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INTRODUCTION

Macrofossils of land plants from the Lower Triassic are com-
paratively rare and mostly represent impoverished floras dom-
inated by pleuromeiacean lycopsids (e.g., Rees, 2002; Grauvo-
gel-Stamm & Ash, 2005; Cascales-Miñana & Cleal, 2014). De-
spite this, there is no shortage of spores and pollen grains from 
this interval, and biostratigraphic schemes based on mainly 
terrestrial palynomorphs have been established for various re-
gions (Fig. 1). To date, palynomorphs have not been described 
from the main two proposed GSSP sections – at Mud (Spiti Val-
ley, India) and Chaohu (Anhui Province, China) – for the Indu-
an-Olenekian boundary (IOB).

PALYNOSTRATIGRAPHY

In Pakistan, associated ammonoids show that the IOB approx-
imately coincides with the boundary between palynological 
assemblage zones PTr 1 (Densoisporites spp.–Lundbladispora spp.) 
and PTr 2 (Lundbladispora spp.–Densoisporites spp.), as described 
by Hermann et al. (2012). This includes the proposed GSSP 
candidate section at the Nammal Gorge. PTr 2 also marks the 
local FAD of Aratrisporites. In palynozonations for other parts 
of Gondwana, the position of the IOB is less well constrained. 
In India, Tiwari & Kumar (2002) assigned the Krempipollenites 
indicus assemblage zone (corresponding to the Klausipollenites 
schaubergeri assemblage zone of Tiwari & Tripathi, 1992) to the 
Induan, and the Playfordiaspora cancellosa assemblage zone to 
the Olenekian, but without a clear age control for the boundary. 
In Australia, the IOB would be located within the long-rang-
ing Protohaploxypinus samoilovichii zone in Eastern and Western 
Australia (Helby et al., 1987; Metcalfe et al., 2015), or the Krae-
uselisporites septatus zone in Western Australia (Dolby & Balme, 
1978).
In North China, the Lundbladispora (=Densoisporites) nejburgii as-
semblage from the upper Liujiaguo Formation and the Voltziace-
aesporites heteromorpha assemblage from the upper Heshangguo 
Formation were dated as Induan and Olenekian, respectively, 
based on plant remains and ammonoids (Ouyang & Norris, 
1988), but the IOB is not documented. Due to similarities, the 
Limatulasporites–Cycadopites–Tubermonocolpites–Micrhystridium 
assemblage and the Lundbladispora–Cycadopites–Veryhachium 
assemblage from Qinghai Province were also correlated to the 
Induan and Olenekian, respectively (Ji & Ouyang, 2006).
Vigran et al. (2014) assigned a common zonation to the palyno-
logical findings from many outcrops and wells on Svalbard and 
in the Barents Sea area, wherein the IOB approximately falls 

together with the boundary between the Maculatasporites spp. 
and the Naumovaspora striata assemblage zones. The local LADs 
of Propriosporites pocockii and Densoisporites playfordii, as well as 
the FAD of Punctatisporites fungosus lie close to the IOB.
In the German Basin, the IOB presumably occurs in the lower 
part of the Volpriehausen Formation (Middle Buntsandstein; 
Ogg et al., 2014), which falls into the Densoisporites nejbur-
gii-acritarch acme subzone of the D. nejburgii zone (Kürschner 
& Herngreen, 2010). The FAD of D. nejburgii is at the base of 
this zone, shortly below the boundary. In the Transdanubian 
(Mid-) Mountains of Hungary, Góczán et al. (1986) defined 12 
palynozones for the Induan and 5 for the Olenekian. They pro-
posed the mass occurrence of D. nejburgii as a marker for the 
IOB, which they located at the boundary between the reduc-
tum–ultraverrucata and nejburgii–reductum dominance zones, or 
the Scythiana-Veryhachium and nejburgii-bisaccate Oppel zones. It 
should be noted that the Induan assemblages are dominated 
by acritarchs.
A biozonation based on megaspores exists for Poland (Marcink-
iewicz et al., 2014, and references therein). Here, the uppermost 
Permian to Induan Otynisporites triassicus zone is succeeded by 
the lower Olenekian Trileites polonicus zone, but the boundary is 
unclear.

3. MACROFLORA

The Induan is mostly considered to lack plant macrofossils 
due to the effect of the end-Permian mass extinction, making 
a comparison with the earliest recovery floras of the Olenekian 
very difficult. This is especially true for Euramerican succes-
sions, which did so far not yield any Induan plant assemblages, 
although the Olenekian ones are locally sometimes surprising-
ly diverse (Kustatscher et al., 2014; Grauvogel-Stamm & Kustat-
scher, in press), suggesting that the dearth of Induan plant re-
mains might also be due to taphonomic bias. Likewise, very few 
plant assemblages are known from the Southern Hemisphere, 
where the lowermost Triassic floras are general poorly diver-
sified, whereas the upper Lower Triassic successions are gen-
erally dominated by seed ferns (mostly Corystospermales and 
Peltaspermales; e.g., Silvestro et al., 2015). Plant assemblages 
from China and Russia, on the other hand, are more diverse and 
generally dominated by sphenophytes, lycophytes, ferns and 
Gigantopteridales for the Induan, followed by a more diverse 
flora with abundant lycophytes, sphenophytes, ferns, seed ferns 
and conifers during the Olenekian (Yu et al., 2010a, b; Xiong & 
Wang, 2011). However, in a general overview it appears that 
most of the taxa that survived the end-Permian mass extinction 
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FIG.1: Comparison of Lower Triassic palynozonal successions (not to scale).
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event also survive the IOB. The taxa that survive the end-Per-
mian mass extinction (according to some of the above-cited 
papers) but get extinct at the end of the Induan are typical Pale-
ozoic forms (e.g., Annularia, Lepidodendron, Gigantopteris). On the 
other hand, typical Triassic elements such as e.g., Albertia, Ano-
mopteris, and Isoetites seem to first appear after the IOB. The lack 
of a transition between the late extinction of Paleozoic taxa 
and the appearance of new forms, as well as spores and pol-
len from this time indicating more diverse floras would suggest 
that the taphonomic and sampling bias concerning plant mac-
roremains is still too high to determine a reliable stratigraphic 
marker for the IOB.

CONCLUSIONS

While macroremains from the Lower Triassic are still poorly 
studied and probably subject to strong taphonomic bias, spores 
and pollen grains might be useful for biostratigraphy in the 
Induan and Olenekian and can also be used as (approximate) 
indicators of the IOB in several regions. However, the compara-
bility of palynozones between regions is limited, and palynos-
tratigraphic data from the main GSSP candidate sections is not 
currently available. A major advantage of spores and pollen is 
their presence in both terrestrial and marine sediments, giving 
them the potential to correlate between the two realms, yet in 
many cases independent age control is still needed for calibra-
tion.
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