MAGNETIC ORDERING IN THE QUASI-1D COMPOUND Cu₂Fe₂Ge₄O₁₃ AS MONITORED BY ⁵⁷Fe MÖSSBAUER SPECTROSCOPY AND SQUID MAGNETOMETRY

Redhammer, G.J.^{1,2}, Tippelt, G.¹, Lottermoser, W.¹, Amthauer, G.¹ & Roth, G.²

¹Division of Mineralogy and Material Science, Department of Geography, Geology and Mineralogy, Hellbrunnerstr. 34, A-5020 Salzburg, Austria

² Institute of Crystallography, University of Technology Aachen (RWTH), Jägerstr. 17/19, D-52056 Aachen e-mail: guenther.redhammer@aon.at

The germanate compound $Cu_2Fe_2Ge_4O_{13}$ has been synthesized by solid state ceramic sintering techniques between 1173 K and 1423 K. The structure is isotypic with Cu₂Sc₂Ge₄O₁₃, described recently by REDHAMMER & ROTH (2004). The title compound is monoclinic, space group $P2_1/m$, Z = 4, a = 12.134(2) Å, b = 8.5153(9) Å, c = 4.8795(8) Å, $\beta = 96.10(2)^\circ$. The structure consists of crankshaft-like chains of edge -sharing FeO₆ octahedra running parallel to the crystallographic b - axis. These chains are linked laterally by $[Cu_2O_6]^{6-}$ dimers forming a sheet of metal-oxygen-polyhedra within the a - b plane. These sheets are separated along the c - axis by $[Ge_4O_{13}]^{10}$ clusters. Cooling to 15 K does not alter the crystallographic symmetry of Cu₂Fe₂Ge₄O₁₃. SQUID magnetometric measurements at an external field above 0.1 T show two events in $\chi(T)$, one at around 100 K, and one at 40 K. The first one is characterized by a broad maximum in the temperature dependence of the magnetic susceptibility χ , the second one by a change in slope. At low external magnetic fields (0.01) T), the second event is also visible as a clearly resolved peak. The question arises, which magnetic ordering phenomena can be assigned to these two events. In situ low-temperature ⁵⁷Fe Mössbauer spectroscopy has been used to get a deeper insight into these ordering processes. At room temperature, the spectrum consists of a single quadrupole doublet with a large quadrupole splitting. This doublet can be assigned to the strongly distorted CuO_6 octahedron. Cooling down to liquid nitrogen temperature does not alter the general appearances of the spectrum, i.e. no magnetic ordering can be detected. However, a distinct increase of the width of the resonance absorption lines is observable between 140 K and 100 K. Thus the 100 K maximum in $\chi(T)$ is assigned to low dimensional magnetic ordering within the Cu-dimers. At 40 K full magnetic 3-dimensional ordering takes place expressed by the appearance of a magnetically split ⁵⁷Fe Mössbauer spectrum.

References

REDHAMMER, G.J. & ROTH, G. (2004): J. Solid State Chem., in press.