CLINOPYROXENES WITH ORIENTED INCLUSIONS OF QUARTZ AND CALCIC AMPHIBOLE FROM THE SAUALPE AND POHOR JE MOUNTAIN ECLOGITES – INDICATORS OF UHP-CONDITIONS?

Konzett, J. 1, Libowitzky, E.2 & Miller, Ch.1

¹Institut für Mineralogie und Petrographie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
²Institut für Mineralogie und Kristallographie, Althanstrasse 14, A-1090 Wien, Austria
e-mail:juergen.konzett@uibk.ac.at

In recent years an increasing number of high-P metamorphic localities has been described where cpx contains oriented needles/rods of quartz/coesite with or without calcic amphibole. These inclusions are often taken as UHP-indicators and are ascribed to the presence in solid solution of Ca-Eskola pyroxene Ca_{0.5} \(\Pi_{0.5}\AlSi_2O_6\) (CaEsk) under high-P that decomposes through a reaction 2 $Ca_{0.5}\square_{0.5}AlSi_2O_6 \rightarrow CaAl_2SiO_6 + 3 SiO_2$ during exhumation. The mechanism by which composite oriented inclusions with qtz + Cam lamellae form is not yet understood. Hence, great caution is advised when using these inclusions as UHP indicators. H₂O required for Cam formation may be derived locally from H-defects in cpx or from an external source during low-T (low-P) retrogression. Cpx with and without composite qtz + Cam rods or with a zonal distribution of inclusions were studied from Saualpe and Pohorje Mountain eclogites using EMPA, LA-ICP-MS and IR-spectroscopy. Eclogites from both localities show an assemblage grt + cpx + ky + rt ± czo ± qtz ± phe ± Cam ± zrn. Peak metamorphic conditions were 2.5 GPa and 750-780°C. IR-spectra of cpx without visible inclusions show absorption-bands at 3460-3525 cm⁻¹ corresponding to H₂O concentrations of 150-580 ppm. Polarized spectra of cpx with oriented inclusions show additional bands at 3625-3673 cm⁻¹ typical of Ca-amphibole. It is only in one sample that clear areas contain more H₂O (305 ppm) than areas with inclusions (290 and 260 ppm) indicative of H₂O transfer from cpx to Cam. Trace element concentrations of cpx from Pohorje eclogites are extremely low (rock/chondrite = <0.01-1) and do not show significant differences between clear and inclusion-bearing areas with the exception of Li that is consistently higher in clear areas (15-18 ppm) compared to inclusion-bearing areas (9-10 ppm). Likewise, multiple EMPA analyses of a zoned cpx-crystal did not reveal any difference in the major element composition between clear and inclusion-bearing areas, both showing an averaged composition jd₂₇di₆₄cats₀₃. Assuming Fe₁₀₇=FeO, both clear and inclusion-bearing areas of the zoned cpx show a nearly perfect stoichiometry with $\Sigma cat = 4.002 \pm 0.007$ and 4.002 ± 0.004 (n=10) per 6 oxygens, respectively. This coincidence in composition does not support the presence under peak metamorphic conditions of a significant CaEsk-component in the clinopyroxene investigated. In addition, the presence of cal, dol and ab-rich plag as additional phases appearing in some of the composite qtz + Cam rods would rather indicate a low-P formation of these oriented inclusions.