

Chemische Analyse des Ebriacher Sauerbrunnens in Kärnthen.

Von H. Allemann.

(Ausgeführt im chemischen Laboratorium des Herrn Professors Dr. Redtenbacher.)

(Vorgelegt in der Sitzung vom 6. Juni 1867.)

Den Zug der Kalkalpen, der sich östlich vom Terglou zwischen Drau und Sau auf der Grenze von Kärnthen und Krain 14 Meilen weit hinzieht und den Namen "Karawanken" führt, begleitet vom Feistritzer Bärenthal an bis nach Steiermark ein mächtiges Vorgebirge, welches mit dem Hauptstocke der Karawanken durch mäßige Bergrücken verbunden und seiner geologischen Formation nach die Fortsetzung des zwischen der Drau und Gail sich hinziehenden Kalkzuges ist, der bei Villach von der Gail durchbrochen wird. Der höchste Gipfel dieser Vorberge ist der Obir (6751'). An seinem Südabhange liegt das enge Ebriachthal, gegen Süden begrenzt von den Ausläufern des Storsic. Das Thal wird von einem Bache bewässert, der sich nach zweistündigem Laufe, zum Theil über große Granitblöcke bei Eisenkappel mit dem Vellachbache vereinigt.

In einer Entfernung von 1½ Stunden von Eisenkappel entspringen hart an den Ufern des Baches aus Granitspalten mehrere Säuerlinge, unter welchen zwei von Bedeutung sind; der eine liegt am linken, der andere am rechten Ufer. Gegenstand der Analyse war der letztere. In seiner nächsten Umgebung quillt aus Spalten des Gesteins reichlich Kohlensäuregas und an den trockenen Uferstellen findet sich eine beträchtliche Auswitterung von Soda.

Vom Grunde der Quelle, die mit Cement gefaßt ist, steigen fortwährend Gasblasen auf. Das Wasser zeigte bei 8°C. Luftemperatur 7°C.; es ist, frisch geschöpft, vollkommen klar, entbindet bedeutende Mengen von Kohlensäuregas, besitzt einen angenehm säuerlichen Geschmack, wird nach längerem Stehen an der Luft etwas trübe und setzt gelbbraune Flöckchen ab. Blaues Lakmuspapier wird durch das Wasser vorübergehend schwach geröthet. Beim Erwärmen läßt es

unter Entweichen von Kohlensäure einen reichlichen Niederschlag fallen und reagirt stark alkalisch.

Der Abdampfrückstand ist von bräunlich weißer Farbe.

Durch die qualitative Analyse wurden nachgewiesen:

Kohlensäure, Kieselsäure, Schwefelsäure, Chlor, Phosphorsäure, Eisenoxydul, Thonerde, Kalk, Magnesia, Kali, Natron und Lithion, außerdem Spuren von Mangan.

Der bei der quantitativen Bestimmung der einzelnen Bestandtheile befolgte Gang ist in Kürze folgender: Zur Ausmittlung der
Gesammtmenge der Kohlensäure wurden an der Quelle frisch
geschöpfte und gemessene Wassermengen in gut verschließbare
Flaschen gebracht, welche eine klare ammoniakalische Lösung von
Chlorbarium enthielten. In den Niederschlägen wurde die Kohlensäure sowohl durch Schmelzen mit Borax als durch Zerlegen mit Salzsäure im Kohlensäureapparat bestimmt.

Zur Bestimmung der Schwefelsäure, des Chlors und der Kieselsäure kamen die bekannten Methoden in Anwendung.

Eisen+Thonerde+Phosphorsäure wurden mit Ammoniak ausgefällt; in dem gewogenen Niederschlag wurde das Eisen durch Titriren mit chromsaurem Kali bestimmt; die Differenz zwischen dem gefundenen Eisenoxyd und dem gewogenen Niederschlage wurde als Thonerde+Phosphorsäure in Rechnung gebracht, die Phosphorsäure aber später in einer größern Wasserquantität besonders bestimmt.

Aus der von Eisen und Thonerde befreiten Flüssigkeit wurde der Kalk mit oxalsaurem Ammon abgeschieden und durch wiederholte Fällung von Magnesia gänzlich befreit.

Nach Entfernung der Ammonsalze wurde die Magnesia von den Alkalien mit phosphorsaurem Ammon getrennt und als phosphorsaures Salz gewogen.

Die Alkalien wurden zusammen als Chlormetalle gewogen, das Chlorkalium mit Platinchlorid gefällt, der Niederschlag gewogen und aus der Differenz des Chlornatrium nach Abzug des Chlorlithiums, (welches aus dem später gefundenen phosphorsaurem Lithion berechnet wurde) bestimmt.

Zur Bestimmung der Phosphorsäure und des Lithions wurde aus dem Abdampfrückstande einer größern Wassermenge nach Entfernung der Kieselsäure, Eisen, Thonerde und Phosphorsäure mit Ammoniak ausgefällt und aus dem Niederschlage die Phosphorsäure nach vorausgegangener Fällung als phosphorsaures Molybdänsäure-Ammon als pyrophosphorsaure Magnesia bestimmt.

Bei dieser Gelegenheit wurde auch nach Mangan gesucht; die erhaltenen Spuren von Schwefelmangan eigneten sich jedoch nicht zur quantitativen Behandlung.

Zur Bestimmung des Lithions wurden alle Basen von den Alkalien getrennt, diese als Chloride mit Alkohol und Äther behandelt, die Lösung verdampft, der Rückstand in wenig Wasser gelöst und als phosphorsaures Lithion bestimmt.

Zur Bestimmung der organischen Substanzen wurden gemessene Wassermengen eingedampft, der Rückstand mit wenig Wasser ausgezogen, die ausgeschiedenen kohlensauren Erden abfiltrirt, das Filtrat ganz eingedampft, bei 130° getrocknet und gewogen, endlich der Glühverlust bestimmt und als organische Substanz in Rechnung gebracht.

Zur Controle für die Richtigkeit der Einzelbestimmungen wurden gewogene Wassermengen eingedampft, der Rückstand bei 130°Cgetrocknet und gewogen.

Das specifische Gewicht wurde mit dem Picnometer in zwei Versuchen 1.0066 und 1.0067 also im Mittel 1.00665 gefunden.

Die Resultate der einzelnen analytischen Operationen sind in den folgenden Tabellen zusammengestellt.

Kohlensäure.

Wassermenge		Für 10.000 Theile		
in Grammen	Kohlensäure	nach den Einzelbestimmungen	im Mittel	
272.72	1.612	59.809		
272.72	1.631	60-106	59.937	
272.72	1.639	60.729		

Kieselsäure.

Wassermenge		Für 10.000 Theile		
in Grammen	Kieselsäure	nach den Einzelbestimmungen	im Mittel	
1827.09	0.1435	0.785	0.701	
1865 - 34	0.1450	0.777	0.781	

Schwefelsäure.

Wassermenge	Schwefelsaurer	r Entspricht	Für 10.000 Theile	
in Grammen	Baryt	Schwefelsäure	Einzel- bestimmungen	Mittel
1006-65	0.210	0.0721	0.716	0.715
1006 · 65	0.209	0.0718	0.713	0 113

Chlor.

Wassermenge		Entspricht	Für 10.000 Theile		
in Grammen	Chlorsilber	Chlor	Einzel- bestimmungen	Mittel	
1720.88	0.255	0.063	0.367	0.365	
1788 · 33	0.265	0.065	0.366	0 303	

Eisenoxyd.

Wassermenge	Eisenoxyd + Thonerde	Eisenoxyd	Für 10.00	00 Theile
in Grammen	+ Phosphor- säure	durch Titriren gefunden	Einzel- bestimmungen	Mittel
1865 · 34	0.0495	0.040	0.214	0.217
1827 · 08	0.0485	0.040	0.219	} 0 21.

Phosphorsäure.

Wassermenge in Grammen	Pyrophosphorsaure Magnesia	Entspricht Phosphorsäure	Für 10.000 Theile
9102.7	0.012	0-0077	0.0084

0.0084 Phosphorsäure entspechen 0.0146 phosphorsaurer Thonerde; da in 10.000 Theilen 0.2655 Eisenoxyd+Thonerde+Phosphorsäure sind, so bleiben

0.2655 - (0.0146 + 0.2166) = 0.0343 Thonerde, welche nicht an Phosphorsäure gebunden sind.

Kalk.

Vassermenge Kohlensaurer		Entspricht	Für 10.000 Theile	
Grammen	Kalk	Kalk	Einzel- bestimmungen	Mittel
1764 · 2	1 679	0.940	5 · 330	5 · 333
1848 · 2	1.754	0.986	5 · 336	9.333

Magnesia.

Wassermenge	Pyrophosphor-	Entspricht	Für 10.0	00 Theile
in Grammen	saure Magnesia	Magnesia	Einzel- bestimmungen	Mittel
1764 - 2	1.503	0.542	3.069	3.066
1848.2	1.571	0.566	3.063	5 000

Kali und Natron.

Wasser- menge	KCl	KCl ₁	Ents	pricht	Für 10.0	00 Theile
in Grammen	NaCl + LiCl	PtCl ₂	KCI	NaCl	Kali	Natron
1656 · 5	6.117	0.2125	0.062	6.036	0.258	19.3
1656 - 5	6.118	0.23	0.070	6.032	1	100

Lithion.

Wassermenge	Phosphorsaures	Entspricht	Für 10.000 Theile
in Grammen	Lithion	Lithion	
9102.7	0.083	0.032	0.035

Organische Substanz.

Wassermenge	Glühverlust	Für 10.000 Theile		
in Grammen	der getrockneten Alkalien	Einzel- bestimmungen	im Mittel	
1006 · 65	0.150	1.50	1.52	
1006 - 65	0.155	1.55	1)	

Summe der fixen Bestandtheile.

Wassermenge	Rückstand	Für 10.000 Theile		
Grammen	bei 180° C. getrocknet	Einzel- bestimmungen	im Mittel	
594.18	3.19	53.687	33.729	
619-31	3.33	53.771	33.129	

Die Mittelwerthe der einzelnen Bestimmungen geben also für 10.000 Theile folgende Zusammenstellung:

Kieselsäure .												0.781
Schwefelsäure						٠.						0.715
Chlor												0.365
Phosphorsäure												0.0084
Eisenoxydul .												0.195
Thonerde												0.0405
Kalk												$5 \cdot 333$
Magnesia												$3 \cdot 066$
Kali												0.258
Natron												19.300
Lithion												0.032
Organische Sub	sta	nz	1									1.520
Kohlensäure ge	bui	nde	en									21.376
Kohlensäure ha	lbg	geb	un	de	n							21.376
Kohlensäure fre	ei											17.185
Summe der fixe	n I	Bes	tai	ndt	hei	le						$53 \cdot 729$

0.0668

 $4 \cdot 9450$

 $7 \cdot 3135$

In der folgenden Tabelle ist die Zusammensetzung des Wassers enthalten, wie sie sich ergibt, wenn Basen und Säuren nach ihren näheren Verwandtschaften gruppirt werden, es sind dabei die Ansichten Bettendorf's 1) zu Grunde gelegt worden.

I. In 10.000 Theilen sind enthalten;

Schwefelsaures Kali 0.478
Schwefelsaures Natron 0.879
Chlornatrium
Kohlensaures Natron
Kohlensaures Lithion 0.087
Kohlensaure Magnesia 6:439
Kohlensaurer Kalk 9 · 523
Kohlensaures Eisenoxydul 0 · 260
Thonerde
Phosphorsaure Thonerde
Kieselsäure
Organische Substanz
Halbgebundene Kohlensäure
Freie Kohlensäure
Freie Kohlensäure dem Volumen nach bei Normalluft-
druck und Quellentemperatur
Fixe Bestandtheile gefunden
" " berechnet
" " berechnet
" " berechnet
" berechnet
" berechnet

Kohlensaures Lithion

Kohlensaure Magnesia

Kohlensaurer Kalk

¹⁾ Zeitschrift für Chemie, von Beilstein, Fittig und Hübner, N. F. H. Bd., p. 641.

Kohlensaures Eisenoxydul 0.1997
Thonerde 0.0261
Phosphorsaure Thonerde 0.0115
Kieselsäure
Organische Substanz
Halbgebundene Kohlensäure
Freie Kohlensäure
Freie Kohlensäure dem Volumen nach bei Normal-
luftdruck und Quellentemperatur 27·4682 Cubikzolle
Fixe Bestandtheile gefunden
, berechnet

Das vorliegende Wasser gehört demnach zu den alkalisch-erdigen Säuerlingen, reich an Kohlensäure und von ziemlich starkem Gehalt an Karbonaten des Natrons, des Kalks und der Magnesia, dagegen arm an Sulfaten und Chloriden.