INFLUENCE OF Ca-Mg SUBSTITUTION ON THE Cr³⁺ CRYSTAL FIELD PARAMETERS IN NATURAL GARNET SOLID SOLUTIONS

Platonov, A.N.¹, Langer, K.² & Matsyuk, S.S.¹

¹ Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Science of Ukraine, Prospect Palladina 34, 03680 Kiev, Ukraine

² Institute of Applied Geosciences 1, Technical University of Berlin, D-10623 Berlin, Germany e-mail: platonov@i.com.ua

Electronic absorption spectra of a series (19 samples) of natural Mg, Ca-garnets with constant amount of octahedral Cr^{3+} , ^[8] $(Mg_{1-x}Ca_x)_3^{[6]}(Al_{0.67}Cr_{0.33})_2^{[4]}Si_3O_{12}$, from deep-seated xenoliths in kimberlite pipes of Siberia and South Africa were measured and evaluated. It was established that increasing of x_{Ca} from 0.02 to 0.745 results in decreasing of: (i) $10Dq_{Cr}^{3+}$ from 17800 cm⁻¹ to 16580 cm⁻¹, (ii) β parameter, reflecting the ionicity of the Cr-O bond, from 0.714 to 0.682, and (iii) FWHM values of v_1 and v_2 absorption bands of Cr^{3+} The above dependences are represented by two distinct linear trends (a) $(x_{Ca} < x_{Cr})$ (10Dq = 17845-2469.5 x_{Ca}, r=0.992) and (b) ($x_{Ca}>x_{Cr}$) (10Dq = 17583.3-1361.1 x_{Ca}, r=0.995) with the boundary between these trends that corresponds to the composition $x_{Ca} = x_{Cr}$.

The observed character of variation of the Cr³⁺ crystal field parameters along the garnet solid solution studied reflects, most probably, different stages of the Ca and Cr³⁺ ordering in the shared X- and Y-sites of the structure, respectively. Such ordering is caused by the mechanism of the optimization of Ca and Cr^{3+} local environment (BOSENICK et al., 2000). The presence of large Cr^{3+} -centered octahedra in the pyrope host structure is energetically favourable when Ca replaces Mg if Ca and Cr³⁺ are placed in adjacent (shared) X and Y sites, respectively (UNGARETTI et al., 1995).

In garnets with ratio $x_{Ca} < x_{Cr}$ two types of Cr^{3+} -centers occur: (i) Cr^{3+} - ions in a pure pyrope matrix, that is octahedral Cr^{3+} surrounded by six next-next-neighbour Mg atoms (Mg₆-Cr³⁺); (ii) Cr^{3+} -ions in "mixed" X-cation surrounding, that is (Mg_{6-x}Ca_x)-Cr³⁺, where lim(x) \rightarrow 6.

In garnets with $x_{Ca} > x_{Cr}$ ratio only Ca_6 - Cr^{3+} centers ("uvarovite like" clusters) exist. In both cases the mentioned change of Cr^{3+} crystal field parameters is caused by an increase of the Ca amount and as result of increasing Cr-O distances and their covalency. However, in the first case (trend (a)) Ca atoms replace Mg in local environment of Cr^{3+} and in the second one (trend (b)) - in the Cr-free parts of the garnet structure.

References

BOSENICK, A., DOVE, M.T. & GEIGER, C.A. (2000): Phys. Chem. Minerals, 27: 398-418. UNGARETTI, L., LEONA, M., MERLI, M. & OBERTI, R. (1995): Eur. J. Mineral., 7: 1299-1312.