MANTLE XENOLITHS FROM BONDORÓ VOLCANIC COMPLEX

Janisch, A., Mundl, A. & Ntaflos, T.

Department of Lithospheric Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria e-mail: astrid.janisch@fh-vie.ac.at

The late Miocene Bondoró Volcanic Complex belongs to the Bakony-Balaton-Highland-Volcanic-Field (BBHVF) in the western part of the Pannonian Basin, Hungary

Mantle xenoliths brought to the surface by alkali basalts comprise sp-lherzolites, sp-harzburgites and pyroxenites. Two distinct types of textures have been found: fine-grained, equigranular textures that are predominantly foliated and coarse grained, protogranular textures which often exhibit layering of pyroxenes. A striking feature of some harzburgites is a noticeably high modal composition of opx. While phlogopite was only found in one sample, intergranular, percolating melt and melt pockets are common in Bondoró mantle xenoliths.

Whole rock Al₂O₃ and CaO contents range from 1.01 to 1.93 wt% and 0.71 to 3.20 wt%, respectively. Mineral analyzes of primary ol reveal Fo contents of 89.4 to 91.4. Cpx are predominantly Cr-Diopsides with En_{48.1-51.9}-Wo_{43.4-47.7}-Fs_{3.2-6.1} and Mg# of 0.89 to 0.93. Opx compositions are in the range of En_{87.8-90.3}-Wo_{0.8-23}-Fs_{8.1-9.9} with Mg# between 90 and 91.8. While Cr# in primary sp range from 12 to 21, secondary sp in melt pockets and melt intrusions reveal higher Cr# of 41 to 55.

Equilibration temperatures calculated using two-pyroxene-thermometer of BREY & KOEHLER (1990) are estimated to be in the range of 950 to 1100 °C at 1.5 GPa pressure. Our study shows that the lithospheric mantle underneath Bondoró is highly heterogeneous.

BREY, G.P., KOEHLER, T. (1990): Journal of Petrology, 31, 1353-1378.