

Aerogeophysikalische Vermessung

des

OBEREN ENNSTALES Gebiet OBLARN

Auftragsforschungsprojekt StC-le/83

)L.BA./BIBLIOTHEK-Wiss.	Archiv:Berichtsblatt/Ve	rsion 1990	
	1992-01-03	A 08080 - R	
DV-Eingabe 1992 - 01-10	020 Eingabedatum	030 Archiv Inventar NR.	Standort Ordnungszahl
10 Sprache GER	060 Auswerter G	065 Bearbeiter C	070 Empfänger LIT
30 Dok.Typ	090 Berichtsart R	091 Projektcode St-C-001e	183 092 M 1615-E
eiberl, Wolfgang;He	inz, Herbert		
30 Verfasser			
35 Verfasser mit Funktionen			
orschungsgesellscha	ft Joanneum		
10 Körperschaften			
erogeophysikalische	Vermessung des Obe	eren Ennstales Gebiet	Öblarn (Auftraps_
orschungsprojet	ct StC-1e 18:	3 >	
30 Sachtitel			
10 Sachtitel Übersetzungen			
10 Econor	190 Hadatab		200 Topographic
	150 Malacab		
10 Ort Wien; Leoben			
25 Erstellungsdatum 1987-03			
ao 39	Bl. 250 Illustr.7	Abb.;10 Beil.	260 Format 29,5 cm
71 In:Gesamttitel			
90 GesamttitelBund/Bundes	länder-Rohstoffproj	jekt St-C-001e/83	
91 Hochschulschrift			
92 Standortnachweis Bibl.Ge	ol.Bundesanst./Wiss	.Archiv Nr. A 08080-1	R
33 Weitere Angaben			
		Provide the second s	
)0 Sprachen der Zusammenfassung	GER	1975 1976 N #	
00 Sprachen der Zusammenfassung earbeitungsvermerk	GER BGLÖ LALA	GEOKART	Kopie an Redaktion
10 Sprachen der Zusammenfassung Barbeitungsvermerk 1005	GER BGLÖ LTLA	GEOKART	Kopie an Redaktion

128:129 330 ÖK-Blätter	
Wölzer Tauern jöblarn	
335 Geographika	
Aeropeophysiki Kartopraphie (intomatischeli Elektromapnetiki
Magnetische Totalintensitäti	Gemmastrahlenspektrometrie
Kalium, Uran; Thorium; Sto	KörperiGraphit, Julfidei
Wölzer Rlimmerschrefer Ampl	n'bolit humpeneckmarmor
340 Schlagworte	rejhraumackenzone;
350 Koordinaten 3	51 Koordinaten
352 Koordinaten 3	53 Koordinaten
360 Bundesländer St 3	65 Staaten AUT
370 Sachgruppen GEOP ; ADVI, CART, OR	RESPETR; METH
s. S. 1	
Bestimmende Elemente des Meßgebietes Öb beiden nördlichen lassen sich mit tiefreichend Die nördliche Anomalienzone ist auf — im rückführbar. Die Widerstandsminima lassen magnetischen Anomalien in Verbindung brin sulfidisch vererzte Komplexe vom Typ Walch im U- und Th-Kanal, findet sich im südlichste mit Amphibolitzügen) und in den Gumpener Metavulkanite der südlichen Abschnitte der G	olarn sind drei magnetische Anomalien; die den Strukturen bzw. Komplexen korrelieren. Vergleich dazu — seichtliegende Störkörper sich daher in den wenigsten Fällen mit den gen. Sie sind wohl durch Graphit und / oder hen erklärbar. Erhöhte Strahlung, vor allem en Teil des Gebietes (Wölzer Glimmerschiefer ckmarmoren. Auch die Vulkanoklastika bzw. Grauwackenzone sind durch höhere Zöhlraten

charakterisiert.

AEROGEOPHYSIKALISCHE VERMESSUNG

des

OBEREN ENNSTALES

Gebiet Öblarn

Auftragsforschungsprojekt StC-1e/83

Wolfgang Seiberl ^{und} Herbert Heinz

Wien - Leoben, März 1987

Forschungsgesellschaft Joanneum

Inhaltsverzeichnis

Zusammenfassung	1
1. Projektziel und Ablauf des Projekts	2
2. Planung und Durchführung der Vermessung	3
2.1. Meßausrüstung	3
2.2. Fluglinien	4
2.3. Durchführung der Messungen	4
2.4. Personal	8
3. Datenverarbeitung und Kartenherstellung	9
3.1. Aufgabe der ADV	9
3.2. Datenkontrolle	10
3.3. Flugwegdaten	10
3.4. Elektromagnetische Widerstandskartierung	10
3.4.1. Auswertung der EM—Daten	10
3.4.2. Bedeutung der Ergebnisparameter ρ_a und d_a	12
3.5. Kartierung der anomalen magnetischen Totalintensität (ΔT)	13
3.6. Radiometrische Kartierung	14
3.6.1. Die Quellen der natürlichen Gammastrahlung	14
3.6.2. Korrekturen der Meßdaten	14
3.6.3. Herstellung der Isolinienpläne	19
4. Geologie des Meßgebietes	19
5. Ergebnisse	20
5.1. Widerstandskartierung; Anlagen 2,3,4 und 5	20
5.2. Isoanomalien der Totalintensität ΔT ; Anlage 6	21
5.3. Gammastrahlenspektrometrie	22
5.3.1. Gesamtstrahlung (Total count); Anlage 7	22
5.3.2. Kalium (K^{40}) ; Anlage 8	22
5.3.3. Uran (Bi ²¹⁴); Anlage 9	22
5.3.4. Thorium (Tl^{208}) ; Anlage 10	23
6. Empfehlungen	23
7. Literatur	24
8. Verzeichnis der Anlagen	25
9	
9. Anhang	26
A. Einfluß der Hangneigung auf elektromagnetische Messungen aus der Luft	26
B. Einfluß der Topographie auf die Anomalien der magnetischen Totalintensität (ΔT)	36

Zusammenfassung

Bestimmende Elemente des Meßgebietes Öblarn sind drei magnetische Anomalien; die beiden nördlichen lassen sich mit tiefreichenden Strukturen bzw. Komplexen korrelieren. Die nördliche Anomalienzone ist auf — im Vergleich dazu — seichtliegende Störkörper rückführbar. Die Widerstandsminima lassen sich daher in den wenigsten Fällen mit den magnetischen Anomalien in Verbindung bringen. Sie sind wohl durch Graphit und / oder sulfidisch vererzte Komplexe vom Typ Walchen erklärbar. Erhöhte Strahlung, vor allem im U- und Th-Kanal, findet sich im südlichsten Teil des Gebietes (Wölzer Glimmerschiefer mit Amphibolitzügen) und in den Gumpeneckmarmoren. Auch die Vulkanoklastika bzw. Metavulkanite der südlichen Abschnitte der Grauwackenzone sind durch höhere Zählraten charakterisiert.

1. Projektziel und Ablauf des Projekts

Entsprechend dem Projektantrag wurde als Projektziel definiert, mit Hilfe von aerogeophysikalischen Messungen im Bereich des oberen Ennstales — Gebiet Öblarn — geowissenschaftliche Grundlagen für eine gezielte Rohstoffsuche zu erstellen.

Ursprünglich sollten die gesamten Meßflüge bei Öblarn im Sommer 1983 durchgeführt werden. Bedingt durch eine langanhaltende Schlechtwetterperiode wurde das Meßprogramm Ende Juni 1983 vorzeitig abgebrochen. Da inzwischen die Prioritätensetzungen des gesamten Hubschraubermeßprogrammes geändert wurde, konnten die noch ausständigen Meßflüge erst im Spätsommer 1986 nachgeholt werden. Die Lage des Meßgebietes kann der Abb. 1 entnommen werden. Als Projektstützpunkt wurde ein Feldflughafen bei Irdning bzw. Schladming eingerichtet.

Mit der Herstellung erster Ergebniskarten konnte im Herbst 1986 begonnen werden. Die Fertigstellung letzterer wurde im März 1987 abgeschlossen.

Abb. 1: Lage des Meßgebietes in Österreich

2. Planung und Durchführung der Vermessung

2.1. Meßausrüstung

Die aerogeophysikalischen Messungen wurden mit einem Hubschrauber des Bundesheeres vom Typ Agusta-Bell 212 (mit Doppelturbine), Kennzeichen 5D-HU, durchgeführt.

Die Meßausrüstung hat folgende Komponenten:

- Ein elektromagnetisches Mehrfachspulensystem vom Typ DIGHEM-II. Das System induziert elektrische Ströme im Untergrund, deren Magnetfeld (= sekundäres Feld) gemessen wird. Die beiden Sender (mit horizontaler bzw. vertikaler Spulenachse) arbeiten mit zwei unterschiedlichen Frequenzen, 900 Hz (T1R1) und 3600 Hz (T2R2). Das sekundäre Magnetfeld wird mit zwei Empfangsspulen aufgenommen, die die gleiche Lage wie die Sendespulen haben ("maximale Kopplung") und 7,98m von diesen entfernt sind. Sender und Empfänger sind in einer etwa 10m langen Flugsonde ("bird") untergebracht, die an einem 30m langen Kabel unter dem Hubschrauber hängt. Die aufgenommenen Signale werden in zwei zeitliche Komponenten ("inphase" und "quadrature") relativ zur Phase des Sendesignales aufgespalten. Die Meßrate beträgt 4 Meßdaten pro Sekunde, es fallen also 16 Meßdaten pro Sekunde für das Elektromagnetiksystem an.
- 2) Ein Gammastrahlenspektrometer (Geometrics GR-800B) mit zwei Natrium-Jodid Kristallen mit einem Gesamtvolumen von 33,6 l. Dieses Gerät mißt die Intensität der Gammastrahlung in 256 Energiekanälen, wobei derzeit nur 5 Energiesummenbereiche, nämlich für die Gesamtstrahlung (0,4-3,0 MeV), für Uran-weit (1,041 1,207 MeV, 1,66 2.41 MeV), Kalium (K⁴⁰; 1,36 1,56 MeV), Uran (Bi²¹⁴; 1,67 1,87 MeV) und Thorium (Tl²⁰⁸; 2,42 2,83 MeV), digital auf Magnetband aufgezeichnet werden. Die Integrationszeit beträgt 1 Sekunde für alle Energiesummenbereiche.
- 3) Ein Protonen-Präzessions-Magnetometer vom Typ Geometrics G-801/3. Es mißt die Totalintensität des erdmagnetischen Feldes mit einer Anzeigegenauigkeit von $\frac{1}{2}$ nT. Die Meßrate beträgt 1 Meßwert pro Sekunde. Der Sensor hängt an einem Kabel etwa 20m unter dem Hubschrauber.
- 4) Zur Messung der Flughöhe über Grund dient ein Radarhöhenmesser Sperry AA-220.
- 5) Der Flugweg wird auf einer Breite von \pm 100m durch eine Flugwegkamera (Automax GSFPR) auf 35mm-Film aufgezeichnet.
- 6) Ein Magnetbandgerät (Kennedy 9800) registriert Signale von 16 Kanälen in digitaler Form. Ein Sechs- und ein Zweikanal-Analogschreiber dienen v.a. als Monitor für die geophysikalischen Meßwerte. Zusätzlich können die digital registrierten Daten mit Hilfe eines Mikrorechners (Modell G-715) während der Aufzeichnung auf einem Bildschirm kontrolliert werden.
- 7) Eine Dopplernavigationsanlage (System LDNS der Firma Singer-Kearfott, USA) stellt durch ihre Flugweganzeige eine wesentliche Unterstützung für die Meßflugdurchführung dar. Weiters können mit diesem Gerät die Flugwegkoordinaten (im UTM-System)

unmittelbar auf einem Magnetband aufgezeichnet werden. Dieses Gerät kam erst im Spätsommer 1986 im Meßgebiet zum Einsatz.

8) Das ganze Meßsystem wird von einem Datenerfassungssystem vom Typ Geometrics G-714 gesteuert.

Der Datenfluß des Hubschrauber-Meßsystems ist in Abb. 2 vereinfacht dargestellt.

2.2. Fluglinien

Flugrichtung: Folgende Richtungen wurden für die Fluglinien gewählt:

Meßprofile	• • •	$135^{\circ} \rightarrow 315^{\circ}$
Kontrollprofile		$60^{\circ} \rightarrow 240^{\circ}$

Für die später folgende Datenverarbeitung wurden drei Kontrollprofile vermessen, die die Meßprofile möglichst im rechten Winkel schneiden sollten.

Abstand: Der Soll-Abstand der Meßprofile beträgt 200m.

Flugprofilkennung: Die Fluglinien haben eine achtstellige alphanumerische Bezeichnung, worin eine zweistellige Buchstabenkennung für das Meßgebiet beinhaltet ist.

2.3. Durchführung der Messungen

Navigationsunterlagen: Als Navigationsunterlage diente die Österreichische Karte im Maßstab 1:50.000, auf der die Sollagen der Meßprofile eingetragen wurden.

Kontrolle der Geräte: Vor jedem Meßflug wurde eine Eichung des Gammastrahlenspektrometers sowohl mit einer Cäsium- (Cs^{137}) als auch mit einer Thoriumquelle (Tl^{208}) durchgeführt. Bei der ersten Eichung wird die Trennung der einzelnen Kanäle abgestimmt (siehe Abb. 3), während beim zweiten Eichvorgang die richtige Lage des für das Thorium charakteristischen Energiesummenfensters (2,42-2,83 MeV) überprüft wird (Abb. 4). Ebenso wurde die Phaseneinstellung des elektromagnetischen Meßsystems mit Hilfe eines Ferritstabes jeweils vor Flugbeginn kontrolliert und gegebenenfalls justiert.

Meßflüge: Wegen der sehr schwierigen topographischen Verhältnisse in den Niederen Tauern stellte die Befliegung des Projektgebietes erhebliche Anforderungen sowohl an das Hubschrauberpersonal als auch an das eingesetzte Gerät. Während der Messungen auf den Profilen wurde eine Sollflughöhe des Hubschraubers von 80m angestrebt. Das entspricht folgenden Meßhöhen über Grund für die Sensoren der geophysikalischen Geräte:

— EM-Sonde:	50m
— Magnetometer-Sonde:	60m
— Detektoren des Gammastrahlenspektrometers:	80m

Abb. 3: GR – 800 Gammastrahlenspektrometer (Kristall I) Spektralregistrierung (10.6.1983) – Cäsiumquelle (Cs¹³⁷)

Meßgebiet StC-1e/83

Abb. 4: GR – 800 Gammastrahlenspektrometer (Kristall I) Spektralregistrierung (10.6.1983) — Thoriumquelle Tl^{208})

Meßgebiet StC-1e/83

Bei der Morphologie des Meßgebietes war es nur selten möglich, diese Sollflughöhe einzuhalten.

Die Fluggeschwindigkeit betrug über leicht welligem Gelände ca. 125 km/h, an steileren Hängen entsprechend weniger. Die durchschnittliche Meßflugdauer lag bei etwa $1\frac{1}{2}$ h (inkl. An- und Abflug zum und vom Meßgebiet).

In den Wenden zwischen den Meßprofilen ist es notwendig, die Flughöhen für jeweils ca. 1 min auf etwa 350m zu erhöhen. In dieser Höhe läßt sich das Nullniveau für die elektromagnetischen Meßsignale bestimmen. Dies ist vor und nach jedem Profil erforderlich, da das Nullniveau durch Temperatureffekte an der EM-Sonde driftet.

Insgesamt wurden 12 Meßflüge absolviert, wobei ein sogenannter "Steigflug", bei dem die Höhenabhängigkeit der Gammastrahlenenergie im Meßgebiet bestimmt wird, beinhaltet ist.

2.4. Personal

Bei der Durchführung der aerogeophysikalischen Arbeiten im zentralen Drauzug waren folgende Personen beteiligt:

Geologische Bundesanstalt/Universität Wien: Univ.Prof. Dr. Wolfgang Seiberl Geologische Bundesanstalt: Dr. Herbert Heinz Osterreichische Akademie der Wissenschaften: Dr. Udo Strauß Mag. Christoph Puchner Norbert Blaumoser Horst Eichberger Michael Herdy (Sommer 1983) Robert Köhazy Maria Loibnegger Andreas Stern Bundesministerium für Landesverteidigung: Michael Mück Peter Lang Harald Rosa Robert Staudinger Rainer Wehrle Harald Gramang Franz Kalaschek Oskar Schabus

Die administrative Abwicklung des Projekts erfolgte durch die Forschungsgesellschaft Joanneum und die Österreichische Akademie der Wissenschaften.

3. Datenverarbeitung und Kartenherstellung

3.1. Aufgabe der ADV

Die Verarbeitung der Meßdaten des Untersuchungsgebietes oberes Ennstal — Öblarn fand in Wien statt, wobei die Rechenanlage des lokalen Rechenzentrums der Universität Wien (IBM 3083-JX1) benutzt wurde.

Die Datenverarbeitung hat im wesentlichen drei Aufgaben:

- 1) Entfernung aller von nicht-geologischen Quellen stammenden Störsignale aus den Meßdaten bzw. die Durchführung bestimmter Meßwertkorrekturen.
- 2) Transformation der Meßdaten in Parameter, die einer geologischen Interpretation möglichst zugänglich sind.
- 3) Ubergang von der eindimensionalen Vermessung entlang der Fluglinien zu zweidimensionalen Ergebniskarten (Isolinienpläne).

Zur Lösung dieser Aufgaben müssen folgende Eingabedaten für die ADV bereitgestellt werden:

- 1) Die geophysikalischen Meßdaten (mit Zeitmarken) und die Flughöhe vom Magnetband,
- 2) die georteten Paßpunkte der Flugwegrekonstruktion,
- 3) die Registrierdaten des magnetischen Observatoriums Wien-Kobenzl (magnetischer Tagesgang),
- 4) eine Reihe von Gerätekonstanten und Eichgrößen, die z.T. für jeden Meßflug neu bestimmt werden müssen,
- 5) Flugberichte mit Angaben über Flugnummer, Fluglinien und Abweichungen von der Norm (z.B. Unterbrechung von Fluglinien, besondere Störungen),
- 6) topographische Unterlagen für die Ergebniskarten.

Die nachfolgende Beschreibung der wesentlichen Schritte bei der Verarbeitung der Daten hat zum Ziel, den physikalischen Gehalt der in den Ergebniskarten dargestellten Parameter aufzuzeigen.

3.2. Datenkontrolle

Nach jedem Meßflug wurden vom verantwortlichen Flugmeßingenieur die Analogaufzeichnungen der Meßdaten gesichtet und gegebenenfalls die Beseitigung von Geräte- oder Bedienungsfehlern veranlaßt.

Die auf Magnetband aufgezeichneten digitalen Daten wurden in Wien auf der Rechenanlage des interuniversitären Rechenzentrums abgespielt und diversen Fehlerkontrollen unterzogen.

Die Meß- und Datenerfassungssysteme sind im Hubschrauber großen mechanischen Belastungen ausgesetzt. So können sich Datenverluste ergeben, die sich zwar nur im Promille-Bereich der gesamten Daten bewegen, die aber trotzdem korrigiert werden müssen. Weiters werden am Beginn der Auswertung die Meßdaten auf Plausibilität und sogenannte statistische Ausreisser ("spike") überprüft. Das alles wird von Computerprogrammen vollautomatisch durchgeführt.

Die Flugwegfilme wurden in Wien entwickelt, überprüft und für eine weitere Verwendung archiviert.

3.3. Flugwegdaten

Die Flugwege (Anlage 1) sämtlicher Profile wurden für das Meßprogramm 1983 über die Flugwegfilme an Hand mehrerer Paßpunkte rekonstruiert. Beim Meßprogramm 1986 standen zusätzlich die über das Navigationssystem auf Magnetband aufgezeichneten Flugwegkoordinaten zur Verfügung. Bei der kartenmäßigen Flugwegdarstellung erfolgte eine Transformation der ursprünglichen UTM-Koordinaten in das lokale österreichische Gauß -Krüger - System (M31).

3.4. Elektromagnetische Widerstandskartierung

3.4.1. Auswertung der EM-Daten

Mit dem DIGHEM-II-System werden

Inphase (Real)	Komponente R
und	
Quadrature (Imaginär)	Komponente Q

des Magnetfeldes der im Untergrund induzierten Ströme für die Sendefrequenzen von 900 Hz und 3600 Hz gemessen. Jeweils nach 8 – 12 m Wegstrecke (d.h. alle 0,25 sec) werden die Daten abgefragt und auf Magnetband registriert. Einen größeren Aufwand erforderte die Behandlung der Elektromagnetik-Meßdaten. Diese waren im Meßgebiet zum Teil durch die Besiedlung bedingt — durch Stromleitungen und durch künstliche Leiter gestört. Die EM-Daten einiger Meßflüge enthalten zudem Störimpulse durch "sferics", d.h. durch elektromagnetische Impulse aufgrund von luftelektrischen Entladungen, insbesondere Gewittern.

Es gibt zwei Kriterien für die Erkennung der durch Fremdfelder gestörten Registrierungen:

- 1) irreguläre Form der Anomalien
- 2) Aufzeichnung von Fremdfeldern mit Frequenzanteilen nahe der Meßfrequenz in den sogenannten "sferics-Kanälen".

Mit diesen Kriterien wurden stark gestörte und damit für die geophysikalische Auswertung unbrauchbare Intervalle aus den Registrierungen ausgeschieden und bei der weiteren Datenverarbeitung nicht berücksichtigt.

EM-Anomalien von künstlichen Leitern, wie z.B. Blechdächern, wurden nicht beseitigt, da die gemessenen Anomalien künstlicher Leiter oft nicht eindeutig von denen geologischer Leiter zu unterscheiden sind. Eine Identifizierung künstlicher Leiter muß einer späteren Befahrung vorbehalten bleiben.

Die Datenverarbeitung beginnt mit einer digitalen Filterung, wodurch die Rohdaten von hochfrequenten Störsignalen befreit werden. Die nächsten Schritte sind:

- Bestimmung des absoluten Nullniveaus für R und Q (an sogenannten Stützstellen) in den Registrierungen bei großer Flughöhe vor und nach jedem Meßprofil,
- Bestimmung der eingestellten Empfindlichkeit (f
 ür jeden einzelnen Me
 ßflug) durch ein Kalibrierungsprogramm,
- Umrechnung der Meßsignale auf das Nullniveau,
 - Transformation der Werte R und Q in zwei Ergebnisparameter, nämlich
 - den scheinbaren spezifischen Widerstand ρ_a ,
 - die scheinbare Tiefe d_a (eines äquivalenten Halbraumes, bezogen auf die Erdoberfläche).

Bei kleinen Signalamplituden (z.B. über Gesteinen mit hohem spezifischen Widerstand) war eine deutliche, zum Teil nichtlineare Drift des Nullniveaus in den EM-Kanälen zu erkennen. Diese Drift wird vermutlich durch Temperatureffekte auf die Flugsonde verursacht, bedingt durch die Höhenunterschiede längs der Fluglinien. Deshalb waren die beiden Stützstellen für das Nullniveau vor und nach einem Profil nicht immer ausreichend. Besonders bei längeren Meßprofilen war es nötig, zusätzliche Stützstellen auf dem Profil einzuführen. Hierbei wurde ausgenutzt, daß tiefere Täler oft nur in größeren Flughöhen überflogen werden konnten, wobei die Amplitude des Sekundärfeldes nahe Null war.

In der Folge wurden die so gewonnenen ρ_a -Werte mit Hilfe eines Trommelplotters in Form von Profilplänen im Maßstab 1 : 25 000 geplottet. Anschließend wurden durch eine händische Konturierung Isolinienpläne des scheinbaren Widerstandes (ρ_a) hergestellt, wobei Zonen geringer ρ_a -Werte schraffiert wiedergegeben wurden (Anlage 2 und 3). Die Isolinien für die 3600 Hz-Widerstandswerte wurden für $\rho_a > 1000 \ \Omega m$ im Abstand von 500 Ωm (z.B.: 1000, 1500,...2000 Ωm) gezeichnet, während für $\rho_a < 1000 \Omega m$ variable Isolinienabstände gewählt wurden. Eine ähnliche Isoliniendarstellung wurde auch für die Daten der 900 Hz-Meßanordnung gewählt.

Für hohe spezifische Widerstände der Gesteine bzw. auch bei großen Flughöhen liegen die gemessenen Amplituden von R und Q in der Größenordnung der Driftfehler. Es wurden daher nur jene ρ_a -Werte geplottet, für die $\rho_a \leq 750 \ \Omega m$ (900 Hz) bzw. $\leq 2000 \ \Omega m$ (3600 Hz) gilt. Dabei wurden aber nur solche Amplituden von R und Q berücksichtigt, für die die Schwellwerte ≥ 5 ppm waren.

In den Anlagen 4 und 5 sind die Tiefenlinienpläne für die scheinbaren Tiefen d_a für die 3600 Hz- bzw. 900 Hz-Daten wiedergegeben. Dabei erfolgt die Tiefenangabe in Metern.

Wie im Anhang A quantitativ abgeleitet wird, sind bei den Messungen über geneigter Erdoberfläche bestimmte Veränderungen der Ergebnisparameter gegenüber jener der horizontalen Ebene zu erwarten. Bei Verwendung eines horizontalen Spulensystems ist für Hangneigungen > 30° mit einer Erhöhung der Werte für ρ_a und d_a zu rechnen. Bei bekannter Hangneigung lassen sich derartige Verfälschungen mit den im Anhang angebenen Formeln korrigieren.

3.4.2. Bedeutung der Ergebnisparameter ρ_a und d_a

Die Parameter ρ_a und d_a können für das Interpretationsmodell "homogener Halbraum" aus jedem Meßwertepaar R und Q berechnet werden (z.B. nach MUNDRY, 1984). Die Werte ρ_a und d_a stimmen annähernd mit dem wahren spezifischen Widerstand ρ und der wahren Tiefe d eines verborgenen Leiters überein, wenn dieser

1) eine bestimmte Mindestausdehnung (Größenordnung 100m) und eine Mindestdicke hat,

2) sich in schlechtleitender Umgebung befindet.

Dies trifft für viele sulfidische Vererzungen, aber auch für viele graphitische und tonige Schichten häufig zu.

Ist Bedingung 1) nicht erfüllt, d.h. der Körper ist zu klein, so ist im allgemeinen $\rho_a \ge \rho$ und $d_a > d$. Ist Bedingung 2) nicht erfüllt, insbesondere z.B. wegen einer leitenden Überdeckung, so wird ebenfalls $\rho_a > \rho$, aber $d_a < d$.

Der Tiefenwert d_a kann größer, kleiner oder gleich Null sein. Bezogen auf einen Zweischichtenfall, d.h. eine Deckschicht mit einem Widerstand ρ_1 und einer Dicke d_1 sowie einem (unendlich dicken) Substratum mit dem Widerstand ρ_2 , gelten folgende Zusammenhänge (FRASER, 1978):

 $d_a > 0$: $\rho_1 > \rho_2$, d.h. das Substratum ist besser leitend als die Deckschicht,

- $d_a \approx 0$: $\rho_1 \approx \rho_2$, d.h. im Bereich der Erkundungstiefe (siehe unten) ist kein guter Leiter vorhanden,
- $d_a < 0$: $\rho_1 < \rho_2$, d.h. eine besser leitende Deckschicht (z.B. Verwitterungsschicht) liegt über einem schlechtleitenden Untergrund.

Durch das Vorzeichen von d_a können also qualitative Aussagen über die vertikale Leitfähigkeitsverteilung gemacht werden. Die Erkundungstiefe ist die Maximaltiefe, bis zu der ein guter Leiter im Untergrund durch die Meßmethode erfaßt werden kann. Bei schlechtleitender Deckschicht und großen Zielkörpern sind mit dem DIGHEM-II-System Erkundungstiefen von 100 – 150 m zu erreichen.

3.5. Kartierung der anomalen magnetischen Totalintensität (ΔT)

In der Anlage 6 wird der Isolinienplan der magnetischen Totalintensität (ΔT) gebracht. Diese Anomalien stellen die Feldabweichungen vom globalen Erdmagnetfeld dar, wobei letzteres durch das "Internationale Geomagnetische Referenzfeld" (IGRF) definiert wird. Da das Magnetfeld auch zeitlich veränderlich ist, stellt sich der anomale Feldbeitrag (ΔT), der von den unterschiedlich magnetisierbaren Gesteinen herrührt, wie folgt dar:

$$\Delta T(x, y, z) = T(x, y, z, t) - T(t) - T_{int} - \delta T$$

mit

T(x,y,z,t)	Meßwert am Flugprofil
T(t)	zeitliche Variation des Magnetfeldes
T_{int}	magnetisches Hauptfeld
δT	Restfehler (Feldwirkungen des Hubschraubers etc.)

Die zeitlichen Variationen T(t) werden durch ortsfeste Stationen beobachtet, wobei in Österreich das Observatorium Wien-Kobenzl verwendet wird. Der Verlauf des Hauptfeldes T_{int} kann für kleine Meßgebiete, wie z.B. Österreich, gut durch eine Ebene angenähert werden, sodaß nur die beiden Gradienten des IGRF (zur Epoche 1977,7)

$$rac{\partial T}{\partial arphi} = 2.67$$
 nT/km Richtung N,

sowie

$$rac{\partial T}{\partial \lambda} = 0.75$$
 nT/km Richtung O

und eine Konstante ($T_c = 47.241$ nT) zu seiner Darstellung notwendig sind.

Die Restfehler (δT) beinhalten vor allem die Störungen des Hubschraubers am Ort des Sensors, die in beiden Flugrichtungen relativ zum Erdmagnetfeld unterschiedlich sein können (= heading error). Diese Fehler können mit Hilfe der Daten von Kontrollprofilen weitgehend eliminiert werden. Dazu werden die Meßwertdifferenzen an den Kreuzungspunkten von Meß- und Kontrollprofilen bestimmt. Aus den Differenzen an vielen Kreuzungspunkten werden unter Anwendung statistischer Verfahren Korrekturwerte ermittelt und die Restfehler damit zum Großteil beseitigt.

Meßgebiet StC-1e/83

Ein etwaiges hochfrequentes Rauschen in den gemessenen Werten T(x, y, z) wird bereits zu Beginn der Verarbeitung der magnetischen Daten durch Anwendung von sorgfältig angepaßten digitalen Filtern minimiert.

Nach Bestimmung der Werte $T_{int}, T(t)$ und δT kann nach obiger Gleichung der anomale Anteil $\Delta T(x, y, z)$ der Totalintensität für jeden Meßpunkt P(x, y, z) berechnet werden. Die Anomalien der Totalintensität werden in Form von Isolinienplänen flächenhaft dargestellt, wie in Kap. 3.4.1. näher erläutert. Wegen der starken Dynamik des anomalen Magnetfeldes sind die Isolinien (5 nT, 10 nT, 50 nT, 100 nT) mit verschiedenen Strichstärken dargestellt.

Bei der Bearbeitung von magnetischen Anomalien, die in topographisch schwierigem Gelände gemessen wurden, muß der Einfluß der Geländeform bedacht werden. So machen sich z.B. unterschiedliche Hangneigungen, Bergkämme usw. erheblich im Anomalienmuster bemerkbar (SEREN, 1980). In diesem Zusammenhang sei auf die Ausführungen im Anhang B verwiesen.

3.6. Radiometrische Kartierung

3.6.1. Die Quellen der natürlichen Gammastrahlung

Die Gammastrahlung der Gesteine und der aus ihnen entstandenen Böden stammt im wesentlichen aus drei Quellen: den radioaktiven Elementen Thorium und Uran mit einer Reihe von strahlenden Tochterprodukten, sowie von Kalium mit dem radioaktiven Isotop K^{40} .

Aus dem gesamten Energiespektrum der Gammastrahlung werden die für diese Elemente charakteristischen Energieintervalle (Fenster) verwendet — die Bereiche der Photopeaks von K⁴⁰ (bei 1,46 MeV), des U-Tochterprodukts Bi²¹⁴ (1,76 MeV) und des Th-Tochterprodukts Tl²⁰⁸ (2,62 MeV):

Kalium – Kanal: 1,36 – 1,56 MeV Uran – Kanal: 1,67 – 1,87 MeV Thorium – Kanal: 2,42 – 2,83 MeV

Außerdem wird die gesamte Energie der Gammastrahlung von 0,4 - 3,0 MeV gemessen.

3.6.2. Korrekturen der Meßdaten

Die mit dem Zerfall der radioaktiven Isotope verbundene Emission von Gammaquanten ist ein statistischer Prozeß. Die mit einem ruhenden Gerät gemessene Zählrate N streut in Form einer Poisson-Verteilung um einen Mittelwert. Die Standardabweichung σ ergibt sich aus

$$\sigma = \sqrt{N}$$

Bei hohen Zählraten ist also die relative Streuung $\frac{\sigma}{N} = \frac{1}{\sqrt{N}}$ kleiner als bei kleinen Zählraten. Bei der Messung während des Fluges erhält man z.B. die in Abb. 5a gezeigten Zählraten in cps — hier für Uran und Thorium — mit der natürlichen statistischen Streuung. Durch entsprechend angepaßte digitale Filter wird das hochfrequente Rauschen in

den Rohdaten weitgehend eliminiert, ohne daß das längerwellige Nutzsignal (d.h. die Variationen der Zählrate, die durch wechselnde Gehalte der strahlenden Elemente im Gestein verursacht werden) verändert wird.

Das Ergebnis dieser Filterung zeigt Abb. 5b. Das Ziel der nun folgenden Korrekturschritte, die in Abb. 5c – Abb. 5e dargestellt sind, ist, die geglätteten Meßdaten noch von unerwünschten Anteilen zu befreien:

— Reduktion des "Backgrounds": Die von nicht-geologischen Quellen stammende Strahlung, nämlich die Strahlung des die Detektor-Kristalle umgebenden Materials und die kosmische Strahlung, werden abgezogen (Abb. 5c). Der Background in den einzelnen Kanälen wird durch entsprechende Steigflüge über Wasserflächen gewonnen.

Abb. 5a - e: Darstellung der Korrekturschritte in der Gammastrahlenspektrometrie.

 Reduktion des Comptoneffektes: Beim Durchgang durch Materie wird die Gammastrahlung unter Energieverlust gestreut. Dies hat zur Folge, daß z.B. ein bestimmter Anteil der Strahlung ("stripping ratio") von Th-Quellen in den Uran- und Kaliumkanal sowie von U-Quellen in den K-Kanal fällt (zur Definition des stripping ratios siehe z.B. IAEA, 1979). Die stripping ratios haben für die beschriebene Meßkonfiguration und die vorne angegebenen Fenstereinstellungen folgende Werte:

Compton-Streuungskoeffizienten:

 S_{UTh} (Th in den U-Kanal): 0,27 S_{ThU} (U in den Th-Kanal): 0,065 S_{KTh} (Th in den K-Kanal): 0,17 S_{KU} (U in den K-Kanal): 0,82

Diese Werte gelten für den Abstand 0 zwischen Detektor und einer unendlich ausgedehnten Strahlungsquelle. Zu ihnen ist noch der Beitrag des Comptoneffekts in der Luft, d.h. ein höhenabhängiger Term, zu addieren, was aber nur für den Streuungskoeffizienten S_{UTh} in der Form

$$S_{UTh} = (S_{UTh})_0 + 0.0076h, \quad h \text{ in Fuß}$$

geschieht.

Wie Abb. 5d zeigt, bleibt nach der Compton-Reduktion von einer großen Anomalie im U-Kanal unter Umständen kaum noch etwas übrig. Für Meßwerte im Total-Kanal entfällt die Compton-Reduktion.

— Höhenkorrektur: Die Intensität der vom Boden kommenden Gammastrahlung nimmt mit der Höhe über Grund ab. Die Höhenabhängigkeit läßt sich grundsätzlich berechnen. In den theoretischen Wert gehen u.a. die Dichte und Feuchtigkeit der Luft ein. Außerdem wird die Zählrate für Uran und Kalium durch den unbekannten Gehalt der Luft an Radon²²² verfälscht. Es werden daher standardmäßig Steigflüge im Meßgebiet durchgeführt, um die in diesem charakteristische Höhenänderung der Gammastrahlung zu ermitteln.

Die gemessene Höhenabhängigkeit der Strahlungsintensität I läßt sich in begrenzten Höhenintervallen in guter Näherung durch die Formel

$$I(h) = I_0 e^{-\mu h}$$

beschreiben. Für die Absorptionskonstante μ ergaben sich im Meßgebiet im Höhenbereich von 30 m bis 300 m über Grund folgende Mittelwerte:

> μ (Total) = 0,001780 μ (Kalium) = 0,001310 μ (Uran) = 0,000649 μ (Thorium) = 0,001055.

Mit den angegebenen Werten für μ und den mit dem Radarhöhenmesser gemessenen Werten für die Flughöhe h werden die Strahlungsintensitäten nach der Formel

$$I(240ft) = I(h)e^{+\mu(h-240ft)}$$

auf die Normalhöhe h = 240ft umgerechnet. Abb. 5e zeigt die Wirkung dieser Höhenkorrektur.

Übergang zu Radioelementkonzentrationen: Die "International Atomic Energy Agency" (IAEA,1979) empfiehlt die Umrechnung der Zählraten in Äquivalent - Konzentrationen der drei strahlenden Elemente. Dies hat u.a. den Vorteil, daß die Ergebnisse von Messungen mit verschiedenen Instrumenten, insbesondere mit verschiedenem Kristallvolumen, untereinander vergleichbar werden. Da bis heute aber keine geeigneten Eicheinrichtungen (Testflächen) für Gammastrahlenspektrometer in Österreich vorhanden sind, können im Rahmen dieser Untersuchungen des zentralen Drauzugs keine Berechnungen der Radioelementkonzentrationen durchgeführt werden.

Durch den Reaktorunfall in Tschernobyl Ende April 1986 mußte bei der Bearbeitung der Gesamtstrahlung (total count) eine zusätzliche Korrektur an den Daten des Meßprogrammes 1983 angebracht werden um letztere mit jenen des Jahres 1986 vergleichbar zu machen. Dabei wurden die Meßergebnisse aus dem Jahr 1983 mit Hilfe der "Steigflugdaten 1986" umgerechnet.

Durch den Reaktorunfall in der UdSSR wurden — vor allem durch starke Regenfälle — mehrere Gebiete in Österreich erheblich mit radioaktiven Spaltprodukten belastet. Dazu zählt auch der Bereich der Niederen Tauern südlich von Aigen im Ennstal (BUNDES-MINISTERIUM FÜR GESUNDHEIT UND UMWELTSCHUTZ, 1986). Wie man der Abbildung 6 entnehmen kann, wurden dabei hauptsächlich Isotope mit größeren Halbwertszeiten abgelagert, die Gammastrahlenquanten mit Energien bis maximal 1,0 MeV emittieren (Ru¹⁰³ 0,49 MeV; Cs¹³⁷ 0,61 MeV; Cs¹³⁴ 0,66 MeV; Cs¹³⁴ 0,79 MeV). Aus diesem Grund wird nur die Gesamtstrahlung durch die Folgen von Tschernobyl beeinträchtigt. Die Energiemaxima in der Abb. 6 bei 1,46 MeV (K⁴⁰) und 2,48 MeV (Tl²⁰⁸) sind auf natürliche Ursachen zurückzuführen.

Abb. 6: Spektrum der Gammastrahlenenergie (MeV) im Bereich des Flugfeldes Aigen im Ennstal

Meßgebiet StC-1e/83

3.6.3. Herstellung der Isolinienpläne

Es ist bekannt, daß die Strahlungsintensitäten zeitlichen Schwankungen unterliegen. Sie stehen meist im Zusammenhang mit dem Wettergeschehen (z.B. Erhöhung der Absorption im Boden durch Regenwasser, Zufuhr von Radon aus der Bodenluft). Die an verschiedenen Tagen gemessenen Zählraten können also etwas unterschiedliche Mittelwerte ergeben, was eine Isoliniendarstellung beeinträchtigen würde. Um dies zu vermeiden, werden an den Kreuzungspunkten der Meß- und Kontrollprofile die zugehörigen Zählraten ermittelt. Über ein zweidimensionales Fehlerausgleichsprogramm werden die an den Kreuzungspunkten bestimmten Zähldifferenzen über dem gesamten Meßbereich ausgeglichen. Trotzdem war es nicht immer möglich, alle klimatischen Einflüsse zu beseitigen.

Ähnlich wie bei der Darstellung der elektromagnetischen Daten (siehe Abschnitt 3.4.1., ρ_a) wurden in der Folge die reduzierten Energiewerte der Gammastrahlung entlang der Flugprofile geplottet und händisch konturiert. Dabei wurden folgende Isolinienintervalle gewählt:

Gesamtstrahlung (Anlage 7)	$\dots 0.50 \text{ kcps} (\text{kcps} = \text{kilocounts/s})$
Kalium (Anlage 8)	\dots 25 cps (cps = counts/s)
Uran (Anlage 9)	10 cps
Thorium (Anlage 10)	10 cps

Eine zusätzliche Problematik von Gammastrahlenmessungen in topographisch schwierigem Gelände stellt die Abweichung von einer horizontalen Meßebene (2π -Geometrie) dar, weil bei den Meßflügen mit möglichst konstanter Höhe über dem Gelände geflogen werden soll. So z.B. tragen vor allem Hangflächen zur Verstärkung der Gammastrahlung bei. Bei homogener Strahlungsdichte an der Erdoberfläche und gleicher Meßhöhe über Grund resultiert in Tälern eine höhere Zählrate als in der Ebene, umgekehrt über Bergkämmen (geometrische Konstellation kleiner 2π) eine niedrigere Zählrate (KILLEEN, 1979).

4. Geologie des Meßgebietes

Das im Rahmen diese Projektes beflogene Gebiet umfaßt einen Ausschnitt aus dem Nordteil der Schladminger und Wölzer Tauern und Gesteine der nördlichen Grauwackenzone südlich des Ennstales zwischen Stein an der Enns im Westen und dem Gebiet von Altirdning/Niederöblarn im Osten. Die Westgrenze verläuft etwas westlich des Sölktales, die Süd- und Ostgrenze werden durch die Linien Sölktal – Donnersbachwald bzw. Donnersbachwald – Altirdning gebildet. Den Abschluß im Norden bzw. Nordwesten stellt das Ennstal (bzw. dessen Südhänge) dar. Die kristallinen Gesteine des Meßgebietes gehören dem Muralpen ("Muriden") – Komplex an, und zwar dessen tektonisch hangendstem Teil, dem Glimmerschiefer/Marmorkomplex. Die Glimmerschiefer ("Wölzer Glimmerschiefer") sind monotone Folgen, die im betrachteten Kristallinabschnitt durch eher phyllitischen Habitus gekennzeichnet sind. Sie bilden im allgemeinen die Basis der Sölk - Gumpeneck - Marmore. Es sind dies rosafarbene, z.T. glimmerführende Kalkmarmore (teilweise auch hornsteinführende Kalkmarmore) unsicherer Altersstellung (FLÜGEL et al., 1984). Die Altersangaben reichen von (Permo)mesozoikum (z.B. SKALA, 1964; SCHONLAUB, 1980) bis Paläozoikum (Devon) in FLUGEL et al. l.c.. SKALA l.c. betrachtet die Gumpeneck — bzw. Sölker Marmore nicht als einem Marmorzug angehörig, sondern stellt letztere in das tektonische Liegende der Gumpeneckmarmore. Daraus resultiert für beide tektonischer Kontakt zu ihren Hüllgesteinen, der wiederum als indirekter Beweis für ein mesozoisches Alter dienen würde. - Eintönige Phyllitserien, "Ennstaler Phyllite" genannt, überlagern das ostalpine Altkristallin entlang einer recht problematischen Grenze; zusammen mit ihren vulkanogenen Einlagerungen bilden sie das Hauptgestein der nördlichen Grauwackenzone. Dieser Grenzbereich stellt eine für das Verständnis des Alpenbaues sehr wesentliche Stelle dar; besonders die magnetischen Anomalien, die an anderer Stelle (HEINZ et al., 1987) diskutiert und in größerem Zusammenhang gesehen werden, sind von besonderer Bedeutung. Detaillierte Untersuchungen, deren vorläufige Ergebnisse den Rahmen dieses Berichtes sprengen würden, sind im Gange.

5. Ergebnisse

5.1. Widerstandskartierung; Anlagen 2, 3, 4 und 5

Die Anlagen 2 und 3 zeigen die wichtigsten Widerstandsminima, in den Anlagen 4 und 5 finden sich die erfaßbaren scheinbaren Tiefen. Es zeigen sowohl die Widerstandswerte bei 3600 Hz (Anlage 2) als auch jene bei 900 Hz (Anlage 3) eine Häufung von Minima im nordöstlichen Gebietsabschnitt, allesamt in der nördlichen Grauwackenzone gelegen. Hier waren auch ausgedehnte magnetische Anomalien meßbar (vgl. 5.2.). Der Leiter bei W2 liegt recht seicht (zwischen 5 und 20 m scheinbare Tiefe); das ausgeprägte Widerstandsminimum W3 zeigt eine scheinbare Tiefe des Leiters bei etwa 25 m, während W1 wesentlich tiefer reicht (bis -100 m). Alle diese Minima sind am ehesten mit den hier recht weitverbreiteten graphitischen Phylliten (UNGER, 1968; PRIEWALDER et al., 1976; u.a.) zu korrelieren. Bei der Anomalie W3 (unter 1 Ω m), die unweit nordwestlich der Anomalie W4 (Kupferkiesvorkommen Walchen) liegt, wäre die Möglichkeit zu überprüfen, ob auch sie mit dieser Sulfidvererzung im Zusammenhang steht; die relativ geringe scheinbare Tiefenlage des Leiters würde eine Erkundungsbohrung nicht allzu aufwendig erscheinen lassen. Ahnliches gilt unter Umständen auch für Anomalie W1; obwohl sie über ziemlich mächtigen, jungen Decksedimenten liegt, zeigt die scheinbare Tiefe des Leiters, daß es sich wohl um Ursachen innerhalb der Ennstaler Phyllite handelt. Allerdings ist die Vererzung nach UNGER (1968) auf eine grenznahe Zone zwischen diaphthoritischem Kristallin und Ennstaler Phylliten beschränkt ("mürbe Serizitschiefer"), sodaß im Falle des nördlich von W4 (Beilagen 2 und 3) gelegenen Minima eher an die Interpretation als graphitische Phyllite oder Graphite denken läßt.

Die Anomalie W4 (Beilagen 2 und 3, scheinbare Tiefe nicht ausgewiesen; sie bewegt sich zwischen 25 und 30 Metern) bewegt sich im Bereich des "Schwarzen Sturzes", der eine bis zu 25 m mächtige nordost – südwest streichende Mylonitzone darstellt (UNGER l.c.); diese Störungszone durchschneidet die bisher etwa ost – west streichenden vererzten Komplexe des Vorkommens Walchen in der angegebenen Richtung.

Innerhalb des Kristallins (Wölzer Glimmerschiefer i.a.) ist eine ost – west verlaufende Zone relativer Minima zu beobachten (W5 und W6), die den meist geringmächtigen Amphibolitzügen in den "Wölzer Glimmerschiefern" folgt. Der Glimmerschieferkomplex ist generell arm an Vererzungen, weiter im Osten und Südosten werden kleinere Vorkommen von sulfidischen Erzen usw. beschrieben (BECKER, 1981), die durchwegs auch an Amphibolite gebunden sind. Der Anomalie W6 mögen auch komplexere Ursachen, wie z.B. die Talfüllung des Sölktales oder auch künstliche, zugrunde liegen (vgl. Beilage 2).

5.2. Isoanomalien der Totalintensität ΔT ; Anlage 6

Der nördliche Teil des Bundeslandes Steiermark zeigt hinsichtlich der magnetischen Strukturen eine deutliche Zweiteilung in zwei ost – west verlaufende Zonen, deren nördlichere Auswirkung des "Berchtesgadener Anomalie" und benachbarten Tiefenstrukturen zuzuordnen ist. Unmittelbar südlich davon und parallel dazu befindet sich eine Gruppierung magnetischer Strukturen, die etwa den Grenzbereich Kristallinstirn / Grauwackenzone markieren. Die Großstruktur, die von Öblarn bis zum östlichen Gebietsrand den nordöstlichen Teil des Meßgebietes dominiert, bildet den westlichen Teil einer Anomalie, die mit dem Ultrabasitkomplex des Hochgrößen und eventuell weiterer, in der Tiefe liegender Ultrabasitkörper in Verbindung gebracht werden kann. Daraus folgt, daß die Widerstandsminima und die Störungen des magnetischen Feldverlaufes hier verschiedene Ursachen haben.

Südlich dieser Struktur reicht von Westen her (aus dem Meßgebiet "Pruggern") ein weiterer Anomalienzug in das zentrale Meßgebiet "Öblarn". Dieser Zug bildet die Fortsetzung einer Anomaliengruppe, die von Radstadt bis in das Meßgebiet verfolgbar ist und hauptsächlich durch tieferliegende Störkörper, die weder der Grauwackenzone noch dem ostalpinen Kristallin zuzurechnen sind, verursacht werden. Eine Diskussion der Problematik dieser Störkörper und Modellrechnungen finden sich in HEINZ et al. (1987). Bei der in der zitierten Arbeit vorgenommenen Analyse ausgewählter Anomalien aus dem Bundesland Steiermark ergaben sich deutliche Unterschiede von Störkörpern im erwähnten Grenzgebiet und sogenannten "Intrakristallinen" Strukturen (z.B. von Typ Kraubath). Bezüglich ihrer Position gehört die beschriebene Anomaliengruppe also zum ersten Typ. Eine geringfügige Überlagerung — abgesehen vom Regionaltrend — durch Einflüsse oberflächennaher Gesteine mag hier eine Rolle spielen (im Falle der Umgebung der Bergbaue in der Walchen ist dies sicher, vgl. Ostende der Struktur). Die übrigen Anomalien sind vom zweiten Typ. Zwischen den Großstrukturen liegen einige kleinere positive Anomalien (über 0 bis über 100 nT, vgl. Anlage 6), die auf relativ seicht liegende Einflüsse (? Amphibolite) zurückzuführen sind. Bemerkenswert erscheint hier nur die markanteste dieser Anomalien ostsüdöstlich von Öblarn, die sich teilweise mit dem in etwa 100 m Tiefe liegenden guten Leiter W1 deckt (vgl. Kapitel 5.1.).

Ähnliches gilt für die langgestreckten Anomalienzüge am Südrand des Meßgebietes.

5.3. Gammastrahlenspektrometrie

5.3.1. Gesamtstrahlung (Total count); Anlage 7

Maxima:	über 7000 cps
Mimima:	unter 3000 cps.

Die hohen Werte in der Gesamtstrahlung kommen durch die Korrektur der Meßdaten aus dem Jahr 1983 auf die aktuellen Verhältnisse (Unfall im Reaktor von Tschernobyl, Ende April 1986, Meßflüge im September 1986) zustande; siehe Kapitel 3.6.2 (Korrektur der Meßdaten). Vor allem im südlichen Randstreifen des Meßgebietes wurden ausgedehnte Maxima gemessen. Näheres siehe folgende Abschnitte.

5.3.2. Kalium (K⁴⁰); Anlage 8

Maxima:	über 200 cps
Minima:	unter 75 cps.

Die maximalen Zählraten (150 bis über 200 cps) sind vor allem im Süden, speziell im Südosten des Meßgebietes zu finden. Sie begleiten die mit Amphibolitlagen reich versehenen Glimmerschieferserien der Niederen Tauern. Etwas geringere Werte (100 bis 120 cps) charakterisieren die etwas weiter nördlich gelegenen Marmorkomplexe. Die Ennstaler Phyllite werden durch Zählraten, die im Backgroundniveau liegen, charakterisiert. Nur an den Rändern zu den vulkanogenen bzw. vulkanoklastischen Einlagerungen und in diesen selbst ist die Strahlung im K-Kanal etwas höher (bis 120 cps).

Auffällig ist, daß die jungen Decksedimente und auch die mächtigeren Moränenreste (z.B. nördlich des Dornkarspitzes, in etwa im geographischen Zentrum des Meßgebietes), sowie die Talfüllung des Sölktales keine höheren Zähldaten verursachen.

5.3.3. Uran (Bi²¹⁴); Anlage 9

Maxima:	über 40 cps;
Minima:	unter 20 cps.

Auch im Uran (narrow)- Kanal (1,67 – 1,87MeV) liegen die Maxima im Südteil des Meßgebietes, über den Glimmerschiefern mit Amphibolitlagen. Leicht erhöhte Zählraten haben auch die Marmorzüge rund um das Gumpeneck. 5.3.4. Thorium (Tl²⁰⁸); Anlage 10

Maxima:	über 70 cps;
Minima:	unter 20 cps.

Auch hier zeichnet sich der südliche Randstreifen des überflogenen Gebietes durch deutlich höhere Zählraten aus. Werte um 50 bis 60 cps findet man in der Umgebung der Gumpeneckmarmore wieder. Die vulkanisch beeinflußten bzw. vulkanogenen Gesteine des südlichsten Teiles der nördlichen Grauwackenzone zeigen etwa gleich hohe Werte. – Im südlichen Teil des Sölktales (Südwestsektor des Meßgebietes) sind über den jungen Talfüllungssedimenten recht hohe Thoriumzählraten zu bemerken (Kalium- und Uran-Werte sind hier im Backgroundbereich !); wie schon im Uran-Kanal treten auch hier die karbonatreichen Zonen durch verhältnismäßig hohe Strahlung hervor.

6. Empfehlungen

Weitere Untersuchungen bzw. Untersuchungsmethoden werden für

- die Widerstandsminima W3 und W4 (Klärung der Ursache der guten Leitfähigkeit; geologisch/lagerstättenkundliche Detailuntersuchungen im Zusammenhang mit seichten Erkundungsbohrungen)
- das Widerstandsminimum W2 (? Graphit; Vorgangsweise wie oben)
- die vulkanogenen bzw. vulkanisch beeinflußten Gesteine am Südrand der Grauwackenzone (Radiometrie am Boden; Geochemie; Gesteinsphysik)
- die Marmorzüge am Gumpeneck N-Abfall (wie oben)

empfohlen.

7. Literatur

BECKER,L.P.: Zur Gliederung des Obersteirischen Altkristallins (Muriden). Mit Bemerkungen zu den Erzvorkommen in den einzelnen Kristallinkomplexen. — Verh. Geol.B.-A.,1981, Wien 1981

BUNDESMINISTERIUM FÜR GESUNDHEIT UND UMWELTSCHUTZ: Tschernobyl und die Folgen für Österreich. — Ber. Umweltbundesamt, Wien 1986

FRASER,D.C.: Resistivity mapping with an airborne multicoil electromagnetic system. — Geoph.43, Tulsa 1978

FLÜGEL,H. & NEUBAUER,W.: Geologie der österreichischen Bundesländer in kurzgefassten Einzeldarstellungen. Steiermark. – Erläuterungen zur Geologischen Karte der Steiermark 1 : 200 000. – Geol.B.-A., Wien 1984

HEINZ,H., BIEDERMANN,A. & SEIBERL,W.: Auswertung aeromagnetischer Daten aus der Steiermark. – Proj.Ber., StC 20a/85. — Geol.B.-A., Wien 1987

INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA): Gamma Ray Surveys in Uranium Exploration. Techn. Rep. Series No.186, Vienna 1979

KILLEEN, P.G.: Gamma ray spectrometric methods in Uranium exploration — application and interpretation. Geophysics and Geochemistry in the Search for Metallic Ores. Geol. Surv. Can., Econ. Geol. Rep., **31**, Ottawa 1984

MUNDRY, E.: On the interpretation of airborne electromagnetic data for the two-layer case. Geophys. Prosp., **32**, Den Haag 1984

PRIEWALDER,H. & SCHUMACHER,R.: Petrographisch-tektonische Untersuchungen in den Ennstaler Phylliten (Niedere Tauern, Steiermark) und deren Einstufung in das Silur durch Chitinozoen. — Verh.Geol.B.-A., 1976, Wien 1976

SCHÖNLAUB, H.P.: Die Grauwackenzone. — In: OBERHAUSER, R. (Red.): Der geologische Aufbau Österreichs. — Springer Verl. Wien – New York 1980

SENGPIEL, K.P.: Hubschraubergeophysik in der westlichen Grauwackenzone Österreichs. Ber. BGR und GBA, Hannover-Wien 1985

SEREN, S.: Geophysikalische Untersuchung des Kraubather Serpentins. Unveröff. Diss., Phil. Fak. Univ. Wien, Wien 1980

SKALA, W.: Typen, Facies und tektonische Position der Karbonatgesteine der östlichen Wölzer Tauern. — Verh. Geol.B.-A., **1964**, Wien 1964

UNGER, H.J.: Der Schwefel- und Kupferkiesbergbau in der Walchen bei Oeblarn im Ennstal. — Arch. f. Lagerst.forsch. i. d. Ostalpen, 7, Leoben 1968

8. Verzeichnis der Anlagen

- 1. Lageplan der Flugprofile
- 2. Isolinienplan scheinbarer Widerstand ρ_a , 3600 Hz
- 3. Isolinienplan scheinbarer Widerstand ρ_a , 900 Hz
- 4. Isolinienplan scheinbare Tiefe d_a , 3600 Hz
- 5. Isolinienplan scheinbare Tiefe d_a , 900 Hz
- 6. Isolinienplan Totalintensität ΔT
- 7. Gammastrahlenspektrometrie: Gesamtstrahlung
- 8. Gammastrahlenspektrometrie: Kalium (K⁴⁰)
- 9. Gammastrahlenspektrometrie: Uran (Bi²¹⁴)
- 10. Gammastrahlenspektrometrie: Thorium (Tl²⁰⁸)

9. Anhang

A. Einfluß der Hangneigung auf elektromagnetische Messungen aus der Luft

(nach Dr. K.-P. Sengpiel, Bundesamt f. Geowissenschaften und Rohstoffe, Hannover)

1. Einleitung

Geophysikalische Messungen vom Hubschrauber aus finden häufig in Gebieten mit starkem topographischem Relief statt. Für EM-Systeme, bei welchen Sende- und Empfängerspulen fest in einem Flugkörper installiert sind, wie z.B. beim Dighem-System, kann man davon ausgehen, daß der Flugkörper beim Steigen und Sinken entlang von Berghängen seine horizontale Fluglage beibehält. Dann steht jedoch z.B. ein vertikaler Sendedipol (V) nicht mehr senkrecht auf der Erdoberfläche, wie in der Theorie angenommen. Die folgende Untersuchung soll zeigen, wie die Hangneigung α ($-90^{\circ} \leq \alpha \leq +90^{\circ}$) das gemessene Sekundärfeld bzw. die daraus abgeleiteten Ergebnisparameter spezifischer Widerstand ρ eines Halbraumes und Abstand d zwischen seiner Oberfläche und dem Meßsystem beeinflußt. Dabei wird angenommen, daß

(1) der Hang in der Umgebung des Meßsystems eine hinreichende Ausdehnung (ca.200m) und eine ebene Oberfläche hat,

(2) der Untergrund bezüglich der Leitfähigkeit homogen ist,

(3) der Abstand vom Mittelpunkt des Meßsystemes zur Erdoberfläche (=Flughöhe h) die Bedingung $h \ge 3s$ (s = Spulenabstand) annähernd erfüllt und damit auch die Abstände von Sender- und Empfängerspule von der Erdoberfläche $\approx h$ sind.

Die letzte Annahme trifft für viele aerogeophysikalische EM-Systeme zu (Dighem, Geonics, Geotech) und vereinfacht die folgenden Ableitungen. Diese stützen sich zum Teil auf Ergebnisse von MUNDRY (1984), die ebenfalls unter obiger Voraussetzung (3) und unter der üblichen Annahme einer horizontalen Erdoberfläche gewonnen wurden.

Das sekundäre Magnetfeld S der im Untergrund induzierten Ströme wird in Relation zu Stärke und Richtung des primären Feldes P des induzierenden Dipols am Ort des Empfängers gemessen. Es läßt sich für homogenen Untergrund z.B. nach MUNDRY (1984,Gl.6) bezüglich seiner Richtung zur Erdoberfläche folgendermaßen angeben:

a) orthogonales Sekundärfeld bei orthogonalem (= vertikalem) Sendedipol

$$\frac{S_Z}{P_Z} = \left(\frac{s}{h}\right)^3 F_1,\tag{1a}$$

b) paralleles Sekundärfeld bei parallelem (=horizontalem) Sendedipol

$$\frac{S_X}{P_X} = -\frac{1}{4} \left(\frac{s}{h}\right)^3 F_1, \qquad (1b)$$

wobei F_1 eine komplexe Größe ist, deren Betrag proportional der Amplitude und deren Argument gleich der Phase des relativen Sekundärfeldes ist.

Für die Primärfelder am Ort der Empfänger gilt

$$P_Z = -\frac{Z_M}{s^3} \tag{2a}$$

$$P_X = 2 \frac{X_M}{s^3}.$$
 (2b)

 Z_M und X_M sind die Dipolmomente der beiden Sender (einschließlich des Faktors $\frac{1}{4\pi}$). Statt der relativen Sekundärfelder werden im folgenden die nicht-normierten Felder benötigt, nämlich

$$S_Z = -\left(\frac{1}{h}\right)^3 F_1 Z_M,\tag{3a}$$

$$S_X = -\frac{1}{2} \left(\frac{1}{h}\right)^3 F_1 X_M,\tag{3b}$$

die antiparallel zur Richtung des erzeugenden Dipols sind.

2. Horizontal-Koplanares Spulensystem über geneigter Erdoberfläche

Bei diesem System ist der Sendedipol V vertikal nach unten gerichtet, aber nicht orthogonal zur Erdoberfläche (Abb. A1). Vom Sekundärfeld wird nur die Vertikalkomponente, normiert auf

$$P_V = -\frac{V_M}{s^3} \tag{4}$$

gemessen.

2.1. Veränderung der gemessenen Amplitude

Abb.A1: Zerlegung des primären Dipolfeldes (V) und des sekundären Magnetfeldes (S) in Komponenten; h = Abstand der Flugsonde von der Erdoberfläche.

Gemäß Abb. A1 ist das vertikale Dipolmoment V_M in eine hangparallele Komponente X und eine orthogonale Komponente Z zu zerlegen:

$$Z = V_M \cos \alpha \tag{5a}$$

$$X = V_M \sin \alpha \tag{5b}$$

Diese Dipolmomente sind maßgebend für die Sekundärfelder lt. Gl. (3a, 3b):

$$S_Z = -\left(\frac{1}{h}\right)^3 F_1 V_M \cos\alpha \tag{6a}$$

$$S_X = -\frac{1}{2} \left(\frac{1}{h}\right)^3 F_1 V_M \sin \alpha \tag{6b}$$

Durch die horizontale Empfängerspule wird nur die Summe der (phasengleichen) vertikalen Sekundärfeldkomponenten

$$S^{V} = S_Z^{V} + S_X^{V} = S_Z \cos \alpha + S_X \sin \alpha \tag{7}$$

gemessen. Unter Beachtung der Normierung auf P_V (Gl.4) ergibt sich also

$$S_{(V)} = \frac{S^V}{P_V} = \left(\frac{s}{h}\right)^3 F_1(\cos^2\alpha + \frac{1}{2}\sin^2\alpha)$$
(8a)

oder mit Gl. (1a)

$$S_{(V)} = \frac{S_Z}{P_Z} (1 - \frac{1}{2} \sin^2 \alpha) = \frac{S_Z}{P_Z} K(\alpha).$$
 (8b)

Da $\frac{S_Z}{P_Z}$ das Normalfeld bei horizontaler Erdoberfläche darstellt, beschreibt $K(\alpha) \leq 1$ die Abschwächung der Amplitude $\left|\frac{S_Z}{P_Z}\right|$ durch die Hangneigung α .

In Abb. A2 ist $K(\alpha) = 1 - \frac{1}{2}\sin^2 \alpha = \frac{1}{4}(3 + \cos 2\alpha)$ als Funktion des Winkels α dargestellt. Beim Entlangfliegen an Steilwänden erhält man im Extremfall $\alpha = 90^{\circ}$ nur noch die halbe Amplitude des Sekundärfeldes (Sendedipol parallel zur Erdoberfläche). Die Phase wird durch die Hangneigung nicht verändert.

2.2. Verfälschung der Ergebnisparameter

Es soll nun untersucht werden, wie die eingangs genannten Ergebnisparameter ρ und dbei geneigter Erdoberfläche verfälscht werden. Dazu muß der Rechengang bei der Inversion der Meßdaten in die obigen Parameter für das Modell eines homogenen Halbraumes herangezogen werden, der z.B. bei MUNDRY (1984) beschrieben ist.

Zunächst wird das Komponentenverhältnis $\epsilon = \frac{Q}{R}$

mit Q =Quadrature-Komponente von $S_{(V)}$

R =Inphase-Komponente von $S_{(V)}$,

benützt, um eine Größe A^* zu bestimmen. Da ϵ unabhängig von α ist, gilt dies auch für A^* . Nach Gl.(15) der zitierten Arbeit wird der Abstand d aus

$$d = \left(\frac{A^*}{A}\right)^{\frac{1}{3}} s \tag{9}$$

Meßgebiet StC-1e/83

Abb. A2: Verfälschungsfaktoren K, D und D^2 in Abhängigkeit vom Neigungswinkel α der Erdoberfläche für ein koplanares EM-System mit vertikalem Sendedipol; q = Quotient Horizontal- zu Vertikalkomponente des sekundären Magnetfeldes.

Meßgebiet StC-1e/83

berechnet. A ist die Amplitude von $S_{(V)}$ im Falle $\alpha = 0$. Bei $\alpha \neq 0$ wird eine Amplitude A' = AK gemessen, die zu einem verfälschten Abstand d' führt, nämlich

$$d' = \left(\frac{A^*}{A'}\right)^{\frac{1}{3}} s = \left(\frac{1}{K}\right)^{\frac{1}{3}} \left(\frac{A^*}{A}\right)^{\frac{1}{3}} s = Dd;$$
(10)

d' ist um den Faktor $d = \sqrt[3]{\frac{1}{K}} \ge 1$ größer als der wahre Abstand d des Meßsystems von der Erdoberfläche. D ist in Abb. A2 als Funktion von α aufgetragen; es variiert zwischen 1 und 1,26.

Die Bestimmung des spezifischen Widerstands ρ erfolgt mit Hilfe der Beziehung

$$\frac{d}{p} = g(\epsilon) \tag{11}$$

(MUNDRY 1984, Gl.13). Die Eindringtiefe p

$$p = 503.3\sqrt{\frac{\rho}{f}} \tag{12}$$

enthält den spezifischen Widerstand ρ des Halbraums und die Meßfrequenz f. Die erwähnte Unabhängigkeit der Phase von α gilt auch für den Quotienten g. Wird in (11) der verfälschte Abstand d' = D.d eingesetzt, so ergibt sich eine verfälschte Eindringtiefe p'

$$p' = \frac{d'}{g} = \frac{Dd}{g} = Dp \tag{13}$$

bzw. ein verfälschter Widerstand ρ'

$$\rho' = D^2 \rho. \tag{14}$$

Der aus den Meßdaten des V-Systems über geneigter Erdoberfläche bestimmte Widerstand wird also um den Faktor D^2 größer als der wahre Widerstand. Gemäß Abb. A2 wächst D^2 von 1 ($\alpha = 0^{\circ}$) bis maximal 1.59 ($\alpha = 90^{\circ}$).

Für Hangneigungen bis 30° bleiben die Fehler in d und ρ unter 5 bzw. 10%. Bei steileren Hängen ist es ratsam, die Ergebnisparameter mittels $D(\alpha)$ bzw. $D^2(\alpha)$ zu korrigieren.

3. Vertikal-Koaxiales Spulensystem über geneigter Erdoberfläche

Bei diesem System ist der Sendedipol horizontal und zeigt in Flugrichtung. Von den Sekundärfeldern wird nur die horizontale Komponente gemessen, wiederum normiert auf die Feldstärke des Senders (H) am Ort des Empfängers, die hier doppelt so groß wie beim vertikalen Dipol ist.

3.1. Änderung der gemessenen Amplitude

Die Ableitung der Formeln ist weitgehend analog zu derjenigen für den vertikalen Dipol, so daß hier nur die Ergebnisse angegeben werden.

- Zerlegung des horizontalen Primärfeldes:

$$Z = H_M \sin \alpha \tag{15a}$$

$$X = H_M \cos \alpha \tag{15b}$$

- Horizontale Komponenten des Sekundärfeldes::

$$S_Z^H = S_Z \sin \alpha \tag{16a}$$

$$S_X^H = S_H \cos \alpha \tag{16b}$$

mit

$$S_Z = -\left(\frac{1}{h}\right)^3 F_1 H_M \sin\alpha, \qquad (17a)$$

$$S_H = -\frac{1}{2} \left(\frac{1}{h}\right)^3 F_1 H_M \cos \alpha.$$
(17b)

- Primärfeld Z_H am Ort des Empfängers:

$$P_H = 2\frac{H_M}{s^3} \tag{18}$$

– Summe der horizontalen Sekundärfeldkomponenten normiert auf P_H :

$$S_{(H)} = \frac{S_Z^H + S_X^H}{P_H} = -\frac{1}{2} \left(\frac{s}{h}\right)^3 F_1[\sin^2 \alpha + \frac{1}{2}\cos^2 \alpha].$$
(19)

Meßgebiet StC-1e/83

Da nach Gl.(1b) das Normalfeld eines koaxialen Spulensystems

$$\frac{S_X}{P_X} = -\frac{1}{4} \left(\frac{s}{h}\right)^3 F_1$$

ist, ergibt sich aus Gl. (19)

$$S_{(H)} = \frac{S_X}{P_X} [1 + \sin^2 \alpha]$$
 (20a)

oder

$$S_{(H)} = \frac{S_X}{P_X} K_X(\alpha) \tag{20b}$$

mit

$$K_X(\alpha) = 1 + \sin^2 \alpha. \tag{20c}$$

Der Faktor $K_X \ge 1$ beschreibt in diesem Fall die Vergrößerung der Meßamplitude bei geneigter Erdoberfläche. Er ist in Abb. A3 als Funktion von α aufgetragen.

Bei extremen Steilhängen ($\alpha = 90^{\circ}$) wird die Amplitude $|S_{(H)}|$ gegenüber der Normalamplitude bei $\alpha = 0^{\circ}$ verdoppelt.

3.2 Verfälschung der Ergebnisparameter

Auch im Falle des koaxialen Spulensystems wird die Phase des gemessenen Feldes durch $\alpha \neq 0^{\circ}$ nicht verändert.

Für dieses Spulensystem gilt nach Mundry (1984), (Gl.15) mit der Meßamplitude $A' = K_X A$:

$$d' = \left(\frac{4A^{*}}{A'}\right)^{\frac{1}{3}} s = \left(\frac{1}{K_{X}}\right)^{\frac{1}{3}} \left(\frac{4A^{*}}{A}\right)^{\frac{1}{3}} s = D_{X}d$$
(21a)

mit

$$D_X = \sqrt[3]{\frac{1}{K_X}}.$$
 (21b)

Das bedeutet, daß die berechneten Abstände d' um den Faktor $D_X \leq 1$ verkleinert werden. D_X ist in Abb. A3 über der Hangneigung α dargestellt; es variiert zwischen 1 und 0,794.

Abb. A3: Verfälschungsfaktoren K_X , D_X und D_X^2 als Funktion von α für ein koaxiales EM-System mit horizontalem Sendedipol.

Meßgebiet StC-1e/83

Wegen der unveränderten Phase gelten hier die Gleichungen (8) bis (11) entsprechend, so daß sich ρ' mit

$$\rho' = D_X^2 \rho \tag{22}$$

ergibt. Wie aus Abb. A3 ersichtlich, liegen die Werte von D_X^2 zwischen 1 und 0,63, d.h. der mit dem koaxialen Meßsystem bestimmte spezifische Widerstand ρ' ist u.U. deutlich kleiner als der wahre Widerstand ρ des geneigten Halbraumes.

Bei bekannter Hangneigung α können auch hier die Ergebnisparameter mit Hilfe der obigen Formeln korrigiert werden.

B. Einfluß der Topographie auf die Anomalien der magnetischen Totalintensität (ΔT)

Bis heute beruhen fast alle Auswerteverfahren für geomagnetische Anomalien auf der Annahme, daß die Meßergebnisse auf einer horizontalen Ebene gewonnen wurden (2π -Geometrie). Da aber gerade hubschraubergeophysikalische Messungen häufig in Gebieten mit starkem Relief durchgeführt werden, ist es erforderlich, sich mit dem Einfluß von bestimmten Geländeformen auf die Meßwerte zu beschäftigen. Der Anschaulichkeit wegen ist es günstig, dabei nur einfache topographische Gegebenheiten, wie z.B. Hangneigung, Bergkämme etc., zu betrachten. Dabei kann auf die Ergebnisse einer Dissertation (SE-REN, 1980), die am Institut für Meteorologie und Geophysik der Universität Wien vergeben wurde, zurückgegriffen werden.

Langgestreckte Störkörper mit beliebiger Form können auf zweidimensionale Modellkörper zurückgeführt werden, wobei ihre Querschnitte durch Polygonzüge (Abb. B1) angenähert werden.

Abb. B1 Die Berechnung von magnetischen Störkörperanomalien mit Hilfe eines Polygonzuges.

Es läßt sich z.B. ein Bergkamm durch eine Kante (Abb. B2) vereinfacht darstellen. Um nun die magnetische Anomalie des in Abb. B2 gezeigten Störkörpers berechnen zu können, werden einige Vereinfachungen durchgeführt: Verlegt man die untere Bergrenzung in sehr große Tiefen, so ist ihr Beitrag zur ΔT -Anomalie zu vernachlässigen. Weiters sollen homogene und isotrope Magnetisierungsverhältnisse vorliegen. Unter diesen Voraussetzungen ergibt sich die ΔT -Anomalie einer Kante (Bergkamm) mit:

 $\Delta T \approx 2M \ln (r) \sin 2\delta \alpha (\sin I \sin (\beta + 2\alpha_0) - \cos I \cos (\beta + 2\alpha_0))$

M	Magnetisierung
τ	Abstand zwischen Meßpunkt und Kante
$2\delta \alpha$	Öffnungswinkel der Kante
Ι	Einfallswinkel des Globalfeldes
β	Richtung einer eventuellen remanenten Magnetisierung
$lpha_0$	Hangneigung

Abb. B2 Modellannahme zur Berechnung von magnetischen Anomalien eines Bergkammes.

Es wurden nun für 3 verschiedene Öffnungswinkel ($2\delta\alpha$) die zugehörigen ΔT -Anomalien berechnet (Abb. B3). Dabei zeigt sich, daß die ΔT -Anomalie beim horizontalen Überfliegen von Bergkämmen ($\alpha_0 = 90^{\circ}$) mit zunehmenden Öffnungswinkel kleiner wird. Für positive Öffnungswinkel (Bergkämme) ist die Anomalie positiv, für negative (Täler) negativ.

Weiters wurde auch der Einfluß der Hangneigung auf die ΔT -Anomalie einer Kante berechnet (Abb. B4). Die vier Modellkurven für $\alpha_0 = 90^{\circ}, 75^{\circ}, 60^{\circ}$ und 45° zeigen, daß mit zunehmender Steilheit des Hanges der positive Teil der ΔT -Anomalie mehr und mehr unterdrückt wird, während der negative Anteil stärker negativ wird.

Abb.B3: Der Einfluß des komplementären Öffnungswinkels ($2\delta \alpha$) und einer Kante auf die Δ T-Anomalie, $\alpha_0 = 90^0$.

Abb.B4: Der Einfluß der mittleren Bodenneigung (α_0) auf die Δ T-Anomalie; $\delta \alpha$ = komplementäre Öffnungswinkel, Z = Tiefe in km.

AERO-GEO ÖSTERREIO)PHYSIK XH
eßgebiet:	Projekt-Nr.:
INSTAL/ÖBLARN	StC-1e/83
GEPLAN DER FLUGPROFILE	Anlagen-Nr.: 1
Profil mit Paßpunkten	Maßstab: 1 : 25 000
K Stollen verfallen	Koordinaten- System: Gauß-Krüger der österreichischen Luftbildkarte (Bezugsmeridian M 31)
 0 0,5 1km	Becrbeiter: Sebet Strauß, Eichberger, Lohreger, Kihary Blaunoser Biedemann, Puhner, Stern, Herdy, Staudinger, Rosa, Lang, Wehle, Schabus, Gramang, Kalaschek

AERO-GEOPHYSIK ÖSTERREICH	
eßgebiet:	Projekt-Nr.:
INSTAL / ÖBLARN	StC-1e/83
linienplan HEINBARER WIDERSTAND	Anlagen-Nr.: 2
00 Hz	Maßstab: 1 : 25 000
Isolinien in Ωm	Koordinaten- System:
Minimum	Gauß-Krüger der österreichischen Luftbildkarte (Bezugsmeridian M 31)
Anomalie mit Textverweis	Bearbeiter:
▲ Anomalie mit Kunstlicher Ursache ★ Stallen verfallen	Seiberl, Strauß, Eichberger, Köhazy, Loibnegger, Blaumoser, Putfner, Herdy, Stern, Rosa, Staudinger, Larg, Wehrle, Schabus, Gramang, Kalaschek, Biedermann
0 0,5 1km	

AERO-GEO ÖSTERREIC) PHYSIK H
eßgebiet:	Projekt-Nr.:
INSTAL / ÖBLARN	Stc-1e/83
olinienplan	Anlagen-Nr.:
HEINBARER WIDERSTAND	3
0 Hz	Maßstab:
	1 : 25 000
Isolinien in Ωm	Koordinaten- System:
Minimum	Gauß-Krüger der österreichischen Luftbildkarte (Bezugsmeridian M 31)
W 1 Anonique nur rexivaries	Bearbeiter
Anonale mt Kinsticher Usache Stollen verfallen	Seiberl, Strauß, Eichberger, Loibnegger, Köhazy, Blaumoser, Biedermann, Puchner, Stern, Herdy, Staudinger, Rosa, Lang,
0 <u>05</u> 1km	weinte, schadus, uramang, Kalaschek

AERO-GEOPHYSIK	
Bgebiet:	Projekt-Nr.:
INSTAL / ÖBLARN	Stc-1e/83
linienplan	Anlagen-Nr.:
HEINBARE TIEFE	4
00 Hz	Maßstab:
	1:25000
in m	Koordinaten- System:
¥ Stollen verfallen	Gauß-Krüger der österreichischen Luftbildkarte (Bezugsmeridian M 31)
	Bearbeiter: Seberl, Strauß, Echberger, Lobnegger, Köhazy, Bounoser, Biedemann, Puttner, Stern, Herdy, Staudinger, Rosa, Lang, Wehrle Schobus, Germann
0 0,5 1km	Kalaschek

AERO-GEOPHYSIK	
eßgebiet:	Projekt-Nr.:
INSTAL/ÖBLARN	StC-1e/83
olinienplan	Anlagen-Nr.:
HEINBARE TIEFE	· 5
0 Hz	Maßstab:
Tiofanlinian	1 : 25 000
in m	Koordinaten- System:
¥ Stollen verfallen	Gauß-Krüger der österreichischen Luftbildkarte (Bezugsmeridian M 31)
	Bearbeiter:
0 05 11-	Seiberl, Strauß, Eichberger, Loibnegger, Köhazy, Blaumoser, Biedermann, Puchner, Stern, Herdy, Staußinger, Rosa, Lang, Wehrle, Schabus, Gramang, Kinloschek
0 0,5 1km	nadacien .

Me EN lso TC bezo Regio 1//

AERO-GEOPHYSIK ÖSTERREICH		
Meßgebiet:	Projekt-Nr.:	
ENNSTAL / ÖBLARN	StC-1e/83	
Isolinienplan	Anlagen-Nr.:	
TOTALINTENSITÄT	6	
bezogen auf Wien–Kobenzl, Epoche 1980,0 Regionalfeld: IGRF, Epoche 1977,7	Maßstab:	
	1 : 25 000	
	Koordinaten- System:	
50 100 Minimum	Gauß-Krüger der österreichischen Luftbildkarte (Bezugsmeridian M 31)	
	Bearbeiter:	
Stollen verfallen	Seiberl, Strauß, Eichberger, Lobnegger, Kohazy, Blaumoser, Biedermann, Puchner, Stern, Herdy, Staudinger, Rosa, Lang, Wehrle, Schabus, Gramang, Kalaschek	
Lauran		

Meſ ΕN Isol Gar (0,4 GES ~ ~ \mathbf{i}

AERO-GEOPHYSIK		
Meßgebiet:	Projekt-Nr.:	
ENNSTAL/ÖBLARN	StC-1e/83	
lsolinienplan Gammastrahlenspektrometrie	Anlagen-Nr.: 7	
(0,4 - 3,0 MeV) GESAMTSTRAHLUNG	Maßstab: 1 : 25 000	
105 10 10 10 1000 cps Minimum	Koordinaten- System: Gauß-Krüger der österreichischen Luftbildkarte (Bezugsmeridian M31)	
Stollen verfallen	Bearbeiter: Seibert, Strauß, Elchberger, Lobnegger, Köhazy, Blaumoser, Biedemann, Puchner, Stern, Herdy, Staudinger, Rosa, Lang, Schubr Liebala Formeren	
0 <u>0,5 1km</u>	Sanaashek Kalaschek	

AERO-GEOPHYSIK	
^g gebiet: ISTAL / ÖBLARN	Projekt-Nr.: StC-1e/83
nienplan nmastrahlenspektrometrie	Anlagen-Nr.:
5–1,56 MeV) LIUM (⁴⁰ K)	Maßstab: 1 : 25 000
50 50 50 50 50 50 50 50 50 50 50 50 50 5	Koordinaten- System: Gauß-Krüger der österreichischen
Minimum	Luttbildkarte (Bezugsmeridian M 31)
× Stotlen verfallen ₽ 0,5 1Km	Bearbeiter: Sebert, Strauß, Eichberger, Lohreger, Khang Blaumese, Biedemann, Achner, Stern, Hindy, Staudinger, Rosa, Lang, Schabz, Weite, Granang, Kalaschek

I

AERO-GEO ÖSTERREIC	PHYSIK H
eßgebiet:	Projekt-Nr.:
INSTAL/ÖBLARN	StC-1e/83
olinienplan Immastrahlenspektrometrie	Anlagen-Nr.: 9
57 – 1,87 MeV) RAN (²¹⁴ Bi)	Maßstab: 1 : 25 000
10 Impulsrate in cps Minimum	Koordinaten- System: Gauß-Krüger der österreichischen Luftbildkarte (Bezugsmeridian M 31)
✓ Staten verfallen 0 0,5 1 km	Bearbeiter: Seberl, Strauß, Echberge; Lahngger, Köhaz, Klaumes; Biederman, Puchne, Stern, Herdy, Staudinger, Rosa, Lang, Wehrle, Schlus, Gramang, Kalaschek

AERO-GEO ÖSTERREIO	PHYSIK
ßgebiet:	Projekt-Nr.:
NSTAL/ÖBLARN	StC-1e/83
linienplan	Anlagen-Nr.:
mmastrahlenspektrometrie	10
⊧2 – 2,83 MeV) IORIUM (²⁰⁸ Tl)	Maßstab: 1 : 25 000
Non- Non- Minimum	Koordinaten- System: Gauß-Krüger der österreichischen Luftbildkarte (Bezugsmeridian M 31)
× Stolen verfallen 005 1km	Bearbeiter: Seiberl, Strauf), Eichberger, Lobregye, Köhazy, Baumoser, Bedermann, Puchner, Stern, Herdy, Staufinger, Roso, Lang, Wehrle, Schabus, Grunnang, Kalaschek