CS3SCSI8O19, A NEW MICROPOROUS SILICATE WITH EIGHT-MEMBERED RINGS

U. Kolitsch & E. Tillmanns

Institut für Mineralogie und Kristallographie Universität Wien, Geozentrum, Althanstrasse 14, A-1090 Wien, Austria

During investigations of the system Sc_2O_3 -Al₂O₃-TiO₂-SiO₂, which contains several important ceramic phases, a new microporous compound, $Cs_3ScSi_8O_{19}$, was synthesized as colourless, glassy plates from a CsF-MoO₃ flux. The crystal structure was determined from single-crystal X-ray diffraction data (Mo-K α radiation, CCD area detector, $2\theta_{max} = 60^\circ$, $R_{int} = 1.3$ %). The compound is orthorhombic, space group *Pnma*, with a = 11.286(2), b = 7.033(1), c = 26.714(5) Å, and Z = 4 (R1 = 2.6 % and wR2_{all} = 7.3 % for 3066 'observed' reflections with $F_0 > 4\sigma(F_0)$).

The structure of $Cs_3ScSi_8O_{19}$ represents a novel, mixed octahedral-tetrahedral framework structure type. It is based on isolated, nearly regular ScO_6 octahedra $[d_{av}(Sc-O) = 2.112 \text{ Å}]$ sharing corners with SiO_4 tetrahedra to form an open framework with four-, six- and eight-membered rings; the latter are composed of SiO_4 tetrahedra only. Three non-equivalent Cs atoms occupy large voids in the framework, close to the puckered eight-membered rings. The voids are connected into channels running along several directions. One Cs position is split into four partially occupied and disordered sites. Determinations of the unit-cell parameters at 120 K suggest no phase transition, and an only very small volume shrinkage of ca. 0.4 %.

The structure is compared with that of the structurally related compound $Cs_2TiSi_6O_{15}$ [1, 2] and with other natural and synthetic microporous titano- and zircono-silicates, which recently have attracted considerable interest due to their microporous properties, e.g. [3]. $Cs_3ScSi_8O_{19}$ or derivatives may be important in the context of immobilisation of radioactive Cs waste, cationic conductivity or catalysis.

Financial support by the Austrian Science Foundation (FWF) (Grant P15220-N06) is gratefully acknowledged.

References

[1] GREY ET AL. (1997): The crystal structure of Cs₂TiSi₆O₁₅. - Journal of Solid State Chemistry, 131, 38-42.

- [2] NYMAN ET AL. (2000): Integrated experimental and computational methods for structure determination and characterization of a new, highly stable cesium silicotitanate phase, Cs₂TiSi₆O₁₅ (SNL-A). - Chemistry of Materials, 12, 3449-3458.
- [3] ROCHA, J. & ANDERSON, M. W. (2000): Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. - European Journal of Inorganic Chemistry, 2000, 801-818.