AMPHIBOLE ZONATION AS A FUNCTION OF *P-T-X*CO₂-*f*O₂ IN BLUESCHISTS FROM THE AUSTROALPINE RECKNER NAPPE (EASTERN ALPS, AUSTRIA)

KLIER, R. & TROPPER, P

Faculty of Geo- and Atmospheric Sciences, Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, AUSTRIA e-mail: peter.tropper@uibk.ac.at

Within the Austroalpine Reckner Nappe, blueschists with the mineral assemblage aegirinerich clinopyroxene + riebeckite + muscovite + chlorite + albite + hematite \pm biotite \pm stilpnomelane \pm calcite \pm dolomite occur. This assemblage formed in carbonates as well as cherts at the contact to serpentinites and is thought to have formed during a Tertiary high-*P*/low-*T* metamorphic event with *P*-*T* conditions of ca. 350 °C and 1.0 GPa (DINGELDEY et al., 1997).

The amphiboles and clinopyroxenes show complex chemical zoning. Amphiboles show a zonation from riebeckite in the core to winchite or actinolite in the rims. Clinopyroxenes show a very irregular chemical zoning, are mostly aegirine-rich, but also show diopside- or jadeite-rich areas and contain abundant hematite inclusions in the core. Amphibole zoning can be explained by a combination of the following chemical vectors:

Riebeckit + Glaukophan => Arfvedsonit + Eckermannit $\Box^{A}_{-1}(Al,Fe^{3+})^{M2}_{-1}Na^{A}(Mg,Fe)^{M13}$

Riebeckit + Glaukophan => Winchite => Tremolit + Actinolith $Na^{M4}_{1}(Al,Fe^{3+})^{M2}$ $_{1}Ca^{M4}(Mg,Fe)^{M13}$, Arfvedsonit + Eckermannit => Tremolit + Actinolith Na^A₁Na^{M4} $_{2}(Al,Fe^{3+})^{M2}$ $_{1}\Box^{A}Ca_{2}^{M4}(Mg,Fe)^{M13}$ In order to put quantitative constraints on the formation of the amphibole zonation, we evaluated three mineral equilibria in the system NCFMASHOC among the mineral assemblage amphibole_{ss} + $clinopyroxene_{ss}$ + chlorite + calcite + dolomite + hematite + albite + quartz in P-T-XCO₂-fO₂ space. Textural observations indicate that the riebeckite-rich cores formed by a reaction involving the breakdown of the assemblage aegirine + hematite according to the following model reaction (1): 8 Aegirine + 24 Diopside + 6 Hematite+ 16 Jadeite + 24 CO_2 + 12 H_2O -> 24 Calcite + 8 Glaucophane + 4 Riebeckite $+ 3 O_2$. The reactions which lead to the formation of the amphibole zonation towards Ca-rich amphibole compositions are thought to be: 30 Dolomite + 2 Chlorite + 70 Quartz + 2 Riebeckite -> 4 Albite + 2 Actinolite + 8 Tremolite + 10 Calcite + 50 CO_2 + 1 O_2 (2) and 20 Aegirine + 130 Dolomite + 10 Chlorite + 310 Quartz -> 20 Albite + 4 Actinolite + 36 Tremolite + 50 Calcite + 210 CO_2 + 5 O_2 (3). The initial formation of amphiboles by reaction (1) requires in a P-T diagram either decreasing P or increasing T, in T-XCO₂ either decreasing T or increasing XCO_2 and in T-logfO₂ increasing T and decreasing fO₂. Reactions (2) and (3) require in P-T either decreasing P or increasing T, in T-XCO₂ either decreasing T or decreasing XCO_2 and in T-log fO_2 increasing T and decreasing fO_2 .

These reactions indicate that XCO_2 and fO_2 play an important role, since amphibole formation requires increasing XCO_2 and the formation of Ca-rich amphiboles requires a decrease in XCO_2 . In addition, all reactions require a decrease in fO_2 during the evolution of these rocks.

Reference

DINGELDEY, C., DALLMEYER, R.D., KOLLER, F & MASSONNE, H.-J. (1997): Contrib. Mineral. Petrol., 129, 1-19.