HAMILTON Margret

Searching for traces in St. Joachimsthal.

A commission, excursion and handwritten notes from 1904

Iskanje sledi v St. Joachimsthalu. Naročilo, ekskurzija in ročno napisani zapiski iz leta 1904

Spurensuche in St. Joachimsthal.

Eine Kommission, eine Exkursion und handschriftliche Notizen aus dem Jahr 1904

Mag. Mag. Dr. Dr. Margret Hamilton, Universität Wien, Archiv der Geschichte der Geologie, Institut für Geologie, Althanstraße 14, 1090 Wien, Österreich, margret.hamilton@univie.ac.at

5 Slika / 5 Figures / 5 Abbildungen

Keywords: Pechblende (pitch-blende), Joachimsthal, Akademie der Wissenschaften, Eduard Suess, Friedrich Becke.

Abstract

On behalf of the Radium Commission of the Imperial Academy of Sciences Vienna Friedrich Becke travels together with Eduard Suess, Ludwig Camillo Haitinger and the Bergrat Alois Zdrahal to Joachimsthal (Jáchimovê, Erzgebirge). The uranium ore deposit is being explored petrographically and geologically. And in the interest of radium and scientific research a local opinion for the sale and industrial use of "Pechblende" (pitch-blende) is provided.

Eduard Suess had made brief notes about the procedure to visit the uranium deposit for preliminary negotiations, which are now stored in the geological archive of the Department of Geodynamics and Sedimentology at the University of Vienna. Becke's personal notes in one of his notebooks, No. 64 dated 1904, the resulting research findings and publications are discussed in detail in this article. The author personally searched for traces at St. Joachimsthal and added her research about the events in 1904.

The personal records of Friedrich Becke give us the exact date of the excursion, documents the participants and the situation on the location. In the notebook are individually recorded the steps in detail and supplemented with profiles and measurement data of the rock layers. They form the basis of his findings, which are then reproduced in the publications within the writings of the Imperial Academy Vienna. His notes provide us with information about the petrographic, geological situation in Joachimsthal and the occurrence of the uranium-containing rock. Becke, as a petrographer and mineralogist, is part of the research team on behalf of the Academy of Sciences. His task was solely to work on the geoscientific aspects of the deposit. It had nothing to do with the desire for increasing demand in the field of research and application of radioactive elements. Nevertheless, the records give an insight into the first steps of radioactivity research in Austria and the interest of the Academy of Sciences in the new elements and their use in research.

The activities of the Radium Commission of the Academy, founded in 1901, initially remained theoretically until 1904. At suggestion of its President Eduard Suess, a scientific group was founded to explore the Jáchymovê mineral deposit and a large quantity of Pechblende was to be provided for radium research in Austria.

Povzetek

Friedrich Becke, Eduard Suess, Ludwig Camillo Haitinger in Bergrat Alois Zdrahal so po naročilu Komisije za radij Cesarske akademije znanosti na Dunaju potovali do Joachimsthala. Tam so morali opraviti petrografske in geološke raziskave nahajališča uranove rude. Zanje ni bila zainteresirana le komisija za radij kot osnove za znanstvene raziskave, temveč so bili izsledki pomembni tudi za začetek prodaje in industrijske rabe smolne svetlice. V Beckejevih zapiskih najdemo natančne datume in imena udeležencev raziskav ter podatke o legi nahajališč. V beležnici so posamezni koraki raziskav podrobno opisani in dopolnjeni s profili ter merilnimi podatki kamninskih slojev. Ti so bili osnova njegovih ugotovitev, ki so jih nato reproducirali v publikacijah Cesarske dunajske akademije. Njegove opombe vsebujejo informacije o petrografski in geološki situaciji v Joachimsthalu ter kamnini, ki vsebuje uran. Becke je bil kot petrograf in mineralog del raziskovalne skupine v imenu Akademije znanosti. Njegova naloga je bila izključno geološka predstavitev nahajališča. Kljub temu pa njegovi zapiski dajejo vpogled v prve raziskave radioaktivnosti v Avstriji in v interesu akademije znanosti pogled na nove elemente in njihovo uporabo na raziskovalnih področjih.

Dejavnost Komisije za radij, ustanovljene pri Akademiji leta 1901, je sprva ostala teoretična. Leta 1904 je bila na predlog predsednika Eduarda Suessa oblikovana znanstvena skupina za raziskavo zaloge rude v Joachimsthalu. V ta namen so morali zagotoviti velike količine smolne svetlice za raziskave radija v Avstriji. Vendar je preteklo kar nekaj časa, da je proizvodnja radija stekla, saj kemik Ludwig Haitinger ni imel tovrstnih izkušenj. Akademiji je bilo zato mogoče predati visokokakovostni radij šele leta 1907.

Med drugim obiskom Joachimsthala maja 1904 je Becke poglobil svoje znanje o pojavu in paragenezi smolne svetlice. Ti zapisi niso več vključeni v članek.

Zusammenfassung

Friedrich Becke fährt gemeinsam mit Eduard Suess, Ludwig Camillo Haitinger und dem Bergrat Alois Zdrahal im Auftrag der Radiumkommission der kaiserlichen Akademie der Wissenschaften Wien nach Joachimsthal (Jáchimovê im Erzgebirge). Es soll die Uranerzlagerstätte petrographisch und geologisch erforscht werden, und im Interesse der Radiumforschung ein Lokalaugenschein für wissenschaftliche Untersuchungen in Wien, aber auch für den Verkauf und die industrielle Nutzung der Pechblende erbracht werden. In den persönlichen Aufzeichnungen Beckes erfahren wir den genauen Termin, die teilnehmenden Personen und die Lage vor Ort. Im Notizbuch werden die einzelnen Schritte genauestens aufgezeichnet und mit Profilen und Messdaten der Gesteinsschichten ergänzt. Sie bilden die Grundlage seiner Erkenntnisse, die dann in den Veröffentlichungen innerhalb der Schriften der kaiserlichen Akademie Wien wiedergegeben sind. Seine Notizen geben uns Auskunft über die petrographisch, geologische Situation in Joachimsthal und das Vorkommen des Uranhaltigen Gesteins. Becke zählt als Petrograph und Mineraloge zum Forschungsteam im Auftrag der Akademie der Wissenschaften. Seine Aufgabe lag allein in der geowissenschaftlichen Darstellung der Lagerstätte. Trotzdem geben die Aufzeichnungen einen Einblick in die ersten Schritte der Radioaktivitätsforschung in Österreich und dem Interesse der Akademie der Wissenschaften an den neuen Elementen und ihrem Einsatz im Forschungsbereich.

Die Tätigkeit der 1901 gegründeten Radiumkommission der Akademie blieb anfangs theoretisch, bis 1904 auf Anregung des Präsidenten Eduard Suess eine wissenschaftliche Gruppe zur Erkundung der Joachimsthaler Erzlagerstätte stattfand. Dabei sollte eine große Menge Pechblende für die Radiumforschung in Österreich bereitgestellt werden. Es dauerte aber

einige Zeit bis zur Herstellung des Radiums, da der Chemiker Ludwig Haitinger keine Erfahrung mit der Produktion von Radium hatte. Daher konnte erst im Jahr 1907 hochwertiges Radium der Akademie übergeben werden.

Während eines zweiten Besuchs in Joachimsthal im Mai 1904 vertiefte Becke seine Kenntnisse über das Vorkommen und die Paragenese der Pechblende. Diese Aufzeichnungen finden aber keinen Eingang mehr in eine Publikation.

Uran - ein neues Element, ein neuer Rohstoff

Der Name Uran geht auf die Benennung des Apothekers und Naturforschers Martin Heinrich Klaproth (1743-1817) im Jahr 1789 zurück. Er hielt am 24.9.1789 einen Vortrag "Über Uranit, ein neues Halbmetall" an der königlich-preußischen Akademie für Wissenschaften zu Berlin. Er berichtete über seine Analysedaten eines Pechblendenstückes aus der Mine Johann-Georgenstadt im sächsischen Erzgebirge. Später nannte er das neue Mineral Uranium. Klaproth benannte dieses neue Mineral nach dem von Wilhelm Herschel (1738-1822) neu entdeckten Planeten Uranus. Klaproth selbst erhielt mit seinen chemischen Versuchen nicht das reine Metall, sondern Nitrate und Oxide, dies gelang erst zirka 50 Jahre später dem französischen Chemiker Eugène Melchior Péligot (1811-1872) und zwar durch Reduktion von Urantetrachlorid mit Kalium. 1896 entdeckte der französische Physiker Henri Becquerel (1852-1908) den aufsehenerregenden Effekt, dass ein Stück Uranerz auf einer Fotoplatte innerhalb weniger Stunden einen schwarzen Abdruck hinterließ. In der Folge wurde dann die sogenannte Radioaktivität von Marie (1867-1934) und Pierre Curie ((1859-1906) und Ernest Rutherford (1871-1937) weiter erforscht. Innerhalb der Arbeiten über die Uranstrahlung und Radioaktivität untersuchten Marie und Pierre Curie viele Uranerze, so auch erhielten sie unter der Patronanz des Präsidenten der österreichischen Akademie der Wissenschaften, Eduard Suess, eine beträchtliche Menge Pechblende aus der Lagerstätte St. Joachimsthal. Bei ihren Untersuchungen stellten sie fest, dass Proben dieser Uranpechblende viel stärker radioaktiv waren als das chemisch reine Uran. Mit der chemischen Auftrennung des Gesteins erhielt das Ehepaar Curie zwei radioaktive Fraktionen, das später benannte Radium und das Polonium. Marie Curie nannte dieses neue Element zu Ehren ihres Heimatlandes Polen.

Die gelben, orangen und braunen Oxide des Urans waren für die farbenprächtigen Glasuren in der Keramik und Glasindustrie von Nutzen und auch allgemein sehr beliebt. Mit der Entdeckung der Radioaktivität anhand der Uransalze begann eine neue Ära des Uranabbaus und damit ein neuer wirtschaftlicher Aufschwung im Bergbau in Joachimsthal. Um 1900 zählte diese Lagerstätte zu den größten in Europa.

In der modernen Interpretation sind die Uranvorkommen und die Lage der Pechblende in Klüften zu finden, die in chloritisierten und pyritisierten Gneisen abgelagert wurden während einer Intrusion in bereits vorhandenes granitisches Muttergestein. Es sind dies hydrothermale Gänge, in denen Sulfide, Quarze, Pechblende, Arsenide, Silberverbindungen, Kobalte und andere Elemente sowie seltene Erden ausgeschieden wurden. Das Alter der Pechblende – Uraninit – ist etwa 220-230 Millionen Jahre. Aus 100 000 kg Pechblende wurden 1g Radium gewonnen.

1g RaBr kostete um 1900 15.000 Kronen, bereits 1im Jahr 1905 400.000 Kronen.

10 000 Tonnen Erz ergaben 1,4 g Radium im damaligen Verarbeitungsprozess.

Pechblende als Uranerz in St. Joachimsthal

Der Name Pechblende geht auf die Bezeichnung Ignaz von Borns (1742-1791) im Jahr 1772 zurück, aufgrund des pechartigen Glanzes eines Gesteins, das beim Abbau von Erzen als taubes Gesteinsmaterial auftrat. Im Lehrbuch der Mineralogie von Gustav Tschermak (1905, S.475) werden die chemischen Bestandteile der Pechblende angeführt:

Ungefähr 80 Prozent Uranoxyd und etwas Blei, ferner Th [Thorium], Y [Ytrium], Ce [Cer], La [Lanthanium] und fast alle gewöhnlichen Stoffe enthaltend, auch N, Ar, He wurden nachgewiesen. Aufsehen erregte die Entdeckung des merkwürdigen Stoffes Radium durch das Ehepaar Curie [1898].¹

Gustav TSCHERMAK, Lehrbuch der Mineralogie. 5. Auflage (Wien 1905), 475.

Die Pechblende zählt in der modernen Beschreibung zu den Uranoxiden mit dem Namen Uraninit UO₂. In kristalliner Struktur zählt es zum kubischen System in der Anordnung eines Fluoritgitters. Es existieren zwei Varietäten: eine hochtemperierte Modifikation Uraninit und eine tiefthermale Bildung, die als kollomorphe Uranpechblende bezeichnet wird.

Uraninit kann in unterschiedlichen Bildungsweisen entstehen, wie pegmatisch, hydrothermal und sedimentär. Die hydrothermale Bildungsweise erfolgt auf Gängen und in metasomatischen Körpern, meist als Th-arme kollomorphe Pechblende, fein eingesprengt und massig. In St. Joachimsthal finden wir diese Art von Lagerstätte, hier entstanden durch hydrothermale Auslaugung Gänge mit mehreren Prozent Uran des Granits. In der Paragenese kommt Uraninit mit Karbonaten, Co, Ni, Ag, Bi und den Mineralen Arsen, Silber, Wismut, Fluorit und Pyrit vor.

Die Nutzung wird heute vor allem als Kernbrennstoff in der Atomenergie getätigt.

Fig. 1 / Abb. 1: Uraninit. Probe aus Joachimsthal. Institut für Mineralogie und Kristallographie Wien - Christian Lengauer (Foto Margret Hamilton).

Das Bergbaugebiet von St. Joachimsthal (Jáchymov) ist eine Lagerstätte im Erzgebirge (Krusné Hory), liegt nördlich von Karlsbad und umfasst ein Gebiet von ungefähr 35km2 mit etwa 200 Erzgängen. St. Joachimsthal liegt im böhmischen Teil des Erzgebirges und wurde 1516 gegründet. Die Lagerstätte galt als bedeutende Silberabbaustätte in der frühen Neuzeit. Ein groß angelegtes Stollensystem und tiefe Stollengänge weisen auf eine bedeutende und reiche Silbererzlagerstätte hin. Hier wurde auch der "Joachimsthaler" – ein Silbertaler – geprägt. Mit dem Rückgang der Förderquantitäten an Silbererz verlor die Stadt an Bedeutung. Erst mit der Nutzung der Pechblende, dem enthaltenen Element Uran, als Farbglasur in der Keramik- und Glasindustrie im 19. Jahrhundert erhielt die Grube eine wirtschaftliche Bedeutung. Die industrielle Verwertung des Urans, aber auch das heilkräftige radioaktive Wasser, bewirkte einen großen wirtschaftlichen Aufschwung der Stadt. Bis in die 1960 Jahre erfolgte der Abbau des uranhaltigen Gesteins. Mit dem Rückgang der abbaufähigen Lagerstätte wurde der Uranabbau zwischen 1962 und 1964 heruntergefahren und die Anlagen und das radioaktive Quellwasser für Heilbäder ausgebaut. Ein modernes Wasser- und Pumpensystem ermöglicht bis heute diese Nutzung.

Joachimsthal, Bergbaustadt und Bezirkshauptmannschaft im böhmischen Erzgebirge, gehörte bis 1918 zur Österreichisch - Ungarischen Monarchie. In einem kaiserlichen Dekret Franz Josephs I. vom 4. September 1898 führte die Stadt den Titel: "Kaiserlich - königliche freie Bergstadt Sanct Joachimsthal". Nach Ende des 1. Weltkrieges wurde sie Teil des neu gegründeten Staates Tschechoslowakei. 1938, mit dem Anschluss an das Deutsche Reich, erhielt die Stadt den Namen Radiumbad St. Joachimsthal. Nach Ende des 2. Weltkrieges im Jahr 1945 kam es zur Vertreibung der deutschsprachigen Bevölkerung; mit den sogenannten Beneš Dekreten wurden deren Vermögen konfisziert. In Joachimsthal und in der Umgebung errichtete der sowjetische Geheimdienst NKWD den "tschechoslowakischen Gulag", wo Kriegsgefangene, politische Häftlinge und Zwangsarbeiter für das sowjetische Atombombenprojekt den Uranabbau tätigen mussten.

Die Radiumkomission

Die Ende des 19. Jahrhunderts entdeckte Radioaktivität ermöglichte es den Wissenschaftern, die Vorgänge im Inneren des Atoms näher zu untersuchen. Dies erforderte eine Menge Untersuchungsmaterial, das unter anderem unter der Patronanz des Präsidenten der kaiserlichen Akademie der Wissenschaften in Wien, Eduard Suess (1831-1914), dem Ehepaar Curie in Paris aus der Lagerstätte Joachimsthal zur Verfügung gestellt worden war.

Auf die Initiative Eduard Suess, wurde im Jahr 1901 an der kaiserlichen Akademie der Wissenschaften in Wien eine Radiumkommission gegründet, dessen Vorsitz der Physiker Franz Seraphin Exner (1849-1926) innehatte.

Eduard Suess hatte auf Anfragen von Marie und Pierre Curie einige Tonnen Pechblende aus Joachimsthal nach Paris zu Forschungszwecken liefern lassen. Ihre Entdeckungen der radioaktiven Elemente Radium und Polonium führten zu regem internationalen Interesse an diesen neuen Elementen und dem Ausgangsmaterial, der Pechblende.

Aus den persönlichen Notizen Eduard Suess aus dem Jahr 1904 sind die Schritte – Gespräche, Briefe, Verhandlungen mit verschiedenen Persönlichkeiten und Institutionen – bis zur Abreise nach Joachimsthal in kurzen Schlagworten aufgezeichnet¹:

Radium 1904

Anfangs Jan. [Jänner] bringen Zeitungen Nachricht, dass Regi. [Regierung] an Curie auch gegen Bezahlung keine Residia gibt.

Donn.[Donnerstag] 7. Jan. Erste Klasetilgung (?), ersuchen F. Exner zu Göbel ² zu gehen.

Samst. [Samstag] 9. Jan. Bf. [Brief] v. F. [Franz] Exner Beil [Beilage, nicht vorhanden].

Mont. [Montag] 11. Jan. Bf. [Brief] u. Anbot von Alb [Albert von Rothschild] – Besuch bei Hartel. weil befürworten mann ans Neudeck. Beil. [Beilage, Copie des Briefes von Edmond Rothschild an Albert]

Dstg. [Donnerstag] 12. Jan. Vorm. Besuch von Langbein, (Sekret. v. Alb. Rothsch. [Albert Rothschild]) üb. Gibt [übergibt] Copie v. Bf. [Brief] v. Edm. [Edmond Rotschild] an Alb .v. 9. Jan.; Bitte für Curie. Aussicht, dass es erspriesslich wäre, wenn in dieser Sache das Haus Rothschild als Unterstützer in nicht geschäftlicher Weise beteiligt.

Ich gehe zu Göbel; er sagt Ware durch Vertrag f. Erze gebunden, bereit, für Curie u. Wien zu 100 K. [Kronen] Erze in 888 Kr. und 100 K. Residera u. 100 Kr. anbeizugeben.

Sonst also Erze an säßig, Residera erst wieder geg. April verfügbar; Jahresprod. [Jahresproduktion] v. Residera um 70-80 ML [Millionen].

Gehe zu Langbein. Acczeptiert den ersten Kauf; wir meinen das beste Thematrum des Hauses R. [Rothschild] wenn es wegen Absätzigkeit v. Erze 40-50,000 Kr. von Seite v. Wien wie des Paris. Hannes u. fond werden für Hoffags [sic!] Bauten geschenkt werden. Ich deute jetzt an, dass ein Geschenk mir von Paris wieder willkommen ist, (weil ich Parität suchen muss).

Mittw. [Mittwoch] 13. ½ 12 Langb. [Langbein] besucht mich in d. Akad. [Akademie] Kanzlei, liest mir Concepts - Entwurf für Bf [Brief] von Baron Alb. an Eden vor. Er entspricht der Verabredung.

Donn. [Donnerstag] 14. Jan. Lgb. [Langbein] telefoniert, Baron Alb. [Albert von Rothschilf] habe seinerseits nicht dem Concept zugestimmt; 40-50 000 frcs. werden nun einseitig von Eden erbeten.

½ 8 (nach der Klasse) (von Sitzung. f. Exner sagt, Curie und Wien je 10.000 K. Residera. folgt mehr als 2jährige Production nöthig. Curie ganz gleich zu halten.

Freit. [Freitag] 15. Jan. Ich gehe zu Göbel; er will für 20.000 K. ½ Preis befürworten.

RAVNE NA KOROŠKEM 2018 // PROCEEDINGS/ZBORNIK: DECEMBER 2021

Eduard Suess: "Radium Joachimsthal 1904". - Persönliche Aufzeichnungen aus dem Nachlass Eduard Suess. Geologisches Archiv der Universität Wien, Box 15.

Franz EXNER (1849-1926) ... Wilhelm GÖBEL (1838-1908), Sektionschef im Ackerbauministerium.

- Samst. [Samstag] 16. Jan. Concept an Ackerb. Min. [Ackerbau Ministerium] (durch Unt Min. [Unterrichtsministerium]) entworfen, mündlich u. explizit. Theile vertraulich Langb. den Inhalt mit, weil Curie's Zustimmung erforderlich. Langb. vom selben Tage, meint auslaufen lassen.
- Sonnt. [Sonntag] 17. Jan. Zustimmen ja, ansonsten lassen (Schwierige Stimmung für mich, da ich fürchten muss, dass Paris auf diese Weise alles erhält u. ich durch Discretion gebunden bin).
- Mont. [Montag] 18. Urgird. Brief an Ex. Hartel. Ich unwohl.
- Donn. [Donnerstag] 21. Langbein besucht mich. Edm.R. [Baron Edmond Rothschild] will sich an 40-50 000 Kr. betheiligen, wenn er einen Partner in vert. [Vertrauen] findet u. nach Beitrag Frankr. [Frankreich] am Pro [Projekt] auch partizipiert. Wir verabred.: 1. Lgb. mag Edmond meinen letzten Br [Brief] (Vbdg v. AK u. Rg mittheilt.) [Verbindung von Akademie und Regierung] 2. E.R. möge den Ankauf f. Curie (Max. 11.100 Kr.) zahlen u. Curie schenken. 3. Größ. Beitrag erst nachdem ich in Joachimsthal gewesen.
- Donn. [Donnerstag] 28. Jan. Radkorn beschliesst, Becke u. mich, event. auch Haitinger nach Joachimsth. zu schicken. Für spez. Studium Hofsenat = Aussicht.
- Hartl teilt mit, dass Einig (?) aber mit Befürwortung an Akb. Min. [Ackerbauminister] gegangen, es sei Zeit, den aufzusuchen.
- Freit. [Freitag] 9. Bei Akb. Min. [Ackerbauminister] angesagt.
- Samst. 30. Akb. Min. sehr zurückhaltend, will sich nicht für Jahre im Preis binden, Werk parier, Rechtsverhältnis zur Privatgrube. Meint es müsse ob auf d. Halde liegen (viel nicht). Gibt Erlass Jthal [Joachimsthal] zu besuchen wird aber einen Beamten zugeben.
- Göbel aufgesucht. Vertraul.: Es ist ein Anbot, sehr hoch, fast unbegrenzt, von Wallot und Weiton, Preis ind. a la 100 a Minister, Paris ermöglicht für eine hochgest. Person, die es Curie schenken will.
- Langbein besucht; zweifelt dass das v. Rothsch. kommt, eher eine Ehrensache. Wird Vollmacht f. Besuch auch f. Fabrik ausstellen. Bf [Brief] v. Curie; dankt f. Abmachung (Dat. 27. Jan.) und Erklärung geben.
- Mont. [Montag] 1. Februar. An Curie geschrieben wegen Preis. 100 Min. vertraul. Zuzgl. offiz. Vertr. Abschr. der Eingabe ans Akb Min.
- Reise n. Joachimsthal f. Sonnt. d. 7. 8 h15 festgestellt (Becke, Haitinger, Bergrath Zdrahal).
- Die Aufzeichnungen Suess' lassen erkennen, in welch kleinen und zum Teil mühsamen Verhandlungsschritten ein gefasster Entschluss zur Verwirklichung einer Idee führen. ¹
- Von der Akademie der Wissenschaften fand im Jahr 1904 eine Exkursion nach Joachimsthal im Auftrag der Radiumkommission statt. In den Publikationen über dieses Ereignis wurden die teilnehmenden Personen nur teilweise angeführt. Becke selbst hat diese aber in seinem Notizbuch dokumentiert (Siehe unten).
- Die einzelnen Mitglieder der Radiumkommission hatten jedoch von der Radiumerzeugung und wahrscheinlich auch dessen weiterer Verwendung keine bestimmte Vorstellung. Das gewonnene Material gaben sie zur Weiterverarbeitung in die Atzgersdorfer Fabrik und übergaben die Verantwortung [für die Erforschung und Gewinnung von Radiumhaltigen Material] deren Direktor L. Haitinger.²
- Im Jahr 1904 veröffentliche Friedrich Becke seine Forschungsergebnisse über Beobachtungen an Uran haltigen Proben an der kaiserlichen Akademie der Wissenschaften in Wien. Im Anzeiger der kaiserlichen Akademie der Wissenschaften Wien ist in einer kurzen Notiz Folgendes festgehalten:
- Die Lebensdaten der im Text angeführten Personen:
 Albert Salomon Anselm Freiherr von Rothschild (1844-1911)
 Baron Edmond Rothschild (1845-1939)
 Wilhelm Göbel (1838-1908)
 Carl (Karl) Langbein (1853-1906)
 Franz Exner (1849-1926)
 Pierre Curie (1859-1906)
 Wilhelm von Hartel (1839-1907).
- Irena Seidlerovà & Jian Seidler, Jáchymover Uranerz und Radioaktivitätsforschung um die Wende des 19./20. Jahrhunderts (Chemnitz 2010), 123.

Das w [wirkliche] M [Mitglied] Prof. Becke legte einige Gangstücke vom Hildebrand- und Schreibergang in Joachimsthal vor, welche bei einer Radiumkommission unternommenen Exkursion gesammelt wurden. Sie zeigen die Succession: Quarz, Uranpecherz, Dolomit, welche für die dortigen Urangänge charakteristisch sind. Photogramme, welche durch Auflegen der geschliffenen Gangstücke auf Trockenplatten gewonnen wurden, geben ein getreues Bild der Verteilung des Uranerzes.¹

Gemeinsam mit dem Physiker Franz Seraphin Exner (1849-1926), dem Präsidenten der k. Akademie der Wissenschaften Eduard Sues (1831-1914) wurden in der Zusammenarbeit mit dem Direktor des k. Hof-Mineralienkabinettes Friedrich Berwerth (1850-1918) und dem Kustos Rudolf Köchlin (1862-1939) Stücke aus dem Mineralienkabinett und aus der Mine von Joachimsthal photographisch untersucht. (*Uranium nigrum solidum in Petrosilic. Rubro ex Rosa de Jericho, Joachimsthal aus dem Jahr 1806*). Die daraus resultierende Erkenntnis ergab, dass die vier Proben unterschiedlicher Herkunftszeit das gleiche Ergebnis erbrachten:

Aus diesen Versuchen ist daher kein Abbruch des Einflusses auf die photographische Platte nach einem Jahrhundert erkennbar.²

Ebenso war auch keine Abnahme der Wirksamkeit erkennbar, alle wiesen eine gleich starke Aktivierung der Luft bei Annäherung an ein geladenes Elektroskop auf.

Die aus dieser Exkursion mitgebrachten Stücke wurden wie oben besprochen untersucht und führten in weiterer Folge zu groß angelegten Transporten von Pechblende aus Joachimsthal nach Wien, wo sie unter anderem am neu gegründeten Institut für Radiumforschung für wissenschaftliche Untersuchungen und zur Erzeugung von radioaktivem Material Verwendung fanden. Dieses Institut wurde 1910 auf die Initiative von Karl Kupelwieser (1941-1925) errichtet.

Die Petrographie der Lagerstätte Joachimsthal in der Publikation von Friedrich Becke und Josef Stêp

In einem ausführlichen Artikel beschreiben die beiden Autoren Friedrich Becke und der Bergverwalter Josef Stêp (1863-1926) die Uranerzlagerstätte in St. Joachimsthal.³

In der Einleitung wird auf das neue Interesse durch das Uranerz an der alten Silber Lagerstätte hingewiesen. Die Topographie der Stadt St. Joachimsthal weist auf jene Lage hin, die auf einem Südhang in einem N-S gerichtetem Tal des Erzgebirges liegt. Die Erzlagerstätten wurden durch zwei Schächte, den Kaiser Josef-Schacht und den Einigkeitsschacht befahren und über den Danielistollen, der etwas außerhalb des Ortes gelegen war, entwässert. 1881 kam es zu einem großen Wassereinbruch, der die bis 350m unter dem Danielistollen gelegenen Horizonte flutete. Weiter westlich gelegene Lagerstätten wurden durch den Wernerschacht erreicht. Die Lagen der Erzgänge gruppieren sich um die Granitstöcke des westlichen Erzgebirges.

Der Granitstock fand bei seiner Intrusion ein bereits gestörtes Gebirge vor. Der Hauptgesteinstyp ist ein Glimmerschiefer: Für die Erzgänge ist von Bedeutung der Unterschied zwischen den hellen, muskovitreichen, häufig granatführenden, feldspatarmen oder –freien Glimmerschiefern und den dunkleren, biotireichen und feldspatführenden, zumeist granatfreien, oft etwas kohligen Glimmerschiefern, welche speziell als "Joachimsthaler Schiefer" bezeichnet werden. ⁴

_

Friedrich Becke, Vorlage einiger Gangstücke vom Hildebrand- und Schweizergang in Joachimsthal. In: Anzeiger der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, 41 (Wien 1904), 66.

Friedrich Becke, Eduard Suess & Franz Seraphin Exner, Mitteilung über die photographische Wirksamkeit von Stücken alter Pechblende aus dem k.k. naturhistorischen Hofmuseum. In: Anzeiger der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, 41 (Wien 1904), 64.

Friedrich aforementioned & Josef Step, Das Vorkommen des Uranpecherzes zu Joachimsthal. In: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien, mathematischnaturwissenschaftliche Klasse, Abteilung I, 113 (Wien 1904), 585-617.

BECKE & STÊP, Uranpecherz (Anm.10), 590.

Im Tertiär fand eine magmatische Intrusion statt. Diese Basaltgänge, die nahezu senkrecht anstehen und eine Mächtigkeit von 60m und eine Länge bis zu 4km aufweisen, werden Putzenwacke genannt. Sie besteht aus basaltischem Trockentuff und Gesteinsbrocken mit Mineralen von Glimmer, Augit und Hornblende.

Die Erzgänge selbst zerfallen in zwei unterschiedliche Gruppen, deren Lage von der Struktur des Glimmerschiefers abhängig erscheint. Das sind zunächst die Morgengänge, die mit dem Streichen des Glimmers parallel laufen und die Nordgänge, die den Glimmerschiefer senkrecht durchsetzen. Sie sind beide vom Wernerschacht zugänglich.

Die wichtigsten Morgengänge sind folgende: Geiergang, Andreasgang, Kühgang, Segen Gottesgang, Dorotheagang und Eliasgang.

Zu den Nordgängen zählen der Schweizergang, Bergkittlergang, Hieronymusgang, Geistergang, Widersinniger Gang, Roter Gang und Fludergang.

Die Erzgänge erwiesen sich durchwegs jünger als die Porphyrgänge, da sie diese durchsetze. ¹

Die tertiäre Putzenwacke und der Basalt sind in diebereits vorhandenen Erzgängen eingedrungen und folgen meistens den Erzgängen, seltener wurden diese Erzgänge durchsetzt. Zu beobachten ist diese Durchsetzung am westlichen Salbande des Geisterganges. (S. 597 mit Abb. 1,2,3). Anhand der Durchsetzungen gelangen die Autoren zum Schluss, dass dies ein untrüglicher Beweis dafür ist, dass die Erzgänge in ihrer Anlage älter als die magmatischen Intrusionen im Tertiär sind. Das Uranerz kommt immer in ganz bestimmter Gesteinsabfolge vor: Quarz, Uranerz und Dolomit. Im Notizbuch notiert Becke das Vorkommen der Uranerze in Paragenese mit Dolomit und Quarz (siehe Abbildung 2).

Ein lehrreiches Stück [...] ist in Abb. 4, Taf. III nach einem Radiogramm im Durchschnitt dargestellt. Man erkennt, daß die einzelnen Schichten von Uranerz etwas ungleich auf die photographische Platte gewirkt haben. Zunächst über dem als weiße Linie auftretenden Quarz folgt schwächer wirkendes Uranerz auf der einen Seite, darüber dann eine stärker radioaktive Schichte, welche beide Seiten überzieht. Über dem Uranerz folgt dann ein meist rötlich gefärbter Dolomit. Die rötliche Farbe ist nicht ursprünglich, sondern eine nachträgliche Oxidationserscheinung. Die ursprüngliche Farbe in den frischesten Partien ist schwach erbsengelb. ²

Die wichtigsten Uranerzgänge des Joachimsthaler Erzreviers sind folgende: Mariagang, Beckengang, Hildebrandgang, Häuerzechergang, Evangelistengang und Rose von Jerichogang.

Der Evangelistengang war nebst dem Hildebrandgang der Hauptlieferant für Uranerz in der östlichen Grubenabteilung. ³

Zu den Uranerzgängen in der westlichen Grubenabteilung zählen der Schweizergang, Bergkittlergang, Hieronymusgang, Geistergang, Roter Gang, Fiedlergang, Fludergang und Neuhoffnungsgang.

Als Bildungsweise des Uranerzes gelangt Becke zur Erkenntnis, dass dieses aus wässrigen Lösungen entstanden ist.

Abschließend beschreibt Becke radiographische Versuche mit dem Uranpecherz von Joachimsthal: Ein Schirm von Calciumsulfid, bei gelöschtem Grubenlicht auf eine Stufe von Uranerz gelegt, leuchtet nach einigen Minuten in deutlichem Lichte, ja man kann sogar das Szintillieren wahrnehmen. Stücke von Uranerz, im Dunkeln der Grube auf eine mit lichtdichtem Papier belegte photographische Platte gelegt, zeigen eine deutliche Schwärzung. Die Wirkung ist auch die gleiche, wenn Uranerz verwendet wird, auf das überhaupt noch keine Einwirkung von Lichtstrahlen stattgefunden hat. ⁴

² "EBD." 600-601.

-

¹ "EBD." 596.

³ "EBD." 606.

⁴ "EBD." 616.

Ebenso wurden Versuche mit dem gleichen Uranerz bei Lichteinwirkung und Sonnenlicht getätigt. Alle diese Versuche zeigten keine Intensitätsunterschiede.

Die von Prof. Sueß Im Akademischen Anzeiger vom 3. März 1904 mitgeteilten Versuche zeigen ferner, daß die Wirkung des Joachimsthaler Uranerzes durch Jahrhundertelange Aufbewahrung in der Sammlung keine merkliche Abschwächung in seiner Wirkung auf die Leitfähigkeit der Luft und auf die photographische Platte erfahren hat. 1

Die Aufzeichnungen Friedrich Beckes in seinem Notizbuch Nr. 64 (1904) als Grundlage der Veröffentlichungen an der kaiserlichen Akademie Wien

Fig. 2:/ Abb. 2: Abbildung der Figur Nr. 4, Tafel III von Pechblendenabdruck auf einer Fotoplatte und die anpolierte Gesteinsprobe aus dem Archiv des NHM Wien – Uwe Kolitsch, Foto Margret Hamilton.

Friedrich Becke (1855-1931), geboren in Prag, studierte Mineralogie und Petrographie an der Universität Wien und lehrte als Mineraloge in Czernowitz, Prag und ab 1898 an der Universität Wien. Zunächst leitete er das Mineralogische Institut und im Jahr 1907 übernahm er in leitender Stellung das Mineralogisch-Petrographische Institut. Seit 1897 ist er wirkliches Mitglied der kaiserlichen Akademie der Wissenschaften in Wien, später, im Jahr 1911, wird er Generalsekretär der Akademie.

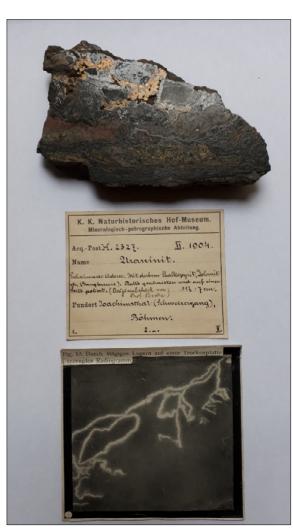


Abbildung 3: Friedrich Becke 1897. (Foto aus dem Archiv der Universität Wien)

BECKE & STÊP, Uranpecherz (Anm. 10), 617.

Becke hat seine Forschungen in kleinen Büchern ausführlich dokumentiert. Sie stellen ein Zeugnis seiner umfangreichen Tätigkeiten, die er sowohl im Gelände als auch im Labor gemacht hat 1. Ein Büchlein, Notizbuch Nr. 64, ist als Dokumentation der Exkursion nach St. Joachimsthal erhalten. Darin sind die Exkursionsdauer, die Teilnehmer der Radiumkommission, der Ablauf und die mineralogisch-petrographischen Erkenntnisse festgehalten.

Abb. 4: Notizbuch Nr. 64 (1904), Blatt 3

7. Februar Frish wit Suen, Bugral Edrahal und Dicetar Hartinger neu Eger - Schlacken werth noch Joachimshal gefahren. Sort non Sreeten Oliva! / Bugrawalter Hep und Kintenchemiker Famila in Emplone genomen We logoren in den alten Schlick' ohen Minghens, in den die Foachismothole Hum Enspring nahman. Alles gehäuste mir Bresen hanen, gewolben gronen firemen. Sohe fremselsche Aufastione heim Greator Oliva. Fish in du Mark reher derei. Verwalter Step zort our Stufen " Karten. Sine Esfahrungen ichen die Manfielerng. 1. Die Engange fihren im Corphyr mie Ene. die gange sotzen durch die nureg, manigen Corphongunge - Stocke als Lettenganger ohne dolomi Sirche Gilleny The lie Die Engunge in duchwegs 2. Die Engänge werden dolorentrerch not Wienfichrend im Toacheren Shale Tolorfa Doe Engange huben im Schrifer einer

07. Februar [1904]

Früh mit Suess [Eduard], Bergrat Zdrahal [Alois (1857-1938)] und Direktor Haitinger [Ludwig Camillo (1860-1954), Chemiker] über Eger – Schlackenwerth nach Joachimsthal gefahren. Dort von Director Oliva (?) Bergverwalter Stêp [Josef (1863-1926)] und Hüttenchemiker Janda in Empfang genommen. Wir logieren in dem alten Schlick'schen Münzhaus, in dem die Joachimsthaler ihren Ursprung nahmen. Altes Gebäude mit Riesen Mauern, Gewölben - grossen Zimmern [...] Früh in der Markscheiderei. Verwalter Stêp zeigt uns Stufen und Karten.

Seine Erfahrung über die Uranführung:

- Die Erzgänge führen im Porphyr nie Erze. Die Gänge setzen durch die unregelmäßigen Pophyrgänge u. Stöcke als Lettengänge ohne dolomitische Füllung oder Erze. Die Erzgänge sind durchwegs älter jünger als die Porphyrgänge.
- 2. Die Erzgänge werden dolomitischer und Uranführend im Joachimsthaler Schiefer. Die Erzgänge haben im Schiefer einen mehr weniger mächtigen Lettenkasten (?) und enthalten an vielen Stellen gebleichte lettige Schieferbrocken. Am Salband und um die Schieferbrocken ist Uranerz in Schnüren abgelagert, scharf mit nierenförmiger Oberfläche abgesetzt gegen den rosaroten Dolomit, der manchmal sehr grobspätig wird, stellenweise auch in Krystalldrusen endet [...] Step ist der Ansicht, dass die Lösung aus Urancarbonat bestand, welche durch den Magnesiagehalt des Schiefers gefällt wurde. (Blatt 4).

¹ Margret Hamilton, Die Notizbücher des Mineralogen und Petrographen Friedrich Becke 1855-1931 (=Schriften des Archivs der Universität Wien 23, Göttingen 2017).

3. Die Basaltgänge "Wacken" sind jünger, da sie sichtbar die Erzgänge durchsetzen.

Besuch des Eliasstollens mit Schiefer, Porphyr und Putzenwacke.

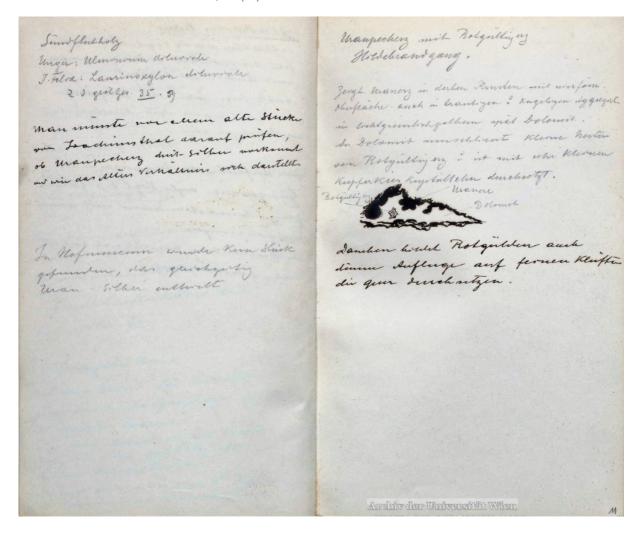


Abb. 5: Notizbuch Nr. 64 (1904), Blatt 11

Einfahrt bis zum 1. Wernerlauf und Weiterfahrt im Schweizergang Richtung Norden: Hier sehen wir den Gang etwas 10-20cm mächtig aus Dolomitfüllung mit Schnüren von Uranerz, welche von einigen mm bis zu einigen cm wechseln, sehr schön. (Blatt 6)

Weiterfahrt Richtung Süden und zurück geht es über den Hieronimusgang zum Schacht.

Bemerkenswert ist folgendes: In der ganzen Strecke ist nur <u>Uran</u> u. <u>Dolomit</u>, keine Silber- sulfid – Kobalt- formation! Und das auf demselben Gang, der höhere reich an Silber war. – Schematisch: [Zeichnung der beiden Gänge mit Uran und -Silber]

Notiz Blatt 11: Man müsste vor allem alte Stücke von Joachimsthal darauf prüfen, ob Uranpecherz mit Silber vorkommt und wie das Altersverhältnis sich darstellt (Abb. 5).

In der Publikation vergleicht er Stufen unterschiedlichen Alters mittels der Einwirkung auf eine Fotoplatte. Siehe Tafel III, Abb. 1-4 (siehe Abbildung 2).

Blatt 11: Graphik einer Uranpecherz Stufe mit Rotgüldigerz (Pyrargyrit Ag₃SbS₃)

Uranpecherz mit Rotgültigerz

Hildebrandgang.

Zeigt Uranerz in derben Krusten mit nierenförm.[iger] Oberfläche. Auch in krautigen kugeligen Aggregaten in lichtgrünlichgelbem spät.[ischem] Dolomit. Der Dolomit umschliesst kleine Nester von Rotgültigerz und ist mit sehr kleinen Kupferkies Kryställchen durchsetzt.Diese Lokation sollte petrographisch und geologisch erforscht werden.

Daneben bildet Rotgülden auch dünne Auflage auf fernen Klüften die quer durchsetzen.

Im Anschluss daran listet Friedrich Becke alle Stufen aus Joachimsthal, die er in Wien in den unterschiedlichen Sammlungen, wie dem Hofmuseum (Blatt 12-17), der Geologischen Reichsanstalt (Blatt 18) und der Ladensammlung im Institut für Mineralogie an der Universität Wien (Blatt 26) gesichtet hat, auf. Einige dieser Stufen sind heute noch in den Sammlungen erhalten und konnten von der Autorin wieder entdeckt werden.

Zusammenfassung

Unter der Patronanz des Präsidenten der kaiserlichen Akademie der Wissenschaften in Wien, Eduard Suess, besuchen Friedrich Becke, Ludwig Camillo Haitinger und der Bergrat Alois Zdrahal im Auftrag der Radiumkommission der kaiserlichen Akademie der Wissenschaften die Uranerzlagerstätte Joachimsthal (Jáchimov, Tschechien) im Erzgebirge. Im Interesse der Radiumforschung ist ein Lokalaugenschein für wissenschaftliche Untersuchungen in Wien, aber auch als Grundlage für den Verkauf und die industrielle Nutzung der Pechblende geplant.

Die nicht sehr einfachen Verhandlungen zwischen Eduard Suess und den einzelnen Institutionen für einen Transport der Pechblende zu wissenschaftlichen Untersuchungen an Marie und Pierre Curie nach Paris sind von ihm in kurzen Notizen aufgezeichnet worden. Diese stammen aus dem geologischen Archiv des Departments für Geodynamik und Sedimentologie, Wien und werden hier erstmalig veröffentlicht. Aus den persönlichen Aufzeichnungen Beckes erfahren wir den genauen Termin, die teilnehmenden Personen und die Lage vor Ort. Im Notizbuch werden die einzelnen Schritte genauestens aufgezeichnet und mit Profilen und Messdaten der Gesteinsschichten ergänzt. Sie bilden die Grundlage seiner Erkenntnisse, die dann in den Veröffentlichungen innerhalb der Schriften der kaiserlichen Akademie wiedergegeben sind. Seine Notizen geben uns Auskunft über die petrographisch-geologische Situation in Joachimsthal und das Vorkommen des uranhaltigen Gesteins. Becke zählt als Petrograph und Mineraloge zum Forschungsteam im Auftrag der Akademie der Wissenschaften. Seine Aufgabe lag allein in der geowissenschaftlichen Darstellung der Lagerstätte. Becke hatte eigentlich mit dem Wunsch nach der zunehmenden Nachfrage im Forschungs - und Anwendungsbereich der radioaktiven Elemente nichts zu tun. Trotzdem geben die Aufzeichnungen einen Einblick in die ersten Schritte der Radioaktivitätsforschung in Österreich und das Interesse der Akademie der Wissenschaften an dem neuen Element und ihrem Einsatz im Forschungsbereich.

Die Tätigkeit der 1901 gegründeten Radiumkommission der Akademie blieb anfangs theoretisch, bis 1904 auf Anregung des Präsidenten Eduard Suess eine wissenschaftliche Gruppe zur Erkundung der Joachimsthaler Erzlagerstätte stattfand. Dabei sollte eine große Menge Pechblende für die Radiumforschung in Österreich bereitgestellt werden. Es dauerte aber einige Zeit bis zur Herstellung des Radiums, da der Chemiker Ludwig Haitinger keine Erfahrung mit der Produktion von Radium hatte. Daher konnte erst im Jahr 1907 hochwertiges Radium an die Akademie übergeben werden.

Literatur

- Friedrich BECKE, Vorlage einiger Gangstücke vom Hildebrand- und Schweizergang in Joachimsthal. In: Anzeiger der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, 41. Jg. (Wien 1904), S. 66.
- Friedrich BECKE, Eduard SUESS & Franz Seraphin EXNER, Mitteilung über die photographische Wirksamkeit von Stücken alter Pechblende aus dem k.k. naturhistorischen Hofmuseum. In: Anzeiger der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, 41. Jg. (Wien 1904), S. 64.
- Friedrich BECKE & Josef STÊP, Das Vorkommen des Uranpecherzes zu Joachimsthal. In: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien, mathematisch-naturwissenschaftliche Klasse, Abteilung I, 113. Band (Wien 1904), S. 585-617.
- Margret HAMILTON, Die Notizbücher des Mineralogen und Petrographen Friedrich Becke 1855-1931. Schriften des Archivs der Universität Wien Band 23 (Göttingen 2017).

Friedrich KATZLER, Geologie von Böhmen. Der geognostische Aufbau und die geologische Entwicklung des Landes mit besonderer Berücksichtigung des Erzvorkommens und der verwendbaren Minerale und Gesteine (Prag 1902).

Irena SEIDLEROVÀ & Jian SEIDLER, Jàchymover Uranerz und Radioaktivitätsforschung um die Wende des 19./20. Jahrhunderts (Chemnitz 2010).

Gustav TSCHERMAK, Lehrbuch der Mineralogie. 5. Auflage (Wien 1905).

Anhang

- 1. Gustav TSCHERMAK, Lehrbuch der Mineralogie. 5. Auflage (Wien 1905), S. 475.
- 2. Irena SEIDLEROVÀ & Jian SEIDLER, Jàchymover Uranerz und Radioaktivitätsforschung um die Wende des 19./20. Jahrhunderts (Chemnitz 2010), S. 123.
- 3. Friedrich BECKE, Vorlage einiger Gangstücke vom Hildebrand- und Schweizergang in Joachimsthal. In: Anzeiger der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, 41. Jg. (Wien 1904), S. 66.
- 4. Friedrich BECKE, Eduard SUESS & Franz Seraphin EXNER, Mitteilung über die photographische Wirksamkeit von Stücken alter Pechblende aus dem k.k. naturhistorischen Hofmuseum. In: Anzeiger der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, 41. Jg. (Wien 1904), S. 64.
- 5. Friedrich BECKE & Josef STÊP, Das Vorkommen des Uranpecherzes zu Joachimsthal. In: Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien, mathematischnaturwissenschaftliche Klasse, Abteilung I, 113. Band (Wien 1904), S. 585-617.
- 6. Friedrich BECKE & Josef STÊP, Uranpecherz (FN 5), S. 590.
- 7. Friedrich BECKE & Josef STÊP, Uranpecherz (FN 5), S. 596.
- 8. BECKE & STÊP, Uranpecherz (FN 5), S. 600-601.
- 9. BECKE & STÊP, Uranpecherz (FN 5), S. 606.
- 10. BECKE & STÊP, Uranpecherz (FN 5), S. 616.
- 11. BECKE & STÊP, Uranpecherz (FN 5), S. 617.
- 12. Margret HAMILTON, Die Notizbücher des Mineralogen und Petrographen Friedrich Becke 1855-1931. Schriften des Archivs der Universität Wien Band 23 (Göttingen 2017).