COMPARING THE STRUCTURE OF LITHIUM CONTAINING GERMANATE AND SILICATE GLASSES

Soltay, L.G. & Henderson, G.S.

Department of Geology, University of Toronto, 22 Russell Street, M5S 3B1, Toronto, Ontario, Canada e-mail: leonie.soltay@utoronto.ca

The addition of alkali cations to silicate melts and glasses results in the depolymerisation of the silicate network, and formation of non-bridging oxygens (NBOs). The size of the alkali cation has recently been observed to influence the distribution of Q species (Q^3, Q^2) that exist within silicate glasses. In particular, lithium-containing glasses have higher Q^2/Q^3 ratios than equivalent Na or K containing glasses. However, this Q species dependence on alkali size appears to be different for germanate melts and glasses. We are currently investigating the Q species distribution between lithium containing silicates and germanate glasses. Silicate and germanate glasses containing from 5 to 30 mol% Li₂O have been prepared and examined using Si *K*-edge XANES/EXAFS, Si *L*-edge XANES, Raman spectroscopy, ²⁹Si NMR and ⁷Li NMR. Our studies have revealed that lithium-containing compositions. Furthermore, with the addition of lithium, the Q^2/Q^3 ratio increases for silicate glasses, but decreases for germanate glasses. The lithium containing germanate glasses also appear to have greater amounts of Q^2 relative to Q^3 species, than comparable lithium-containing silicate glasses.