plane undilational strain may b~ 
resolved when the displacements are given. Cases also arise in which it\ 
is desirable to find the displacements a., b, e and f from a known shear~ 
and values of y and fl.. If the ratio of the shear is a, the values of rr and 8 

can be derived from it, and these two values, together with the values of 
v + fl. and v - fl. constitute four equations from which a, b, e and f can 
be deduced. They give-

a= s sin (v + 11.) t (f sin (v - fl.); 1 + e =cos (v - f') + 8 cos (v + 11.); 

b = s. sin (v + 11.) - u sin (v - /J.) ; 1 + f =cos (v - 11.) - s cos (v + /J. ). (8) 

These values, substituted in the formulas of preceding paragraphs, show 
to what simplest strain system a given rotation and shear are referable. 

Strain due to Pressure.-For the sake of keeping the discussion of strains 
together, it may be assumed here by anticipation that a presaure produces 
a cubical compression of ratio h* and two equal shears of ratio a at right 
angles to one another. For brevity, let-

· Then the displacement formulas for a strain due to a pressure in the 
direction '~ are-

, x( ) 'If . , 'I/( 2 ) x . x = h T - t cos 2 i'I - ht sin 2 ,'J ; y = h T If- t cos ,'J - ht sin 2 ,'J; 

I Z ( 
Z =1i T + t). 

It will be observed that these formulas are analogous to those for simple 
shear. 

When the pressure is vertical, so that i'J. = 90°, 

If a vertical strain of this kind is combined with a scission or shearing 
motion in a horizontal direction, the values of x only will be modified by 
the second strain. If x11 is the final value of x and 2 s1 is the amount of 
the shear produced by the scission- · 

,, xa 2 YS1 • /1 , /1 , d S1 
x = h - a'h , y = y; z = z; an tan (v - /L) = :;:- (T - t). 

*Here his taken greaier than nnity, and is the reciprocal of the value which in a given case 
would sati8fy (f>). 
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Ifore the rotation is of the same order as the strain and is not negligible 
when the strain is small. 

If the strain produced by vertical pressure is combined with a shear 
at 4f) 0

, the value of z will be unchanged. If 11"2 and s, are the values of,,. 
and s for this added shear, and if x"' and y'" are the final displacements 
for this case-

jll _ xalT2 y82 • ,,, y,,., xas2 • 11 J s.,t 
:i - h - u."h, y = a'h - h , z' = z ; tan (v - 11.) = ,,.;r· 

• 
In this case, when the strain is infinitesimal, the rotation is an infini
tesimal of the second order. 

Elongation.-Simple elongation (unattended by changes in the area of 
the section perpendicular to the direction of elongation) is sometimes 
regarded as a simple strain. It may as well or better be considered as 
compounded of two shears and a dilation. In discussing dilation it 
was pointed out that the three axes of the strain ellipsoid may be written 
A = ha, B = h / '1(3, 0 = h(J. ·when the strain is simple elongation in the 
direction of B, ha = 1, h(J = 1 and R = h3 /A 0 =h3

• Thus elongation 
consists of two shears each of ratio h and a cubical dilation h. 

In the case of contraction or negative elongation a value h1 is to ·be 
substituted for h and h, = 1 / h. Thus contraction is compounded of 
cubical compression 1 /hand two shears. If his the same in the two 
cases, the same shears are involved in each strain but differently com
bined. In elongation the tensile axes of the shears coincide, while in 
contraction the contractile axes coincide. 

The same two shears which without dilation would stretch .a mass to 
an infinite length, when differently combined would reduce it to an in
finitesimal thickness without c~bical compression. 

PLANES OF MAXIMUM TAGENTIAL STRAIN. 

Position of undi.storted Planes.-Attention has already been called to the 
fact that in a simple shear the circular sections of the strain ellipsoid arc 
undistorted planes parallel to which relative motfon takes place, and 
further inquiry into them is essential to a full elucidation of this strain .. 
In the other plane undilational strains there are similar planes, though 
their behavior if! modified in essential respects. In tri-dimensional strain 
the co~sponding planes are no longer undistorted, but nevertheless 
influence the character of the deformation. It seems most logical to 
begin with a discussion of the case of simple shear and afterwards to 
modify the results for QOmplex strains. 
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The circular sections of the shear ellipsoid for which the ratio is a make 
an angle with the major axis whose cotangent is a.* If this angle is 
called rn, the amount of shear is-

2 s ==: r1. - a-1 = cot rn - tan rn = 2 cot 2 rn = 2 tan (90° - 2 rn). 

Here s, or half the so-called amount of shear, appears as measured by 
the divergence from 90° of the angle 2 rn between the circular sections of 
the shear ellipsoid. A right angl~ is the value which 2 rn assumes when 
the strain is infinitesimal. · 

The original position of the particles constituting the planes of no dis
tortion, relatively to the fibers which coincide with the axes of the ellipse, 
bears a simple relation torn. Suppose the shear to be axial and that the 
sphere x1

2 + y1
2 + z1

2 = h" is converted into the ellipsoid x2 
/ fl.

2 + y2
fl.

2 + 
z2 = h2

, so that y, / x1 = fl.
2Y / x; then the orfginal position of the material 

. plane forming the circular section of the shear ellipsoid was fl.
2 tan rn = 

1/ r1. = tan (90° - rn). · 
Thus these material planes made before shear the same angle with the 

minor axis of the ellipsoid which they make after strain with the major 
axis. 

Planes of maximnm Strain.-It is instructive to regard the planes of no 
distortion from another point of view. Consider any two very thin plane 
layers in the unstrained mass which. include between them the axis oz, 
and let the angle which they make with ox be <p. After strain these 
planes will still be planes; they will make an angle <p" with ox anrl 
tan 'I' = fl.

2 tan <p' or " 

t ( ') ( a2 
- 1) tan <p an <p-<p = · 

a 2 + tan2 <p 

The greater the angle <p - <p' becomes, the greater must be the tangential 
strain. Now this angle and its tangent are greatest when tan 'I'= a or 
when tan <p' = 1 /a·~ tan rn. Thus the undistorted planes are those for 
which tar\gential strain is a maximum. For the axes, Cln the other hand, 
'I' - <p' = 0, and there is no tangential strain. 

Angidar Rang~ of imdistorted I'lanes.-Though· at the end of a shear or 
other plane strain-there ate planes which have the same dimensions as 
before strain, it is not true that these planes have undergone no distor
tion. On the contrary, there is but one strain in which any lines escap.e 

*The intersections of the shear ellipse 1vith the circle of equal area are points in these sections, 
since the radii of the ellipse retain their original length, say unity. These intersections are given 
by-

whence a=±"' I y. 

VI-Bur.r .. GEoL. Soc. A>r., Vor .. 4, 1892. 
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temporary distortion. In general, the circular sections of the shear ellip- . , 
soid consist of different particle3 when the strain begins from those 
which occupy the circular sections when the strain ends. In other 
words, the3e geometrical planes sweep through a certain angle, coinciding 
successively with all the particles in a wedge of the mass bounded by 
limiting material planes. Futhermore, one of the circular sections sweeps 
in general through a different angle from tha,t over which the other 
ranges, so that the rate of movement relatively to the particles is different. 
This difference of rate is a matter of much importance when the mass 
possesses viscosity, as all real matter seems to do. 

FIGURE 2.-Range of circular Sections. 

The sqLrnre of broken lines is strained to the rhomb in full lines. 'rhe full lines intersecting nt 
the center are the final

1
axes and lines of no distortion. The broken Jines inter.•ecting at the center 

show the positions which these same lines occnpied before strain. The lines v0 a.nd v0 ± 45°, which 
ore drawn only to the outside of the square, indicate the position of the fibers which at the incep-

tion of strain coincided with tlie major axis and the lines of uo distortion. The { {mark the 

wedges in the unstrained solid over \Vhich the geometrical planes of no distortion sweep. For the 
displacements see example, p. 34. 

The range of the circular sections must therefore be determined, and 
it is most easily discussed by examining in the unstrained mass the 
limiting angles between which the circular sections will vary when strain 
of assigned amount takes place. The general formulas afford the means 
for such a determination. . 
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When strain ·begins the major axis of the shear ellipse makes an angle, 
Yo, with ox, and the undistorted planes then make an angle of 45° with 
the major axis or angles Y0 + 45° with ox. When the strain is complete 
the major axis makes an angle, Y, with ox, and the undistorted planes 
make angles rn with this axis. But before strain began this last axial 
fiber ~made an angle, fL, with ox, and the particles constituting the last 
undistorted plane then made an angle, 90° - rn, with fl.. Thus in the 
undistorted mass the angles bounding the wedge through which the cir
cular sections will sweep are Y0 ± 45° and fl. ± (90° - rn). 

On the side of the minor axis toward which rotation takes place.this 
range is therefore-

Y0 + 45° - { /J. + 90° - rn} = rn - 45° + v ~ µ' 

and on the opposite side of the minor !),xis the range is-

{ /J. - (90° - rn) }- (Y0 - 45°) = rn - 45° - v __ ~r~· 

The difference of range is thus the angle of rotation, and is actual when
ever the strain is a rotational one. 

In a simple shear, then, there is no difference in range, and the range 
on each side is rn - 45°. In the case of scission or shearing motion it is 
easy to see that 2 (rn - 45°) = Y - fl., so that the range is zero on the side 
from which rotation takes place, and one and the same set of fibers are 
exposed to maximum tangential strain throughout the process of strain, 
while the other circular section sweeps through the maximum possible 
angle. In any case of plane strain the difference in range is at once 
assigned by the angle of rotation, so that for two shears in the same 
plane at an angle of 45° the difference is measured by tan (v - µ) = 

881/<r<Tij 

For plane strains the value of rn may be simply expressed in terms of 
the displacement coefficients. It is easy to see that__..:. 

~ = tan2 rn =Bf A. 
(). 

Hence also-
2 4AB (1 + e) (l +.f) ·-ab 

tan 2 rn =(A_ B)' = 4 (e-f)' +(a+ by-· (9) 

Case of Strain 'in three Dimension.s.-It has been pointed ·out already 
that the relative motions of the particles in the x y plane due to a shear 
a are unaffected by an axial shear f3 in the B C plane. The sole effect of 
the second shear, so far as the x y plane it:i concerned, is to change the 
length of all lines parallel to the common axis of the shears uniformly in 
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the ratio fJ. Hence if before the imposition of the (1.shear a line made an 
angle ro with A, this shear will alter the angle ro to, say, w, and-

tan w = 11-1 tan ro = 1 / a13 = B / h. (10) 

Lines making the angle w with A will not be undistorted when fJ differs 
from unity, but they will be lines of maximum tangential strain what
ever may be the value of /1. 

The value of w cannot easily be determined immediately from the dis
placement coefficients. It can be expressed in terms of the axes for 
tan3

10 = B' /AC, but the value of B / Cis a complicated one, on account 
of the inclination of the plane B C. 

Rotation is supposed to be confined to the axis oz, and i:o therefore 
unaffected by the shear /3. Hence for strain in three dimensions, as well 
as in plane strain, the difference of range of the planes of maximum 
strain measured in the unstrained solid is the angle of rotation, v - f'-. 

Numerical Example of Strain.-The application of the formulas devel
oped may be illustrated by an example. Let-

a= 0.1; b = 0.3; 1 + e = 1.2; 1 + f = 0.7; 1 + g = 1.1. 

This is a rotational strain, since b > a. Equations (6) also show that 
v + f'- = 38° 40' and v - fl.= - 6° l'. If the displacements constituted 
a pure rotation, sin (v - µ) would equal a. As this is not the case, there 
is strain. Formula (5) gives h = 0.962, so that the strain is a com pres- • 
s1ve one. If deformation were confined to the x y plane, 1 + g would 
equal h. Hence there are two shears. To find them it is most con
venient to determine the axes of the ellipsoid from (3), which gives 
A= 1.275, B = 0.635, C = 1.1. Then also a= A/ h = 1.325, f3 = C / h = 
1.143. Equation (1) shows that the major axis makes a positive acute 
angle with ox. The rotation, dilation and the ratios of the two shears 
are now known. 

To resolve the rotation and the a shear into component, plane, undila
tional strains, let a1• bu e1 andj1 be the displacements which would pro
duce only the a shear and the rotation. Then formula (8) leads to these 
values-

a1 = 0.0695; b1 = 0.2872 ; 1 + e1 = 1.2572; 1 + f 1 = 0.8113, 

which give for the elementary plane strains-

a2 = 0.9168; a3 = 1.2524; 81 = 0.0708. 

The a shear with the fotation is therefore equivalent to a shear with its 
contractile axis coinciding with o y of ratio 1.2524, together with a shear 
the tensile axis Of which makes a positive angle of 45° with 0 X, its ratio 
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being l/a2 = 1.0908; and lastly, a scission for which s1 = 0.0708. Since 
a1 and b1 have the same sign, the plane undilational strain might have 
been regarded as due to the combination of two ehears without any scis
sion, but these shears would not be at 45° to one another. 

The value of ro is given by tan ro = 1/rL = 0.7545, so that ro -. 37° 2'. 
Had only all b1, e1 andf1 been given, ro could have been obtained from 
(9), which, of course, gives the same angle. 

The first fiber to occupy the position of major axis at the inception of 
strain made an angle with ox, which was v0 = (v + 11.)/2=19° 20', and at 
this same time the positions of the lines of maximum strain were at 
v ± 45°; i. e., at 64° 20' or - 25° 40'. The original position of the fiber 
which eventually constitutes the final major axis was at an angle fl. or 
20° 20}' to ox. The original position of the fibers which at the end of 
the strain undergo maximum strain was at /1· ± (90° - ro); i. e., 75° 18~' 
and - 30° 37r. The angles in the unstrained mass bounding the fibers 
which subsequently undergo maximum strain on the side from which 
rotation takes place are thus, fl.+ 90° - m and v0 + 45°, and these differ 
by 10° 58~'. On the other side the limiting angles are v0 - 45° and 
fl. - (90° - ro), which differ by only 4° 5n'. Thus the fibers. on the 
positive side of the major axis pass through the condition of maximum 
strain more than twice as rapidly as do those on the negative side of the 
major axis. If the resistance which the mass offers to deformation varies 
with the rapidity of deformation (as is the case with real substances), this 
difference will somewhat affect the results. Had a and b different signs, 
this difference would be far greater. 

The angle w for this example is by formula (10) 33° 25', so that the (1 

shear changes the direction of the lines of maximum strain by some 3~ 
degrees, though without tending to produce any further relative motion 
upon them. 

Figure 2 is drawn for the displacements a1, bu e1 andf]) and illustrates 
the range of planes of maximum strain for this example. 

FINITE STRESS. 

RELATIONS OF STRESS AND STRAIN. 

In the foregoing discussion the geometrical properties of homogeneous 
strain due to given displacements as exhibited on any principal plane of 
a strain ellipsoid have been developed, and I am aware of no important 
property of such strain which has been omitted. If the relations of dis
placement to stress (or force per unit area) could be as fully developed, 
we ilhould have a substantial basis for a theory of finite distortion, since 
however heterogeneous a strain may be, any infinitesimal portion of the 
mass is homogeneously strained. 
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The relations between finite stress and displacement lack satisfactory 
experimental basis and cannot therefore be fully developed, but it is 
desirable to show just where knowledge ends and ignorance begins. 

Stres.ses in a Shear.-From the discussion of the properties of shear, it 
follows that the undistorted planes are necessarily subjected to purely 
tangential stresses; for they are neither elongated nor drawn apart during 
strain, while normal forces acting upon them would produce such effects. 

The stress phenomena in a shear can be examined as a case of equi
librium, and such an examination reveals the somewhat important fact 
that the planes of maximum tangential stress do not coincide with the 
planes of maximum tangential strain.* It also teaches how the two 
component forces involved in a finite shear are related, and thus, in spite 
of ignorance of the direct relations between stress and strain, the inquiry 
is by no means fruitless. 

y I 
I 

I 
I 

-Fj 
/Irr 

11., I 

~ "/ 
i 

I 
I 

p 

FIGURE 3.-Stresses infinite Shear. 

Let the rectangle ob represent one-quarter of a strained cube and let 
- Q and P be the stresses (or forces per unit area) holding it in this state 
of strain. Then it is easy to find the stress on any plane cutting the x y 
plane at right angles along the line a c. Let the ·normal to the plane 
make an angle ,c; with o x. Then-

ab = ac s'in {} ; be = ac cos 1'J.. 

If F and Gare the component stresses on a c parallel to ox and o y, 
these components must hold the stresses on ab and ac in equilibrium. 
Now, the total force on a c in the direction of o x is - Fa c and the whole 
force on b c is Pb c. Q and G are similarly related, so that-

-·Fae= Pbc = Pac cos ,'J., 

Gae = - Qab = - Qac sin N, 

·or-
- F = P cos {J ; . G = - Q sin 1'J.. 

*In at least some treatises on elasticity and geological mechanics it seems to have been assumed 
that these planes do coincide. 
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The position of the plane remaining constant, it is permissible to com
bine F and G like simple forces to a.tangential component, 1', acting in 
the direction of a c, and a normal component, N, acting perpendicularly 
across a c. Evidently, if P and Qare considered as in general positive 
quantities-

T = - F sin fJ - G cos lJ = ( P + Q) sin ,9 cos '~, 

N = - F cos fJ - G sin i) = P co1s2 iY + Q sin2 ,9, 

and Twill be a maximum with reference to ,9 when-

cos2 ,9 = sin2 l) or ,9 = -+- 45°. 

Although the tangential stress is greatest for this angle, one has no 
right to infer that the maximum tangential strain is at 45°, because there 
is a normal stress on the plane at this angle amounting to (P + Q)/2. 
On the contrary, it was shown above (page 34) that the maximum tan
gential strain in a shear occurs for planes which make an an~le with ox 
the tangent of which is l/a, or the normal to which is given by tan ,9 = a. 

The conditions of this plane are also such that there can be no normal 
stress acting upon it, and hence N = 0, so that one of the stresses must 
have a negative value and-

This relation enables one to determine the forces which produce a 
finite shear. The area on which the stress Q acts is a, and the force 
acting on the distorted cube in this direction is minus Q a. The area on 
which P acts is l/a, and the lateral force is therefore P/a; but by the last 
equation - Q a= P/a, so that a finite shear, as well as an infinitesimal 
one, results from the action of two equal forces acting at right angles to 
one another in opposite senses.* 

Simple Pressure.-Knowing the composition of a shea~ enables one to 
pass synthetically to the case of simple pressure or traction. If two 
equal shears at right angles to one another are combined, the contractile 
axes coinciding, each must produce the same effect as the other if the 
mass is isotropic. Each must also produce the same effect as if it acted 
alone. This statement does not imply a relation between stress and 
strain, for the shear in the x y plane leaves the mass unstrained in the 
y z plane. Hence two equal shears, each of ratio a, reduce the ·unit cube 
----------------- - - ------- - - -----

*I have met with no demonRtrntion of this relation between finite shearing stress and stritin, but 
I am ·not prepared to state that none has been published. 
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to a thickness 1/a' any of the sides of the mass having a length a. The 
upper surface has an area a2 and the side an area 1/a. 

The tensile stress on sides of the mass is P in each direction, so that 
the two tensile forces are each Pi a. When only one shear acted on the 
mass the contractile 8tress was Q, but the second shear increased each 
unit area to a, so that the contractile stress of the first shear was thereby 
reduced to Q J a. The stress due to the second shear is of precisely the 
same amount, so that the total contractile stress becomes 2 Qj a on an 
area a2

• Thus the total force acting on this surface is 2 Q a, which, as 
has been shown, is equal to 2 P /a in absolute value. 

Let the mass thus strained be subjected to an hydrostatic pressure equal 
to P /a. Then the tensile forces would be balanced and the pressure on 
the upper surface would become 3 Q a. 

Thus, two equal shears combined with an hydrostatic pressure equal 
.. to either component of either shear, applied to the unit cube, reduce to 

a simple pressure acting on one surface of the cube. Had the shears 
· been so combined that their tensile axes coincided, a dilational stress 

equal to either component of either shear would have been needful to 
reduce the system to a simple traction. 

Conversely, it is evident that a finite traction or pressure is resoluble 
into a dilational stress (positive or negatiYe) and two shearing stresses, 
just one-third of the force being employed in each of the three component 
stresses. It is well known that precisely this resolution takeH place for 
infinitesimal tractions, but the analysis of such tractions is usually stated 
as if the conclusions were true only for the limiting case of infinitesimal 
forces. 

These results seem to exhaust what can be known of the relations of 
finite stress and strain without a further knowledge of the actual value 
of a in terms of Q. No two different pressures or different shears or dila
tions can be compared without a law relating to stress and strain. 

Meaning of Hooke's Law.-It was to fill this gap that the famous law of 
Hooke was proposed. This is Ut tensio sic vis, which is now translated, 
Strain is proportional to stress. The b~evity of Hooke's law has often 
been admired. ' The fact is that it is too brief fully to express the mean
ing really attached to it. It does not appear in this form of the law 
whether the stress (or pressure per unit area) is to be reckoned for the 
solid in an unstrained state or after the mass has reached a condition of 
_equilibrium under the action of the external forces tending to deform it. 
·But since the purpose of the mathematical theory of elasticity is to find 
equations expressing equilibrium of elastic masses, it is clear that this 
equilibrium must be supposed established before one can reason on the 
system of stresses which will maintain it. As a matter of fact, the funda-
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mental equations are always deriYed in this way, and the stress is taken 
primarily as the force per unit area of the mass in a state of equilibrium. 
Thus, a less ambiguous statement of this law would be: Stress, in an 
elastic mass which has reached a condition of equilibrium is proportional 
to the strain which the mass has undergone. 

It is a curious fact that this is not the law which Hooke intended to 
express. Hooke's words are, "Ut tensio sic vii:!: That is, the Power of any 
Spring is in the same proportion with the tension thereof: That is, if one 
power ~tretch or bernl it one space, two will bend it 'two, and three will 
bend it three, and so forward."* 'Thus Hooke's law as he meant it is 
clearly load is proportional to strain, and he had no idea of confining his 
law to infinitesimal deformations. 

When the stresses and strains are infinitesimal it is easy to show that 
the two assertions, stress is proportional to strain and load is proportional 
to strain, are really equivalent; but for finite deformations they lead to 
very different results. 

Let a unit cube be extended to a length 1 + e by a load L, and let the 
reduced area of the cross-section be A. Then the tension per unit area 
or the stress Pis given hy-

" L=AP, 

al).d if stress is proportional to strain, 

P = Me, or L = AAfe, 

where }If is the constant, called Young's modulus an.cl sometimes (though 
improperly) the modulus of elasticity. As was shown above, exactly 
one-third of the load is employed in proclucing dilation, holvever great 
J, may be. Hence if/.; is the modulus of compressibility, the volume of 
the distorted cube is 1 -[- /,/3 k. The volume is also the area of the dis
torted mass multiplied by its length, or A (1 -[- e). Thus-

,, A= 1 -[- L/3k_ 
1 -~ e 

Substituting this value rn the last equation gives an equation between 
load ancl strain, viz : 

I .,,. I 37.:-111 0 ,-me+· ,e 
31

c = , 

*Quoted by P. G. Tait," Properties of Matter;· 18~0, p. 204, from Hooke's lectures" de Potentia 
Res.titutiva.." 

VII-Hur.r .. G""'" Roe. A>r., Vor. 4, 1sn2. 
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which is an hyperbola in Lande asymptotic to-

-3k 3kM 
e=3k-M' and L= 3k-M. 

Thus the fundamental assumption really. made in the theory of elas
ticity is that the load-strain curve is an hyperbola instead of the straight 
line which Hooke supposed to represent the relation. The difference, 
however, as already remarked; i8 without consequence, so long as de
ductions from it arc confined to very minute deformations.* 

Stress System.-Any force acting on one face of a cube may be resolved 
into a normal component and two tangential components acting in the 
directions of the edges of the face. Hence the most general system of 
forces of constant direction acting on a cube is resoluble into six: normal 
components and twelve tangential one8. If the center of inertia of the 
cube is at rest, the normal forces on opposite faces must be equal, and 

*Nature of the Proof of Hooke's Liw.-Hooke's law holds good, or, in other words, there is a linear 
relation involving a finite p:1rameter between small stresses and strain•, provided the stress-stmin 
curve fnlfills two conditions, viz., that the curve is continuous botli in form and value,rmd that the 
tangent of the angle which it make• with the nxes !It the origin is finite. H seems to me that. 
some discussiOn u.nd even some confusion would h0.ve been avoid~d if ela!:lticians had taken t.11is 
geometrical view of the functions rather than a purely algebraical one .. Thus Green simply 
nssumed that the stress-stmin function was developable, and that the development contained a 
term in which only the first power of the variable appeared, while Clebsch seems to have looked 
upon this algebrnical relation as a mathematical necessity. This it certainly is not, for there ate 
many continuous fnnctions the development of which contains no term in the first power of the 
variable. These all represent curves which coincide· with one of the axes at the origin; e. g, the 
hyperbola referred to the vertex as origin.-Mr J. W. Ibbetson, in his excellent Mathematical 
Theory of Elasticity, makes an attempt to demonstrate Hooke's law by pure reason, independently 
of experiment. He expressly assumes, however, that the curve is continnous, and he st~\teR, 
without any attempt at proof, that the rate of variation of any traction component with any strain 
coordinate can never chn.nge sign or vanish. This last is equivalent to asserting Lhn.t the cunre 
cannot coincide with either axis at the origin. 'l'hese two assumptions together cover the whole 
ground of Hool~e's law, and really le:w~ nothing to be proved.-Saint-Venant, in his edition of 
Clebsch, p. 40, attempted to show that if the internal stresses of an elastic mass depend in any 
continuous manner on the mutual di,tances of the molecules, Hooke's law follows. He points out· 
that continuity involves a linear relation between the differentials of a function and the corresporui
in9 differentials of :my variable. He then shows that on the assumption made corresponding snrnll 
stresseA and strains are corresponding differentials, and deduces the conclusion stated above. 
This argument does not satisfy me at all, for though one may undoubtedly write df(x) ~Ad x, 
where A is constant and the relation is therefore linear, yet A may have and often does have the 
values zero or infinity. Saint-Venant made no attempt in the passage re.ferred to to show that A 
must be finite in the case of elastic strains, and seems to have overlooked the necessity for such a 
proof. 

In the same work, page 30, this great elastician forcibly remarks: "Generally and philosophically 
no purely mathematical consideration can reveal the manner in which the forces 1tcting on the 
elements of a body and the geometric1tl changes which they produce depend upon one another." 
Ex~riment alone,- and only somewhat refined cxperimen~. betrays the fact that even the hardest 
subsktnces yield somewhat to the ~mall est pressures, a.nd that the streRs-strain curve is continuous 
in form as well as value from positive to negative strains. One Ret of experiments ig needful to 
show that a fly lighting on the end of a steel bar which is clumped at the cente1· distorts it, and 
another set is required to show that the distortion is of the same nboolute amount whether the fly 
settles on the upper or the lower end of the mass. 
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the twelve tangen~l forces must consist of six couples, each tending to 
produce rotation. '. . 

In this paper consideration is confined to those cases in which there is 
a tendency to rotation only about the line o z, and this limitation elimi
nates four of the couples. Thus the case to be considered here consists 
of three pairs of normal forces and two unequal couples tending to pro
duce rotation in opposite directions. This force system is shown in the 
following diagram : 

c, 

- p ---, p 

: I 
I 

I ---r------ -1 

' ' 

-c, 

FIGURE 4.-Systcm of Forces. 

It has already been shown that any normal force, whether finite or 
infinitesimal, is resoluble into a dilation and two shears, exactly one
third of the force producing dilation,.and the remainder producing two 
equal shears at right angles to one another. Analyzing each of the nor
mal forces P, Q, R 1:3eparately, it will appear that the action of all of them 
may be tabulated as two shearin,:s stresses and a dilation-thus : 

Axes of :r y z 

Dilation: .......... ~(P+ Q+Rl l (P+ Q + R) t(P-7- Q+R) 

Shear ............. -l(Q+ R-2 P) lt (Q + R-2 P) 0 

Shear ............. 0 l ((J + P- 2 R) -l(Q+P-2R) 

Sum .............. p Q R 

Turning now to the couples 01 and 02 , and supposing C, > 02 , their 
combination is equivalent to two equal and opposite couples, each equal 
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to C,, and a single unbalanced couple, 01 - C2 • The combination of two 
equal and. opposed couples is easily shown to be eqqivalent to a shear, the 
axes of which bisect the angles made by the component forces.* Here, 
therefore, the balanced couples are equal to a shear at 45° to P or (-J. 

There now remains a single unbalanced couple tending to produce 
rotation of the mass about oz. Unless still other external forces are in
troduced, thi8 couple will merely rotate the mass without strain. If, 
however, one of the faces of the -cube is compelled to coincide with a 
ffxed plane having the 8arne direction as the forces of the couple, as if 
the mass rested on or against an inflexible frictionless support, this 
couple, together with the resistance, will effect distortion and will convert 
the square section on the :c y plane into a rhomb with two of its sides 
parallel to the fixed plane. The distortion thus produced will consist 
merely ie a tangential shifting of planes parallel to the support and will 
involve no change of volume. In short, the strain is shearing motion or 
scission. 

No system of forces of constant direction and constant intensity will 
produce scission. The combination of a couple and an inflexible resist
ance is equivalent to a stress system like that of a simple shear, but 
which undergoes rotation relatively to the fixed axes of reference during 
strain. The dynamic origin of a scission thus differ.,; e8;,;entially from 
that of a shear. 

If a cube resting upon an inflexible support coinciding in direction 
with ox were subjected to the force system of figure 4, the couple C2 

would be inoperative and the stress system would reduce to dilation, 
axial shear.~. and the rotational shearing stress which produces scission. 
This last may he called scissive stress. 

Ko support is absolutely inflexible, and in real case.-3 of supported 
masses the strains produced will be of a character intermediate between 
those produced when there is no support and when tli.e support is ideally 
rigid. Such strains evidently i1wolve both scission and a shear at 45° 
to the axes. 

On the whole, then, the entire force system, including a resistance to 
rotation; produces a dilation, a shear in the y z plane, two shears in the 
x y plane, one of them at 4::) 0 to the axes, and a shearing motion in the x !J 
plane. The most general strain discussed in preceding page:; corresponds 
to any combination of the3e strains, each of which has been treated in 
detail. It has also been shown that a general strain of the type here 
treated is res1)luble into just these components. 
----- ·-.,·-· ·-····--- ·-----

*See an elcmentiiry proof of this proposition in Hull. Geol. Soc. Am., vol.~. 1891, p. 55. 
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LINES OF UNALTERED DlREC1'ION. 

It was shown above that, in general, three diameters of the strain ellip
:"oid have the same direction after strain as before strain.* It is usual 
to assume that these same lines retain their direction during the process 
of strain,t but this appears to be trne only under certain limitations. 

If the displacements a and b are connected by the equation a = mb; 
formula (7), which assigns the position of the lines of unchanged direc
tion in the x y plane, becomes : 

tan x =.f-e + /m + (f"-e)", 
'2b --:-"\: 2b 

and the position of the axes of the principal ellipse at the inception of 
strain is given by-

Hence one may write-

('111+1) b 
tan 2 ~o = e _ f . 

tan x = - m + 1 { cot '2 ~ 0 + . I 4 m + cot' 2 ,; 
0 

} • 

'2 - \l(m + 1)2 

In this formula ~ 0 depends solely upon the direction of the external 
force relatively to the resistance and not upon its intensity. Conse
quently, if the tan xis to preserve its initial values throughout the strain
ing process, m must be constant. Now, the displacements may be such 
that a. orb is zero throughout deformation, and mis ·then constantly zero 
or infinity. It may also happen that a = b, so that m = 1, and this case 
also i9volves no hypothesis as to a relation between stress and strain in 
homogeneous matter; but if mis a finite q11antity differing from unity, 
the assumption that m is constant is equivalent to the hypothesis that 
the ratio of the displacements bears a constant relation to the ratio of the 
stress components which produce them. This hypothesis is only justifi
able when the strain is very small. 

·when there is no rotation, or when a= b, the elastic cube acts as if it 
rested upon an inflexible support and were affected by stresses axially 
disposed. When one of the displacements a or b disappears, the strain 
involves only axial deformations and sci8sion. This again implies the 
presence of an inflexible support or an equivalent rotating system of 
forces. Hence the lines which have the same direction after strain as 

*Two of these dhtmeters mrry coincide and both of these may become imaginary. 
t Thomson and Tait speak of these lines as unaltered in direction during the clrnnge of strain, bnt 

they may have meant by rather than during. Nat. Phil., section 181. 
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before strain will keep this direction during strain only when the mass 
acts as if it rested on or agaim;t an inflexible support. 

If this support is parallel to ox, either tan 7. = 0 or: 

tan x =J b e =tan (90° + 2 v0 ). 

PROPERTIES OF l\llAT'l'ER. 

Viscosity.-The ideai elastic substance is one which requires a perfectly 
difinite stress to hold it permanently in any given state of strain at a 
given temperature. This stress is wholly independent of previous states 
of strain or rates of straining. Real substances fulfill this definition only 
under certain conditions, and careful experiments always show that the 
more rapidly deformation is produced, the greater is the resistance to be 
overcome. Thus a spring, snddenly stretched by a given weight, yields 
rapidly to a certain extent and may seem to become stationary ; but 
careful observation shows that is continues to yield slowly to the traction 
for a time, though it ultimately comes to rest. If the material were 
ideally elastic, it would immediately assume this ultimate state of strain, 
and the fact that the attainment of equilibrium is gradual proves that 
the original resistance is a function of therate of deformation. Fluids 
show similar phenomena. 

Viscosity is that property in virtue of which matter presents to stress 
a resistance into which the rate of deformation enters as a factor. 
Viscosity and shear are inseparable, and mere dilation is unattended by 
viscous phenomena.* The coefficient of viscosity of a substance is ceter'is 
paribus, the shearing stress required to produce the unit shear in the unit 
time. The degree of viscosity is considered as increasing with thi~ coeffi
cient, so that sealing wax a'fld tar are more viscous than water, and steel 
is more viscous than lead or copper. 

Substances which yield indefinitely though slowly to stresses, however 
8mall, are now known as viscous fluids. Those which in the course of 
time reach statical equilibrium under the action of deforming stress, such 
as tallow and steel, are called viscous solids. 

If stress is applied very slowly (or rather infinitely slowly) viscosity 
does not come into play. Thus, a viscous solid or fluid in permanent 

*Viscous resistance is often Jikened to friction. Each is a dis~ipn.tive resistance. to tangential 
motion, but t-here are marked differences hetween them. Friction exists only where there is 
normal pressure, n.nd is therefore wholly absent on the planes of maximum ta.ngentin.l·strn.in in a 
shear. FrictiOn also has its maximum value when the surfaces between which it exists are at rest. 
Viscous reSistance opposes relative motion of surfaces between which there is no normal pressure 
when the rate of mot.ion is finite, hut vanishes when this rate is- iµ.finitesimal. 'fhus there is 
rather an analogy than a similarity between viscosny and friction. 
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statical equilibrium acts like an ideally elastic or ideally fluid mass. 
· Under these conditions the resistance which a solid offers to deformation 
is due entirely to its "rigidity,'' this term being defined in the theory of 
elasticity as the degree .of resistance which a solid in permanent equi
librium opposes to stresses tending to change its shape.* Under this 
definition india-rubber and tallow possess rigidity as well as cast iron, 
but the modulus of rigidity of the metal is greater than that of the gum 
or the fat. In short, rigidity is an essential property of solids. 

A highly viscous fluid subjected to a stress of brief duration presents 
great resistance to deformation. Thus, if the earth were ,substantially a 
mass of sufficiently ultra-viscous fluids, it would behave to the attrac
tions of the sun and moon sensibly like an infinitely rigid body, becaus·e 
of the rapid change in the direction of these attractions. There are rnlid 
grounds, however, for the belief that the earth is really solid .. 

The viscosity of rocks often controls the directions in which they yield 
to stress. .:When two equal stresses acting on the same rock-mass change 
their directions at flifferent rates, that stress which rotates at the smaller 
rate will encounter the smaller resistance and will produce the greater 
effect. It has been shown in the earlier part of this paper that all rota
tional strains are accompanied by relative tangential motion on two sets 
of mathematical planes which rotate relatively to the mass at different 
rates. The difference of their effects due to viscosity will be discussed 
under the head of geological applications. 

Flow.-At least some solids in the so-called "state of ease" (freedom 
from internal partial constraint) almost completely recover their original 
form after small strains when time is allowed to overcome the viscosity. 
It is apparently true of all bodies, however, that when strained beyond 
a certain limit short of rupture, they. are permanently deformed. The 
process by which this deformation is effected is termed fl.ow, and the 
limit at which a substance initially in a sta"te of ease begins to fl.ow is 
called the limit of solidity. When the limit of solidity differs but little 
from the ultimate strength, the substance is kri01vn as brittle. When 
the limit of solidity is a fixed quantity, so that any excess of stress pro
duces continuous flow, the mass is said to be plastic. \Vhen a continu
ously increasing stress is needful to produce continuous flow, the sub
stance is said to be ductile, and in this case a" hardening" of the mass 
attends the flow, as, for example, in the manufacture of wire. 

Plastic fl.ow thus differs from ductile flow. l am not aware of at1y 
phenomena which point decisively to the existence of ductility and the 
attendant hardening among rock masses, hut it cannot be amiss to call 

*The word rigidity; as nsed in the theory of elitstieity, hits neitrly the same meaning ns stiffness 
in common parlance. 
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attention to this property, which possibly pln.ys some part in the interior 
of the earth if not near the surface. 

Plastic flow certainly plays an important part in geological mechanics· 
The motion of glaciers is known to be in part 3,13cribable to it, and it is 
clearly evinced in the details of Tock structure. At great depths below 
the surface a partial gradual relief of strain in any rock mass will bring 
to bear a gradual increase of stress difference, which may be considered 
entirely indefinite in amount. Granting, then, that there is no infinitely 
brittle rock or no rock in which tho ultimate strength falls short of the 
limit of solidity, flow must ensue at great depths whenever a sufficient 
relief of strain occurs. ~ o geologist needs to be reminded of the instances 
pointing to such flow. They are inn.umerablc and most various. 

If a mass capable of plastic flow is surlclenly subjected to a definite 
load greater than it can bear without flowing, one-third of the load will 
immediately be employed in compresflion and the process of flow will 
produce no further modification of the volume. Flow is thus ~ntinnouR 
shear. 

The shearing process must take place along certain lines, and these 
must be the lines which are first strained beyond the limit of solidity. 
In other words, flow must take place along the lines of maximum tan
gential strain discussed in a former part of this paper, and which by (10) 
stand at an angle 90° - w to the lino of a simple, direct pressure. 'Vhon 
the load is of fixed amount, the stress will gradually diminish as the mass 
flattens out; so that the last lines of flow will make a smaller angle with 
the line of force than the earlier ones. A greater amount of flow would 
occur along the earliest lines affected. If the mass were of such a char
acter a:;. to show evidences of the relative motion after equilibrium had 
been reached, a cross-section of it would reveal a structure at least com
parable with schistosity, the flatter lines being more pronounced than 
the steeper ones. 

Relation of plastic Solid.~ to Flnid1S.-Let S he the resistance which a 
plastic solid opposes io distorting stress at the elastic limit, and let n be 
the stress which would be required to produce the unit shear if the mass 
were perfectly elastic (or, in other words, the modulus of rigidity) ; then 
if stress is proportional to strain, S/n is the E1hearing strain which .the 
mass experiences at the elastic limit, and any greater strain would be 
accompanied by flow. If the mass continues to flow as long as the stress 
is maintained above the fixed limit S/n, the substance is known as per
fectly plastic. 

If Sis infinite::iimal, the mass will yield to any shearing stress, however 
small. Such a mass, resting on a level surface, would spread out to a 
layer of infinitesimal thickness, much like a fluid. It does not follow, 
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however, that because Sis very small, n is al8o small. The rigidity of a 
mass seems quite independent of its elastic limit. Thus wrought iron 
and cast steel have nearly the same modulus of rigidity, though the 
elastic limit is very different for the two sub8tances. A material, then, 
may have a very low elastic limit and yet oppose great resistance to de
formation within that limit. 

If the rigidity of a mass is great, the lines of maximum tangential 
strain under pressure will make angles of little more than 45° with the 
line of pressure. If such a mass is prevented from undergoing relative 
motion in these directions, a much greater force will be necessary to com
pel it to move in any other direction. Fancy a cube of matter of low 
elastic limit, but great rigidity, placed in a shallow tray just wide enough 
to receive it; and let a small, uniformly distributed pressure be applied 
to the upper surface of the cube. Then, above the edge of the tray, the 
niass would break down at angles of about 4.5°, but the laminre standing 

FrnunE 5.-Plastic Solid under Pressure. 

at 45° and supported by the tray could not move sensibl¥. The result 
would be that a pyramidal mass would remain in the tray, forming an 
angle of 45° with the line of pressure. 

This is substantially the way in which a body of solid, discrete parti
cles would act. A cube of such material released in a tray would resolve 
itself into a pyramid, sloping at the angle of rest. It is also easy to show 
that the maximum value of this angle is 45°.* A. mass of very fine 
powder composed of frictionless spheres would be perfectly plastic, inas
much as it would yield to any shearing stress, however sligh,t, which 
were not resisted by external constraint. The elastic limit would also be 
zero. Its rigidity could be displayed only when flow were prevented by 
constraint in the direction in which flow tends to take place. It would 
then evince rigidity by its ability to retain a pyramidal shape. In short, 
a mass resembling shot of ,infi1iite fineness appeara to represent the case 
of a perfectly plastic solid with infinitesimal elastic limit. 

*The angle of rest is, say, p, and tan p = R/ N, where N is the normal pressure, and R the fric· 
tional resistance due to this pressure. This resistance cannot exceed the pressure to which it ji;i 

due, and R/ N cannot excee.-J I, the tangent of 45°. 

VIII-BuLr .. GKor .. Soc. A>r., Vo1 •. 4, 1802. 
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Consider now the case in which n is very small and S great. This case 
also bears some resemblance to a fluid. A cube of material with these 
qualities would yield to the slightest pressure, and the strain ellipsoids 
would be flattened to infinitely thin disks. The lines of maximum tan
gential strain would therefore be perpendicular to the line of pressure. 
To convert this solid into a liquid the elastic limit and the rigidity must 
both disappear.; but this is not of itself sufficient. The flow of a liquid 
takes place perpendicularly to the direction of pressure; consequently, 
in the solid which· approaches infinitely near to the liquid state, the 
strain ellipsoids must be infinitely flattened before flow begins. This 
relation is secured if S is infinitesimal and n is an infinitesi'1l.al of the 
second order. 

In the discussion of strains it was shown that the lines of maximum 
tangential strain, or the lines on which flow must take place, make an 
angle with o x, which has a certain value, w. It appears from the above 
that this angle has a value of 45° for an infinitely rigid solid, even if this 
solid is perfectly plastic and has no elastic limit, so that it is reduced to 
molecular powder. For fluids, on the other hand, this angle is zero, and 
the rigidity is an infinitesimal of the second order. Intermediate values 
of w answer to solids of moderate rigidity. 

Rnpture.-In a homogeneous mass under pressure, rupture must take 
place on the lines of maximum tangential strain: for rupture is strain 
carried to such an intensity that cohesion is overcome. A mass in which 
flow has preceded rupture cannot be regarded as homogeneous, since in 
the direction in which flow occurs the strength of the mass may be and 
perhaps must be weakened. In the case of pressure this makes no dif
ference, the tendency to flow and to rupture being in the same direction. 

Tensile stresses produce ruptures by a different method. One can 
conceive of a mass breaking up by mere dilation or without any relative 
tangential motion, while purely compressive forces cannot be imagined 
as leading to rupture. In tensile strains shears cooperate with dilation. 
Thus, if a bar under tension is homogeneous, the tension will be relieved 
by the smallest possible fracture, which is in a direction perpendicular 
to the axis of the bar. If, however, the bar has undergone flow along 
the surfaces of maximum tangential strain and has thus been sensibly 
weakened in these directions, it may split diagonally to the axis or 
irregularly along some other path of least resiRtance. Thus, a rubber 
band when suddenly stretched almost always breaks as straight across 
as if cut with scissors, but a bar of mild steel gradually stretched to the 
breaking point often splits diagonally, while a wooden bar gives a most 
irregular surface of fracture. 

In rocks, tensile rupture and fracture by pressure can often be distin-
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guished. Granites, and even conglomerates, often break under pressure 
in extraordinarily smooth, continuous, plane surfaces. Under tension 
the rupture of granite would follow an irregular surface of least resist
ance, leaving projecting crystals on each side; and in conglomerates few 
pebbles would be broken, nearly every one adhering either to one frag
ment or the other. Stratified rocks under tension would behave much 
like a wooden bar. Only unusually uniform rocks could give smooth 
surfaces of rupture under tension. Such surfaces do occur in the case of 
Qolumnar erupti\'es, and these columns can be shown to be produced by 
tension in the cooling mass. Even when tension produces surfaces of 
rupture which are smooth, they are apt to be curved or broken. In a 
word, tension tears masses asunder; pressure cuts them to pieces. 

GEOLOGICAL APPLICATIONS. 

Cases to be coni.idered . ...:_ It is probable that pure dilation and pure irro
tational shear are strains of rare occurrence in rock mast?es. One of these 
requires two, the other three pairs of forces acting at right angles to one 
another with identical intensity. Simple pressure, on the other hand, is 
common, especially where disturbances are not in progress. During 
orogenic changes inclined pressures must be frequent. The most im
portant stress systems are therefore direct pressures and inclined press
ures. The last includes two cases, in one of which the mas~ suffering 
pressure rests upon or against an unyielding support, while in the other 
the mass rests upon or against materials which yield -readily. In the 
former of these cases the stress system reduces to a simple pressure, com
pounded with a scissive stress; in the latter to a pressure and a shearing 
stress. 

In dealing with each strain viscosity and a tendency to ft ow or rupture 
must be considered, the aim being to relate actual phenomena to their 
immediate causes and to enable the geologist, in some measure at least, 
to judge of the local direction of the forces the effects of which he ooserves. 

\Vhen gravity acts upon a mass homogeneous strain is, strictly speak
ing, impossible, excepting within infinitesimal limits of !:!pace, each level 
surface being subjected to greater pressure than the next above it. On 
the other hand, the forces involved in the deformation and fracture of 
rocks are very great, except in some extreme instances, such as that of 
moist clay. For ordinary firm rocks the ultimate strength is such that 
a column of from one to several thousand feet in height would be needful 
to produce at its base a pressure sufficient to induce rupture. Conse
quently, in masses of such material from a few score of feet to a few hun
dred feet in thickness, gravity plays but a small part compared with 
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rupturing stress; and portions of the rock having dimensions of this order 
may often properly be regarded as homogeneously stressed. When large 
masses are similarly strained, gravity may determine in which of several 
directions, all equally stressed by external pressure, rupture will take 
place. Cases of such determination I have discussed in a former paper.* 

Effects of direct Pressure.-A direct, uniformly distributed pressure of 
sufficient intensity, applied to an elastic brittle mass presenting great re
sistance to deformation, would induce fracture. The ruptures would take 
place along those lines subject to the greatest tangential strain, since 
these are the directions in which the material would first be strained 
beyond endurance. These lines would stand at 45° to the line of force 
if the mass presented infinite resistance to deformation. If this resist
ance is not infinite, they will stand at greater angles to the line of force . 

. The angle which the normal to the direction of rupture makes with the 
line of force is called win the discussion of the strains (see p. 34). 

There will generally be more than one direction of rupture, and in 
masses the thickness of which in the direction of pressure is considerably 
smaller than the lateral extension, there will often be four systems of 
parallel fissures, two systems answering to each of the two equal shears 
arising from simple pressure. If, however, there is any inequality of re
sistance in the plane perpendicular to the line of pressure, whether this 
is due to the character of the mass under pressure or to inequalities in 
the support which this mass receives from its surroundings, the strain 
ellipsoid will have three unequal axes, and rupture will take place only 
in the plane of the greatest and the least of these axes. In this very 
common case the mass will be divided into columns, with angles de
pending upon the strain. When the mass is large and the pressure is 
horizontal. gravity opposes the tendency of the vertical axis of the strain 
ellipsoid to elongate, and rupture will tend to take place by relative 
motion in horizontal planes, separating the rock into vertical columns. 
The constraint of surrounding masses may outweigh this tendency. 

Something can be said of the spacing of the fissures thus formed, but 
this subject can be most conveniently discussed under the head of in
clined pressure. 

If the pressure continues after rupture has occurred, the blocks or 
columns will grind against one another producing slickensides, and 
sometimes further ruptures, of which the discussion will also be deferred. 

Many rocks under the actioi1 of direct pressures rapidly applied behave 
approximately as highly elastic brittle masses of great rigidity, and in 
these cases the range of the planes of maximum strain is practically nil. 
Consequently, systems of fissures at sensibly right angles to one another 

•Bull. Geol. Soc. Am., vol. 2, 1891, p. u2. 
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are not infrequent, nor is it very unusual to find such a pair of systems of 
fissures accompaniell by a ·second similar pair in a plane at right angles 
to the first. The residual blocks are then bounded by fr~m four to eight 
planes. In the last case four of the planes are parallel to the other four.* 

In many cases the rock does not rupture without previous deforma
tion of considerable amount. When this happens the lines of rupture 
make an angle of more than 45° with the line of force. The normal to 
the direction of rupture then makes an angle w with the line of force, 
and this' angle decreases with the deformation. If the deformation were 
very great, as it would be with a mass of india-rubber, w would approach 
zero. If the direct pressure were relieved by rupture and the rock were 
perfectly elastic, the residual fragments would recover their original 
shape, and their acute angles would then lie in the line of force. 

Thus when rocks show fissures cutting one hnother at acute angles 
it is certain that finite deformation has taken place. If the mass has 
remained under tension, the line of force when direct bisects the obtuse 
angles. If the mass has been relieved of pressure and the rocks have 
acted as elastic masses, the line of force bisects the acute angles. 

It is usually possible from general. conditions to judge which of two 
rectangular directions is the more probably that from which a rupturing 
force has acted. I have, however, never yet met an instance in which it 
seemed to me that the line of force bisected the acute angles of fissure 
systems. Orogenic forces are commonly very persistent, and even if a 
mass behaved as substantially elastic up to the moment of rupture, it is 
improbable that the residual blocks would continue capable of regaining 
their original shape after the lapse of, say, even a few years. In many 
cases it is quite clear that deformation has become permanent. Thus I 
have examined very numerous pebbles in conglomerates, some of which 
had been much flattened by pressure and others also much fractured. 
The direction of flattening was then a certain indication of the direction 
of force, and this direction bisected the obtuse angles between the fissure 
systems intersecting the pebbles. In other cases the character of slicken
sides and accompanying faults shows that no reversal of motion has 
taken place, and that the residual masses must have lost the elasticity 
which they seem to have exhibited up to the moment of rupture. 

Observations on artificial structures seem to confirm this opinion. It 
has been pointed out by Mr. Clarence King and others that slabs of 
marble supported at their ends or corners gradually sag toward the 
center. So, too, in old buildings, such as the Alhambra, I have seen 
slabs of rock very much bent by end pressures acting for hundreds of 

*When a rock fragment is bounded by planes with more than four differently directed normals, 
it must haV<• undergone successive ruptures. 
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years. This does not imply that there is no true elastic limit, but only 
that it is lower than brief laboratory experiments would lead one to 
suppose. Were there no elastic limit, it seems to me that we should 
find, for example, quartz crystals in vugs among the more ancient rocks 
sensibly distorted by their own weight. 

Usually then the line of a simple, direct pressure which has produced 
two or four systems of fractures in large rock masses, or in the pebbles 
of conglomerates, will be found to bisect the obtuse angles between the 
fissures as the mass now stands. In any case, where it is suspected that 
the line of force bisects the acute angles between fissures, the slickensides 
should be minutely examined to ascertain whether they show reversal of 
motion, and all the attendant phenomena should be investigated. 

When a simple pressure on a rock mass increases very gradually, it 
will for some period exceed the elastic limit of the rock and fall short of 
the ultimate strength. Flow must then take place. The only feature of 
this flow which will reveal itself to observation will be the relative move
ments of adjoining particles. Hence, although the path in space of each 
particle will be hyperbolic,* the evidence of movement will indicate rela
tive transfer of adjoining particles in opposite directions along lines of 
maxiinum tangential strain. The energy of this relative movement will 
evidently increase with the excess of the pressure above the limit at which 
flow begins, sometimes called the limit of solidity. 

Thus, if one supposes the pressure suddenly to surpass the limit of 
solidity and then to be kept constant, the mechanical effects of the rela
tive motion (and the chemical effects attending the expenditure of energy) 
will be very pronounced on the lines on which flow begins. As the pro
cess continues and the st.ress diminishes with the increase of the area of 
the mass, the lines first affected will make an increasing angle with the 
line of force, while the new fibers of the material which are forced into 
the direction of maximum strain will be less and less affected. 

The result will at least resemble schistose structure and will be marked 
by the presence of lines of relative movement intersecting one another at 
very acute angles. In the case of direct uniform pressure there will be 
four such sets, each set at a large angle to all the others. 

If the load were to increase in the same proportion as the area of the 
loaded mass, so that the stress would be kept uniform, an indefinite 
amount of flow might be produced, provided that the rock is not hardened 

*During flow there is no progrP,ssive change of volume. Hence, a point for which at the incep· 
tion of flow x =I, y = 1, will he moved to a point x', ~/,and x't. y' = 1. 'l'he curves of this form are 
sometimes called the lines of flow. They would be more aptly called lines of ab•olute movement. 
They should carefully be discriminated froin the Jines of relati-ve movement, which are straight. 
The latter are t.he only ones of which the deformed mass can give direct evidence. In the case of 
simple shear the lines of absolut.e movement are simple hyperbolas asymptotic to the axes. 
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like drawn wire. If the fl.ow were very great (literally infinite) the lines 
along which relative movement took place at the inception of strain 
would become horizontal. The schistose partings would then in each set 
range through the angle w. 

Relative motion, in a mass subjected to direct uniformly distributed 
pressure, can only take place perpendicularly to the line of pressure when 
the strain ellipsoids are infinitely thin discs or when the rigidity is zero. 
In other words, only liquids, viscous or otherwise, can act in this manner. 
The behavior of semi-fluid material, like wet clay, approximates closely 
to that of a viscous fluid. . 

Rigid Disc in resisting Medium.-The behavior of an elastic mass under 
simple pressure lead~ to an extremely simple method of proving a 
dynamical proposition of much importance to geologists. A simple 
pressure acting against a resistance converts any sphere of unstrained 
matter into an oblate ellipsoid of revolution, the minor axis of which is 
in the direction of the pressure. If the constant pressure were to exceed 
the constant resistance, the mass would move in the direction of the 
pressure and of the minor axis of the oblate ellipsoid. Now, it is a well
known fact that the whole or any portion of an elastic mass which is in 
equilibrium, whether at rest or in motion, may be supposed to become 
infinitely rigid without disturbing the equilibrium. This is an almost 
self-evident proposition, for a mass is in equilibrium only when there is 
no influence tending to change its form, and it therefore makes no differ
ence whether this form is capable of change or not. Hence in the present 
case the strain ellipsoid may be supposed replaced by a rigid mass. 
Consequently a rigid ellipsoid of revolution moving under the influence 
of a pressure against a resistance will be in equilibrium when it opposes 
its greatest surface to the resistance. 

Similarly an elastic sphere under tension becomes a prolate ellipsoid, 
and consequently a rigid prolate ellipsoid moving under the influence 
of tension agaim't resistance will be in equilibrium when its longest axis 
coincides in direction with the tension. 

If a cube were circumscribed al;>out either of these spheres, with four 
of its edges in the direction of the force, it would become a rectangular 
parallelopiped with sides parallel to the axes of the ellipsoid. Any plate 
or rod may be made up of a single layer or row of such flattened or 
elongated cubes. Hence any rigid disc or rod moving against a resist
ance under the influence of pressure will be in equilibrium when its 
smallest dimension is in the direction of pressure. If it moves under the 
influence of traction, its longest axis will fall into the line of traction. 

If a flattened pebble is dropped into a running stream, the water will 
exert a pressure upon the stone until its inertia is overcome, and during 
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this time the pebble will tend to swing across the current so as to present 
its greatest area to the pressu~e. As soon as the resistance due to its 
inertia is overcome, the pebble will si1~k through the water as if the fluid 
were at rest till its edge touches the bottom, and it will then tip down 
stream till it meets support. In rapid steams irregularities in the bottom 
cause local upward currents, which project pebbles into the main current 
much as if they had been dropped into it. These pebbles sink to the 
bottom again where the movement of the water is more uniform. Many 
pebbles thus deposited will, with few exceptions, be inclined down stream 
and will rest against one another, like overlapping tiles. 

This relation explains the fact that both in modern streams and in the 
ancient river channels containing the auriferous gravels, many of which 
have been tilted since their deposition, the pebbles, as miners say, 
''shingle up st.ream," or, as zoologists would express it, "imbricate" 
toward the source. Elongated, rod-like pebbles are usually found lying 
across the channel. The indication afforded by this behavior of pebbles 
seems entirely trustworthy so far as the local current is concerned. In 
applying it, however, it must be remembered that powerful streams are 
often accompanied near shore or close to obstructions by local " back 
currents," in which the pebbles would be arranged in a direction opposite 
to that of the main stream. 

If a flat pebble or a mica scale is allowed to subside in relatively quiet 
water, the fluid may be considered as exerting a pressure on the lower 
side against a resistance due to the action of gravity on the stone. The 
disc will then tend to assume a horizontal position. It is for this reason 
that allothigenetic mica scales in sandstones or other rocks usually follow 
the direction of the bedding. In massive sandstones this is an assistance 
in determining the true stratification. 

A very familiar illustration of the action of the strain ellipsoid moving 
against resistance is afforded by a bubble of gas rising.through still water. 
The spherical bubble is compressed to an ellipsoid, which might be re
placed by a rigid mass of the same density, and it rises with its equator 
in an almost perfectly horizontal plane. 

On beaches pebbles are sometimes imbricated for a few feet in one or 
another direction and sometimes lie nearly flat. The constant reversal 
of the currents due to breaking and retreating waves prevents any exten
sive methodical arrangement, and this fact is of assistance in discriminat
ing marine gravels from river deposits. 

There are also instances of the almost self-evident fact that a rod-like 
mass moving under the influence of traction, like a vessel under tow, will 
move end on. In glassy rocks, such as many rhyolitcs and andesites, 
the mass often shows a banded structure, marked by the presence of 
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microlites, most of which are parallel to the banding. These microlites 
are no doubt of greater density than the glass, but, on account of the 
viscosity of the melted glass and the enormous surface per unit volume 
which the microscopic prisms expose, they cannot be supposed to attain 
their actual arrangement as a result of gravity like the mica scales in 
sandstone. On the other hand, if one supposes an irregular orientation 
of the microlites in the glass, and that tangential motion has been set up 
between adjacent layers of the viscous mass, every microlite standing 
across the direction of relative motion would be swung into the line of 
relative motion by the opposite traction exerted on its two ends by the 
moving layers. It appears to me, therefore, that "rhyolitic structure" 
indicates "shearing motion" or, as I have called it, scission in the direc
tion of the banding.*· 

Inclined Pressure and yielding Medium.--An inclined pressure acting on 
a tabular mass of rock is equivalent to a direct pressure and a tangential 
force. This last, with the resistance necessary to keep the center of 
inertia of the rock at rest, forms a couple. If the rock is surrounded by 
masses of comparatively feeble resistance, it will then rotate until the 
couple is exactly balanced by the resistance to rotation. The rock is thus 
subjected to the action of a simple pressure and two balanced couples; 
constituting a simple shear, neither of the axes of which coincides with 
the line of pressure. 

As has been shown above, the strain produced by a pressure and a 
shearing stress is a rotational one, the amount of rotation, however, being 
small as compared wjth that involved in some other strains. One of the 
directions of maximum tangential strain will therefore sweep over a 
greater range of material particles than the other, or will affect a given 
set of particles for a shorter time. That set of planes of maximum strain 
which shifts its position more rapidly will encounter greater resistance 
from viscosity and will produce the smaller effect. 

If the mass is strained beyond the elastic limit, but not to the point of 
rupture, a schistose structure will result, but one set of schistose partings 
will be confined to a somewhat smaller angle thari the other and the 
more pronounced partings will be associated with the smaller angle. 

If the pressure is intense enough to produce rupture, fracture will take 
place chiefly along the partings which have the smaller range. 

The axes of the strain ellipsoid will bisect the angles which the last 
schistose partings make with one another, and the minor axis of the 

*The above discnssion is incomplete. A full treatment would ol course assign a definit3 value to 
the couple which resists the tilting of a disc moving in a fluid. The reader will find the subject 
more fully developed in Thomson and Tait, Nat. Phil., section" 320-325, wiLh interesting instances. 
That discussion is decidedly dif!icnlt, while the main points in which geologisLs are intorested 
seem to be adequately demon .• trated by the exceedingly elementary method here present.ad. 

IX-BuLr .. Gr.or,. Soc. AM., Vor .. 4, 1892. 
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· strain ellipsoid, or the direction of maximum compression, will lie 
between the line of pressure and the compressive axis of the additional 
shear. 

·when the rock is ruptured without sensible deformation the strain 
unq.er discussion will not be rotational and will be indistinguishable 
from that which would result from a simple shear; for in the x y plane 
one of the shears arising from direct pressure cooperates with the she~r 
resulting from the preliminary rotation, and their combined effect will 
be greater than that of the second shear in the y z plane arising from the 
direct pressure component. 

The character of the finite strain is best seen by an illustration such as 
that in the diagram, figure 6, A. 

,--'(1-~, 
I 

:~: 
I I 

L-------
I ______ _ 

A· B. 

FIGURE 6. -Strained Cubes. 

The dotted squares are strained to the rhombs, drawn with full lines. A results from two shears 
at 45° to one another, the ratio of each shear being 5 / 4. B results from a shear and a scission, the 
ratio of each of the two shears involved being also 5 i 4. '!'he central crosses mark the direction of 
the ellipse axes. The angle R is the material angle through which one set of plrmes of maxim um 
tangential strain sweeps, and r is the other corresponding angle. In A, R-r = v- /J. = 2" 45'. In 
B, R-r=l5°21'. 

Inclined Pressure and unyielding Resistance.-When a tabular mass of 
rock subjected to inclined pressure rests against a mass which does not 
yield considerably, the free couple which results from the tangential 
component of the pressure and the resistance of the supporting mass can 
only be equilibrated by strain in the rock itself. The strain will there
fore include as one component a shearing motion or scission. 

This strain is rotational, the angle of rotation being far greater in this 
case than in that of a yielding support. The rotation is here of the same 
order as the strain. Consequently one set of planes of maximum tan
gential strain will sweep through the mass much more rapidly than the 
other, and the difference in their action will be very pronounced. The 
nature of the distortion is seen in figure 6, B. 
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Partial Theory of the Spacin,g of Fis8nres.-When a slab of rock resting 
broadside against an inflexible support ruptures under the influence of 
a pressure inclined to the supporting plane, it is easy to see that the 
pressure can be relieved only by several cracks, which must divide the 
mass into sheets bounded by planes of maximum tangential strain. 
Such a division is extremely common on a large scale in granite and 
other relatively homogeneous masses ; on a small scale it is frequent in 
the pebbles of conglomerates which have been subjected to pressure. It 
is therefore very desirable to ascertain the conditions which determine 
the thickness of the sheets. 

A slab of rock must evidently rupture in such a manner as to relieve 
the pressure upon it, and this relief must be accompanied by a readjust
ment of the fragments. This consideration at once assigns a superior 
limit to the spacing of the cracks. Suppose, for example, that in a case 
illustrated by the following diagram cracks were to form only at a and c, 
then, since a perpendicular from the upper end of a falls between a and c, 

a c 

c 
FIGURE 7.- Widest possible Spacing of Fis.~ures. 

the fragment a a c c cannot rotate_ without increasing its vertical dimen
sion, and the pressure cannot be in any way relieved by the ruptures. 
But if a third crack, b b, is so placed that its lower end is perpendicularly 
below the upper end of a, the fragment a ab b can be rotated so as to 
decrease the vertical dimension, and thus to relieve pressure. Hence 
the cracks must be at least so near to one another that the terminations 
of adjacent cracks are· in vertical lines, and the higher the angle which 
the cracks make with the fixed plane, the nearer must they be to one 
another. This, however, is an extreme case; for an infinitesimal rota
tion of the vertical line a b about any point of it would not diminish the 
thickness of the mass. The actual distance between fissures must there-
fore. be less than that assigned by this limit. • 

\Vhen the process of straining is so slow that the mass can fully adjust 
itself at each instant to the external force> (an important limitation) it 
seems impossible to avoid the conclusion that the actual spacing will be 
such as to depotentialize the greate,;t po>sible amount of energy for a 
given length of fissure. In other words, the cmcks will be so disposed as 
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to "do the most good." If so, the spacing can be determined if one can 
succeed in expressing in exact terms the depotentialization of energy per 
unit length of crack. 

The lines of maximum tangential strain make angles w with the major 
axis of the strain ellipse, When the strain is due to a pressure at a posi
tive, acute angle <p with the fixed plane (parallel to ox), the major axis 
makes an acute negative angle v with ox. That set of planes of maxi
mum tangential strain which have the smaller range during the process 
of strain, and upon which there is the least viscous resistance, then makes 

. an angle w + ~ with ox. 
Let w be the thickness of one of the sheets into which rupture may 

divide ~he slab of rock, and let•? be the angle which the diagonal between 
the obtuse angles of the sheet makes with o x, as indicated in the follow
ing diagram, figure 8. Then, if the thickness of the slab at the moment 
of rupture is 2 l, a little consideration shows that-

w = 2 l cos (v + w) { 1 - tan (v + w) cot {) } · 

It is evident that the total length of the cracks is inversely propor
tional to the thickness of one sheet or to w. 

FIGURE 8.-Sp<1cing of Fissures. 

To determine the relief of pressure it is convenient to begin by con
sidering a mere change of strain. Suppose a slab to be in equilibrium 
under the action of a simple, direct pressure. Let the mass now undergo 
a small change in physical properties, such that it yields by a small 
additional amount to the pressure. Then the potential energy of the 
system is diminished in proportion to the amount of this secondary 

• yielding, measured in the direction of the force. Only one fiber passing 
through the center of the mass, however, will move solely in the same 
direction in which the pressure acts, all other particles moving on hyper
bolic lines. 

If the pressure were inclined to the surface at an angle q;, the depoten
tialization of energy under similar circumst~nces would also be measured 
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by the movement of particles in the direction of the pressure, irrespective 
of the movements which they execute in other directions. 

The rupturing of the slab into sheets may be regarded as a change in 
its physical properties such as is contemplated above. 

----------------------~---------------------a 

FIGURE 9. 

Cu& a shows the same mass as figure 8, the sheets now being rotitted through a small angle a by 
the pressure acting in the direction cf>. Cut b represents the corner c' or"one sheet on an enlarged 
scale, together with the original position of this corner at c. 

The line d r is the distance measured in the direction of the force 
through which the point c has moved in passing from c to d, so that c' r 
is proportional to the depotentialization of energy. The angle of rotation 
being small and arbitrary, say, fJ, the angle cc' i = 1'J and-

cos 1? 
(d r) =(cc')-.-· sin <p 

Then, too, (cd) = (oc) o = l fJ /sin i'I, so that the relief of pressure varies 
with the line-

l IJ 
. (d r) = -.- cot 1?. 

S'ln IP 

The relief of pressure per unit length of crack therefore varies with-

w (c' r) = ~ [' 0 cos (v + w) { 1-tan (v + w)} cot 1?· 
s-in 'I' ta.n 1'1- ' 

and to find the distribution of fissures which will ensure the greatest 

,, 
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depotentialization of energy per unit length of crack, it is only necessary 
to determine the value of·~. which will give the last expression a maxi
mum value. This problem leads at once to-

2 tan (v + w) =tan {J, 

or-
W = l COS (v + w ), 

a result of very convenient simplicity. 
Thus far it has been assumed that only one s,et of fissures forms in the 

slab. This case is of frequent occurrence in rocks, but it is not much 
more frequent than the appearance of two sets of fissures forming large 
angles to one another. Under conditions such that viscosity does not 
essentially modify the results, there should be as great a tendency to 
form fissures on the other set of planes of maximum tangential strain, 
making an angle w - v with ox, as on those planes discussed above. 

When two sets of fissures form at large angles to one another thet'must 
seemingly develop simultaneously; for, if a single set of sheets were to 
form first, and secondary fissures were to be produced by the grinding of 
the sheets against one another, it is easy to see that the secondary fissures 
would make but a small angle with the primary divisions, and there 
would be more evidence of movement on the first fissures than on the 
subsidiary cracks. Th~se cracks would also not in general pass from one 
primary sheet to the next. 

When the two sets of joints form simultaneously, each set must form 
under similar conditions, and I can think of no reason to suppose that 
they do not form independently. Hence the theory already developed 
seems to apply also to the second set of fissures, the only change needful 
being the substitution of w - v for w + v. 

The results derivable from this theory of division certainly accord with 
some well known facts. Thus, if a tough mass is acted upon by a shear
ing tool, it is a matter of daily experience that the mass undergoes a 
single cut, For this case viscosity comes into play, and by the theory 
only one set of fissures wil1 be developed, cp = 0, w + v = 0 and w = l, 
which means that only one fissure will intersect the mass. Again, if one 
attempts to cut a brittle substance like glass with a shearing engine, the 
mass, according to experience, shatters instead of simply dividing. By 
the theory as applied to this case the elastic deformation is extremely 
small, neither set of planes of maximum tangential strain has a sensible 
range, and (J) + v = 0, while (J) - v = 90°, nearly. Hence only a single 
fissure will tend to form in the direction w + v, but the mass will be 
divided into scales of almost infinitesimal thickness in the direction 
w - v. In other words, the theory substantially accounts for the facts. 
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In theory as in practice, only masses capable of considerable deformation 
under the system of external stresses can be divided by a single clean cut. 

This conclusion seerns to throw some light upon a general feature of 
geological fractures. In the laboratory rocks are very brittle substances, 
and every geologist has experienced a feelfog of surprise that in natural 
rock-exposures clean cuts in a single direction are so frequent. It now 
appears that cuts of this description can occur only when the stresses are 
such as to produce a consideral;>le elastic or plastic deformation of the 
mass. There is, of course, abundant other evidence that such stress 
systems really accompan;r orogenic movements. 

Examples of inclined Pressiire.-According to a famous theory developed 
by Navier and Poisson the ideal i8otropic solid is characterized by the 
property that in a simple elongation of small amount the linear lateral 
contraction is just one-fourth of the increment of length. - Though' most 
elasticians refuse to acknowledge the theoretical basis of this conclusion 
(viz, that the action between two molecules is reducible to a single force 
acting between the centers of mass), th~re is no doubt that several sub
stances, and especially glass, behave sensibly as this theory demands. 
As some rocks are glasses, it is certainly legitimate to assume, for the 

_ purpose of illustrating the theory of rupture developed above, that the 
relation 1/4 holds true.* 

Let a pressure Fact upon a slab of a rock fulfilling Poisson's ideal at 
an angle of 30° and let the mass rest against a rigid support. Then if 
U and Q are the horizontal and vertical components-

F./3 F 
U=-Fcos 30°=- -2-; Q= -Fsin30°=-2· 

If also n is the modulus of rigidity, it is easy to show and is well known i 
that-

e=g=--5L·J= 4 Q=-4e· b=Q 
10n' 10n ' n 

•Possible Test of Poisson's Hypothesis.-One of the obstacles attending the discussion of Poisson's 
solid and the question whether or not the coefficients of rigidity and compressibility for isotropic 
solids are independent consists in the fact that it is-difficult to determine Young's modulus and 
the modulus of' rigidity for the same body with sufficient accuracy to justify theoretical conclu
sions. There seems to be a method of direct compariso11 which would test the question if the 
experimental difficulties should not prove too great.. If llf is Young's modulus, 

f"- -Fsin cf>/ Mand b--Fcos cf> /n, 
or-

If, then, a testing machine were so adapted as to produce a pressure at 45° to a stationary plane, 
the deformation of a cube subjected to its action would give b / f and MI n. If Poisson's hypo.thesis 
is verified, MI n - 10 / 4. 

tCompare 'rhomson and Tait, Nat. Phil., section 683. For Poisson's solid 3 k - 5n. 
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Thus one may express e, f and g in terms of b-

-b f 4b 
e=g= 101/3; = 10 al~· 

The line of unaltered direction is then given by-

tan x =f-e 
b 

In the case of finite strain it has been shown that this angle preserves 
its initial value unchanged: so that if b = -1, f- e = - 0.2887. Since 
also e = - f/4, the following is a consistent set of displacements for 
<p = 30°: 

b = - 1 ; e = 0.0577; f = - 0.2308; g = e. 

Knowing the displacements, the corresponding values of v and w may be 
determined as has been shown in the earlier part of this paper. If these 
angles only are required they may be found from the following formulas. 
For any value of b when Poisson's ratio obtains-

tan w = J/(2 - 3 e)' + b' --V 25 e• + b'. 
s . ' 

2Ji(l+e)2 (1-4e) 

_ 2b(l-4e) 
tan 2 v - - (1-4 e)' - (1 + e)2- b2• 

For the present displacements the formulas give-

w = 28° 43'; y = - 22° 37'. 

For the spacing of the two possible sets of fissures, therefore

w = l cos ( w + v) = (1 - 4 e) cos ( w + v ), 

which for this set of displacements gives 0.765 and 0.481. 
Supposing that both systems of fissures form, the following diagram 

(figure 10) shows their disposition at the moment of rupture.* 

*Example for c/> - 60°.-It may be of int.erest to some renders to given second example of a sim ilnr 
strain. In the diagram. figure 11, the force is supposed to act at G0° to the plane of support: If, 
also, b - - Y,, the following values result: e - O.OSGG; f - - 0.3464; g - e; .,,. - 36° :15'; "'~ 32° 4'; 
• - -16° 32'; /L - - 32° 34'; h - 0.9172; A -1.2:l6; B - 0.575; c - 1.087; D - 0 tl - 0.869; IV~ 
0.630 or 0.432. The range for one set of planes of maximum tangential strain is u0 241, itnd for the 
other set 16° 261

• 
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It is apparent from the formulas that e and b fully determine w, Y and 
\11· It is also true that if the two values of w and the angles between the 

.,, 
,-------:--
1 

I L..! __________ 2_1 

FIGURE 10.-Results of Rupture by Pressure at 30° to fixed Piano. 

It is assumed that f = - 4 e and that b = - 1. Tints e = 0.0577 = g and f = -0.2809; "'= 31° 20'; 
w=28°42'; v=-22°37'; w=-51°19'; h=0.951; A=l.562; B=0.521; C=l058: D~0.926; 
w = O 765 or 0.481. •rtie range for one set of planes of maximum tangential strain is o0 41' and for 
the other 2so. 

cracks (or 2 w) were known by observation, the displacements and the 
value of <p could be deduced. The· two values of w would in such a case 
enable one to find > and e, while, when these quantities are ascertained, 

I 
I 
·---", - - - -- - - - -

I 
____ fil 

J<'rnun>: IL-Results of Rupture by Pressure at 6ou to fixed Plane. 

the formula for taii 2 > will give b. Finally tan rp = b/10 e. But to de
termine the direction of the force in this manner it must be shown that 

X-Bur.r .. GEor .. Soc. A>r., Vor .. 4, 1892. 
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the maso was rigidly supported and that it was subject to no lateral con
straint. Thus great caution must be exercised in applying this or any 
similar method to geological occurrences.* · 

Distortion on Planes of 11uiximnm Strain.-It has already been pointed 
out that the planes of maximum strain are not in general undistorted 
planes. Consider one of the planes making an angle w + v with the fixed 
plane and inquire what ellipse on this plane would answer to a circle of 
unit radius in the unstrained solid. Prior to strain this material plane 
made an angle rn with that radius of the sphere which ultimately forms 
the minor axis of the ellipsoid. This radius also originally made an 
angle - fl· wit~ o x. Hence it is easily seen that the original angle of the 
plane to ox is 90° - (rn- tJ.). 

If y is the original position of the extremity of the unit radius drawn 
on the intersection of this plane with that of x y-

y =cos (rn- fl.). 

If y is the corresponding ordinate after strain-

y' = (1 + f) cos ( w- p.). 

If the altered length of this radius is denoted by D, its value is given by-

D '/. (. ) (l+f)cos(rn-tJ.) 
= Y sin w + v = sin ( w + v) • 

It is easy to see that D is in general less than unity. Were the strain 
plane and undilational, D would be unity, and this case is realized in 
simple scission (or shearing motion), which may be tolerably frequent 
among rocks. For a simple shear D would also be unity, but this is a 
-strain probably seldom realized. vVhenever a compressive strain is 
accompanied by two shears the raidius in question undergoes contraction 
and is less than unity. 

On the other hand, the unit radius parallel to oz is elongated to 
1 + g = 1 + e = C by an inclined force. 
· Thus the ellipse on a plane making an angle w + v with ox, whose 
major axis is C' and whose minor axis is D, corresponds to a circle in the 
original mass. The strain involves a compression in the direction of 
w + v and an elongation in the direction o z. 

• Ln.'eral Constraint.-If a mass were not only supported on a rigid foundation but confined by rii>;id 
walls perpendicular to the fixed foundation and parallel to the horizontal component of the force, 
the strain is abo easily calculated on Poisson's hypothesis. Evidently g = o, nnd it is easy to see 
thnt f = - 3 e. Of courr-;~, b retain::- the sn.me value as if there were no lateral constraint. I am not 
aware that any particularly interestin~ results ariBe in this cnse, which differs from plain undila
tional strain only in the fact that there is cubical compression. It applies to Mr Sharpe's theory of 
slaty cleavage. 
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Various Rem.ills of Stra-in.-In the foregoing pages a theory of slow rup
ture has been presented, which will be supplemented a little later by 
considering the pos8ible effect of vibration in those cases in which the 
rupture is sudden. Obse1Tation seems to indicate that many rocks have 
been strained to the breaking point so gradually that the theory developed 
is applicable.* 

In applying the results reached to the elucidation of geological phe
nomena the physical character of the rock must be carefully considered. 
Some rocks when strained with moderate rapidity approach in behavior 
the ideal, elastic, brittle, non-viscous solid. In such cases an inclined 
pressure will produce two systems of cracks such as those illustrated in 
figures 10 and 11. If the mass is held in the strained state, so that the 
fragments have no opportunity to recoil, the direction of the force may 
then be inferred approximately by mere inspection. The plane in which 
it lies will be perpe)1dicular to the systems of fissures. Iis direction will 
intersect the obtuse angle made by the fissures, and it will make a smaller 
angle with the short side of tho parallelogram of cracks bounding a 
column of the rock than with the long side. The direction of the force. 
can be calculated exactly from the lengths of the sides.of the parallelo
gram and the angle between them, if Poisson's hypothesis is assumed. 

If the rock is viscous but not plastic (or if it is strained under such 
conditions as to bring the viscosity into play, but not to keep the rock 
for a considerable time in a state of strain exceeding the elastic limit and 
falling short of the ultimate strength), the effect of the viscosity on the 
long sides of the parallelogram will be far greater tha1i on the short sidef', 
because of the difference in range of the two planes of maximum tangen
tial strain. Hence fissures will form only in the directions of the short 
sides of the parallelogram and the rock will be divided into sheets. 

If the conditions are such as to develop both the viscosity and the 
plasticity of the rock-mass, flow will tead to take place parallel to the. 
short side of the parallelogram because of the inferior viscous resistance. 
If the plasticity is sufficiently great, the strain will not manifest itself as 
rupture in this direction, but merely as plastic deformation. If the plas
ticity is not sufficient to prevent all.rupture, it will at least diminish the 
amount of rupture needful to relieve the strain, and there will be mingled 
effects of deformation and rupture. 

These mingled effects might consist either in a wider spacing of this 
set of fissures or in the distribution of short cracks through the mass. 
Of these the latter seems the more probable. The area oorresponding to 

*Striking instances of the mpture of cast iron blocks are depicted in tile frontispiece of Tod
hunter•s History of Elasticity. In a general way Lhcy ncco1·d witl1 the theory developed in the 
text; but the blocks employed were too slenuer to give the full sygtem of fissures demanded by 
~he theory for slabs of moderate thickness and great area. · 
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one parallelogram of the figures must recei\'e a certain amount of relief, 
and if this is not entirely accomplished by flow it must be completed by 
rupture; but a rupture at each end of the parallelogram would relieve 
the strain without the help of flow. Thus it appears most logical to 
suppose that in such cases short" close joints" will be distributed through 
the plastically deformed mass, excessively minute variations in the resist
ance of the material determining their precise disposition. 

The set of planes corresponding to the long side of the parallelogram 
cannot behave in the same way as those already discussed. This set 
sweeps through the mass so rapidly that there is no time for flow of con
siderable amount to take place. Hence, if they receive expression at all, 
it must be as sharply cut fissures or as "master joints." 

Tlieory of Slaty Cleavage.-In considering what properties would be ex
hibited by a plastic, viscous rock which had been rigidly supported and 
subjected to a pressure inclined at a moderate angle to the plane of sup
port, it is difficult to sec how the mass would differ from true slate. The 
relative tangential motion along the set of planes which eventually makes 
an angle w + , with the plane of support would inevitably manifest itself 
as a cletwage, alternating in some cases with close jointing. In the direc
tion of oz, or perpendicular to the plane of the figures 10 and 11, this 
cleavage would be invariable. In the direction w +,the cleavage would 
be confined to a very small angle, less than one degree in the examples 
given above. Thus the mass would cleave very sharply along lines 
parallel to o z, less_ sharply along w + ,, Expansion wol:tld take place 
parallel to oz, while contraction would take place in the direction uJ + ,_ 
This contraction might be accompanied by a puckering of the cleavage 
surfaces, because the cleavage planes formed at the inception of strain 
would be still further contracted as strain progressed. The amount of 
relative distortion in the directions oz and w + , would vary with the 
direction of the force and the intensity of the strain. The only case in 
which there would be no distortion on the cleavage plane 9ccurs when 
the force is parallel to the fixed support. All of these peculiarities of 
this strain are characteristic of slate, and they seem to cover all of the 
principal properties of that much-debated rock. I shall return to the 
comparison of properties in a later portion of this paper. 

Influence of Shock.-Although the preceding discussion shows how 
sheets of rock may be produced by the action of orogenic forces, I am 
not satisfied that all fractures are produced in this way. There seem, in 
fact, to be instances in which the spacing of more or lms nearly rectangu
lar fissure systems is closer than can be accounted for on the assumption 
that the fissuring is of minimum amount. 
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If pressure is applied so rapidly that a considerable shock attends 
rupture, a corresponding quantity of energy will remain in the fragmental 
mass in the form of vibrations. These vibrations will take place along 
the lines of unaltered direction, making an angle z with ox. In the ex
treme case of scission this direction is also that of the line~ of maximum 
tangential strain. in every other case the vibrations will occur at an 
acute angle to the planes of maximum strain, and in no instance will 
they be perpendicular to these planes. 

At the instant when the rupture takes place the whole maHS is strained, 
in one or more directions, to the limit of endurance. Rupture and the 
inception of waves of compression are simultane()U3, and these waves are 
propagated from the surfaces of primary rupture, but not perpendicularly 
to them. The waves must interfere and, where they intensify one another, 
there must be resultant shearing couple;; in the direction of the planes of 
maximum tangential strain. These waves must be propagated at the 
same rate that relief of pressure takes place, a rate dependent upon the 
properties of the mass. If, then, the wave3 are of considerable ampli
tude, it appears to me that on those surfaces at which they reinforce one 
another, they must intensify the strain beyond the limit of endurance. 

Thus there seems sufficient reason to believe that a pressure very 
rapidly applied, producing primary ruptures attended by shock, will be 
immediately followed by secondary ruptures in the same direction as the 
others at intervals dependent upon the wave length of the impulse. In 
much the same way a high explosive shatters a rock far more than black 
powder. 

A phenomenon of which no explanation has been offered in this paper 
is that of thick slates and of those flags which are to be considered as very 
thick slates. These, though cleavable to a certain thinness, are not capa
ble of further splitting. Such rocks indicate a flow which is not uniformly 
distributed through the mass, but, on the contrary, passes through maxima 
at intervals corresponding to the thickness of a slate or flag. It is pos
sible that at the inception of strain such masses were in a state of tremor 
so intense that the interference of waves determined surfaces along which 
flow began. These surfaces would pe weakened by the flow, and further 
f'ltrain would be distributed among them rather than over the intervening 
solid sheets. Effects of a similar kind are produced on a pile of sheets 
of paper, such as "library slips," resting on an inclined, cloth-covered 
table which is jarred by rapid blows. 

The question would seem to be one of the direction and intensity of 
the vibrations rather than of their existence. The tendency of rectilinear 
motion to pass over into molar vibrations of rapidly decreasing period is 
so strong as to make it most improbable that such a distortion as is in-
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volved in the formation of slate should ever be unattended by vibrations 
of sensible amplitude.* 

Though this hypothesis of thick slate3 seems probable enough, I am 
not able to offer a detailed explanation of the process or to show under 
what conditioi1s thick slates would form rather than thin ones. 

Secondary Action on ruptured Rock.-It often happens that the pressure 
which causes such systems of fissures as have been treated above is not 
fully relieved by these ruptures and the small relative movements in
separable from rupture. If pressure continues on the divided mass the 
results will vary with circumstances. When the pressure is oblique and 
the mass is divided only into sheets, faults of considerable throw may 
take place. I have previously discussed the distribution of motion in 
such a system.t It appears from the present investigation that a simple 
fault arises from pure sciAsive stress, while distributed faults are due to 
pressure combined with scissive stress, or, in other words, to oblique 
pressure. Thus a distributed fault is much the more general case and, 
in my observation, much the n1ore common. A solitary fault is an ex
treme and very special case of a distributed fault. 

At the instant of rupture there is very little normal pressure between 
the sheets or blocks of rock, but as rotation progresses the pressure tends 
to increase. Extensive movements are therefore accompanied by a forci
ble grinding of the fragments agai11st one another. At first the stresses 
called into play are but little inclined to the surfaces, and the result is 
often to produce slaty structure close to the surfaces of the fragments. 
I have observed very many cases in ;vhich large blocks of granite showed 
slaty cleavage close to the bounding surfaces which had evidently been 
produced in this way. The cleavage was certainly in part due to close 
jointing, but in most cases the cleavage faded out at some little distance 
from the edge of the mass, and the inner portion of the slaty selvedge 
must therefore have arisen from st.rain without rupture (Heim's Um
formunp ohne Bruch). Such slaty selvedges thus furnish important 
evidence as to the. manner in which slate is formed in nature, evidence 
entirely accordant with that afforded by experiment. 

'Vhen the secondary pressure becomes more nearly perpendicular to 
the faces of the sheets of rock, these may themselves be divided into 
secondary sheets, and a continuance of the process will reduce the rock 
to a confused rubble. 

Effect of tensile Stresscs.-J ointing has been referred to tensile stresses 
by several authors. lt is therefore desirable to examine what effects 
tensile stress can have upon homogeneous substances. To give abstract 

*See Am. Jonrn. Sci., vo1. xxxi, 188G, page 115. 
tGeology of the Comstock Lode, U.S. Geo!. Surv., monograph iii, chapter 4. 



SECONDARY RUP'rURES. 69 

ideas a concrete form, suppose that a hot cube of homogeneous matter 
were to be cooled from one side only, and that the cooled surface under
went contraction. This contraction would produce tension throughout 
the cooling surface, excepting at the edges, so that the surface would 
assume the form of a very shallow dish, as illustrated in the following 
diagram: 

FmuRE 12.-Contraction of Mass cooling from one Side. 

Since the tension would be zero at the edge,· it would clearly be greatest 
at the center, and here rupture would take place in the surface film when 
the tension reached the limiting value. The tension at the center might 
be relieved by cracks of various characters. A single straight crack would 
relieve it only in one direction, and would, in fact, tend to increase ten
sion in the direction of the crack, because the crack must gape, and its 
edges would therefore slightly exceed its median line in length. This 
form of rupture is therefore impossible under symmetrical conditions. 
The same objection applies to two cracks forming a letter T. Complete 
relief at the center would be afforded either by an X-shaped crack or by 
one in the form of a y. Of these, the latter has the smaller total length 
for a given intersected area. Now, the cracks will clearly form in such a 
manner as to afford the greatest amount of relief per unit length of crack, 
and hence the rupture will take the shape of the letter Y. This will 
afford total relief at the center and partial relief at surrounding points. 
This relief, under symmetrical conditions, must be equally distributed, 
and therefore the three cracks must make with one another angles of 
120°. 

This simple inference is confirmed·by observation. Thus, if one allows 
a vessel containing melted wax to cool slowly, an excessively thin trans
parent film forms on the surface. Then a minute opaque Y becomes 
visible near the center. This is due to the cracking of the film and the 
great acceleration of the process of solidification on the sharp exposed 
edges. So, too, a slight blow on glass oft.en produces cracks in the same 
shape. Cracks in asphalt pavemerits frequently show a tendency to the 
same form; so do those in drying mud, and many of the divisional sur
faces in columnar lava meet one another at angles approaching 120°. 

As the cooling progresses the cracks must extend from the center; but 
the longer they are the less is the relief which they afford in the circle 
circumscribing their extr~mities and, unless the cooling area is . small, 
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other cracks must form. Either, then, rupture will take place at new 
centers or the original cracks will. branch at their ends. A g1:eater 
amount of relief for a given length of crack will be afforded by the latter 
method. The branches will be thrown off at angles of 120° for the same 
reason that the first cracks formed this angle. As the process continues 
the branching will be repeated, and it is evident that the surface will be 
divided into regular hexagons. The more slowly the cooling progresses 
the smaller will b.e the tension in the exposed surface and the largPr will 
the hexagons be. 

11,IGURE 13. -~Primary tension. Cracks. 

In some cases tension may accumulate in one of the hexagons after 
division to such an extent that a secondary rupturing takes place. This 
too will begin by three radiating cracks at the center, and these must be 
perpendicular to the greatest tensions or to the lines joining opposite 
angles of the hexagon. They will thus divide the hexagon into inequi
lateral pentagons, and the secondary fissures will be at right angles tc. 
the sides of the hexagon. 

' ' ' ' --------{ 
' ' ' 

' , 

' 
' 

FrounE 14.-Secondary tension Cracks. 

The tensions are due to stresses acting at the isothermal surfaces and 
tangential to them. Hence, if the mass cools faster at one side than at 
the other, the resulting columns will be curved and will everywhere be 
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perpendicular to the isotherms for which the tensions reach the limit of 
cohesion. 

Each of the columns cools as a separate body, and if the following 
figure represents a vertical section of one of them, the dotted lines approxi
mately represent the position of the isotherms. In the separate column 
the tension will be greatest at the edges, because these, exposing a great 
surface per unit volume, will chill most rapidly. When the column has 
reached a sufficient independent length, the tension on the edges will be 
so great that they will rupture perpendicularly to the isotherms. These 
ruptures will cut inward from the sharp edges and divide the columns 
laterally by cup-shaped surfaces. The interval between these vertical 
subdivisions of the column depends on the amount of tension which the 
mass can stand without rupture, and will evidently be of the same order 
as the diameters of the columns themselves. 

Frnu&E 15.-Cooling of Columns. 

The foregoing deductions all correspond very closely to the phenomena 
of columnar structure in ma;ssive rocks. Ba:mlts, diabases, and the like, 
however, are far from being homogeneous, and it is surprising that the 
surfaces of the columns should be so smooth. If one were to cut a 
suitable bar of diabase and break it by tension in a testing machine the 
fracture would certainly be much rougher than the side of a diabase 
column. This seems to be accounted for, at least in part, by the fact that 
rupture probably takes place immediately after solidification of the 
groundmass and before any difference in rate of cooling between the 
embedded crystals and the groundmass has locally weakened the cohe
sion of the latter. When masses of mud in drying out split into columnar 
fragments, the torn surfaces are less smooth and the divisions less regular.* 

REvrnw oF TnEoRrns oF SLATY CLEAVAGE. 

Why Needfiil.--Bo little attention has been paid by geologists to systems 
of faulted fissures that the field may be said to be a new one. I know 

*There is an intimate connection between the problem of columnar structure and that of the 
division of space with minim nm partitional nren. See an investigation of the latter subject by Sir 
William Thomson (Lord Kelvin), Mittag-Leffiers Acta Math, vol. 11, 1887-'88, p. 121, and Plnt.el\11, 
Statique des Liquids, vol. L · 

Xl-Bu1.r .. G1mr .. Soc. A11., VoL 4, 1892. 
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of no serious attempt to deal with the mechanics of the subject prior to 
a paper already cited, in which I discussed those cases of rupture in 
which the deformation could properly be regarded as infinitesimal. The 
results there reached have been born out by further observation. In 
this paper the investigation has been extended to cases of faulted fissures 
in which deformation of the rock is finite, and the conclusions certainly 
accord with very numerous observations which I have made in the Sierra 
Nevada of California and elsewhere, nor are any facts known to me which 
seem in conflict with the theory presented. 

On the other hand, jointing and slaty cleavage have been much dis
cussed. Some authorities regard them as closely allied, while others 
refer them to radically different causes. Many experiments have been 
made on slaty cleavage and various theories have been propounded to 
account for it. The theory here advanced is new, and I may say that it 
is a surprise to myself. I have long felt that the theory which refers 
slaty structure to a pressure perpendicular to a fixed plane of resistance 
and parallel to two lateral constraining planes was unsatisfactory. The 
combination seems too artificial. The chances against its occurrence 
seem too large when the frequency of slaty structure is considered. I 
did not anticipate, however, that analysis would show so large a range 
of conditions under which slaty structure might result, and I entertained 
the idea that if a slanting force produced slaty cleavage the force would 
slant in the direction of the grain of the slate. I have been led by purely 
algebraical reasoning to believe that the force may be inclined to the 
fixed plane within very wide limits, covering at least 60°, and that in 
all cases the plane of the force is at right angles to the grain of the 
slate. 

Under these circumstances it is absolutely necessary to pass in review 
the principal theories hitherto advanced and to compare the new theory 
with the results of experiment and observation. 

Origin of Jointing.-J oints are commonly nearly plane surfaces dividing 
rock masses and arranged in groups, the members of which are parallel 
to one another. Fault fissures are also frequently arranged in similar 
groups, and show similarly flat surfaces, the term joint being employed 
when the amount of relative motion on the divisional surfaces is imper
ceptible or is regarded as negligible. Jointing has been referred to ten
sile stresses by distinguished authorities, including \V. Hopkins, but the 
correctness of this reference has bee1} questioned. Thus, Professor \V. 
King,* after special investigation, stated his opinion that, in their original 
condition, the walls of joints were in close contact, and protested against 
the classification of columnar structure with jointing. Mr G. K. Gil-

*Trans. R. Irish Acad., vol. 25, 1875, p. 605. 
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bert* also draws a contrast between the divisions of a mass due to 
shrinkage cracks and those known as jointing. 

There can be no question that jointing is due to mechanical causes; 
for joint planes cut through conglomerates with almost the same regu
larity that they divide the most homogeneous rocks. They must, there
fore, be due either to tensile stresses or to compressive stresses. In the 
former case the joints must gape when first formed. I am fully satisfied 
that Professor King was correct in asserting that the surfaces are usually 
in close contact immediately after rupture. In very many cases disloca
tion has taken place on jointed surfaces and, where this has occurred, 
any irregularity in the surface will force the walls asunder. 

It has been shown in the preceding pages that the columnar structure 
of lava is easily accounted for, but I know of no way in which such a 
system of divisions as occurs in jointing can be accounted for by ten
sion.t 

On the other hand, it is not difficult to show that most of the phe
nomena of joints are fully accounted for by pressure, direct or inclined; 
but to this statement there is one exception. If joints are produced by 
pressure, they are due to a tendency of the rock to move in opposite 
directions along the joint plane; or, in other words, to a tendency to 
faulting. Hence, if pressure is the cause, there is no distinction, except
ing one of degree, between joints and faults. 

There is no doubt whatever that faults are often met with on joint 
planes, yet this association is no proof that the two phenomena are not, 
as they have often been assumed to be, independent of one another. 
But the study of many thousand divisional planes which would cer
tainly be regarded as joints by almost every geologist has led me to the 
conclusion that the jointing and the faulting are concomitant. The 
faults are often extremely small, but it is very rarely that in a system 
of joint planes throws of an eighth of an inch or less cannot be detected ; 
and where the rock is hard, slickensided surfaces will be found even 
when the relative movement is much less than an eighth of an inch. 
Few geologwts have been in the habit of looking for faults of such tiny 
dimensions, and I believe that the distinction between faults and joints 
has arisen from this omission. Partin:~s due to temion would be free 
from slickensides. 

It might be thought that a refutation of this conclusion is to be found 

,. Am. J our. Sci., vol. 24, 1882, p. 50. 
t Divisional surfaces produced by pressure differ from those produced by tension in a manner 

which is distinguished even in ordinary parlance. Rupture under tension is only another name 
for tearing, while division under pres~ure al ways involves R8 n.n essentia.I fe~ture thnt e.ort of cutting 
which is pe1·formed with scissors or shears. Thns tho very similes employed in describing rock 
fractures often indicate an instinctive perception of the mechanical processes involved, ven when 
an attempt is made to reconcile phenomena with a less natural theory. 
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in the fact that joints frequently die out; but faulted fissures, even those 
carrying important ore deposits or considerable dikes, also die out. 
Nevertheless, the dying out of joints shows that the movements involved 
must at some points be microscopic, and indeed submicroscopic. 

M Daubree has succeeded in reproducing jointed structure in the 
most striking manner by pressure on mixtures of beeswax and resin. 
The following cut is copied from his experimental geology and explains 
itself: 

FrnuaE 16.--Daubree's Experiment on Crushing. 

Here, as in nature, there are joints which die out, but they are asf!oci
ated with faults of measurable throw. The system of divisions is pre
cisely that deduced for a direct pressure in the earlier portions of this · 
paper from the theory of strain. 

Still another lesson can be learned from this experiment. The sides 
of the crushed column bulge in such a manner as to show that plastic 
deformation has taken place as well as rupture. Now since these rup
ture.3 can be conceived only as relative tangential movements pushed to 
the limit of cohesion, it seems to me clear that the plastic deformation. 
also must consist in relative tangential movement, and, indeed, in the 
same directions as the joints, but not reaching the limit of cohesion. If 
one inquires what is the effect of this plastic movement on the structure 
of the mass, one can only reply that it must be something very analo
gous fa schistosity. 
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Others have made experiments with similar results. It is well known 
that cast iron, building stone and similar substances, crushed in testing 
machines, do not yield on planes parallel to the support, but at angles 
approximating to 45°, when the slabs are broader than they are thick. 
Not all of the cracks pass through the masses experimented upon. The 
slabs are somewhat deformed, and, in short, the phenomena are strictly 
comparable with those of M Daubree's experiment, though less bril-

· liantly illustrated. 
Jointing and Cleava,ge.-Many geologists have been struck by the inti

mate manner in which jointing and cleavage (whether schistose or slaty) 
are associated, and there seems to have been a growing tendency to assert 
or imply a relationship between them, even in spite of an assumed theo
retical difference in origin. Professor William King advanced the 
hypothesis in 1857 that slaty cleavage was derived from jointing, the 
jointed surfaces having been welded under pressure. This conclusion, 
indeed, has not, to my knowledge, been adopted by any other observer; 
but rejection of the conclusion does not imply rejection of the facts upon 
which it was based-viz., that dislocated jointing occurs "developed to a 
degree of fineness bordering on that of mineral cleavage," as at Carragrian, 
near Galway, and the occasional alternation of joints with parallel slaty 
cleavage.* Professor A. Heim distinguishes cleavage due to microscopic 
dislocated joints from cleavages unattended by joints, or true slaty cleav
ages. Of these he makes two classes: "micro-cleavage," consisting in a 
flattening of the component grains of the rock, and cleavage due to the 
re-arrangement by pressure of previously existing scales in positions more 
and more nearly perpendicular to the line of pressure. All three varie
ties are associated so intimately, according to Heim, as to be found in 
one and the same thin section. Even in cases of pure micro-cleavage 
relative movement without fracture in adjoining cleavage planes may be 
detected.t M Dauhree speaks of" the surfaces of slipping which pro
duce schistosity; "t Dr H. C. Sorby has described cases of discontinuity 
on a microscopic scalC which lead to cleavage; l\Iessrs Geikie, Peach and 
Horne describe fluxion structure and shearing as productive of schistosity 
and highly cleaved rocks, the planes of cleavage being parallel to the 
thrust plane,§ and other similar observations could be cited to show that 
relative tangential motion and slaty cleavage are at least most intimately 
associated in nature. 

Phenomena of slaty Cleavage.-W orkers in slate distinguish not only the 
cleavage faces, but also "side" and "end." Most slates can be split only 

• Tran8. R. Irish Acad., vol. 25, 1875, p. 012, et passim. 
t Mech. der Gebirgsbildung, \'OI. 2, 1878, pp. 54-50. 
t Etudes Synthetiqucs, 1879, p. :J21. 
i! Nature, vol. 31, 1884, pp. 29-35. 
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in one direction, which appears to be usually that of the dip of the slate 
in its original position. A block of slate thus bears some analogy to a 
block of wood, so far as its fissility is concerned. In some cases, how
ever, slates are said to split equally well from any edge of a block. 
Fossils occurring in slate are usually distorted, and numerous measure
ments of these fossils have been made for the purpose of ascertaining in 
which direction the greatest elongation and contraction have taken place. 
As might be expected, these measurements do not accord very closely, 
for it is difficult to expose a fossil .in such a manner that all its dimen
sions are accessible without obscuring the relations of these dimensions 
to the dip and strike of the slate. Sometimes there seems to be. no rela
tive distortion in the plane of the cleavage. In other cases the fossils 
are greatly distorted in the cleavage plane, the longer axis coinciding 
with the dip. 

FrnuRE 17.-Steps in Slate. 

It is frequently asserted that the greatest elongation of the fossils is 
always in the direction of the grain of the slate, and the greatest con
traction perpendicular to this direction. This implies that there has 
been no tangential movement among the laminre, or that there is no 
fluxion structure and no close jointing or "Answeichungsclivage" in the 
rock; for in any such case the axes of the strain ellipsoid must fail to 
coincide with the dip, the strike, and the perpendicular to the cleavage. 
Now these structures are known to be frequent in slaty rocks and dis
tinguishable from true, slaty cleavage only under the microscope. The 
deductions from the measurements of the fossils can therefore be only 
approximately true. I have myself seen fossils in slate in which fiuxion 
structure was plainly manifested, in my opinion, and in that of an emi
nent paleontologist whom I consulted. Slaty developments of crystal
line rocks are by no means unknown, and these are closely allied to 
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schistose rocks, in which crystals have certainly undergone distortions 
involving fluxion phenomena. 

In slate quarries there are usually "steps " produced by the presence 
in the slate of strata differing in lithological character from the bulk of 
the rock. The cleavage is deflected by thes.e strata, and when they are 
sharply defined the deflection is also sharp.· When the cleavage is at 
right angles to the stratification the deflection is nearly or quite imper
ceptible, and it seems to be maximum when the angle approaches 45°. 
The illus'tration on the opposite page is taken from Mr Alfred Harker's 
admirable memoir on slaty cleavage.* 

All of the above phenomena must of course be accounted for in any 
satisfactory theory of slaty cleavage. 

Theories of slaty Cleava.ge.-The earlier geologists naturally associated 
slaty cleavage and mineral cleavage, and ascribed both to the same or 
similar causes. Professor John Phillips was the firt:1t to offer a mechani
cal explanation.t In doing so he was prudently indefinite. He de
scribed the distortion as a " creeping movement among the particles of 
the rock, the effect of which was to roll them forward in a direction 
always uniform over the same tract of country." This language has been 
interpreted as equivalent to the hypothesis of a simple'' shearing motion," 
but it will by no means bear this limited construction. Phillips had in 
mind a rotational strain and a fluxional structure, but his paper contains 
nothing to indicate the absence of forces acting perpendicularly to the 
cleavage planes. He neither denies nor asserts the cooperation of such 
forces. He also says nothing to indicate that his theory was applicable 
only to heterogeneous matter, and it is fair to conclude that he supposed 
that slate might be produced from homogeneous substances. 

Mr D. Sharpe explained the structure as due to the contraction of rock 
in the line of pressure and a partially compensating elongation at right 
angles to it. This strain is one of two dimensions, and consists of a 
simple shear (not a shearing motion) with a cubical compression. The 
fissility produced he referred to the fact that a fracture perpendicular to 
the dir~ction of pressure would run along the flattest faces of the compo
nent grains and meet the smallest number of them. This explanation 
implies that the mass is heterogeneous, and that the adhesion between 
the component particles is smaller than the cohesion within the particles.! 

Dr H. C. Sorby, to whom geology owes so great a debt for-the introduc
tion of the microscope as an instrument of lithological research, natur-

*Brit. Assoc. Ad. Sci., 1885, p. 813. Mr Hnrker's paper contl\ins very fnll citations of the literature 
of slate, nnd the reader who cares to pursue the subject is advised to consult it. No attempt is 
made in the present paper to give a full bibliography. 

t Brit. Assoc. Rep., 1843. p. 61. 
t Q. Jonr Geo!. Soc., vol. 5, 1849,.p. 128. 
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ally attacked the question from a microscopical standpoint. He found 
that the mica of the slates was largely concordant with the cleavage and 
referred the fissility to the effect of direct pressure in deflecting mica 
scales toward a direction at right angles to the line of pressure.* 

This theory is supplementary "to that of Mr Sharpe, and it is to the 
united effect of the flattening and deflection that slaty cleavage is now 
usually ascribed. 

Mr A. Laugel assumed on the authority of Sharpe that the strain con
sists of a simple shear. He pointed out the fact that in a simple shear 
in a homogeneous mass the planes of least resistance (or, as I have called 
them, of maximum tangential strain) stand at an angle with the axes 
of the shear dependent upon the deformation. In the notation of this 
paper t he reached the result tan2 rn = Bf A. He gave no proof of this, 
however, and did not explain how the double cleavage implied in this 
equation of the second degree could be reduced to the simple cleavage 
of slate.! In my opinion he was on the right path to a sufficient expla
nation, but he certainly did not achieve it. 

Professor John Tyndall's famous experiments on slaty cleavage in 
wax in a direction perpendicular to the pressure were published in 1856.§ 
He dissented from Sorby's theory, regarding his wax as homogeneous, 
and finding that the intermixture of scales rather interfered with thail 
promoted cleavage. Dr Sorby replied to Tyndall, citing experiments of 
his own on clay ri1ixed with mica scales and pointing out that wax con
tains· prismatic crystals; so that, in his opinion, the wax must be consid
. ered as composed of elongated elements capable of re-arrangement by 
pressure, according to his theory.II 

Mr Daubree found that clay without mica scales when extruded 
through a small opening assumes a schistose structure, the lamination 
being close in proportion as the material is more finely divided.~ He 
also obtained evidence of schistose structure in flint glass, softened by 
heat and forced through an opening. In this case at least there could 
be no question that the resultant structure was independent of hetero
geneous particles. 

Dr Sorby made ari addition to his theory of slaty cleavage ii1 1880. 
In his original theory it was assumed that the mica before compressfon 
was distributed through the mass without any order. As a matter of fact, 
the mica scales in shale are, for the most part, parallel to the bedding. 

"'Ed. New Phil. Mag., vol. 55, 1853, p. 137. 
tSee formula (9). p. 33. 
t Comptes Rendus, vol. 40, 1855, p. 978. 
i! Phil. Mag., vol. 12, 1856, p. 37. 
11 Phil. Mag., vol. 12, 1856, p. 127. 
~Geo!. Exp., 1879, p. 413. 
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In certain cases, however, he observed that the bedding was almost 
obliterated by the disturbances due to the pressure. The supplementary 
hypothesis is that the preliminary effect of pressure is to give the mica 
an irregular distribution, the final effect being to rearrange the mica 
scales in the planes of cleavage.* , 

Objections to the Hypothesis of Heterogeneity-In my opinion, there are 
the gravest objections to the hypothesis that slaty cleavage is due to the 
lack of homogeneity of a rock mass which has been subjected to the 
action of force. Neither Tyndall nor Daubree found that the presence 
of scales promoted schistosity, but just the reverse. The wax employed 
by Tyndall may have consisted largely of prismatic bodies; but, before 
pressing his wax he softened it, making these bodies, as well as their 
groundmass, very plastic. He also kneaded the mass, so that the com
ponent particles must have welded. Even if every one of the prisms had 
assumed a horizontal position, there is no reason to suppose that the 
cohesion between them and the groundmass of the wtx was feebler than 
that between the different portions of any one prism, or that any schis
tosity, at all approaching slaty cleavage, would have resulted. Similar 
remarks apply to Daubree's experiments on clay. 

Dr Sorby's supplementary hypothesis is suggestive in the same con
nection. All geologists will grant that disturbances are sometimes such 
as nearly or quite to obliterate the bedding of shales, but none will assert 
that this is a condition of slaty cleavage. We all know that the be<,lding 
is often most distinctly preserved in masses of roofing slate, and that the 
lamination is not infrequently fairly regular. In such cases it seems to 
me impossible to contend that the mica scales originally concordant with 
the bedding have been stirred up in such a manner as to be distributed 
at all angles through the mass. Again, there are many somewhat indu
rated shales not affected by slaty cleavage in which there are countless 
mica scales, nearly all of them concordant with the bedding. If the dis
tribution of mica sc:ale3 constituted the fissility called slaty cleavage, 
such beds should split like slate in the planes of bedding. Such beds 
are sometimes fissile to a certain extent, but cases in which this fissility 
could be mistaken for slaty cleavage arc very rare, if, indeed, any are 
known. When rocks split along their lamination at all like slate, geolo
gists expect to find, and usually do find, that the rock possesses true slaty 
cleavage coinciding locally in direction with the planes of bedding, but 
superinduced upon and independent of bedding. 

Similar objections apply to Mr Sharpe's theory of the flattening of the 
rock components. It affords no explanation of Professor Tyndall's ex
periments, and were it correct some fine-grained sandstones, at any rate, 

* Q. Jour. Geol. Soc., vol. xxxvi, 1880, p. 73. 

XII-BuJ.L. GEoL. Soc. AM., VoL. 4, 1892. 
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would cleave along the bedding exactly like slate, which does not accord 
with observation.* 

It appears to me, therefore, that no theory of slaty cleavage will be 
satisfactory which does not apply to the case of homogeneous matter. 

Analysis of ExperirnenJ.s.-Slaty cleavage has been produced artificially 
in several different ways. Plastic substances compressed between rigid 
masses exhibit such cleavage; so too do plastic masses extruded through 
small openings; poor qualities of iron or brass when drawn to wire often 
show thin splinters, indicatins the presence of cleavage; metals, pastry 
and clay rolled out into sheets show similar fissility, and, as Professor K 
Reyer has pointed out, the bruise produced on soft rocks by a slanting 
blow with a pick exhibits a like structure.i" 

These cases seem very different, but they must have common features, 
unless, indeed, slaty cleavage is due to essentially diverse causes. Most 
of the mechanical operations indicated are very complicated, but their 
common features rriay be reduced to simple terms by considering a very 
small cubical portion of the mass before distortion and inquiring how it 
is affected by strain. 

FrnuRE 18.-0rigin of Cleavage in Wire. 

If one end of a wire is filed to a flat surface perpendicular to its axis, 
and the wire is then drawn through two or three successive holes of a 
draw-plate so that the flat end is the last to come through, it will be 
found that this end has become concave. If one considers a small cube 
in the undistorted wire, not on the axis, it is clear that this cube will be 
converted into an oblique parallelopiped, as is illustrated in the foregoing 
diagram, showing the wire in section. 

The concentric layers of the wire move upon one another much like 
the joints of a telescope. The little cube is elongated in the direction of 
the axis, its height is diminished, and its right angles in the plane of the 
axis are converted into acute or obtuse ones. It is clear that the sphere 
which might be inscribed in the small cube has been distorted to an 
ellipsoid, the major axis of which becomes more and more nearly hori
zontal as the strain increases. The strain is thus a rotation:i.l one, and, 
according to the theory of strain set forth in this paper, a cleavage should 
be developed nearly in the direction of the axis. 

*Seep. 74. 
t Theoretische Geologie, 1888, p. 577. 
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If a bar were substituted for a wire, and slots for the circular openings 
of the draw~plate, the strain would be exactly equivalent to that pro
duced by an inclined pressure acting on a rigidly supported cube. It 
cannot be doubted that in such a case the end of the bar would also 
become concave,.and that evidences of schistosity would appear. 

·when a plastic mass is extruded through a small opening, whether 
circular or rectangular, the action is very similar to that involved in 
drawing wire, excepting that the external force is a pressure instead of a 
tension. The friction on the moulrling surface delays the motion of the 
external layers relatively to the internal layers, and so-called fluxion 
structure results~ In the following diagram it is plain that a cube of the 
plastic mass at a would become an oblique parallelopipeclon at b.* 

Frnu1n: 19.-Development of Cleavage by Extrusion. 

When an oblique blow is struck with a pick the bruise will manifestly 
show a distortion of a very sma'll cube similar to those already considered. 

The case of a direct pressure, such aswas employed by Professor Tyn
dall, seems at first sight very different from the foregoing. To convince 
myself as to the mechanics of the matter I repeated his experiments, 
with the following results: -f A cake of wax can be compressed to less 
than half its thickness between glass plates well greased with a heavy 
oil without bulging of the edges, as show~ in figure 20, a, b. If such 
cakes are cooled to -15° C. they show no slaty cleavage, but exhibit a 
tendency to split at an angle of some 60°, more or less, to the line of 
pressure. I( the plates are not greased, hut only wet with water, as in 
Tyndall's experiments, there is a strong tendency to bulge along the 

* M Daubree, in his G6ologie Expet·imentale, records 8triking experiments on thi• mode of de
formation. 

t White wax is better than yellow for the purpose of this experiment. To get comparable mRsses 
I cast cylindrical cakes at as low a temprmitur" as pL«tctic:-.ble. 'l'heso were cooled off and then 
kept in water at about 40° C. for an hout· or more. Below this temperature the wax is too brittle to 
mould with ease or rapidity. The compressed c>tkes were cooled in ice and salt. Cakes chilled 
without preliminary distortion show no cleavage under the ha.m111er or chisel, and crack very like 
fine-grained basalt. 
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edges, so that the cake assumes the form of an ordinary American cheese. 
Cakes compressed to one-quarter of their thickness were very greatly 
distorted in this sense, as shown in figure 20, c. When cooled and struck 
sharply on the edge with a hammer, they showed slaty cleavage. The 
character of the distortion of a small included cube follows from the dis
tortion of the mass, and, as appears from the following diagram, it is a 
distortion similar to that which takes place when a cube is subjected to 
inclined pressure, as illustrated in figure 6, B, page 56. 

The reason for the bulging edge3 is at once seen to be the frictional 
resistance between the glass plates and the escaping wax. This resist
ance, combined with the vertical pressure, gives resultant for'ces, marked 
r r in the figure, which are not vertical but lie on conical surfaces about 
the central vertical axis. When this friction is obviated by the use of a 
lubricant, so that a nearly uniform distribution of pressure is obtained, 
there is no tendency to relative horizontal motion among the layers, and 
in a dozen or more trials with lubricators I failed to find any trace of 
horizontal cleavage. A tendency to cleave is sensible in these cases, but 
it coincides with the planes of maximum tangential strain as nearly as 
the imperfection of the surfaces enabled me to judge. 

D 
FIGURE 20.-Developinent of Cleavage by direct Pressure. 

Thus it appears to me that Professor Tyndall's brilliant experiment 
has been misinterpreted. He produced slaty cleavage not by a pressure 
uniformly distributed and vertical to the cleavage planes, but by a sys
tem of forces inclined to the cleavage planes. 

The effect of rolling metal, clay, or pastry is similar to that of direct 
pressure combined with lateral friction. A cake of plastic material is 
reduced to a sheet with bulging edges like figure 20, c, and an infinitesi
mal cubical portion of the mass is distorted ·as in the other cases. 

I am aware of no other ways in which slaty cleavage has been pro
duced artificially. In all of those discussed the distortion attending 
development of the cleavage is substantially the same. The elementary 
cube is deformed as it would be by a force inclined to one face of the 
cube when the opposite face rests upon an inflexible support. In some 
cases there is lateral constraint; in others there is none. The splinters 
on rolled metal and pastry seem to show' that the cleavage developed is 
not quite parallel to the surface of the mass. 
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It might seem as if the varying directions of pressure detected in Tyn~ 
dall's experiment were geologically unimportant. Granting that the 
vertical, uniform pressure at first applied to the wax is conically resolved, 
does it not follow that in orogenic movements also a similar resolution 
occurs; so that, after all, slaty cleavage is due to a pressure originally 
uniformly distributed and perpendicular to the cleavage? This query 
must receive a negative reply. 

The reason why the pressure in the experiment is resolved into a 
conical system of forces is that the bodies between which the wax is 
squeezed do not themselves yield sensibly. Thus horizontal relative 
motion attended by friction is brought about. Were these bodies as 
soft as the wax, they too would extend laterally and the pressure 
would remain uniformly distributed. It would also produce no slaty 
cleavage. 

In orogenic movements there is seldom any diversity between the 
resistance of adjoining rock masses approaching the difference between 
plates of glass and warm wax. Among rocks, therefore. a direct pressure 
will, as a rule, be distributed with an approach to uniformity, and there 
will be little or no relative motion between adjoining rock masses in 
directions perpendicular to the pressure. Hence, also, important masses 
of slate will not be produced in this way. 

Perhaps no combination is entirely wanting in mechanical geology. 
In artificial cuttings, clay beds underlying harder materials have been 
known to be squeezed out laterally, and these masses must have been 
affected like the wax in Tyndall's experiment; but this case scarcely 
forms an important exception. 

In most cases of the geological occurrence of slate there is little direct 
evidence of the mode of formation, and it is for this reason that the ex
periments are of so much value. Sometimes, however, the method of 
formation of natural slate is clear. I refer especially to the slaty selvedges 
which are not infrequently seen bounding small faults in granite and 
which have been mentioned under the head of secondary action on 
ruptured rock. No geologist can doubt that these selvedges are produced 
by the inclined pressure attending faulting, and it is manifest that the 
distortion of an elementary cube would be exactly that which so con
stantly accompanies the artificial production of slaty cleavage. Thus, in 
some cases at least, natural slate is produced by the same means which 
are employed in producing artificial slate. 

Behavior of inchided Grit Beds and Fossil~.-The theory that slate is 
produced by a uniformly distributed pressure perpendicular to the planes 
of cleavage, such as it has qeen usual to suppose existed in Tyndall's 
experiment, implies that the strain ellipsoid is an oblate figure of revolu-
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tion. In such a slate a fossil which lay in the cleavage plane would 
simply be flattened. From the observed fact that fossils are frequently, 
though not always; relatively elongated to a sensible degree in one direc
tion in the cleavage plane, Mr Sharpe inferred lateral confinement as well 
as vertical pressure. 

On the theory of inclined pressure, a fossil would always be elongated 
in the direction of the grain of the slate and contracted across the grain 
in the cleavage plane, excepting when the pressure made no angle with 
the fixed plane. A still µ;reater elongation, however, would take place 
in the direction of the major ellipsoid axis, called A in this paper, which 
is at right angles to the grain and makes a large angle with the cleavage 
plane. That such distortions do exist I have convinced myself by the 
examination of specimens, but I have not had an opportunity of examin
ing any large collection of fossils from slates with reference to this point. 

The relations of beds of hard grit occurring in slate bear a close rela
tion to those of fossils. If such a bed were bounded by surfaces parallel 
to the plane x y (or AB), the bed would behave either to a vertical or to 
an inclined pressure as aI). independent mass. On the currently accepted 
theory it would develop a horizontal cleavage. On the theory of inclined 
pressure it would develop a cleavage in a direction between that of the 
pressure and that of the fixed plane; and this would nearly coincide 
with the cleavage-of the surrounding softer mass, because the direction 
of cleavage lies near that of constant direction and changes but little 
during strain. The smaller the angle which the force makes with the 
fixed support, the smaller would the divergence in the two cleavages be. 

"Steps" are produced when a grit bed cuts the cle.avage across the 
grain, the plane of the cleavage in the slate and the surface of the grit 
bed making an acute angle. The grit is a harder material than the slate, 
and the cleavage developed in the grit makes a larger angle with the 
bedding than it does in the slate. 

To account for steps according to the theory of inclined pressure one 
may consider the elementary stresses separately. It has been shown 
that the shear in the plane BC does not tend to produce relative motion 
on the cleavages. One may therefore suppose the stress, minus this shear, 
to be applied to the rock first, and this shear to come into action later. 
Figure 22, a represents a cube in th~ y z plane, with a layer of harder 
material passing diagonally through it. If a shear and a shearing motion 
or scission in the x y plane are impressed upon this mass, both portions 
must yield simultaneously, because if the force were insufficient to strain 
the harder layer, this would protect the surrounding mass from the action 
of the force. Hence these strains would pr_oduce in both masses a cleav
age, the traces of which on the y z plane would be parallel to o z, and 
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the appearance of the mass would be that shown in figure 22, b, where 
the fine horizontal lines represent mere cleavage, not partings. Now let 
the final shear at right angles to the x y plane be applied. It will elon
gate the mass in the direction oz and contract it in the direction o y. But 
since the more rigid layer yields to this stress less freely than that in 
which it is imbedded, the grit bed will rotate more nearly as if it were a 
rigid mass, and will assume such a position as is shown in figure 22, c. 
In short, the hard layer will be deflected in just the same way that an 
imbedded scale of mica parallel to it would be deflected. Thus the 
cleavage in the hard layer will not be parallel to that in the adjoining 

. mass and will form a larger angle to the bed planes. 
It thus seems sufficient to suppose the grit bed to have a greater coef

ficient of rigidity to account for the phenomena of steps.* 

*Dr Sorby's theory of this phenomenon, as stated by Mr Harker, is as follows: "Since the grit 
yields less M:an the slate to the compresRive force, the total volnminal compression is greater for 
the slate than for the grit. But near the junction of the two rocks the change of dimensions in the 
direction parallel to the bedding mllst be the same for both. Consequently, in the direction per
pendicular to the bedding, the slate undergoes a less expansion (or greater compression) than the 
grit; and the clel>Yage planes, which are in each rock perpendicular to the direction of greate•t 
compression, will therefore be less inclined to the bedding in the slate than they are int.he grit." 

This is a very ingenious explanation, but I have not been able to convince myself that it is sound. 
It depends primarily upon the hypothesis that a large cubical condensation is involved in the 
production of slate. 'l'his certainly does not seem to be the case when slaty cleavage is produced 
in moist clay or wax, for such substances are probably compressible only to a very minute extent. 
It also implies that there is a very great difference between the cubical compressibility of the grit 
and the shale. I know of no good reason to suppose that su•Jh a difference exists. The difference 
in hardness does not imply such a relation, for cast iron, though so much harder than gold, is 
nearly three times as compressible; but even if it be granted that the relations of compressibility 
are those demanded, it is not clear that any means is provided of changing the direction of the force 
in the manner required by Sorby's theory of cleavage. 

One may suppose a cubical portion of a rock mass to undergo the pressure needful to develop 
slaty cleavage without change of volume, and that cubical contraction takes pince subsequently. If 
the mass contains a •tratum of smaller compressibility than the remainder, t.J1e cleavage on the 
theory now under consideration wonld he perpendicular to the direction of the force throughout 

·the mass before cubical contraction occurred. In this stage the mass would have the appearance 
of figure 22, b. The effect of the shrinkage wonld then be to deflect the slaty laminm close to the 
contact in curves with points of inflection at the contact, but to leave the direction of the cleavage 
at a little distance from t.he contact unchanged. The appearance afier~ubical contraction would 
would then resemble that illustrated in the following diagram: 

• FrnunE 21.-Ejfects of Compressibility. 

But this does not represent the phenomenon to be accounted for; so that although the hypothesis 
of varying cubical compression would explain a change of direction in the surfaces of cleavage at 
the cont.act with a grit.ty bed, it does not, so far as I can see, account for steps. 
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Concliision as to Slate.-The fact that slaty structure occurs not only in 
argillaceous rocks but, though less frequently, in limestone, grit beds, 
granite and basic eruptives, while it has been artificially produced in 
wax, clay, metals, dough and glass, throws much doubt on the hypothesis 
that slaty cleavage is due to re-arrangement under pressure of embedded 
flakes and grains of' matter. This doubt seems confirmed by the fact 
that although the component grains of many undisturbed shales and 
sandstones are so arranged that their largest sections lie parallel to the 
planes of bedding, such rocks do not show any cleavage closely resem
bling that of slate. Hence a satisfactory explanation must apply to 
homogeneous matter. 

Examination of the experimental methods of producing slaty structure 
shows that in all cases the distortion of a small portion of the mass is 
rotational, and is. such as would be produced upon a cube resting on a 
rigid support and affected by an inclined force, with or without the co-
operation of lateral forces in the plane of support. · 

FIGURE 22.-Deflection of Cleavage by Grit. 

The theory of finite strain in viscous plastic masses shows that rota
tional strains of this description should be accompanied by the develop
ment of a cleavage. The grain of a mass thus distorted should have an 
absolutely constant direction parallel to the plane of support and per
pendicular to the line of force. Elongation should, in general, take place 
in the direction of the grain, and contraction at right angles to the grain 
on the cleavage plane. When, however, the force makes no angle with 
the plane of support there should be no distortion in the plane of cleav
age. There should also in all cases be a second direction of elongation 
perpendicular to the grain and at a considerable angle to the cleavage,. 
plane. 

This theory explains at least most of the characteristics of slate, in
cluding that of steps. The second elongation just mentioned certainly 
exists in some cases, but I have not data enough to assert its universality. 
The practical difficulties of fully determining the position of the strain 
ellipsoid from a fossil are such that the omission of other observers to 
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note .the existence of this elongation does not seem to me fatal to the 
theory. Many observers have obtained satisfactory evidence of elonga
tion in the direction of the grain of the slate, while few, if any, of them 
appear to have sought for another direction of elongation not in the plane 
of cleavage. 

The theory here advanced has the advantage of being based on some 
of the best-established facts of natural philosophy and of connecting 
cleavage in the most intimate and definite manner with schistosity, joint
ing, faulting, and systems of fissures. It also exhibits the .cleavage of 
slate and the master joints, which usually intersect the cleavage planes 
at very large angles, as two features of a single strain. 

Neither Hooke's law nor any other exterpolated generalization has 
been employed in reaching conclusions as to the origin of slaty struc
ture. Poisson's hypothetical solid was assumed only in an example 
in order that the formulas might receive a numerical and geometrical 
illustration. 

SUMMARY. 

The studies here presented are an outgrowth of field-work in the Sierra 
Nevada of California. That range is intersected by faults, joints, schis
tose and slaty cleavages to such an extent that, on a scale of one mile 
to the inch, their average separation would be for the most part micro
scopic. In many areas these dynamic manifestations are very systematic. 
Such of them as can be considered as concomitants of infinitesimal 
strain have been treated in a former paper. In a great proportion 
of cases, however, the strains have been finite. Only such areas are 
here considered as may be regarded as uniformly affected by finite 
strains. 

In the first portion of the paper finite strain is considered from a 
purely kinematical standpoint. The subject is treated rather fully be
cause, for the purpose in hand, it is needful to take an extended view 
of the possibilities. The most important topic is that of the planes of 
maximum tangential strain and the manner in which they range rela
tively to the material of a solid which is undergoing strain. 

The relations of stress to strain are next sketched, the nature of a 
finite shear is elucidated, and Hooke's law is examined. Hooke's law 
is shown to differ from the statement that "stress is proportional to 
strain" when the deformations are finite. Viscosity, fl.ow, plasticity, 
ductility and rupture are defined, and the relation of plastic solids to 
fluids is explained. 

XIII-Bu1.r .. GEor •. Soc. AM., Vor .. 4, 1892. 
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The conclusions reached are then applied to cases such as may arise 
in geology. Large masses of rocks, it is assumed, may be considered as 
homogeneous. '\T ere it necessary to take into consideration the minute 
texture of rocks, any general conclusions as to their behavior under 
orogenic stress would be impracticable. Simple irrotational pressure is 
first taken up. It is shown that such a pressure will produce two sets 
of fissures crossing one another at angles approaching 90° if the rock is 
brittle. If it is plastic, t\vo sets of schistose cleavages will replace the 
fissures. The line of force bisects the obtuse angles of the cracks or 
cleavages. Use is made of the theory of this case to prove in a very 
simple manner why mica scales and flat sand grains tend to arrange 
themselves parallel to the bedding of sedimentary rocks, and why fiat 
pebbles in water-channels "shingle up stream." 

A mass resting on a yielding foundation and subjected to an inclined 
force is briefly discussed. This case closely approaches that of the 
simple irrotational pressure. It seems to account for unsymmetrical 
schistosity. · 

The most interesting case is that of a mass resting upon a rigid founda
tion and affected by a force inclined to the foundation at any angle. It 
really includes the case of the simple irrotational pressure. If the mass 
is brittle and is strained so gradually as not to bring viscosity into play, 
the material will rupture in columns, the axes of which are parallel to 
the fixed plane of support and at right angles to the force. If the strain 
is so rapidly produced as to excite viscosity, only one set of fissures will 
form, and these will be intermediate in direction between the lii1e of force 
and the projection of the force on the fixed plane. If the rock is plastic 
(or if it is kept strained between the elastic limit and the breaking point 
sufficiently long to undergo considerable deformation) the fissures inter
secting the angle between the line of force and the fixed plane will be 
replaced to a greater or less extent by cleavage planes; and if the force 
does not approach the vertical to the fixed plane, these cleavage planes 
will presarve a nearly constant direction and have a slaty character. In 
this case the second set of planes of motion, if they receive expression at 
all, will cut sharply across the cleavage planes as master joints. This 
seems to be the only way in which slate-like structure can result from 
the action of force on homogeneous matter. 

The spacing of fissures formed by inclined pressures is discussed on 
the hypothesis that they are so disposed as to lead to the greatest depo
tentialization of energy. This leads to an exceedingly simple formula 
for the thickness of a column in a direction perpendicular to either pair 
of bounding planes. The formation of a single system of parallel fissures 
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and the existence of undistributed faults are shown to arise in particular 
cases of the formula. This formula is applicable only when the rupture 
is not brought about by a very rapid strain. When the strain is impul
sive it is shown that the interference of vibrations atiending rupture 
may cause further parallel ruptures. The suggestion is made that thick 
slates and flags may possibly be due to plastic deformation attended by 
vibrations. 

As jointing has been referred to tensile stress, rupture through tension 
is discussed. It is shown that curved or broken lines, and not plane 
partings, must result; and the columnar structure of lavas receives a 
seemingly sufficient explanation. 

The last portion of the paper is occupied by a review of the theories 
and observations on jointing and slaty cleavage. It is maintained that 
joints are always attended by macroscopic or microscopic faults, and that 
they are closely allied to slaty cleavage. The ascription of slaty struc
ture to the presence of deflected mica scales and flattened particles is 
pronounced unsatisfactory. Glass, wax and other substances in which 
slaty cleavage has been artificially produced can hardly owe their cleavage 
to such a distribution of flat particles, while sedimentary rocks in which 
the flat particles are mostly parallel to the bedding do not show slaty 
cleavage. 

Analysis of certain well-known experiments and of some made for 
this paper shows that artificial slaty cleavage is always attended by rota
tional strains, such as those to which slaty cleavage is ascribed above. 
The theory of this paper (that slate is due to pre3sures inclined at small 
angles to the cleavage plane and standing at right angles to the grain of 
the slate) is shown to account for grain, "side"· and " end," for elongation 
of fossils in the direction of the grain, contraction in the cleavage plane 
at right angles to the grain, and for master joints which intersect 
the cleavage plane along the grain and make a large angle with this 
plane. 

The most important result of the investigation is that jointing, schis
tosity and slaty cleavage all imply relative movement, and are thus as 
truly orogenic as faults of notable throw. They may all be regarded as 
orogenically equivalent to distributed faults. The great number of joints 
and planes of slaty Cleavage compensates for the minute movement on 
each, and the sum of their effects is probably at least as important as 
that of the less numerous faults of sensible throw. 

In the light of this .conclusion it appears that if one could reproduce 
the orogenic history of the Sierra in a moderate interval of time on a 
model made to a scale of one mile to the inch, it would seem to yield 
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to external and bodily forces much like a mass of lard of the same 
dimensions.* 

*I desire to expree• my thanks to Profe9"or R. S. Woodw11rd, of the Coast. and Geodetie Survey, 
for his kindness in reading this paper in manuscript and for giving me the benefit of his advice. 
This is not the first time I have had the advantage of Professor Woodward'R profound knowledge 
of physics and keen scientific jud~ment. 

WASHINGTON, D. C., July 1, 1892. 
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