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Introduction
The decline in diversity at the Triassic-Jurassic boundary
(TJB) has come to be regarded as one of the “big five”
mass extinctions of the Phanerozoic. Attribution of this
level of suddenness and severity to the extinction at the
TJB followed Sepkoski (1982), who, based on a global
compilation of families of marine invertebrates, desig-
nated this boundary as one of four mass extinctions events
of intermediate magnitude (end-Cretaceous, end-Trias-
sic, Late Devonian, Late Ordovician). Overall, this as-
sumption of intense and sudden biotic decline at the TJB
has remained unquestioned, until recently (Hallam, 2002;
Tanner et al., 2004).

Here, we reject what we believe is the myth of a cata-
strophic extinction at the TJB. This myth is largely rooted
in poor stratigraphic resolution compounded by a reli-
ance on literature compilations as a method of identify-
ing and gauging mass extinctions. Instead, the Late Tri-
assic was an interval of elevated extinction rates that
manifested themselves in a series of discrete extinctions
throughout Norian and Rhaetian time. Significantly, no
data document Late Triassic mass extinction(s) of many
biotic groups, including gastropods, brachiopods,
conulariids, foraminiferans, ostracods, fishes and marine
reptiles (Hallam, 2002; Tanner et al., 2004). Therefore,
we focus our discussion on those groups that have been
perceived by some as part of a TJB mass extinction,
namely ammonites, bivalves, reef organisms, radiolarians,
conodonts, tetrapods and land plants.

The compiled correlation effect
Two methods have been used to analyze the data on ex-
tinctions at the TJB: (1) the compilation of global diver-
sity from the published literature; and (2) the study of
diversity changes based on the actual stratigraphic distri-
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bution of fossils in specific sections. These two methods
are not totally disjunct, because the global compilations
supposedly reflect the actual stratigraphic distributions
of the fossils in all sections. However, the global compi-
lations contain a serious flaw—their stratigraphic impre-
cision (Teichert, 1988), which Lucas (1994) termed the
Compiled Correlation Effect (CCE). This imprecision is
largely responsible for the myth of a single, TJB mass
extinction.

The CCE refers to the fact that the temporal ranges of
taxa in literature compilations are only as precise as the
correlations, or relative ages, of the compiled taxa. Be-
cause most published correlations are at the stage/age
level, the temporal resolution of extinction events within
these stages/ages cannot be resolved (Fig. 1). The result
is the artificial concentration of extinctions at stage/age
boundaries; a complex extinction of significant temporal
duration during a stage/age is made to appear as a mass
extinction at the end of the stage/age (Fig. 1).

Much of the literature on the TJB extinction fails to con-
sider the CCE. Thus, for example, the supposedly pro-
found extinction of ammonites at the end of the Rhaetian
reflects a lack of detailed stratigraphic analysis; litera-
ture compilations assumed that any ammonite taxon found
in Rhaetian strata has a stratigraphic range throughout
the entire Rhaetian (Fig. 1). This gives the appearance of
a dramatic ammonite extinction at the end of the Rhaetian,
when in fact, there were several ammonite extinction
events within the Rhaetian. Furthermore, those who did
not recognize a Rhaetian Stage exacerbated the CCE,
because they reduced stratigraphic resolution by consid-
ering the entire post-Carnian Late Triassic to belong to a
single, Norian Stage.

Also note that the Signor-Lipps effect, which recognizes

Abstract - Accelerated biotic turnover during the Late Triassic has been misinterpreted as a single, end-Triassic mass
extinction event, now regarded as one of the “big five” extinctions. However, careful examination of the fossil record
indicates that the groups usually claimed to have suffered a catastrophic extinction at the end of the Triassic, includ-
ing ammonites, bivalves, conodonts and tetrapods, experienced multiple or prolonged extinctions throughout the
Late Triassic, and that other groups were relatively unaffected or subject to only regional effects. Instead of a single
mass extinction at the end of the Triassic, the Late Triassic was an interval of elevated extinction rates, encompassing
distinct extinction events at the Late Triassic stage boundaries, as well as other, within-stage extinction events.
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that in theory some actual stratigraphic ranges in the fos-
sil record are artificially truncated, has been used by some
to discount the reliability of actual stratigraphic ranges.
Statistical methods even exist to “complete” these sup-
posedly truncated stratigraphic ranges. Howevrer, we re-
gard these methods as little more than assumption-laden
ways to invent data, and prefer to rely on the actual strati-
graphic ranges of fossils in well-studied sections.

Ammonites
Biostratigraphic recognition (and definition) of the TJB
has long been based on a clear change in the ammonite
fauna from the ornamented ceratites and their peculiar
heteromorphs of the Late Triassic to the smooth
psiloceratids of the Early Jurassic. Most workers agree
that all but one lineage of ammonites became extinct by
the end of the Triassic, and the subsequent Jurassic diver-
sification of ammonites evolved from that lineage.

There is indeed substantial turnover in the ammonites
around the TJB, and Early Jurassic ammonite assemblages
are qualitatively very different from Late Triassic assem-
blages. However, Kennedy (1977) and Signor and Lipps
(1982) correlated the drop in ammonite diversity at the
end of the Triassic with a drop in sedimentary rock area,
not with a mass extinction. And, Teichert (1988) listed
more than 150 ammonite genera and subgenera during
the Carnian, which was reduced to 90 in the Norian, and
reduced again to 6 or 7 during the Rhaetian. This indi-
cates that the most significant ammonite extinctions were
during or at the end of the Norian, not at the end of the
Rhaetian.

The most completely studied and ammonite-rich section
in the world that crosses the TJB is in the New York Can-
yon area of Nevada, USA (Fig. 2). Taylor et al. (2000,
2001) and Guex et al. (2003) plotted ammonite distribu-
tion in this section based on decades of collecting and
study; of 11 Rhaetian species, 7 extend to the upper
Rhaetian (shown in Figure 2), and only 2 are present at

the stratigraphically highest Rhaetian ammonite level.
Taylor et al. (2000) presented a compelling conclusion
from these data: a two-phase latest Triassic ammonite
extinction, one in the Norian followed by a low diversity
Rhaetian ammonite fauna that becomes extinct at the end
of the Triassic.

Another detailed study of latest Triassic ammonite distri-
bution is in the Austrian Kössen Beds (Fig. 1; Ulrichs,
1972; Mostler et al., 1978). The youngest Triassic zone
here, the marshi zone, has three ammonoid species, two
with single level records low in the zone, and only
Choristoceras marshi is found throughout the zone. This,
too, does not indicate a sudden TJB mass extinction of
ammonites. Thus, the change in ammonites across the TJB
is profound, but it took place as a series of extinction
events spread across Norian and Rhaetian time, not as a
single mass extinction at the TJB.

Bivalves
The perception of a TJB mass extinction of marine
bivalves stems from Hallam (1981), who claimed a 92%
extinction of bivalve species at the TJB by combining all
Norian (including Rhaetian) marine bivalve taxa, thereby
encompassing a stratigraphic interval with a minimum
duration of 15 million years. He then compared this to a
pool of Hettangian taxa, an outstanding example of the
CCE.

Johnson and Simms (1989) pointed out that better much
stratigraphic resolution could be achieved on the local
scale; in the Kössen beds, for example, Hallam consid-
ered all of the bivalve taxa to range throughout the
Rhaetian, even though published data (e.g., Morbey, 1975)
showed varied highest occurrences throughout the
Rhaetian section. Furthermore, Skelton and Benton’s
(1993) global compilation of bivalve family ranges
showed a TJB extinction of 5 families, with 52 families
passing through the boundary unscathed, certainly sug-
gesting that there was not a mass extinction of bivalve

Figure 1. The actual ranges of Rhaetian ammonites in the Weissloferbach section (Austria) of the Kössen Beds (after
Mostler et al., 1978) show a low diversity Rhaetian ammonite assemblage with only one taxon (Choristoceras marshi)
present at the top of the Rhaetian section. In contrast, the low stratigraphic resolution characteristic of literature
compilations indicates all ammonite ranges simply truncated at the top of the Rhaetian, a typical example of the CCE.

Choristoceras ammonitiforme (Guembel)
Choristoceras marshi Hauer
Choristoceras rhaeticum (Guembel)
Rhabdoceras suessi Hauer

?Trachyphyllites sp.

Rhabdoceras suessi zone Choristoceras marshi 

zone

Rhaetian ammonites

(literature compilation)
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families. Hallam and Wignall (1997) reexamined the bi-
valve record for the TJB in northwestern Europe and the
northern Calcareous Alps in considerable detail. They
found extinction of only 4 out of 27 genera in northwest
Europe and 9 of 29 genera in the Calcareous Alps, again,
not indicating a mass extinction. Although Hallam (2002)
continued to argue for a substantial TJB bivalve extinc-
tion, he conceded that the data to demonstrate this are not
conclusive. We believe unequivocally that these data do
not exist.

Indeed, detailed inspection of the Late Triassic bivalve
record suggests that extinctions were episodic through-
out this interval, not concentrated at the TJB. A signifi-
cant extinction of bivalves, including the cosmopolitan

and abundant pectinacean Monotis, is well documented
for the end-Norian (Dagys and Dagys, 1994; Hallam and
Wignall, 1997). Detailed studies of Late Triassic bivalve
stratigraphic distributions (e.g., Allasinaz, 1992;
McRoberts, 1994; McRoberts and Newton, 1995;
McRoberts et al., 1995) identify multiple bivalve extinc-
tion events within the Norian and Rhaetian Stages. A good
example is the New York Canyon section, where bivalve
genera disappear at several levels in the Rhaetian, with
most bivalve turnover predating the ammonite-based TJB
(Fig. 2). The pattern of bivalve extinction during the Late
Triassic is thus one of multiple extinction events, not a
single mass extinction at the TJB.

Figure 2. The actual stratigraphic ranges of ammonites and bivalves across the TJB in the New York Canyon section,
Nevada (modified from Guex et al., 2003). The TJB is placed here at the lowest occurrence of Psiloceras tilmanni.
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Reefs
The scleractinian corals, important reef builders during
the Triassic, underwent a marked decline at the end of the
Triassic that was followed by a “reef gap” during the
Hettangian and early Sinemurian, after which corals re-
diversified to become the dominant reef builders (Stanley,
1988). The extinctions in the reef community at the end
of the Triassic are best documented in Tethys, where the
reef ecosystem collapsed, carbonate sedimentation nearly
ceased, and earliest Jurassic reefal facies are rare. Those
earliest Jurassic reefs that are known (particularly in
Morocco) are carbonate mounds produced by
spongiomorphs and algae (e.g., Flügel, 1975). However,
coral Lazarus taxa have been discovered in Early Juras-
sic suspect terranes of western North America, indicating
the persistence of at least some corals in Panthalassan
refugia during the earliest Jurassic reef gap.

Hallam and Goodfellow (1990) argued that sea level
change caused the collapse of the reef system, with sig-
nificant extinctions of calcisponges and scleractinian cor-
als at the TJB. They discounted the possibility of a major
drop in productivity as an explanation for the facies
change from platform carbonates to siliciclastics. There
is indeed a distinct lithofacies change at or near the TJB
in many sections, particularly in the Tethyan realm, where
facies changes suggest an interval of regression followed
by rapid transgression. At the TJB section in western
Austria, for example, a shallowing-upward trend from
subtidal carbonates to red mudstones, interpreted as
mudflat deposits, is succeeded by thin-bedded marl and
dark limestone (McRoberts et al., 1997). The boundary
in parts of the Austrian Alps displays karstification, sug-
gesting a brief interval of emergence. In the Lombardian
Alps the TJB is placed (palynologically) in the upper-
most Zu Limestone at a flooding surface that marks the
transition from mixed siliclastic-carbonate sedimentation
to subtidal micrite deposition (Cirilli et al., 2003). Thus,
a change in bathymetry resulted in the extirpation of reefs,
which in large part caused the cessation of carbonate sedi-
mentation. However, the evidence that this was a global
event is lacking, and can be explained easily as a regional
extinction driven by sea level changes.

Kiessling’s (2001) compilation indicates that the decline
of reefs began during the Late Triassic and that the TJB
corresponds to the loss of reefs concentrated around 30oN
latitude, although this article is frequently cited as docu-
menting a TJB mass extinction of reef organisms (e.g.,
Pálfy, 2003). Beauvais (1984) stressed the endemism of
scleractinian species during the Liassic, raising the pos-
sibility that the apparent TJB extinction of these organ-
isms may be heavily influenced by (Tethyan?) sampling
biases. Thus, a sudden extinction of reef organisms at the
TJB is limited to Tethys and reflects a regional change in
bathymetry, not a global mass extinction of reef organ-
isms.

Radiolarians
At the family level, radiolarians show no decline at the

TJB (Hart and Williams, 1993), although significant spe-
cies turnover is indicated (Vishnevskaya, 1997). Data from
the Queen Charlotte Islands in western Canada have been
interpreted to indicate a drastic extinction of radiolarians
at the TJB (Tipper et al., 1994; Carter, 1994; Ward et al.,
2001). Carter (1974) cites the loss of 45 radiolarian spe-
cies in the top 1.5 m of the Globolaxtorum tozeri zone
(topmost Rhaetian) on Kunga Island, above which is a
low diversity Hettangian fauna in which nasselarians are
rare. However, Guex et al. (2002) argue that the radiolar-
ian extinction in the Queen Charlotte Islands section is
directly associated with a stratigraphic gap
(unconformity), which suggests the extinction is more
apparent than real, though E. Carter (personal commun.,
2003) believes there is no gap in the section. Regardless,
few data indicate that this extinction was anything more
than a local event.

Data from other Pacific rim locations suggest that the
extinction pattern was not catastrophic. Bedded cherts
from Japan, for example, display radiolarian faunas that
indicate gradual replacement across the boundary with
observable transition groups (Hori, 1992), though Carter
and Hori (2003) recently reported a drastic change in the
radiolarian fauna across the TJB in one Japanese section.
Vishnevskaya (1997) indicates that about 40% of the lat-
est Triassic radiolarian genera survived the TJB. Indeed,
the greatest radiolarian extinction of the early Mesozoic
occurred during the Early Jurassic (early Toarcian), not
at the TJB (Racki, 2003). Moreover, occurrences of bed-
ded cherts show no decrease from the Late Triassic to the
Early Jurassic, suggesting that there was no significant
radiolarian decline (Kidder and Erwin, 2001).

Conodonts
The Conodonta (a phylum or subphylum) is usually iden-
tified as one of the most significant groups to have suf-
fered complete extinction at the end of the Triassic. This
is misleading. Detailed reviews of the conodont extinc-
tion emphasize that conodonts suffered high rates of ex-
tinction throughout the Triassic (e.g., Clark, 1983; Sweet,
1988; Aldridge and Smith, 1993), and maximum conodont
extinction took place at the end of the Norian. Indeed,
this long appeared to be the final extinction of conodonts
in North America, as the youngest conodonts on the con-
tinent were from the late Norian suessi zone (Clark, 1980,
1981, 1983). Conodonts, however, are now known from
the Rhaetian crickmayi zone in Canada, though they are
known only from terranes and are low in both abundance
and diversity (Orchard, 1991, 2003). They are also found
in the Rhaetian marshi zone in Europe, though diversity
is low (4 species) and population sizes (based on sample
abundance) also are low (Mostler et al., 1978). Thus, con-
odonts were mostly extinct by the end of the Norian.

Tetrapods
The idea of a substantial nonmarine tetrapod (amphibian
and reptile) extinction at the end of the Triassic began
with Colbert (1949, 1958), and has been more recently
advocated by Olsen et al. (1987, 1990, 2002a, b), largely
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based on the tetrapod fossil record of the Newark Super-
group (eastern North America). Benton (1994) and Lucas
(1994) rejected this conclusion, both arguing against
building a case for extinction on the very incomplete
record of the Newark Supergroup. Furthermore, Cuny
(1995) saw no evidence of a TJB mass extinction of tet-
rapods in the western European tetrapod fauna.

Colbert (1958) believed that the temnospondyl amphib-
ians, a significant component of late Paleozoic and Early-
Middle Triassic tetrapod assemblages, underwent com-
plete extinction at the TJB. However, more recent dis-
coveries have invalidated that conclusion. Milner (1993)
demonstrated a less pronounced extinction of amphib-
ians, with only one family extinct at the end of the Trias-
sic (plagiosaurids); he showed the disappearance of the
capitosaurids, metoposaurids and latiscopids at the
Norian-Rhaetian boundary. Moreover, these
temnospondyls are only a minor component of Late Tri-
assic tetrapod assemblages, being of low diversity and
relatively small numbers in many samples (e.g., Hunt,
1993). Temnospondyl extinction thus largely preceded the
Rhaetian.

The global compilation of reptile families by Benton
(1993) lists the extinction of 11 terrestrial reptile families
at the TJB: Proganochelyidae, Kuehneosauridae,
Pachystropheidae, Trilophosauridae, Phytosauridae,
Stagonolepididae, Rauisuchidae, Ornithosuchidae,
Saltoposuchidae, Thecodontosauridae and
Traversodontidae. However, only two of these families,
Phytosauridae and Procolophonidae, have well established

Rhaetian records (Lucas, 1994), especially given that new
data indicate that the uppermost Chinle Group in the west-
ern United States is pre-Rhaetian. There is thus no evi-
dence that most of the tetrapod families that disappeared
during the Late Triassic were present during the Rhaetian;
they apparently became extinct sometime earlier, during
the Norian.

The Newark Supergroup body fossil record of tetrapods
is inadequate to demonstrate a mass extinction of tetra-
pods at the TJB, so the tetrapod footprint record in the
Newark Supergroup has been used to identify a TJB tet-
rapod extinction (e.g., Olsen and Sues, 1986; Olsen et
al., 2002a,b). However, detailed stratigraphic data on the
Newark footprint record (e.g., Szajna and Silvestri, 1996)
indicate the disappearance of about 4 ichnogenera and
appearance of 2 ichnogenera at the palynologically-de-
termined TJB, with four ichnogenera continuing through
this boundary; this does not qualify as a sudden mass
extinction. Avanzini et al. (1997) described a diverse track
assemblage in peritidal sediments of the Southern Alps
of Italy of earliest Hettangian age, which negates the idea
advocated by some of low tetrapod diversity during the
earliest Jurassic.

The discussion of tetrapod footprint evidence of a TJB
mass extinction by Olsen et al. (2002a, b) argued that the
sudden appearance of large theropod tracks (ichnogenus
Eubrontes) in the earliest Jurassic strata of the Newark
Supergroup indicates a dramatic size increase in theropod
dinosaurs at the TJB. They interpreted this as the result
of a rapid (thousands of years) evolutionary response by

Figure 3. Eubrontes footprints from the Upper Triassic of the Sydney basin, Australia. The drawings are of a trackway
(after Staines and Woods, 1964), and the photograph of a track is after Batholomai (1966).
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the theropod survivors of a mass extinction and referred
to it as “ecological release” (Olsen et al., 2002a, p. 1307).
They admitted, however, that this hypothesis can be in-
validated by the description of Dilophosaurus-sized
theropods or diagnostic Eubrontes giganteus tracks in
verifiably Triassic-age strata.

Indeed, large, Dilophosaurus-size theropods have been
known from the Late Triassic body-fossil record since
the 1930s: Liliensternus from the Norian of Germany (es-
timated length of ~ 5 m) and Gojirosaurus from the Norian
of the USA (estimated length ~ 5.5 m) (Huene, 1934;
Welles, 1984; Carpenter, 1997). Dilophosaurus has an
estimated length of 6 m, and the foot of Liliensternus is
92% (based on maximum length) the size of that of
Dilophosaurus. Clearly, theropods capable of making
Eubrontes-size tracks were present during the Norian, and
the sudden abundance of these tracks in the Newark Su-
pergroup at the beginning of the Jurassic cannot be ex-
plained simply by rapid evolution to large size of small
theropods following a mass extinction.

Also, tracks of large theropod dinosaurs (ichnogenus
Eubrontes) have long been known from the Triassic of
Australia (Staines and Woods, 1964; Hill et al., 1965;
Bartholomai, 1966; Molnar, 1991; Thulborn, 1998), fur-
ther invalidating the “ecological release” hypothesis.
These tracks (Fig. 3) are from the Blackstone Formation
of the Ipswich Coal Measures near Dinmore in south-
eastern Queensland, a unit of well-established Triassic
age (probably late Carnian: Balme and Foster, 1996). The
largest tracks are 43 cm long and 38 cm wide (Fig. 3) and
closely resemble tracks of Eubrontes giganteus from the
Newark Supergroup described by Olsen et al. (1998).

Thulborn (2003) argued that the Australian Triassic record
of Eubrontes refutes the notion that its first occurrence is
at the TJB. Olsen et al. (2003), nevertheless, claimed that
the Australian Eubrontes tracks are actually tridactyl
underprints of a pentadactyl chirothere track. However,
the footprint of Eubrontes is mesaxonic (symmetrical
around its long axis), as are the Australian Eubrontes
tracks (Fig. 3). Tridactyl underprints of chirotheres are
paraxonic (asymmetrical around their long axis). There-
fore, the Eubrontes tracks from the Upper Triassic of
Australia are correctly identified. The concept of a sud-
den appearance of Eubrontes tracks due to “ecological
release” at the TJB thus was refuted decades before it
was proposed by Olsen et al. (2002a, b).

PLANTS

Ash (1986) reviewed the global record of megafossil
plants and concluded that changes across the TJB bound-
ary primarily involved seed ferns, in particular, the loss
of the families Glossopteridaceae, Peltaspermaceae, and
Corystospermaceae (also see Traverse, 1988). The TJB
in East Greenland is marked by the transition from the
Lepidopteris Zone to the Thaumatopteris Zone, with few
species in common. The former is characterized by the
presence of palynomorphs including Rhaetipollis, while
the latter contains Heliosporites (Pedersen and Lund,

1980), and although extinction of some species across
the transition between the two zones is evident, many
species continue. Thus, no catastrophic extinction is docu-
mented. This accords well with the global compilations
at the species and family levels that show no substantial
extinction at the TJB (Niklas et al., 1983; Knoll, 1984;
Edwards, 1993; Cleal, 1993a, b). Nevertheless, McElwain
et al. (1999) claimed a 95% extinction of leaf species for
northern Europe (East Greenland and Scania) at the TJB,
but this supposed extinction has not been confirmed over
a wider area.

The palynological record provides no evidence for mass
extinction at the TJB. Fisher and Dunay (1981) demon-
strated that a significant proportion of the Rhaetipollis
germanicus assemblage that defines the Rhaetian in Eu-
rope (Orbell, 1973; Schuurman, 1979) persists in lower-
most Jurassic strata. Indeed, a study of the British Rhaeto-
Liassic by Orbell (1973) found that of 22 palynomorphs
identified in the Rhaetipollis Zone, only 8 disappeared
completely in the overlying Heliosporites Zone. These
authors, as well as Brugman (1983) and Traverse (1988),
have concluded that floral turnover across the TJB was
gradual, not abrupt. Kelber (1998) also described the
megaflora and palynoflora for Central Europe in a single
unit he termed “Rhaeto-Liassic,” and concluded there was
no serious disruption or decline in plant diversity across
the TJB.

Nevertheless, profound palynomorph extinction at the TJB
has been argued from the Newark Supergroup record
(Olsen and Sues, 1986; Olsen et al., 1990; Fowell and
Olsen, 1993; Olsen et al., 2002a,b). Notably, the
palynomorph taxa used to define the TJB in the Euro-
pean sections (Rhaetipollis germanicus and Heliosporites
reissingeri: Orbell, 1973) are not present in the Newark
Supergroup basins, so placement of the palynological TJB
in these basins was initially based on a graphic correla-
tion of palynomorph records (Cornet, 1977). More re-
cent work identified the TJB in the Newark by a decrease
in diversity of the pollen assemblage, defined by the loss
of palynomorphs considered typical of the Late Triassic,
and dominance by several species of the genus Corollina,
especially C. meyeriana (Cornet and Olsen, 1985; Olsen
et al., 1990; Fowell and Olsen, 1993; Fowell et al., 1994;
Fowell and Traverse, 1995).

Nevertheless, this method of defining the system bound-
ary is compromised by regional variations in the timing
of the Corollina peak. In the classic Kendelbach section,
for example, the peak abundance of C. meyeriania oc-
curs in beds of Rhaetian and older age (Kössen Forma-
tion: Morbey, 1975), as it does in Tibet (Hallam et al.,
2000). But, in Australia this peak may not occur until mid-
Hettangian (Helby et al., 1987). Thus, abundance patterns
of Corollina spp. are not a reliable indicator of the TJB.
Furthermore, apparent extinction of palynomorphs in the
Newark Supergroup basins does not match other
megafossil data from the Newark Supergroup, which sug-
gest that any extinction effects represented by these data
are strictly local.
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Prospectus
Two hundred years of fossil collecting failed to document
a global mass extinction at the TJB, yet 20 years of litera-
ture compilation and the CCE did. The myth of a single
mass extinction at the TJB has led to a search for the cause
of the “mass extinction” (“those weapons of mass destruc-
tion must be around here somewhere”) and drawn atten-
tion away from what were actually a series of extinctions
that took place throughout the Late Triassic. Research now
needs to focus on these multiple extinctions and their
causes, not on a single extinction event. Perhaps the most
interesting question not yet addressed by most research-
ers is why this prolonged (at least 20 million years) inter-
val of elevated extinction rates occurred during the Late
Triassic?
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