GARNET ZONING AND GARNET ISOPLETH GEOTHERMOBAROMETRY AT THE TRANSITION BETWEEN THE ÖTZTAL-BUNDSCHUH NAPPE SYSTEM AND THE KORALPE-WÖLZ HIGH-PRESSURE NAPPE SYSTEM WEST OF THE TAUERN WINDOW

Heinisch, M.¹, Micheuz, P¹, Krenn, K.¹, Hoinkes, G.¹ & Tropper, P²

¹Department of Mineralogy and Petrology, Institute of Earth Sciences, Karl-Franzens-University of Graz, Universitätsplatz 2, 8010 Graz, Austria ²Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria

e-mail: manuel.heinisch@cdu.uni-graz.at

The transition between the Ötztal Complex as part of the Ötztal-Bundschuh Nappe System and the Schneebergzug and Texel Complex, both are parts of the Koralpe-Wölz High Pressure Nappe System, is intensely folded which hampers a clear separation between this units. Based on earlier geological maps rocks of the southern located Texel Complex as part of the Koralpe-Wölz High-Pressure Nappe System appear incorporated into units of the Ötztal-Bundschuh Nappe System. The aim of this study is to clarify this approach by the aid of a NW-SE profile using garnet major element zoning linked with garnet isopleth geothermobarometry. "Jumps" in element distribution of major elements are linked with metamorphic events, like Variscan (MP/MT) in the Ötztal Complex, Permian (LP/HT) in the Texel Complex and eo-Alpine (HP/MT) in both complexes

Two main types of pre-eo-Alpine garnet zoning patterns in the cores, type-1 and type-2 and two main types of eo-Alpine garnet zoning in the rims, type-3 and type-4 have been observed. Type-1 shows typical prograde zoning with decreasing X_{Cirs} (Grs₃₀ to Grs₈) and bell-shaped X_{Sps} patterns, as well as increasing X_{Alm} (Alm₆₀ to Alm₇₀) and X_{P1p} (Prp₅ to Prp₁₂) from the inner core close to the rim. Type-2 is characterized by homogeneous contents of X_{Grs} (Grs₈. 10), X_{Alm} (Alm_{70.75}), X_{Pyp} (Prp_{10.15}) from the inner core to the outer core. The rims of the porphyroblasts show two different garnet zoning types with significantly higher X_{Grs} and can be distinguished into: type-3 with a small jump in X_{Grs} (from Grs₁₀ to Grs₂₅), in X_{Alm} (Alm₇₅ to Alm₆₀) and in X_{Prp} (Prp₁₅ to Prp₁₀) and type-4 with a higher jump in X_{Grs} (from Grs₁₀ to Grs₃₀), in X_{Alm} (from Alm₇₅ to Alm₅₅) and in X_{Prp} (from Prp₁₅ to Prp₅). Type-4 comprises a large garnet volume with a continuous decrease in X_{Grs} (Grs₃₀ to Grs₂₀) and a continuous increase in X_{Alm} (Alm₅₅ to Alm₆₅), and in X_{Prp} (Prp₅ to Prp₁₀) towards the outermost rims.

To estimate the P-T conditions of pre-eo-Alpine garnet growth, grossular-, almandine- and spessartine isopleths were calculated with the program PERPLEX. The intersections of the isopleths yield 0.7-0.9 GPa and 550-650 °C for the pre-eo-Alpine type-1 core and type-2 core garnets and 0.8-0.9 GPa with 550-600 °C for the eo-Alpine type-3 and type-4 garnet rims. It can be concluded that based on garnet thermobarometry and major element zonation it is more likely that rocks directly exposed north of the Schneebergzug experienced a Variscan than a Permian event, followed by an eo-Alpine metamorphic overprint.