THE EFFECT OF CLASS 1 H₂O ON A RAMAN ACTIVE T₂ STRETCHING MODE IN Mg-CORDIERITE

Haefeker, U.¹, Kaindl, R.² & Tropper, P¹

¹Institute of Mineralogy and Petrography, University Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
²MATERIALS – Institute for Surface Technologies and Photonics, Functional Surfaces, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Leobner Straße 94, A-8712 Niklasdorf, Austria
e-mail: udo.haefeker@uibk.ac.at

The structure of orthorhombic cordierite consists of six-membered (Al, Si)O₄ rings, which are laterally linked by additional (Al, Si)O₄ tetrahedra. Stacked rings form channels parallel *c* which can incorporate volatiles like H₂O and CO₂ in various amounts. Octahedral sites contain mainly Mg and Fe. Five tetrahedrally coordinated sites and channel sites have to be distinguished in the structure: $(M)_2(T_11)_2(T_26)_2(T_23)_2(T_21)_2(T_16)O_{18}(Ch0,Ch1/4))$ (e.g. BERTOLDI et al., 2004). In orthorhombic cordierite Si and Al are fully ordered. The ring tetrahedra T₂1 and T₂3 contain Si and T₂6 contains Al. H₂O is incorporated into the Ch1/4 positions and two classes of H₂O can be distinguished: class 1 H₂O, which is subdivided in three types with different orientations and class 2 H₂O, which interacts with alkali cations and is subdivided in two types with different orientations (KOLESOV & GEIGER, 2000).

Raman spectroscopic investigations of alkali-free synthetic Mg-cordierites with H₂O contents of 0 – 2 wt% revealed a guest-host interaction between class 1 H₂O and Si-channel tetrahedra. A peak at 1189 cm⁻¹ in anhydrous Mg-cordierite is assigned to T₂I and T₂3 stretching vibrations (KAINDL et al., 2011). The peak shifts towards lower energies with increasing H₂O contents and occurs at 1186 cm⁻¹ in samples with 2 wt.% H₂O. The channel volatiles (H₂O, CO₂) of natural Mg-rich cordierite (from White Well, Australia) were removed by heating. The comparison of the Raman spectra before and after heating yields a 4 cm⁻¹ peak shift at 1189 cm⁻¹ towards higher energies. An arrestive effect of H₂O and other channel volatiles to the symmetric vibration of adjacent T_{2(Si)} tetrahedra can be described with Raman spectroscopy.

BERTOLDI, C., PROYER, A., GARBE-SCHÖNBERG, D., BEHRENS, H., DACHS, E. (2004): Lithos, 78, 389-409. KAINDL, R., TÖBBENS, D.M., HAEFEKER, U. (2011): American Mineralogist, 96, 1568-1574.

KOLESOV, B.A., GEIGER, C.A. (2000): American Mineralogist, 85, 1265-1274.