FIRST OCCURRENCE IN NATURE OF A MINERAL CONTAINING A DAWSON-TYPE HETEROPOLYANIONIC CLUSTER [As₂Mo₁₈O₆₂]⁶: EVIDENCE FROM A CRYSTAL STRUCTURE DETERMINATION

Kolitsch, U.1 & Witzke, T.2

¹ Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstr. 14, A-1090 Wien, Austria

A highly unusual, new secondary molybdate mineral, $(X_6)^{6+}[As_2Mo_{18}O_{62}]^{6-}nH_2O$ (X = cations, including Cu^{2+} , H_3O^+ etc.), has been found at two localities in the Erzgebirge, Eastern Germany (Glückauf-Schacht, Grube Himmelsfürst, Langenau bei Brand-Erbisdorf and Kupfergrube Sadisdorf). The new species represents the first occurrence of a naturally formed compound that contains a discrete DAWSON (1953) type heteropolyanionic cluster $[As_2Mo_{18}O_{62}]^{6-}$ (which is closely related to the better known KEGGIN (1934) type cluster $[X_2M_{12}O_{40}]^{3-}$, where X = As, P; M = Mo, W). The molybdate occurs as deep blue, glassy, water-soluble prisms up to 0.2 mm in length. They have formed due to weathering of jordisite (amorphous MoS_2), and are associated with quartz, a halotrichite-pickeringite-group mineral, rozenite, a copiapite-group mineral and ilsemannite.

A single-crystal structure determination (Mo- $K\alpha$ X-radiation, CCD area detector, R(F) = 7.4%) revealed a very large, monoclinic unit cell, space group C2/c (no. 15), and a = 36.348(7), b = 15.603(3), c = 29.349(6) Å, $\beta = 116.69(3)^\circ$, V = 14871(5) Å³. The unique atomic arrangement contains isolated oval clusters with composition [As₂Mo₁₈O₆₂]⁶, which are weakly connected to each other via charge-balancing X cations and H-bonded H₂O molecules. These cations and the H₂O groups are located on several partially occupied and disordered positions (at present, due to a lack of quantitative electron microprobe analyses, only the cation Cu²⁺ and traces of Na⁺ and K⁺ are unambiguously confirmed, but the presence of H₃O⁺ appears probable). The oval cluster itself is composed of a 'shell' built of 18 distorted MoO₆ octahedra (Mo-O bond distances range from 1.665(14) to 2.385(13) Å), which completely encloses two distorted AsO₄ tetrahedra (<As-O> = 1.69 Å). All atoms are on general positions.

The cluster will be compared to that in $(CH_6N_3)_6[As_2Mo_{18}O_{62}] \cdot 9H_2O$ (ICHIDA & SASAKI, 1983) and the analogous P-W-cluster in $(K_6)^{6+}[P_2W_{18}O_{62}]^{6-}nH_2O$ ($n\sim14$) (DAWSON, 1953) as well as $(NH_4)_6^{6+}[P_2W_{18}O_{62}]^{6-}nH_2O$ ($n\sim9$) and $(Na_4H_2)^{6+}[P_2Mo_{18}O_{62}]^{6-}nH_2O$ ($n\sim20$) (D'AMOUR, 1976).

The new mineral appears to be the product of acidic weathering solutions. Because it is water-soluble, it may have been overlooked previously at other molybdenum deposits.

References

D'AMOUR, H. (1976): Acta Crystallogr., B32, 729-740.

DAWSON, B. (1953): Acta Crystallogr., 6, 113-126.

ICHIDA, H. & SASAKI, Y. (1983): Acta Crystallogr., C39, 529-533.

² Institut für Mineralogie und Lagerstättenlehre, Universität Aachen, Wüllnerstr. 2, D-52056 Aachen , Germany e-mail: uwe.kolitsch@univie.ac.at