THE C2/C - P2₁/C PHASE TRANSITION WITHIN THE SYNTHETIC CLINOPYROXENE-SERIES NaFeGe₂O₆ - LiFeGe₂O₆

Redhammer, G.J. & Tippelt, G.

Abteilung Mineralogie, Fachbereich Materialforschung & Physik, Universität Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Österreich e-mail: guenther.redhammer@sbg.ac.at

The mineral group of the pyroxenes is known to exhibit several phase transitions as a function of temperature and pressure. At ambient conditions, the most frequent occurring structure is the high temperature HT-C2/c structure, which transforms to $P2_1/c$ at low temperatures or at high pressures. This was described e.g. by REDHAMMER & ROTH (2004) for LiM³⁺Si₂O₆ clinopyroxenes, showing transition temperatures between 210 and 340 K. The analogue LiM³⁺Ge₂O₆ compounds display $P2_1/c$ symmetry at room temperature and transform to C2/c symmetry at much higher temperatures. LiFeGe₂O₆ shows a $P2_1/c$ to HT C2/c transition at 789 K, thus shifted by more than 500 K (REDHAMMER et al., 2010). The germanium analogue to aegirine, NaFeGe₂O₆, exhibit C2/c symmetry at room temperature (REDHAMMER et al., 2011), thus a transition from C2/c to $P2_1/c$ symmetry within the (Na_{1-x}Li_x)FeGe₂O₆ solid solution series is to be expected.

The synthetic samples show C2/c symmetry up to a composition of Na_{0.5}Li_{0.5}FeGe₂O₆, for higher Li-contents, the $P2_1/c$ symmetry is observed. Using single crystal X-ray diffraction and thermal analysis a T-X phase diagram of the stability of the corresponding symmetries was established (see Figure). The unit cell volume decreases with increasing Li - content, at the phase transition composition a discontinuity and a change in slope is observed. Such discontinuities are valid for all lattice parameters a, b, c and the monoclinic angle; additionally average as well as individual bond lengths for Li-O, Fe-O and Ge-O are subject of smooth variations with Li-content, with more or less pronounced discontinuities at the phase transition. Evident e.g. is the variation of the O3-O3-O3 bridging angle of tetrahedral chains: it decreases from 185 ° to 174 ° with increasing Li-content, at the phase transition two independent chains arise in the $P2_1/c$ phase with kinking angles of 199 ° and 155 ° For the composition of Na_{0.6}Li_{0.4}Ge₂O₆ and Na_{0.7}Li_{0.3}Ge₂O₆ low temperature in situ X-ray diffraction experiments were done to follow the C2/c - $P2_1/c$ phase transition also as a function of temperature.

 $\mbox{REDHAMMER, G.J., ROTH, G. (2004): Z. Krist., 219, 585-605.}$

REDHAMMER, G.J., CÁMARA, F., ALVARO, M., NESTOLA, F., TIPPELT, G., PRINZ, S., SIMONS, J., ROTH, G., AMTHAUER, G. (2010): Phys. Chem. Minerals, 37, 685-704.

REDHAMMER, G.J., SENYSHYN, A., MEVEN, M., ROTH, G., PRINZ, S., PACHLER, A., TIPPELT, G., PIETZONKA, C., TREUTMANN, W., HOELZEL, M., PEDERSEN, B., AMTHAUER, G. (2011): Phys. Chem. Minerals, 38, 139-157.