SYNTHETIC LAALSIO5: A MIXED-ANION RARE EARTH ALUMOSILICATE ## V. Kahlenberg & H. Krüger Institut für Mineralogie und Petrographie Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria The crystal structure of a new synthetic lanthanium alumosilicate with composition LaAlSiO₅ has been investigated using single crystal diffraction data collected at room conditions. LaAlSiO₅ crystallizes in the non-centrosymmetric orthorhombic space group $P2_12_12_1$ with twelve formula units per cell (a = 11.0525(7) Å, b = 5.2261(3) Å, c = 23.7049(21) Å, V = 1369.2(3) Å³, R(|F|) = 0.023 for 2875 independent observed reflections) and belongs to the group of mixed anion alumosilicates. Basic building units are isolated [SiO₄] groups as well as tetrahedral double layers of composition [(Al,Si)₅O₁₁]. The two single layers comprising a single double layer are related by 2_1 screw axes running along [100]. Each of these two layers can be thought of as being built from the condensation of unbranched as well as open-branched *zweier* single chains running parallel [010]. Therefore, the whole anion can be classified as a hybrid *zweier* double layer. Stacking of the layers parallel to [001] results in the formation of a three-dimensional structure in which lanthanum cations and isolated SiO₄-groups are incorporated for charge compensation. The three crystallographically independent La-atoms are coordinated by 7–8 oxygen ligands. Concerning the connectedness of tetrahedra in the structure of LaAlSiO₅ one singular (Q⁰), one primary (Q¹) and four quaternary (Q⁴) groups can be distinguished (cf. Figure 1). Bond valence calculations were performed to obtain the Al/Si distributions for the symmetrically independent T-sites. Four out of six tetrahedra show a strong preference for either Al or Si, whereas the remaining two tetrahedral centers show a Al:Si ratio close to 1:1. Using the silicate classification procedure introduced by Liebau the structural formula of the present compound can be written as La₃{hB,2_x²} [(Al,Si)₅O₁₁][SiO₄]. Figure 1 Projection of the crystal structure of LaAlSiO₅ parallel [010]. White, medium and dark grey tetrahedra correspond to Q³, Q² and Q¹ units.