nach den Stahlsorten und gehen bis 7 Doll. für die Tonne. Ein von der Provinzial-Regierung von Ontario erlassenes Gesetz hebt die für die Verarbeitung der Erzbergbaue bisher zu zahlenden "Royalties" auf und führt für verschiedene Erze bestimmte Taxen ein; wenn diese Erze jedoch in Canada verschmolzen und raffinirt werden, so werden diese Taxen erlassen, so dass also das Gesetz gewissermaßen einen Ausfuhrzoll auf die Erze schafft. Ebenso hat die Regierung von Ottawa eine Ausfuhrsteuer auf Nickel, Kupfer, Erz und Kupfersteine gelegt. Wenn diese Gesetze zu ihrer Inkrafttretung auch noch der bislang noch nicht erfolgten Proclamation des Generalgouverneurs bedürfen, so deuten diese Maßnahmen doch darauf hin, dass die Regierung sich um die Förderung der Industrie bemüht. Außerdem unterstützen zahlreiche Stadtgemeinden die Gründung industrieller Unternehmungen durch Geldmittel und Gewährung von Vortheilen im reichsten Maße.

Nachstehender kurzer Bericht über einige der bedeutendsten Unternehmungen mag von der jetzigen Lage der Metallindustrie Canadas ein Bild geben.

Im Westen bildet der an Metall reichste District des "Dominion", die Provinz Ontario, den Mittelpunkt der emporblühenden Industrie. In der Stadt Hamilton ist durch Verschmelzung der Hamilton Blast Furnace Co. mit der Ontario Rolling Mills & Co. eine neue Gesellschaft, die Hamilton Steel and Iron Co., hervorgegangen, die ein neues großes Stahlwerk anlegt. - Die neu gegründete Nickel Steel Co. of Canada verfügt über ein Capital von 20 Millionen Doll. und hat ihr neuerbautes Stahlwerk für eine tägliche Production von 1200-1500 t Nickelstahlschienen und 400 t Nickelstahlplatten eingerichtet. Die Anlage ist auf 6 Millionen Doll. veranschlagt; sie bekommt die elektrische Kraft für den Betrieb von der Cataract Power Co. — Ein anderes neues Unternehmen ist die Nickel Copper Co. of Ontario mit 10 Millionen Doll. Capital. — Ferner hat die Hoepfner Refining Co., deren Capital 6 Millionen Doll. beträgt, im Frühjahr d. J. ihre neue Metallraffinerie vollendet, die u. A. pro Tag 60 t Nickelkupfersteine verarbeiten soll.

In Fort William, Ontario, wurde der Mathewin Iron Co. von der Bürgerschaft zur Errichtung eines Holzkohlenhochofens eine Beihilfe von 50 000 Doll. bewilligt und weitere 25 000 Doll. zur Errichtung einer Kupferhütte; ferner wurde bei den Anlagen Freiheit von Abgaben gewährt. Mit der Kupferhütte wird wahrscheinlich eine Kupferwaarenfabrik verbunden werden. Das Rohmaterial liefert die an Erzen sehr reiche Umgebung von Fort William; die nöthige Wasser-

und elektrische Kraft stellen die Jenison Power Works in Kakabeka Falls bei.

In Collingwood hat die Stadt zu der Erbauung gewaltiger, auf $1^1/2$ Millionen Doll. veranschlagter Eisenund Stahlwerke die Summe von 115 000 Doll. beigesteuert. Die Production dieser Anlagen ist täglich 200 bis 250 t Roheisen und 95 t Stahl. Den nöthigen Kalkstein liefern die reichen Kalksteinlager in der Nähe Collingwoods. Ebenso gewährte zu einem in Midland erbauten Holzkohlenhochofen diese Stadt eine bedeutendo Geldsumme. In Owen Sound plant man ebenfalls den Bau einer auf 60 000 Doll. veranschlagten Anlage (Hochofen, Siemens-Martin-Stahlwerk, Eisenwerk, Walzwerke etc.).

In Neu-Schottland wurde vor einem Jahre mit einem Capital von 20 Millionen Doll. und der Berechtigung, Bonds in der Höhe von weiteren 15 Mill. Doll. auszugeben, die Dominion Iron and Steel Co. gegründet. Dieselbe baut in Sydney auf Cape Breton Island ein großes Eisen- und Stahlwerk, welches die reichen Erze der Bergbaue Neu Foundlands verarbeiten soll. Die Nova Scotia Iron and Steel Co. erhöhte zwecks gewaltiger Erweiterung ihres Betriebes ihr Capital von 1 Million Dollars auf 20 Millionen Doll. Sie führt den Betrieb der von ihr übernommenen früheren Nova Scotia Steel Co. in Trenton und Ferrona fort, hat die Kohlengruben der aufgelösten General Mining Co. in Sidney und die sich unter dem Meere hinziehenden reichen Kohlenflötze erworben und beabsichtigt, die Lagerstätten von Point Aconi und auf Boularderic abzubauen.

Die jüngst gegründete und mit 18 Millionen Doll. arbeitende Canadian Steel Co. errichtet in Welland ganz gewaltige Hochöfen und Stahlwerke, deren tägliche Leistung 1000 t fertigen Materials (Schienen, Träger, Platten etc.) beträgt. Die Erze liefern die Eisengruben in der Nähe von Troucides bei Ottawa, Quebec, zu deren Gewinnung die Troucides Milling Co. in Ottawa gegründet wurde.

Ein ungeheures, auf die verschiedensten Gebiete sich erstreckendes Unternehmen ist ferner das von F. H. Clerque, dem Präsidenten der Sault Ste. Marie Pulp Co. ins Leben gerufene. Den Ausgangspunkt bildete die Ausnützung der Wasserkraft des Sault River, an die sich die Errichtung der Pulp-Mühle in Sault St. Marie, der größten Fabrik dieser Art in der Welt, schloss. Dann folgte die Anlage einer Sulfitfaserfabrik, dann die einer Fabrik zur Gewinnung des Schwefels aus den sehr schwefelhaltigen Erzen der Algomaminen. Hieran schlossen sich Eisen-Nickelwerke und chemische Fabriken zur Gewinnung des für die Reinigung des Nickels und Kupfers nöthigen Natriums aus den Goderich-Quellen.

Die Mineral-Production der Vereinigten Staaten von Amerika.

Von dem "United States Geological Survey" ist in einem vorläufigen Bericht die nachstehende vergleichende Statistik über die Mineral-Production der Vereinigten Staaten von Amerika während der letzten beiden Jahre bekannt gegeben worden. Die für die Mengen gebrauchte Bezeichnung Ton ist die sogenannte "Short Ton" = 2000 amerikanische Pfund.

	1 8	9 8	1 8	1 8 9 9	
·····	Mengen Tons	Werthe Dollars	Mengen Tons	Werthe Dollars	
Metalle:					
lisen (Werth am Productionsort)	13 186 805	116 557 000	15 255 187	245 172 654	
upfer (Werth loco New-York) .	263 256,4	61 865 276	297 671	104 190 898	
old (Münzwerth)	106,9	64 463 000	117,8	71 053 400	
lber (Gebrauchswerth)	1 866,5	32 118 420	1 877,6	32 858 700	
lei (Werth loco New-York)	222 000	16 650 000	209 240	18 831 600	
ink (Werth loco New-York)	115 399	10 385 910	119 408	13 731 920	
luminium (Werth loco Pittsburg) .	2 600	1 716 000	2600	1 716 000	
uecksilber (Werth loco San Francisco)	1 189,2	1 188 627	1 164,8	1 452 745	
ntimon (Werth loco San Francisco)	1 120	184 050	1 275	251 878	
ickel (Werth loco Philadelphia) .	6,7	4 694	11,2	8 566	
latinum (Werth loco San Francisco)		1 913	-	1 800	
Gesammtwerth der Metalle.		343 400 955		527 218 08-	
Nicht-Metalle:					
(Werthe am Productionsort					
ohle ,	219 974 666	208 000 850	253 795 990	256 077 434	
atürliches Gas	_	15 296 813		20 024 873	
etroleum	8 491 987	44 193 359	8 658 755	64 603 90-	
hon (für Ziegeleizwecke)		9 000 000		11 250 000	
ement	$2\ 422\ 241$	8 859 501	2 862 281	14 417 058	
tein (Bau- etc.) .	_	36 607 264	_	44 736 570	
orund und Schmirgel	4 064	275 064	4 900	150 000	
ranat	2967	86 850	2 765	98 325	
ahl-, Mühl- und Oelsteine	\	706 441		911 984	
ieselguhr	2 733	16 591	4 634	37 039	
orax .	8 000	1 120 000	20 357	1 139 883	
rom Income	243	126 614	216	108 251 96 65 0	
lussspat yps .	7 675	63 050	15 900 479 235	1 287 080	
ypa. ergel	291 638 60 000	755 280 30 000	60 000	30 000	
hosphat	1 465 949	3 453 460	1 797 586	5 084 070	
Frit (mit Ausnahme von goldhaltigem)	216 606	593 801	195 701	543 249	
alz	2 465 787	6 212 554	2 569 910	7 509 184	
chwefel	1 200	32 960	4 830	107 500	
aryt	31 306	108 339	41 894	139 52	
Obaltoxyd	3,9	11 772	5,1	18 513	
Ineralfarhen	58 85 0	694 856	63 111	728 389	
inkweiß	33 000	2 310 000	40 146	3 211 68	
sbest	605	10 300	681	11 740	
sphalt	76 337	675 649	75085	553 904	
auxit	$28\ 165$	75 437	39 5 12	125 598	
^o pferthon	, .	1 000 000		1 250 00	
eldsnat.	13 440	32 395	30 466	228 54	
aseriger Tells	54 356	411 430	54 655	438 150	
llnt	21 425	42 670	42 393	231 343	
alkererde	14 860	106 500	12 381	79 644	
raphit	2 070	75 200	3 774	167 100	
alkstein für Flusszwecke	5 803 400	2 638 000	7 378 178 1 280	4 695 208 18 486	
agnesit	1 263 17 870	19 075	11 127	82 27	
anganerz . limmer	17 870 4 064	129 185 131 098	1 559	101 46	
ineralwasser (verkaufte)	122 627	8 051 833	168 139	6 948 03	
UDazit .	196	13 542	175	20 000	
delstein e	H - 120	160 920		185 770	
Imsetein	600	13 200	400	10 00	
util	∜ =	700		1 030	
elfenstein	22 231	287 112	24 765	330 80	
lle anderen Mineralien (schätzungsweise)	ļ —	1 000 000	_	1 000 000	
Gesammtwerth der Nicht-Metalle	11	\$ 354 419 765		\$ 448 790 86	
Commission of the got already measure.	в	\$ 697 820 720		\$ 976 008 940	

Nach der vorstehenden Aufstellung hat der Gesammtwerth der Mineralproduction in den Vereinigten Staaten Während des Jahres 1899 die gewaltige Erhöhung um Metalle 94 371 097 Dollars. In Procenten ausgedrückt,

 $278\,188\,226$ Dollars erfahren! Von dieser Zunahme entfielen auf die Metalle 183 817 129 Dollars und auf die Nichtstellt sich die Gesammt-Zunahme auf etwas über $39^{1}/_{2}$, diejenige der Metalle auf etwas über $53^{1}/_{2}$ und diejenige der Nicht-Metalle auf etwas über $26^{1}/_{2}$. Das vergangene Jahr zeichnet sich auch insoferne aus, als in demselben zum erstenmale seit 1881 die Production von Metallen diejenige von Nicht-Metallen überstiegen hat. Noch im Jahre 1898 blieb der Werth der ersteren hinter demjenigen der letzteren um circa 11 Millionen Dollars zurück, im letzten Jahr überragt der Werth der producirten Metalle denjenigen der producirten Nicht-Metalle um mehr als $78^{1}/_{2}$ Millionen Dollars. Allerdings ist dies zum großen Theile der während des vergangenen Jahres eingetretenen Preissteigerung für die Haupt-Metalle, wie Eisen, Kupfer, Blei, Zink u. a., zuzuschreiben.

Unter den Metallen springt besonders das Anwachsen der Eisenproduction ins Auge; es entspricht dies natürlich dem gewaltigen Aufschwung, welchen die Eisen- und Stahl-Industrie in den Vereinigten Staaten im letzten Jahre genommen hat. Die Zunahme der Productions-Menge betrug für dieses Metall 2 068 332 Tons oder eirea $13^{1}/_{2}$ %, diejenige des Werthes dagegen 138 615 654 Dollar oder eirea $56^{1}/_{2}$ %. Der Durchschnittswerth war von 8,84 Dollars auf 16,07 Dollars pro 1 Ton, also um eirea $82^{\circ}/_{0}$ gestiegen.

Die Production von Kupfer hat der Menge nach um 34 414,6 Tons oder $13^{\circ}/_{\circ}$ zugenommen. Wenn die Erhöhung trotz der gesteigerten Nachfrage keine größere geworden ist, so liegt dies jedenfalls hauptsächlich daran, dass die Vorarbeiten zur Erschließung neuer Bergbaue oder die Wiederaufnahme der Bearbeitung zeitwellig aufgegebener eine längere Zeit erfordern. Dem Werthe nach zeigt die letztjährige Production eine Zunahme von 42 325 622 Dollars oder fast $68^{1}/_{2}^{\circ}/_{\circ}$. Im Jahre 1898 stellte sich der Durchschnittspreis auf 235 Dollars, im Berichtsjahre auf 350 Dollars pro 1 Ton.

Einen Rückgang in der Productionsmenge weist Blei auf, und zwar um $12\,760$ Tons oder circa $5^{1/2}{}^{0/0}$. Trotzdem ist der Werth um $2\,181\,600$ Dollars oder etwas über $12^{0/0}$ gestiegen. Der durchschnittliche Werth betrug im Jahre 1898 75 Dollars, im vergangenen Jahre 90 Dollars pro 1 Ton.

Ein ähnliches Verhältniss zeigt sich bei der Production von Quecksilber. Die Menge ist um $24,4\,t$ gefallen, der Werth um $264\,118$ Dollars gestiegen.

Unter den Nicht-Metallen fällt insbesondere die colossale Zunahme der Kohlenförderung auf; die Vereinigten Staaten stehen nunmehr an der Spitze der Kohle producirenden Länder der Welt. Die letztjährige Production repräsentirt der Menge nach eine Erhöhung von 33 821 324 Tons oder mehr als 15%, dem Werthe nach eine solche von 48 076 584 Dollars oder mehr als 23%. Der Durchschnittswerth ist von 0,95 Dollars auf 1,09 Dollars pro 1 Ton loco Grube gestiegen. Wenn irgend etwas, so spiegelt diese gewaltige Vermehrung der Kohlenproduction die allgemeine industrielle Entwickelung der Vereinigten Staaten wieder. Zum großen Theile war dieselbe natürlich durch die gewaltsam gesteigerte Thätigkeit in den verschiedenen Stahl- und Eisenbranchen bedingt.

Die Production von Petroleum zeigt der Menge nach nur eine Erhöhung von noch nicht $2^{\circ}/_{\circ}$, sie betrug im Ganzen nur 161 768 t, dagegen ist der Preis von dem Oel-Trust, der Standard Oil Company, derart hinaufgeschraubt worden, dass die Steigerung des letztjährigen Productionswerthes um 20 410 545 Dollars eine Erhöhung von mehr als $46^{\circ}/_{\circ}$ repräsentirt. Die Zunahme in der producirten Menge ist jedenfalls zum größten Theile dem neu erschlossenen Scio-Oelfelde gutzuschreiben.

Obwohl die Oelgas-Felder im letzten Jahre keine nennenswerthe Erweiterung erfahren haben, ist der Productionswerth doch um 4 728 060 Dollars oder circa 30% gestiegen. Es erklärt sich dies theils durch eine vollständigere Statistik, theils durch eine unerhebliche Preiserhöhung, hauptsächlich aber durch eine mehr intensive und rationelle Bearbeitungsweise. Die stetig zunehmende Verminderung des Druckes der Gasquellen in allen Districten rückt den Zeitpunkt immer näher, in welchem dieses werthvolle Product ganz versiegen wird.

Cement zeigt der producirten Menge nach eine Zunahme von $440\,041\,\mathrm{Tons}$ oder $18\,^{\circ}/_{0}$, dem Werthe nach eine solche von $5\,557\,557\,\mathrm{Dollars}$ oder ungefähr $62\,^{1}/_{2}\,^{\circ}/_{0}$. Die Production von Gyps ist um $187\,597\,\mathrm{Tons}$ oder mehr als $64\,^{\circ}/_{0}$, der Werth um $531\,800\,\mathrm{Dollars}$ oder fast $70\,^{1}/_{2}\,^{\circ}/_{0}$ gestiegen. Die gewaltig gesteigerte Eisenproduction hat naturgemäß auch eine entsprechende Erhöhung der Production von Kalkstein zur Folge gehabt, dieselbe stellte sich auf $1\,547\,778\,\mathrm{Tons}$ (= mehr als $26\,^{\circ}/_{0}$), beziehungsweise $2\,057\,205\,\mathrm{Dollars}$ (= fast $78\,^{\circ}/_{0}$).

Die Production von Salz endlich ist um $104\ 123\ \text{Tons}$ oder etwas über $4^{\circ}/_{0}$ gestiegen, der Werth derselben um $1\ 296\ 630\ \text{Dollars}$ oder fast $2\ 1^{\circ}/_{0}$.

Einen erheblichen Ausfall — trotz der größeren Nachfrage — weist insbesondere die Production von Manganerz auf.

Die allgemeine Entwicklung der Mineral-Industrie in den Vereinigten Staaten von Amerika während der letzten 20 Jahre mag aus nachfolgender Aufstellung entnommen werden:

	Jahr	Metalle	Nicht Metalle	Gesammt- werth
			Dollars	
1880		190 039 865	179 279 135	369 319 900
1881		192 892 408	213 283 144	406 175 552
1882		219 755 109	237 840 150	457 595 259
1883		203 128 859	250 312 000	453 441 073
1884		186 109 599	226 879 506	412 989 105
1885		181 586 587	245 312 093	127 898 680
1886		214 897 825	230 888 769	445 786 594
1887		248 925 054	271 589 420	520 714 474
1888		253 731 822	287 050 114	540 781 936
1889		267 247 033	283 623 812	550 870 845
1890		305 735 670	313 776 503	619 512 173
1891		300 232 798	322 707 846	623 000 644
1892		307 716 239	340 958 842	648 675 081
1893		249 981 886	324 318 020	574 299 886
1894		218 168 788	308 455 351	526 624 139
1895		281 913 639	339 345 361	621 259 000
1896		287 596 906	334 936 110	- 622 533 01 ^b
1897		302 198 502	328 655 427	630 853 929
1898		343 400 955	354 419 765	697 820 720
1899		527 218 084	448 790 862	976 008 946

Der Gesammtwerth der Mineralproduction ist hienach in den letzten 20 Jahren um eirea $164^{\circ}/_{\circ}$, in den letzten 10 Jahren um fast $58^{\circ}/_{\circ}$ gestiegen. K. P.

Notizen.

Export des sicilianischen Schwefels. Wie die nachstehende Zusammenstellung erweist, werden alle Länder der Erde mit Schwefel aus Sicilien versorgt. Der Export ist im Jahre 1900 gegenüber jenem der früheren Jahre sehr erheblich gestiegen. Es wurden ausgeführt nach:

	1900	1899	1898	1897		
Restimmung	T o n n e n					
Vereinigte Staaten	$162\ 011$	128 441	$138\ 435$	118 137		
Frankreich	$103\ 647$	96.043	88657	84 895		
Ital. Festland	101 073	87 230	62652	$73\ 052$		
Großbritannien	$23\ 973$	25038	26983	24 520		
Russland	22 09 0	19 211	12 285	17532		
Portugal	10 937	12 269	- 8257	7 054		
Deutschland	28702	25933	27 048	19 721		
Oesterreich	21.594	18 519	15 796	15 993		
Griechenland, Türkei	19 647	18 656	24808	13 866		
Belgien	9.721	7 481	8 402	9 253		
Skandinavien	22681	12476	12 331	11 226		
Spanien	6187	7 757	3 233	4 039		
Holland .	18 595	6408	5 646	3 599		
Andere Länder .	6 810	$13\ 569$	12791	7 651		
Summe	557 668	479 031	447 324	410 538		

Summe 557 668 479 031 447 324 410 538 ("Rassegna mineraria" vom 21. Jänner 1901.) E.

Die Thätigkeit der Meereswogen an der Westküste Frankreichs. Ein kürzlich in dem berühmten südfranzösischen Badeorte Biarritz erfolgtes Geschehniss ist geeignet, eine schwache Vorstellung von der riesenhaften Kraft der brandenden Meereswelle zu geben. Trotzdem in Biarritz fast immer ein strahlend wolkenloser Himmel herrscht, ist das Meer oft in wilder Aufregung. Kürzlich brach dort eine Meereswoge weit über den Strand hinweg weit in das Land ein und warf einen eisernen Signalthurm von 45 m Höhe um. Dieselbe Welle fegte eine Sanddüne von $1^{1}/_{2}$ m Höhe fort, deren Gewicht auf $24\tilde{00}$ q geschätzt wurde. Auch in Biarritz kann man oft das Schauspiel genießen, wie Wellen von mittlerer Größe mit unglaublicher Leichtigkeit Steinblöcke von 40-50 m³ vor sich herwälzen. Ueberhaupt leidet fast die ganze Westküste Frankreichs in hohem Grade unter der Gewalt der Meereswellen, die Jahr für Jahr immer weiter in das Land vorzudringen und die Küstenränder zurückzudrängen scheinen. In einigen Gegenden des Landes weicht die Küste jährlich um einen vollen Meter zurück. In der Landschaft Annis, wo die Küste aus widerstandsfähigerem Kalkboden besteht, beträgt das Zurückweichen des Strandes immerhin noch 30 cm in jedem Jahre. Sogar die Bretagne, deren Granitgestade wie eine Festung aus dem Meere aufragen, verliert alljährlich etwas an Boden. Hier ist es die Unterhöhlung der Felsen durch die Brandung, die auch die scheinbar für die Ewigkeit geschaffenen Granitmauern untergräbt und schließlich zum Bruche bringt. An allen Meeresküsten herrscht ein ruheloser Kampf zwischen Meer und Land, aber an der Westküste Frankreichs bleibt der Ocean beinahe allenthalben Sieger in diesem Streite. ("Stein der Weisen.")

Ueber die Ausdehnung des Eisens und der Stahlsorten bei hohen Temperaturen hat H. le Chatelier Versuche angestellt, wobei 3 Perioden zu unterscheiden sind. Die erste entspricht den Temperaturen, welche niedriger als diejenige ist, bei der die molecularen Umlagerungen beginnen; die zweite den Temperaturen, welche höher liegen als die Endtemperatur der Umlagerungen; zwischen beiden liegt die Periode dieser Umlagerungen selbst. Während dieser Periode finden sehr unregelmäßige Zusammenziehungen statt. Die moleculare Umlagerung des Eisens, welche von einer Contraction von 0,26 mm auf 100 mm Länge begleitet ist, und die Auflösung des Eisencarbids in dem umgelagerten Metall dürften die Ursachen obiger Anomalie sein. ("Chem. Ztg.", 1899, 677.)

Die Legirungen von Kupfer und Antimon hat A. Baikoff studirt. Bestimmungen der Härte, des Schmelzpunktes und die mikroskopische Untersuchung zeigten, dass sich eine chemische Verbindung Cu_s Sb (61,2%) Cu, 38,8% Sb, Schmelzpunkt 6700) bildet, die mit Kupfer oder Antimon feste Lösungen mit 55 bis 69% Kupfer geben kann. Wenn man solche Lösungen langsam erkalten lässt und die Geschwindigkeit des Erkaltens verfolgt, beobachtet man, dass das Pyrometer nach Le Chatelier bei 400° (also weit unterhalb des Schmelzpunktes) einige Zeit stehen, bleibt. Die Verbindung Cu, Sb verwandelt sich wahrscheinlich in eine andere krystallinische Modification, die nicht mehr feste Lösungen zu bilden imstande ist. Deswegen findet man bei der mikroskopischen Untersuchung langsam erkalteter Legirungen neben der Verbindung Cu, Sb noch Krystalle von Kupfer oder Antimon. Beim schnellen Erkalten findet die Umwandlung nicht statt, und die erkalteten Legirungen besitzen homogene Structur. ("Zeitschr. f. angew. Chemie", 1900, S. 1083.)

Die industrielle Anwendung der seltenen Motalle war bis in die letzte Zeit verschwindend klein; sie waren zu theuer und fanden sich nach "Echo" fast nur in Laboratorien und mineralogischen Sammlungen. Aber sobald man für diese Seltenheiten eine industrielle Benützung fand, wurde ihre Darstellung leichter und der Preis niedriger. Der des Thoriums und Ceriums z. B. wechselte zwischen 3000 und 4000 Frcs pro Kilogramm. Auer v. Welsbach fand dann, dass die Salze dieser beiden Metalle ein lebhaftes Licht erzeugen, wenn man leichte Gewebe mit deren Oxyden bekleidet. Sofort ging der Preis beider herab und das Thorium kostet jetzt nur 40 Fres. Von den seltenen Elementen hat neuerlich das Vanadium die Aufmerksamkeit der Metallurgen auf sich gelenkt; seine Eigenschaften sind kurz folgende: An der Luft oxydirt es sehr schwer, schmilzt bei 2000°; in Wasserstoff rothglühend gemacht, schmilzt und verdampft es nicht; weder Chlorwasserstoff, noch Salpetersäure greifen es an. Ein Vanadiumzusatz erhöht die Dehnbarkeit des Kupfers, Alnminiums und Eisens in hohem Grade und diese Eigenschaften wären für die Elektrometallurgie sehr wichtig, wenn der Preis dieses Metalles nicht noch 6130 Fres betrüge. Seine Anwendung beschränkt sich noch auf das Glasfärben und auf die Fabrication von unvertilgbarer Tinte durch Mischen mit Anilin. Uranium (900 Fres pro Kilogramm) wird in der Glas- und Porzellanindustrie angewendet. Man hat gefunden, dass bei der Darstellung besserer Stahlsorten Nickel und Wolfram von Uranium bedeutend übertroffen werden. Titan ist in der Natur fast überall verbreitet und das animalische Fleisch, die Knochen und Muskeln enthalten Spuren von Titan. Iridium (8000 Frcs) ist mit das theuerste bekannte Metall und bildet die Spitze der goldenen Schreibfedern. Seine Härte ist bekanntlich ein großes Hinderniss beim Ausprägen des sibirischen Goldes; die russischen Münzen verlangen nur ganz iridiumfreies Gold. Palladium besitzt den kleinsten Ausdehnungscoëfficienten und wird zu astronomischen Instrumenten benutzt; das Aichmeter besteht aus diesem Metall, das 5000 Frcs kostet. Selenium, das die merkwürdige Eigenschaft hat, am Licht das elektrische Leitungsvermögen zu verlieren, wird im Telelektroskop zur Anwendung gebracht und kostet 220 Frcs. Lithium (12000 Frcs) findet nur in der Medicin Verwendung; Lithionsalze werden gegen rheumatische Affectionen empfohlen. Molybdän zu 15 Fres kommt in der Metallurgie zur Benützung; das Eisenmolybdän ersetzt in der Stahlindustrie mit Vortheil das Wolframeisen; Molybdänstahl besitzt die seltene Eigenschaft, seine Härte selbst in der Rothgluth beizubehalten. Auch Wolfram (8,50 Fres) hat eine große Anwendung in der Stahlindustrie; es verleiht gleiche Eigenschaften wie Molybdän.

Die Entfernung eines Eisen- oder Stahlstückes aus einem anderen Metalle hat nach der "Mechaniker-Zeitung" Bornhauser in Charlottenburg in eigenthümlicher Weise erreicht. Er taucht den betreffenden Gegenstand einfach in eine kochende Lösung von 1 Th. gewöhnlichem Alaun in 4-5 Theilen Wasser, bis das abgebrochene Eisenstück verschwindet, wobei ein eisernes Gefäß unanwendbar ist. Bornhauser empfiehlt, den Gegenstand in eine solche Lage zu bringen, dass die aus dem Stahlstück durch den Alaun sich entbindenden Gasblasen leicht ent-