CRYSTAL STRUCTURES OF ACENTRIC AND CENTROSYMMETRIC MEMBERS OF THE A ${ }_{2} \mathrm{Me}^{\mathbf{2 +}}{ }_{\mathbf{3}}(\mathbf{O H})_{\mathbf{2}}\left(\mathrm{SO}_{4}\right)_{\mathbf{3}} \mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O}$-GROUP

Krickl, R. \& Wildner, M.
Institut für Mineralogie und Kristallographie, Althanstr. 14, A-1090 Wien, Austria
e-mail: r.krickl@aon.at, manfred.wildner@univie.ac.at

The crystal structures of synthetic compounds with the general formula $\mathrm{A}_{2}^{+} \mathrm{Me}^{2+}{ }_{3}(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were at first described by LOUER \& LOUER (1982) (A-Me $=\mathrm{K}-$ $\mathrm{Cd}, \mathrm{Cs}-\mathrm{Cd}$) and EFFENBERGER \& LANGHOF (1984) (K-Co) in the acentric ortho-rhombic space group $\mathrm{Cmc} 2_{1}$. In the course of syntheses experiments in the system ($\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$, $\left.\mathrm{NH}_{4}, \mathrm{Ag}\right)-(\mathrm{Co}, \mathrm{Ni})-(\mathrm{S}, \mathrm{Se})$ aiming at the preparation of natrochalcite-type compounds, several representatives belonging to the above mentioned group were obtained. Syntheses runs were performed under low-hydrothermal conditions in Teflon-lined steel vessels at a temperature of $220^{\circ} \mathrm{C}$ and a runtime of a week, starting with the respective metal powders covered with $\mathrm{A}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$. The structures were determined (or refined in the case of $\mathrm{K}-\mathrm{Co}$) from single crystal X-ray CCD data. The following Table lists relevant crystal data:

$\mathrm{A}-\mathrm{Me}-\mathrm{X}$	SG	$a(\AA)$	$b(\AA)$	$c(\AA)$	$<\mathrm{A}^{[\mathrm{x}]}-\mathrm{O}>(\AA)$	$\mathrm{Me}(1)^{[6]}-\mathrm{O}(\AA)$	$\mathrm{Me}(2)^{[6]}-\mathrm{O}(\AA)$
$\mathrm{K}-\mathrm{Ni}$	$C m c 2_{1}$	17.899	7.462	9.699	$2.994, \mathrm{x}=[9+1]$	$2.054-2.144$	$2.041-2.093$
$\mathrm{Rb}-\mathrm{Ni}$	$C m c 2_{1}$	18.229	7.536	9.761	$3.065, \mathrm{x}=[9+1]$	$2.059-2.137$	$2.055-2.096$
$\mathrm{~K}-\mathrm{Co}$	$C m c 2_{1}$	17.960	7.565	9.768	$2.977, \mathrm{x}=[9]$	$2.092-2.189$	$2.058-2.143$
$\mathrm{NH}_{4}-\mathrm{Co}$	$C m c 2_{1}$	18.267	7.595	9.814	$3.069, \mathrm{x}=[10]$	$2.087-2.172$	$2.077-2.154$
$\mathrm{Rb}-\mathrm{Co}$	$C m c 2_{1}$	18.274	7.639	9.832	$3.081, \mathrm{x}=[9+1]$	$2.089-2.178$	$2.074-2.150$
$\mathrm{Cs}-\mathrm{Co}$	$P m c n$	18.826	7.837	9.869	$3.263, \mathrm{x}=[9+2]$	$2.070-2.167$	$2.103-2.213$

The crystal structures are composed of two crystallographically different types of moderately distorted MeO_{6} octahedra, two types of SO_{4} tetrahedra, and one distinct A position. The $\mathrm{Me}(\mathrm{l}) \mathrm{O}_{6}$ groups share edges forming octahedral dimers, which are linked via common corners with the $\mathrm{Me}(2) \mathrm{O}_{6}$ groups to infinite polar zig-zag chains parallel to the (polar) c-axis. These chains are linked by SO_{4} tetrahedra and hydrogen bonds to form $\left[\mathrm{Me}_{3}(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$ sheets parallel to (100). The A cations as well as a further hydrogen bond connect adjacent sheets along the a-axis. In the acentric representatives, all octahedral chains are oriented with parallel polarity. Contrary, as a special feature of the cesian-cobalt compound, adjacent sheets are rotated by 180°, thus leading to an anti-parallel arrangement of the polar chains in neighbouring sheets. The resulting symmetry is centrosymmetric and loses the former C-centering, resulting in space group Pmen (conventional setting: Pnma). The investigation of further representatives as well as of an obviously related Ag-Co compound (orthorhombic P with $a^{\prime}=2 / 3 a, b^{\prime}=b, c^{\prime}=c$) is in progress.

References

EFFENBERGER, H. \& LANGHOF, H. (1984): Monatsh. Chem., 115, 165-177.
LOUER, M. \& LOUER, D. (1982): Rev. Chim. Mineral., 19, 162-171.

