INCIPIENT ECLOGITIZATION BELOW 300 °C PRESERVED IN GUATEMALAN LAWSONITE-ECLOGITE

TSUJIMORI, T.¹, LIOU, J. G.¹, SISSON, V. B.², HARLOW, G. E.² & SORENSEN, S. S.³

¹Dept. of Geological and Environmental Sci., Stanford Univ., Stanford, CA 94305, USA ²Dept. of Earth Planet. Sci., American Museum of Natural History, New York, New York 10024, USA ³Dept. of Mineral Sci., National Museum of Natural History', Smithsonian Inst., Washington, DC 20560, USA e-mail: tatsukix@pangea Stanford.EDU

Early Cretaceous lawsonite-eclogites and related HP rocks occur as tectonic inclusions within serpentinite mélange south of the Motagua fault zone, Guatemala (HARLOW et al., 2004; TSUJIMORI et al., 2005). Petrologic and microtextural analyses of four types of mafic HP rocks – jadeite-bearing lawsonite eclogite (JdEC), Type I, II lawsonite-eclogites (Type I LwEC, Type II LwEC), and garnet-bearing lawsonite-blueschist (Grt-LwBS) – reveals three metamorphic stages formed during four deformational phases. The prograde stage represents an incipient eclogitization and is preserved mainly in prograde garnet of all rock types along with older S₁-S₂ foliations. Rarely it occurs in the matrix of the JdEC and Type II LwEC with S₂. The assemblage is Grt [X_{Mg}= ~ 0.22] + Omp [~ 52 % Jd] (or Jd [~ 83 % Jd]) + Lws + Rt + Qtz ± Phe [3.6 Si pfu]; some also have Chl, Ilm, and rare Fgl. Primary impure jadeite occurs in the JdEC. Lawsonite inclusions in garnet of Type I LwEC contain rare pumpellyite inclusions. The presence of syn-metamorphic brittle deformation, inclusion of precursor pumpellyite, the Fe-Mg distribution coefficient between omphacite inclusions and adjacent garnet (Ln(K_D) = 2.7

4.5), and the Grt-Cpx-Phe thermobarometry suggest that the eclogitization initiated at T = -300 °C and P > 1.1 GPa, and continued to T = -480 °C and P = -2.6 GPa. In contrast, retrograde eclogite-facies assemblage is best preserved in the Type II LwEC and is characterized by reversely zoned rims of garnet and $Omp + Gln + Lws + Rt + Qtz \pm Phe$ [3.5 Si pfu] within S₁ foliation, this Gln and Lws contain rutile inclusions. The Grt-Cpx-Phe thermobarometry yields $P = \sim 1.8$ GPa and $T = \sim 400$ °C. Intense deformation and recrystallization along with a PT drop and hydration may have been caused by initiation of exhumation. Furthermore, the latest blueschist-facies assemblage (Gln + Lws + Chl + Ttn + Qtz \pm Phe \pm Ab) along S_4 crenulations locally replaces earlier mineral assemblages as observed in the Grt-LwBS. In summary, these petrologic characteristics indicate: (1) the basalt-eclogite transformation may have occurred at T = -300 °C in a cold subduction zone, and (2) formation of a lawsonite-bearing eclogite assemblage that may not have passed through precursor blueschist-facies. During subduction, dehydration of Chl + Ab + Lws ± Pmp to form Grt + Omp within the lawsonite stability field may be more effective than the glaucophane-forming reaction, lawsonite-eclogitic mineral assemblage may form directly from altered basalt. Instead abundant retrograde glaucophane was formed by hydration during exhumation.

References

HARLOW, G. E., HEMMING, S.R., AVÉ LALLEMANT, H. G., SISSON, V. B. & SORENSEN, S. S. (2004): Two high-pressure-low-temperature serpentinite-matrix melange belts, Motagua fault zone, Guatemala: A record of Aptian and Masstrichtian collisions. Geology, 32, 17-20.

TSUJIMORI, T, LIOU, J. G. & COLEMAN, R. G. (2005): Coexisting retrograde jadeite and omphacite in a jadeite-bearing lawsonite eclogite from the Motagua fault zone, Guatemala Am. Mineral., 90, in press.